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1 Abstract 
 
Visual gamma oscillations have been proposed to subserve perceptual binding, 
but their strong modulation by diverse stimulus features confounds 
interpretations of their precise functional role. Overcoming this challenge 
necessitates a comprehensive account of the relationship between gamma 
responses and stimulus features. Here we used multivariate pattern analyses on 
human MEG data to characterize the relationships between gamma responses 
and one basic stimulus feature, the orientation of contrast edges. Our findings 
confirmed we could decode orientation information from induced responses in 
two dominant frequency bands at 24-32 Hz and 50-58 Hz. Decoding was higher 
for cardinal than oblique orientations, with similar results also obtained for 
evoked MEG responses. In contrast to multivariate analyses, orientation 
information was mostly absent in univariate signals: evoked and induced 
responses in early visual cortex were similar in all orientations, with only 
exception an inverse oblique effect observed in induced responses, such that 
cardinal orientations produced weaker oscillatory signals than oblique 
orientations. Taken together, our results showed multivariate methods are well 
suited for the analysis of gamma oscillations, with multivariate patterns robustly 
encoding orientation information and predominantly discriminating cardinal from 
oblique stimuli.  

2 Introduction 
 
To yield a coherent perception of the visual world, the human brain must bind 
simple features into complex wholes. While substantial evidence underscores the 
importance of the rhythmic firing of neurons in the gamma band (30-80 Hz) for 
feature binding (Gray, Charles, 1989; Engel et al., 1991; Singer, 1999; Tallon-
Baudry and Bertrand, 1999; Fries et al., 2007), the specific mechanisms 
subserving the temporal linking of visual information remain unclear (Shadlen 
and Movshon, 1999; Brunet et al., 2014; Ray and Maunsell, 2015).  
 
A principal challenge in tackling this problem is understanding the modulation of 
visual gamma activity with respect to different stimulus features. A growing 
number of electrophysiological studies suggest both visual gamma power and 
frequency are strongly and systematically modulated by diverse stimulus 
features, including spatial frequency (Adjamian et al., 2004; Hadjipapas et al., 
2007), luminance contrast (Adjamian et al., 2004; Hall et al., 2005), velocity 
(Swettenham et al., 2009), orientation (Koelewijn et al., 2011), size 
(Muthukumaraswamy and Singh, 2013), and eccentricity (van Pelt and Fries, 
2013). The mounting list of features that can modulate gamma oscillations 
complicates interpretations on the role of visual gamma activity in feature 
binding. 
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Here, we propose the use of multivariate pattern analyses methods to obtain a 
fine characterization of the information encoded in gamma oscillations. The 
motivation is threefold. First, gamma power and frequency vary across the 
cortex, stressing the need to characterize gamma spatial patterns. For example, 
neuronal ensembles in different patches of cortex have been shown to oscillate 
at significantly different frequencies in response to stimuli with spatially varying 
contrast (Ray and Maunsell, 2010). Second, the strong dependence of gamma 
activity on diverse stimulus features implies complex relationships that cannot be 
captured by only two variables. Thus it is not possible to fully characterize the 
complexity of gamma signals using univariate approaches, which summarize 
activity across large patches of cortex into two values, the gamma power and 
frequency within the cortical patch (Adjamian et al., 2008; Koelewijn et al., 2011; 
Muthukumaraswamy and Singh, 2013). And third, multivariate pattern analyses 
methods have already been proven effective in resolving information encoded in 
MEG and EEG evoked responses, motivating their extension to induced 
responses. In particular, recent studies have revealed that information on simple 
visual features, such as orientation of contrast edges (Cichy et al., 2015; 
Ramkumar et al., 2013; Wardle et al., 2016), and complex visual patterns, such 
as visual object categories (Carlson et al., 2013; Cichy et al., 2014; Isik et al., 
2014; Clarke et al., 2014; Kaneshiro et al., 2015), are encoded in MEG and EEG 
evoked responses. 
 
We used multivariate analyses methods to systematically evaluate the role of 
gamma oscillations in encoding a simple stimulus feature, the orientation of 
grating stimuli (Koelewijn et al., 2011). We recorded human MEG data while 
participants viewed six circular grating stimuli with different orientations (0-150° in 
30° steps), and used multivariate pattern classification on MEG sensor 
measurements to decode stimulus orientation from induced responses in a broad 
range of frequencies (10-80 Hz). The selection of stimuli enabled us to compare 
brain responses to orientations differing as little as 30o. We also evaluated 
whether induced responses discriminate cardinal (0o, 90o) from oblique 
orientations (30o, 60o, 120o, 150o), as predicted by behavioral, 
electrophysiological and neuroimaging studies of the oblique effect (Pettigrew et 
al., 1968; Appelle, 1972; Koelewijn et al., 2011). Finally, we related findings on 
induced responses with corresponding multivariate analyses of MEG evoked 
responses. 

3 Methods 

3.1 Participants  
 
Fourteen right handed healthy subjects (8 females; age mean ± s.d. = 27.2 ± 5.7 
years) participated in the experiment. All subjects gave a written informed 
consent and received payment for their participation. The study was approved by 
the local ethics committee (Institutional Review Board of the Massachusetts 
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Institute of Technology) and conducted according to the principles of the 
Declaration of Helsinki. 

3.2 Stimulus set and experimental design  
 
The stimulus set comprised 6 stationary square-wave Cartesian gratings with 
orientations 0° to 150° with respect to vertical, in steps of 30° (Fig. 1A). This 
enabled the evaluation of brain responses to orientations differing by as little as 
30o, thus establishing a measure of sensitivity in disambiguating orientations. It 
also allowed the comparison of specific orientation combinations, namely 
cardinal (0o, 90o) versus oblique (30o, 60o, 120o, 150o). 
 
The gratings had black/white maximum contrast with a frequency of 3 cycles per 
degree, which is known to elicit strong evoked responses and induced narrow 
band gamma oscillations in the early visual cortex (Adjamian et al., 2004; 
Koelewijn et al., 2011). The stimuli were constrained in an annulus with an outer 
radius of 6.5o and an inner radius of 1o. The inner radius served to prevent 
interaction effects between the orientation contrast edges and a fixation cross 
presented at the center of the stimulus during the experiment.  
 
The grating stimuli were presented against a gray background, while the central 
fixation cross remained always on screen (Suppl. Fig. 1). Images appeared in 
random order for 800 ms with an ISI of 1000 ms. The gratings had random phase 
in each trial to ensure any identified orientation representations are not 
confounded by local luminance differences due to a particular choice of phase 
(Ramkumar et al., 2013; Cichy et al., 2015). Every 3-5 trials the sequence was 
interrupted to present a target image (paper clip) for 800 ms followed by a longer 
ISI of 1500 ms. The target trials served to maintain attention and avoid 
contamination of experimental conditions with eye blink artifacts, and were 
excluded from further analysis.  
 
The experiment consisted of 22 blocks of 96 trials each (excluding the 
interspersed targets), for a total of 352 trials per stimulus. Participants were 
instructed to fixate on a centrally presented black fixation cross, and press a 
button and blink their eyes in response to the target image. The stimuli were 
presented using Psychtoolbox (www.psychtoolbox.org) (Brainard, 1997). 
 

3.3 MEG acquisition and preprocessing 
 
MEG data was recorded using an Elekta Triux system (306-channel probe unit 
with 204 planar gradiometer sensors and 102 magnetometer sensors) at a 
sampling rate of 1000 Hz, filtered between 0.03 and 330 Hz. The location of the 
head was measured continuously during each recording session by activating a 
set of 5 head position indicator coils placed over the head. Prior to the MEG 
recording, a 3D digitizer (Fastrak, Polhemus, Colchester, Vermont, USA) was 
used to register the locations of 3 anatomical landmarks (right and left 
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preauricular points and the nasion) with respect to the 5 head position indicator 
coils. Raw data was pre-processed with the Maxfilter software (Elekta, 
Stockholm) to compensate for head movements and perform noise reduction 
with spatiotemporal filters (Taulu et al., 2004; Taulu and Simola, 2006). We used 
default parameters (harmonic expansion origin in head frame = [0 0 40] mm; 
expansion limit for internal multipole base = 8; expansion limit for external 
multipole base = 3; bad channels automatically excluded from harmonic 
expansions = 7 s.d. above average; temporal correlation limit = .98; buffer length 
= 10 s). Intuitively, Maxfilter first applied a spatial filter that separated the signal 
data from spatial patterns emanating from distant noise sources outside the 
sensor helmet. It then applied a temporal filter that discarded components of the 
signal data with time series strongly correlated with the ones from the noise data.  
 
The filtered data were subsequently analyzed with Brainstorm (Tadel et al., 
2011). We extracted peri-stimulus data from −200 ms to +1500 ms with respect 
to stimulus onset. Every trial was baseline-corrected to remove the mean (−300 
to 0 ms) from each channel, and the time series were smoothed with a 30 Hz 
low-pass filter for evoked analyses, or 200 Hz low-pass filter for induced 
response analyses. For multivariate pattern analysis, in addition to removing the 
baseline mean, the data of each sensor were divided by the standard deviation of 
the pre-stimulus baseline signal of that sensor.  
 

3.4 Multivariate pattern analysis of evoked responses 
 
We first evaluated whether stimulus orientation can be decoded from evoked 
responses (Fig. 1). Multivariate pattern analysis was based on linear support 
vector machines (SVM) using the libsvm software implementation (Chang and 
Lin, 2011)  with a fixed regularization parameter C = 1. To reduce computational 
load and improve the signal-to-noise ratio, we sub-averaged the M = 352 trials 
per condition in groups of k = 87 trials with random assignment, obtaining 4 
averaged trials per condition (Fig. 1B).  
 
SVM analysis was performed separately for each subject in a time-resolved 
manner. In particular, for each time point t (from -200 ms to 1500 ms in 1 ms 
steps), we extracted evoked pattern vectors by concatenating the 306 MEG 
sensor measurements into 306-dimensional pattern vectors, resulting in 4 pattern 
vectors for each stimulus (condition). For each pairwise combination of 
conditions separately, we measured the performance of the classifier to 
discriminate between conditions using leave-one-out cross-validation: 3 vectors 
were randomly assigned to the training set, and the left-out vector to the testing 
set to evaluate the classifier decoding accuracy. The pairwise classification was 
repeated 100 times with random assignments of the M trials in groups of k trials, 
and the resulting decoding accuracies were averaged over repetitions. This 
yielded a 6  6 decoding matrix for each time point t, indexed in rows and 
columns by the classified stimuli. This decoding matrix is symmetric and has an 
undefined diagonal (no classification within condition). 
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Based on the decoding results, we further determined whether MEG activation 
patterns discriminate cardinal from oblique orientations, and whether higher 
orientation disparities are associated with greater decoding accuracies. We thus 
partitioned the decoding matrix into segments for pairs of stimuli when both have 
oblique orientations (segment O), or at least one of them has a cardinal 
orientation (segment C). We also separately partitioned the decoding matrix into 
3 segments, corresponding to pairs of stimuli with orientation angle disparities Δθ 
of 30o, 60o, and 90o. Averaging decoding accuracies within each of the segments 
enabled the comparison of the corresponding activation patterns. 
 

3.5 Multivariate pattern analysis of induced responses 
 
For induced response analysis, the evoked response of each condition (trial 
average) was subtracted from the individual M = 352 trials of that condition (Fig. 
2A). For each trial and sensor, the MEG time series were then transformed to 
time-frequency power maps in the range 10 – 80 Hz by convolving them with 
complex Morlet wavelets described by the equation: 

𝑤(𝑡, 𝑓) =
1

൫𝜎௧√𝜋൯
ଵ/ଶ

𝑒
ି

೟మ

మ഑೟
మ
𝑒௜ଶగ௙௧ 

The complex Morlet wavelets have Gaussian shape in both the time and 
frequency domain, with a temporal resolution FWHM௧ =  𝜎௧ඥ8 log 2, and a 

spectral resolution FWHM௙ =  ඥ8 log 2 2𝜋𝜎௧ൗ , where 𝜎௧ is the standard deviation 
of the Gaussian in the time domain. The wavelets were selected to have a 
constant ratio FWHM௧ 𝑓⁄ = 3, which for example corresponds to temporal 
resolution FWHM௧ = 3 s at central frequency 𝑓 = 1 Hz. 
 
The resulting M = 352 time-frequency maps per condition were averaged in 
groups of k = 87 with random assignment to reduce computational load, improve 
the signal-to-noise ratio, and allow direct comparison with the similarly analyzed 
evoked responses. This yielded 4 averaged time-frequency maps per condition 
(Fig. 2A). These maps were finally normalized as a percentage change from the 
average baseline power for each frequency band, to represent event related 
synchronization/desynchronization (ERS/ERD).  
 
SVM analysis was performed in a time- and frequency resolved manner. In 
particular, for each time point t (from -200 ms to 1500 ms in 1 ms steps), and 
frequency value f (from 10 Hz to 80 Hz in 2 Hz steps) we extracted induced 
pattern vectors by concatenating the sensor time-frequency values into 306-
dimensional pattern vectors. This procedure yielded 4 pattern vectors for each 
condition. Pairwise SVM classification proceeded similarly to the evoke response 
analyses, by performing 100 iterations of leave-one-out cross-validation (thus 
using 3 pattern vectors to construct the SVM hyperplane and 1 pattern vector to 
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test the prediction of the classifier), yielding a 6  6 decoding matrix for each time 
point t and frequency point f (Fig. 2A). 
 
To further characterize the decoding performance in 2 frequency bands, 50-58 
Hz (high gamma) and 24-32 Hz (low gamma) (Fig. 3), we designed time-resolved 
higher dimensional pattern vectors by concatenating the power maps values from 
306 sensors and 5 frequency points (50-58 Hz or 24-32 Hz, in 2 Hz steps), 
resulting in 1530  1 dimensional pattern vectors. Other than using these higher 
dimensional induced response pattern vectors, multivariate pattern analysis 
proceeded identically to the previously described procedures. 
 
To evaluate cardinal vs. oblique effects, and the discrimination across several 
angle disparities Δθ, the 6  6 induced response decoding matrices were 
partitioned into appropriate segments (Fig. 3C-F), reflecting the corresponding 
evoked response analysis.  
 

3.6 Temporal generalization of multivariate pattern analysis 
 
The distinct temporal dynamics of the transient evoked time series versus the 
sustained induced gamma responses of the early visual cortex posit the question 
whether orientation information is maintained in different ways between the two 
responses. To evaluate the persistence of orientation information over time, we 
generalized the decoding procedure across time by training the SVM classifier at 
a given time point t, as before, but testing across all other time points (Cichy et 
al., 2014; King and Dehaene, 2014; Isik et al., 2014). Intuitively, if 
representations are stable over time, the classifier should successfully 
discriminate signals not only at the trained time t, but also over extended periods 
of time that share the same neural representation of orientation information. This 
temporal generalization analysis was repeated for every pair of stimuli, and the 
results were averaged across conditions and subjects, yielding 2-dimensional 
temporal generalization matrices with the x-axis denoting training time and the y-
axis testing time (Fig. 4).  
 

3.7 Comparison of evoked and induced representations to models 
 
The MEG decoding matrices can be interpreted as a dissimilarity measure: 
stimulus pairs with similar neural patterns are harder to discriminate and thus 
have lower decoding accuracies. Termed representational dissimilarity matrices 
(RDMs), these 6  6 decoding matrices capture the relations across the neural 
patterns elicited by the 6 stimulus orientations. 
 
To evaluate the orientation information encoded in the evoked and induced 
RDMs, we devised two models reflecting hypothesized representational formats 
(Fig. 5A). The cardinal model was a 6  6 matrix with representational distance 2 
for pairs of stimuli with at least one of them cardinal, and 1 for pairs of stimuli with 
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both oblique. This model evaluated a categorical relationship between cardinal 
and oblique stimuli. The angle disparity model was a 6  6 matrix with 
representational distance equal to the angle disparity Δθ between the 
corresponding pairs of stimuli. This model thus assumed an ordinal relationship 
between angle disparities and neuronal representations, with higher angle 
disparities associated with increasingly different neuronal representations. 
 
We then compared (using Spearman’s rho to capture ordinal relationships) the 
two model RDMs with the time-resolved MEG RDMs of the evoked response and 
the induced response in the high and low gamma bands (Fig. 5B). This resulted 
in time courses of representational similarity between the models and MEG data.  
 
To further characterize the effectiveness of these models in explaining MEG 
orientation information, we computed the corresponding noise ceiling in each 
time point, defined as the highest possible correlation attained by the (unknown) 
true model, given the inherent noise in the MEG data (Nili et al., 2014). Intuitively, 
the model-MEG correlation is maximized when the model RDM lies exactly at the 
center of the cloud of single-subject MEG RDM estimates (in a rank-transformed 
space to account for Spearman’s correlation). Thus operationally, the noise 
ceiling was computed by rank-transforming the single-subject MEG RDMs for 
each time point t, and defining the subject-averaged MEG RDM as the ideal true 
model for that given point t. 
 

3.8 Multidimensional scaling visualization 
 
To offer an intuitive visualization of the complex representational patterns 
contained in the MEG and model RDMs, we used multidimensional scaling 
(MDS) (Fig. 5). MDS is an unsupervised method to visualize the level of similarity 
between individual conditions contained in a distance matrix. We plotted the data 
in a two-dimensional space, whereby similar orientations are grouped together 
and dissimilar orientations far apart. To ease visualization, the stimuli were 
represented by bars (black for cardinal; gray for oblique) with orientation identical 
to that of corresponding grating stimulus. 
 

3.9 Orientation selective neuronal activation in early visual cortex 
 
While multivariate pattern analyses and representational similarity can capture 
orientation information encoded in neuronal signals, they constitute distance 
measures between brain signals and thus abstract from the underlying brain 
activity. To directly characterize neuronal activation in early visual cortex, we 
computed source activation maps on subject-specific cortical surfaces derived 
from Freesurfer automatic segmentation (Fischl et al., 2004). The forward model 
was calculated using an overlapping spheres model (Huang et al., 1999). MEG 
signals were then mapped on the cortex using a dynamic statistical parametric 
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mapping approach (dSPM) (Dale et al., 2000) and time series were derived from 
pericalcarine cortex (Desikan et al., 2006).  
 
Evoked and induced neuronal activations in early visual cortex were computed 
similarly to sensor space, by averaging condition-specific MEG time series and 
using complex Morlet wavelets to estimate induced signals. 
 

3.10 Statistical testing 
 
We used non-parametric statistical inference that does not make assumptions on 
the distributions of the data (Maris and Oostenveld, 2007; Pantazis et al., 2005).  
Permutation and bootstrap tests were performed with sample size N = 14, equal 
to the number of subjects for random effects inference. 
 
Statistical assessment of classification time series and matrices, MEG-model 
correlations, and brain activation matrices relied on sign permutation tests. The 
null hypothesis was equal to 50% chance level for decoding results, and 0 for 
correlation values, brain neuronal activations or power percentage change from 
baseline. In all cases, under the null hypothesis we could permute the condition 
labels of the MEG data, which was equivalent to a sign permutation test that 
randomly multiplied subject responses by +1 or -1. Repeating the permutation 
procedure 1000 times enabled us to convert the original statistical maps (e.g. 
decoding time series, MEG-model correlation time series) to 1-dimensional or 2-
dimensional p-value statistical maps. We then controlled the familywise error 
across time points using cluster size inference. The p-value statistical maps were 
thresholded at p < 0.05 for 1-dimensional data, or p < 0.005 for 2-dimensional 
data, to define suprathreshold clusters. These suprathreshold clusters were 
reported as significant if their size (defined as the number of connected 
elements) exceeded a p < 0.05 threshold, defined by the empirical distribution of 
similarly constructed suprathreshold clusters of the permutation sample statistical 
maps. 
 
Statistical assessment of brain activation time series also relied on sign 
permutation tests to convert statistics into p-values, however multiple comparison 
corrections over time were controlled with a false discovery rate (FDR) procedure 
(p < 0.05) because it was more suitable than the cluster size inference, given the 
highly transient temporal dynamics. 
 
Statistical tests were one-sided for decoding values, and two-sided for decoding 
value differences or brain activation values and differences. 
 
Statistical assessment of the peak latency of the time series relied on bootstrap 
tests to estimate confidence intervals. The subject-specific time series were 
bootstrapped 1000 times and the empirical distribution of the peak latency of the 
subject-averaged time series was used to define 95% confidence intervals. For 
peak-to-peak latency differences, we obtained 1000 bootstrapped samples of 
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each of the two peaks, and their statistical difference was evaluated with a two-
sample two-sided signed-rank test. 

4 Results 
 

4.1 Orientation information is decodable from MEG evoked 
responses  

 
We first determined the time series with which evoked responses detected by 
MEG discriminate orientation information. For every time point, we averaged all 
elements of the MEG decoding matrix, yielding a grand total decoding time series 
averaged across all condition pairs (Fig. 1D). MEG evoked responses robustly 
resolved orientation information, reproducing the results in (Cichy et al., 2015; 
Ramkumar et al., 2013). The decoding time series reached significance at 38 ms 
(95% confidence interval 37 – 39 ms), peaked at 141 ms (83 – 145 ms), and then 
progressively declined over time.  
 
Next we investigated whether MEG evoked responses differentially encode 
cardinal (0o, 90o) from oblique (30o, 60o, 120o, 150o) orientations. Such division is 
behaviorally relevant, given the perceptual differences in orientation 
discrimination between cardinal (i.e. vertical and horizontal) and oblique contours 
(Appelle, 1972). While this oblique effect may be a consequence of living in 
natural and manufactured environments with straight horizontal and vertical lines 
dominating our surroundings (Torralba and Oliva, 2003), the neural 
underpinnings remain controversial. In part, this is because the brain responses 
may be more complex than a simple bias (also see horizontal bias; Essock et al., 
2003), and controversial findings are possibly driven by disparate methodological 
approaches (Brunet et al., 2014; Dora Hermes et al., 2015; Maloney and Clifford, 
2015). 
 
To investigate differences in the encoding of cardinal vs. oblique orientations 
anisotropies, we partitioned the MEG decoding matrix into 2 segments; a cardinal 
segment containing elements with pairs of stimuli when at least one of them is 
cardinal (segment C; black); and an oblique segment when both stimuli are 
oblique (segment O; gray). After averaging decoding accuracies within the 
corresponding segments, we observed higher decoding accuracies for cardinal 
than oblique stimuli pairs (Fig. 1E). The effect was consistent throughout the 
evoked response, with the preference for cardinal stimuli extending even during 
the offset response. 
 
To evaluate the effect of angle disparities on the decoding time series, we further 
partitioned the decoding matrix into 3 segments corresponding to pairs of stimuli 
with orientation differences Δθ of 30o, 60o, and 90o. While differences even as 
low as 30o were decodable, in contrast to the consistent preference to cardinal 
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stimuli, angle disparity effects were less evident in the MEG evoked responses 
(Fig. 1F). The decoding accuracies for the 30o case were weaker than the 60o 
and 90o cases only during the first couple hundred milliseconds after the stimulus 
onset, with responses equivalent thereafter. Onset and peak latencies for the 
grand total, cardinal vs. oblique, and the angle disparities of 30, 60, and 90 are 
available in Table 1A. 
 
Overall, we found that MEG evoked responses robustly encode orientation 
information during the first few hundred milliseconds, with consistently higher 
discrimination accuracy for cardinal than oblique orientations. There was limited 
evidence for angle disparity effects; all angle disparities were equally decodable, 
with only exception a weakened discrimination of small disparities (30o) the first 
couple hundred milliseconds after the stimulus onset. 

 
Fig. 1. Orientation decoding from MEG evoked responses. A) The stimulus set comprised 6 
Cartesian square-wave gratings with orientations 0° to 150° with respect to vertical, in steps of 
30°. B) Construction of MEG evoked response pattern vectors. Condition-specific MEG trials 
were first averaged by k = 87 trials to increase SNR, and then sensor measurements for a given 
time point t were concatenated in 306 dimensional time-resolved pattern vectors. C) Multivariate 
pattern analysis. For each time point t, a support vector machine (SVM) was trained to 
discriminate pairs of stimuli (here exemplified for 90o and 30o), and the resulting pairwise 
decoding accuracies populated the elements of a 6 × 6 decoding matrix. D) Decoding accuracy 
averaged across all pairs of stimuli. E) Decoding accuracy for pairs of stimuli when both have 
oblique orientations (gray), or at least one of them has a cardinal orientation (black). F) Decoding 
accuracy for pairs of stimuli with orientation angle disparities Δθ of 30o, 60o, and 90o. For onset 
and peak latencies see Table 1A. Gray vertical lines indicate stimulus onset and offset. Inset 
matrices indicate which matrix segments were averaged, color-coded as in decoding curves.  
Lines above plots indicate significant time points, color-coded as in decoding curves. Double-
colored lines below plots indicate significant differences between decoding time series of 
corresponding colors (N = 14; sign permutation test; one- or two-sided for decoding time series 
and their differences, respectively; p < 0.05 cluster defining threshold; p < 0.05 cluster threshold). 
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 Onset latency (ms)  Peak latency (ms) 

A) Evoked  
Grand total 38 (37 – 39) 141 (83 – 145) 
Cardinal 40 (39 – 40) 86 (81 – 143) 
Oblique 46 (45 – 47) 141 (88 – 145)  
Angle disparity 90o 39 (38 – 39) 139 (98 – 149) 
Angle disparity 60o 35 (34 – 36) 145 (82 – 148) 
Angle disparity 30o 42 (41 – 42) 86 (83 – 142) 

B) 50-58 Hz  
Grand total 68 (64 – 70) 134 (122 – 154) 
Cardinal 51 (48 – 52) 138 (130 – 750) 
Oblique 86 (86 –87) 126 (113 – 154) 
Angle disparity 90o 68 (65 – 73) 128 (123 – 332) 
Angle disparity 60o 72 (71 – 73) 134 (118 – 443) 
Angle disparity 30o 62 (61 – 68) 138 (124 – 775) 

C) 24-32 Hz   
Grand total 58 (54 – 60) 368 (278 – 903) 
Cardinal 51 (49 – 59) 360 (270 – 903) 
Oblique 127 (122 – 134) 391 (208 – 907) 
Angle disparity 90o 143 (141 – 150) 579 (286 – 911) 
Angle disparity 60o 53 (51 – 58) 649 (282 – 904) 
Angle disparity 30o 62 (61 – 66) 361 (266 – 901) 

 
Table 1. Onset and peak latency of orientation decoding time series for A) 
evoked response, B) induced response 50-58 Hz, and C) induced response 24-
32 Hz. Numbers in brackets indicate 95% confidence intervals.  
 

4.2 Orientation information is decodable from induced responses  
 
Grating stimuli are known to elicit strong induced gamma activity in the visual 
cortex, with amplitude and peak frequency dependent on stimulus features, such 
as spatial frequency, contrast, and velocity (Adjamian et al., 2004; Friedman-Hill 
et al., 2000). Here we investigated whether induced MEG responses, particular in 
the gamma range, also encode grating orientation information. We computed 
MEG induced responses in the range 10 – 80 Hz, and used multivariate pattern 
analysis to obtain time- and frequency-resolved MEG decoding matrices for the 6 
square-wave Cartesian gratings (Fig. 2A).  
 
Averaging all elements of the decoding matrices yielded time-frequency maps of 
grand total decoding accuracy (Fig. 2BC). MEG induced responses 
demonstrated strong orientation selectivity in two frequency bands: 50-58 Hz and 
24-32 Hz. The 50-58 Hz frequency band is the narrow-band induced gamma 
activity consistently reported in the literature in response to visual stimulus 
gratings (Hadjipapas et al., 2015; Koelewijn et al., 2011; Muthukumaraswamy 
and Singh, 2013; Perry et al., 2013). We found the 24-32 Hz frequency band to 
also carry orientation information with decoding performance comparable to the 
50-58 Hz frequency band. In both cases, decoding was sustained for the entire 
800 ms duration of stimulus presentation. 
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We further investigated higher frequencies up to 190 Hz with the same decoding 
procedure. Other than the two frequency bands, we found no orientation 
selectivity for higher frequencies (Suppl. Fig. 2). Furthermore, the two frequency 
bands were related to each other, with the 24-32 Hz band being a subharmonic 
of the 50-58 Hz band (Suppl. Fig. 3). This was determined by estimating the peak 
frequency for the two bands separately per subject and computing the ratio of 
high/low frequency peak. This ratio had an average value of 1.96 which was not 
statistically different from 2 (p = 0.31; two-sided signed-rank test against 2). 
 
In sum, multivariate analyses captured orientation information in two frequency 
bands, 50-58 Hz and the subharmonic 24-32 Hz, providing the basis for an in-
depth investigation of orientation encoding in these frequency bands. 
 
 
 

 
Fig. 2. Orientation decoding from MEG induced responses. A) Construction of induced response 
MEG pattern vectors. Following removal of the evoked response, condition-specific single trial 
MEG data were expanded in time-frequency components using complex Morlet wavelets. The 
resulting data were averaged by k = 87 trials, and the sensor measurements were concatenated 
in 306 dimensional time- and frequency-resolved induced pattern vectors. For each time and 
frequency points, the induced response pattern vectors were subjected to multivariate 
classification analysis analogous to Fig 1C, resulting in time- and frequency-resolved decoding 
matrices. B) Time-frequency map of decoding accuracies. Results were averaged across all pairs 
of stimuli as indicated by the inset matrix. C) Statistical significance map (N = 14; one-sided sign-
permutation test; p < 0.005 cluster defining threshold; p < 0.05 cluster threshold). Gray vertical 
lines indicate stimulus onset and offset. 
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4.3 Orientation selectivity of the MEG 50-58 Hz and 28-32 Hz induced 
responses  

 
We further investigated the characteristics of the orientation information encoded 
in induced responses by focusing on the two identified and pertinent frequency 
bands: 24-32 Hz and 50-58 Hz. To this goal we refined the multivariate analysis 
procedure by constructing higher dimensional (1530 ×1) induced response 
pattern vectors, with the 5 ∙ 306 = 1530 elements comprising time-resolved 
power measurements at 306 MEG sensors for 5 frequency values (50-58 Hz or 
24-32 Hz, in 2-Hz steps).  
 
Pairwise pattern classification resulted in 6  6 time-resolved decoding matrices 
for each frequency band, and averaging across all elements of the matrices 
yielded grand total decoding time series for the 50-58 Hz and 24-32 Hz bands 
(Fig. 3AB). Following an early transient response, both frequency bands reached 
a plateau of sustained 60-65% decoding that lasted until the offset of the stimuli. 
However, the shape of the transient response differed between the two bands, 
with the 50-58 Hz band reaching an early peak of 134 ms (122 – 154 ms) 
compared to the progressive increase and late peak of 368 ms (278 – 903 ms) 
for the 24-32 Hz band (see Table 1BC). The difference between the two peaks 
was statistically significant (Δ = 234 ms; p < 0.0001 two-sided signed-rank test). 
 
We also determined the time series with which the induced responses resolved 
cardinal, oblique, and 30o, 60o, and 90o angle disparities (Fig 3C-F). Similarly to 
the analysis of evoked responses, we partitioned the MEG decoding matrices 
into segments and averaged the corresponding decoding accuracies. Both 50-58 
Hz and 24-32Hz bands had higher decoding accuracies for cardinal than oblique 
stimuli. Angle disparity effects were less consistent, though the angle disparity Δθ 
= 90o resulted in consistently weaker decoding accuracies than the 60o and 30o 
cases.   
 
In sum, we found both frequency bands had sustained orientation information 
with robust preference to cardinal orientations. The 50-58 Hz response peaked 
early at 134 ms, whereas the 24-32 Hz response had a significantly delayed 
peak at 368 ms. 
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Fig 3. Orientation decoding from MEG induced responses at 50-58Hz and 24-32Hz. AB) 
Decoding accuracy averaged across all pairs of stimuli. CD) Decoding accuracy for pairs of 
stimuli when both have oblique orientations (gray), or at least one of them has a cardinal 
orientation (black). F) Decoding accuracy for pairs of stimuli with orientation angle disparities Δθ 
of 30o, 60o, and 90o. Gray vertical lines and lines above and below plots are same as in Fig 1 (N = 
14; sign permutation test; one- or two-sided for decoding time series and their differences, 
respectively; p < 0.05 cluster defining threshold; p < 0.05 cluster threshold) 
 

4.4 Orientation information is sustained over time in both evoked 
and induced MEG signals  

 
The stable decoding time series of the induced responses, sustained over the 
duration of stimulus presentation, predict persistent neuronal orientation 
selectivity over time. We tested this prediction by performing a temporal 
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generalization of the multivariate pattern analysis. In particular, we trained an 
SVM classifier to decode oriented stimuli at a given time point t, and then tested 
classification performance across all other time points (Cichy et al., 2014; Isik et 
al., 2014; King and Dehaene, 2014). This resulted in 2-dimensional decoding 
matrices with the x-axis indexed by training time, and the y-axis by testing time. 
 
The results of the temporal generalization analysis confirmed the prediction: 
induced responses carry the same orientation information throughout the 800 ms 
stimulus presentation (Fig. 4BCEF). The significance maps formed square 
shapes for both the 50-58 Hz and 24-32 Hz bands, a signature pattern of 
sustained neuronal activity (King and Dehaene, 2014). By contrast, the evoked 
response maps show an early narrow diagonal that subsequently broadens 
considerably, consistent with an early transient and then sustained pattern of 
activity (Fig. 4AD). 
  
Taken together, the evoked and induced responses had distinct temporal 
dynamics. The temporal generalization of the evoked response, with a rapid 
evolution of neuronal activity early and a greater generalization relative late after 
stimulus onset, matched in shape corresponding results from other studies 
despite using diverse types of stimuli (Carlson et al., 2013; Cichy et al., 2014; Isik 
et al., 2014). In contrast, induced responses were predominantly sustained and 
generalized equally well throughout the neuronal activity. 
 

 
Fig. 4. Temporal generalization of orientation decoding from evoked and induced 50-58 Hz and 
24-32 Hz MEG signals. A support vector machine classifier was trained with MEG brain 
responses at any given time point t (x-axes) and tested against all other time points (y-axes). A) 
Evoked response temporal generalization map. Decoding accuracy is averaged across all pairs of 
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stimuli and subjects. BC) Same as A but for induced response at 50-58 Hz and 24-32 Hz. DEF) 
Statistical significance maps for corresponding temporal generalization matrices (N = 14; one-
sided sign-permutation test; p < 0.005 cluster defining threshold; p < 0.05 cluster threshold). Gray 
vertical and horizontal lines indicate stimulus onset and offset 
 

4.5 Evoked and induced representations are largely explained by 
cardinal orientation selectivity 

 
To comprehensively characterize the representational structure of the evoked 
and induced responses, we tested two alternative hypotheses motivated by the 
above decoding results: 1) we hypothesized the orientations follow a categorical 
representational structure solely explained by cardinal versus oblique 
orientations, and 2) we hypothesized there is an ordinal relationship between 
angle disparities and neuronal pattern differences, such that higher angle 
disparities were associated with more dissimilar neuronal representations. We 
devised two models to evaluate the hypothesized representations (Fig. 5A). A 
cardinal model had elements 2 for pairs of stimuli with at least one cardinal, and 
1 otherwise. An angle disparity model had elements equal to the angle disparity 
Δθ between the corresponding pairs of stimuli. MDS plots of these models, 
offering an intuitive visualization of the imposed similarity between the individual 
stimuli, are shown next to the respective models. In these plots, stimuli are 
depicted by bars (black for cardinal; gray for oblique) with orientation matching 
that of corresponding stimuli. 
 
The two models were compared (Spearman’s rho) against the time-resolved 
MEG decoding matrices of the evoked and induced responses (Fig 5BCD). In all 
cases, the cardinal model predominantly explained the MEG data. Importantly, its 
performance was close to noise ceiling, i.e. the highest possible correlation 
attained by the (unknown) true model, given the inherent noise in the MEG data 
(Nili et al., 2014). Conversely, the angle disparity model proved a poor candidate 
model, with weak overall correlations. There was one case where the angle 
disparity model reached significance, even exceeding the cardinal model, during 
the range 74 - 216 ms in the evoked response.  
 
We further created MDS plots of the MEG responses for intuitive visualization, 
sampled every 50 ms (Fig. 5EFG). As representations evolved over time, the 
cardinal selectivity became apparent in all cases, with the black bars clustering 
away from the remaining gray. A marked example is the 50-58Hz induced 
response, with MDS results practically matching the cardinal model. 
 
Overall, the cardinal model offered an accurate characterization of the induced 
response orientation representations, with performance near noise ceiling. It was 
also an effective descriptor of orientation representations in evoked responses, 
though early MEG evoked signals were better explained by an angle disparity 
model. 
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Fig. 5. Comparison of MEG evoked and induced responses to hypothesized models of orientation 
encoding. A) Cardinal and angle disparity models shown with their MDS plots. B) 
Representational similarity of the MEG evoked responses with the two models. For every time 
point, the MEG decoding matrix was rank correlated with each of the models. Black dashed lines 
denote the noise ceiling. Gray vertical lines and lines above plots same as in Fig 1 (N = 14; one-
sided sign permutation test; p < 0.05 cluster defining threshold; p < 0.05 cluster threshold). CD) 
Same as A for induced 50-58 Hz and 24-32 Hz responses. EFG) MDS plots for evoked and 
induced responses sampled every 50 ms. 
 

4.6 Orientation selectivity of neuronal activation in early visual 
cortex  

 
While multivariate pattern analysis resolved orientation information, decoding 
accuracies abstracted away from the underlying neuronal activation, and thus did 
not directly inform us how neural activities differed. Similarly, representational 
similarity constitutes a second-order description of the MEG data, documenting 
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relations between stimulus-specific neural activity patterns rather than the 
patterns themselves. To directly characterize neuronal activation in cortex, we 
mapped MEG sensor maps to cortical sources using a dSPM approach (Dale et 
al., 2000). Cortical maps of MEG induced responses at 50-58Hz and 24-32Hz 
are shown in Fig. 6. Visual gamma oscillations for both frequency bands 
localized on early visual cortex (EVC), consistent with prior findings (Adjamian et 
al., 2004; Hoogenboom et al., 2006; Koelewijn et al., 2011). 
 
We then conducted region-specific analysis to further investigate stimulus-
specific evoked and induced responses in early visual cortex (EVC). Such 
analysis enabled the study of neuronal activity in EVC directly, though at the cost 
of averaging over multivariate spatial patterns across the pericalcarine cortex. 
 
EVC induced activity in the 10-80 Hz range is shown in Fig. 7A. Early responses 
were predominantly contained within the 50-58 Hz band, consistent with our 
decoding results and prior studies (Adjamian et al., 2004; Muthukumaraswamy 
and Singh, 2013; Perry et al., 2013). Responses in the 24-32 Hz band were also 
evident and became progressively stronger towards the end of stimulus 
presentation. We also observed cardinal orientations having overall weaker 
induced responses than oblique orientations, termed an inverse oblique effect 
(Koelewijn et al., 2011).   
 
Time series of evoked and induced responses for the two frequency bands are 
shown in Fig. 7CDE. The evoked activity was very similar for all 6 Cartesian 
grating stimuli, with no consistent preference for cardinal over oblique stimuli 
(Fig. 7F). The initial 50-58 Hz gamma response around 100 ms after stimulus 
onset was stronger for cardinal than oblique stimuli (Fig. 7G). While this was not 
significant, it is consistent with prior findings (Koelewijn et al., 2011). 
Notwithstanding this transient effect, induced responses in both frequency bands 
were dominated by an inverse oblique effect for the entire duration of stimulus 
presentation. 
 
Note that the reverse relation, with cardinal orientations having weaker induced 
responses (Fig. 7DC) but stronger decoding results (Fig. 3CD) than oblique 
orientations, is not contradictory. Multivariate analyses are particularly effective in 
capturing consistent pattern differences and translating them to a positive 
discrepancy measure, the decoding accuracy. In this case, consistently weaker 
gamma oscillations for cardinal than oblique orientations resulted in robust 
decoding results between them. 
 
Taken together, we found a strong inverse oblique effect in induced EVC brain 
activity, namely weaker responses for cardinal than oblique orientations, but no 
orientation selectivity in evoked EVC responses. Since MEG signals were 
summarized to a single time series in EVC, the current analysis also served as a 
univariate measure of orientation selectivity in EVC. As such, univariate signals 
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had limited sensitivity to orientation information, in contrast to multivariate pattern 
analyses that were able to pairwise decode all stimuli in the previous sections. 
 
 

 
Fig. 6. Cortical maps of MEG induced responses at A) 50-58Hz and B) 24-32Hz. Maps were 
averaged across the 14 participants, the 6 stimulus conditions, and across time from 300 ms to 
+800 ms with respect to stimulus onset. 
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Fig. 7. Early visual cortex activity for the 6 Cartesian square-wave gratings. A) Time-frequency 
power maps of induced brain activity in early visual cortex. B) Statistical significance maps (N = 
14; one-sided sign-permutation test; p < 0.005 cluster defining threshold; p < 0.05 cluster 
threshold). CDE) Evoked response and 50-58 Hz and 24-32 Hz induced response in early visual 
cortex. FGH) Cardinal minus oblique signals in early visual cortex for the corresponding brain 
responses. (N = 14; two-sided sign-permutation test; p < 0.05 FDR corrected over time).  

5 Discussion 

5.1 Summary 
 
In this study, we have shown that multivariate methods are well suited for 
evaluating orientation information. Decoding revealed two frequency bands, 50-
58 Hz and 24-32 Hz, with orientation information. Formal comparison using 
representational similarity analysis with two models of hypothesized orientation 
representations determined that evoked, and 50-58 Hz and 24-32 Hz induced 
responses largely shared information, with the cardinal model predominantly 
explaining their representations. Overall, multivariate methods constituted a 
principal approach to study orientation information. Such methodological 
framework can motivate future studies to investigate the encoding of other types 
of stimulus information to gamma responses. 
 

5.2 Multivariate pattern analysis methods are well suited for 
resolving orientation information in both evoked and induced 
responses 

 
Previous studies investigating the complex visual processes in the human brain 
using multivariate pattern analyses methods have focused on decoding visual 
information from evoked responses, clarifying the representation of objects 
(Carlson et al., 2013; Cichy et al., 2014; Clarke et al., 2014; Kaneshiro et al., 
2015) and scenes (Cichy et al., 2016; Groen et al., 2017), the temporal 
maintenance of visual information (King et al., 2016), and visual motion (Bekhti et 
al., 2017). In closer relation to the work described here, MEG evoked responses 
have been shown to discriminate orientation information of grating stimuli 
(Ramkumar et al., 2013; Cichy et al., 2015; Wardle et al., 2016). 
 
Here we extended prior findings by demonstrating that multivariate pattern 
methods are well suited for the analysis not only of evoked but also of induced 
responses. In fact, we were able to discriminate all pairs of the 6 Cartesian 
grating stimuli, regardless cardinal or oblique, both from evoked and induced 
responses, as evidenced by multi-class SVM decoding in Suppl. Figure 4. This 
highlights the robustness of multivariate pattern analysis in extracting visual 
information from MEG data. 
 
Our work builds upon a previous study showing that two oblique (+45o and -45o) 
orientations can be decoded from the sustained gamma response of a source-
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reconstructed MEG signal in primary visual cortex (Duncan et al., 2010). This 
study used orientation stimuli that subtended only 1.5o to activate a focal EVC 
region, and constructed pattern vectors along the spectral dimension using 
frequency bins in the 20-70Hz band. Our study differed in stimuli and 
methodology, and aimed to show that gamma patterns in the spatial (and not 
only spectral) dimension encode stimulus information. We used large (6.5o 
radius) grating stimuli activating an extended patch of the pericalcarine cortex. 
Thus, our multivariate classification was sensitive to spatially extended neuronal 
patterns. Further, we constructed pattern vectors using measurements from the 
entire MEG sensor array and in some cases spectral values along frequency 
bands, thus our SVM analyses relied on both spatial and spectral neuronal 
patterns.  
 
In contrast to the multivariate analysis results, orientation information was very 
limited in univariate signals from the early visual cortex. We detected no 
orientation information in evoked EVC responses. The only orientation 
information in induced EVC responses was an overall stronger gamma power of 
oblique over cardinal orientations (inverse oblique effect), but otherwise all 
oblique stimuli had comparable gamma power and were not resolvable from 
each other. This further highlights that, due to its higher sensitivity, multivariate 
pattern analyses may reveal encoded information where univariate analyses do 
not (Haynes, 2015).  
 
A comparable univariate analysis performed directly on sensors corroborated 
these findings. Sensor topography plots (Suppl. Figure 5) revealed that sensors 
with the highest induced gamma responses clustered over the occipital cortex. 
Investigating the 4 sensors with the strongest induced responses affirmed that 
gamma power was stronger for oblique than cardinal orientations. However, all 
oblique stimuli had comparable gamma power and were not resolvable from 
each other. 
 
Since we constructed multivariate pattern vectors from the entire sensor array, in 
principle the decoded signals could have originated from anywhere in the cortex. 
However, the origin of visual gamma oscillations is well known to localize in the 
primary visual cortex (Adjamian et al., 2004; Hoogenboom et al., 2006; Koelewijn 
et al., 2011), as was confirmed here, too, by source localization (Fig. 6). In 
agreement with these results, the SVM classifiers were spatially specific to 
occipital sensors (Suppl. Fig. 6). 
 
We note that in a prior study, using equivalent multivariate analyses procedures 
and similar grating stimuli, we did not identify cardinal versus oblique effects in 
MEG evoked responses (Fig. 2 in Cichy et al., 2015). How can this discrepancy 
be explained? One potential source is differences in the stimulus material. While 
the stimuli sampled the same orientations as here (0° to 150° in steps of 30°), 
they differed in spatial frequency, type (sine-wave vs. square-wave), and spatial 
extent. Presentation time was also considerably shorter (100 ms vs. 800 ms). A 
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probably more critical factor was the difference in signal-to-noise ratio (SNR), 
with the prior study collecting only 33 trials per stimulus, considerably lower than 
the 352 trials per stimulus collected here. Further work, investigating the 
encoding of orientation information from gamma responses as a function of 
stimulus duration and SNR, might shed light on this issue. 
 

5.3 Orientation selectivity of gamma induced responses 
 
RSA enabled the evaluation of two formal models of orientation representation, a 
categorical cardinal model, and an ordinal angle disparity model. The cardinal 
model was the dominant model, explaining the MEG 50-58 Hz and 24-32 Hz 
induced responses very close to noise ceiling (Fig. 5CD). Conversely, the angle 
disparity model proved a poor model for the induced responses, having very 
weak correlations with the data. Thus our results indicate that for orientation, a 
basic and fundamental stimulus feature, the information encoded in MEG 
induced responses is almost entirely explained by a cardinal versus oblique 
categorical effect.  
 
This result is consistent with the univariate analyses of EVC induced responses, 
which found that visual gamma oscillations where weaker in response to cardinal 
than oblique stimuli (Fig. 6). Termed inverse oblique effect, this finding replicates 
a prior study (Koelewijn et al., 2011). A possible explanation may be the 
differential tuning between oblique and cardinal cells. While cardinal orientations 
may be encoded by a larger cell population (Pettigrew et al., 1968; Maffei and 
Campbell, 1970), their sharper tuning curves (Rose and Blakemore, 1974) can 
lead to overall reduced neuronal activity. This is because oblique stimuli will 
induce firing to a larger assembly of neurons weakly tuned to a broad range of 
orientations, whereas cardinal stimuli will induce firing to a smaller assembly of 
neurons specifically tuned to that cardinal orientation.   
 
Even though cardinal orientations dominated the representational structure of the 
induced response, all pairs of stimuli were decodable. This includes pairs of 
stimuli with oblique orientations, which were resolved with approximately 55-65% 
decoding accuracy (Fig. 3CD), despite their EVC gamma power being the same. 
This highlights the fact that information on orientation is encoded at distinct 
spatial patterns across the cortex, with measures of overall gamma power and 
frequency in large patches of cortex failing to capture this information. 
 
The precise nature of the source of oblique versus cardinal effects in the visual 
cortex remains equivocal. The reasons are multifold, including the presence of 
different types of perceptual biases (Essock, 1980); the strong dependence of 
orientation anisotropies to stimuli, with simple stimuli often associated with 
greater sensitivity to cardinal orientations and natural stimuli to oblique 
orientations (Essock et al., 2003); the overall weak neural substrate of orientation 
anisotropies, typically observed in simple cells with small receptive fields 
(Leventhal and Hirsch, 1980; Orban and Kennedy, 1981); and the disparate 
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methodological approaches (Maloney and Clifford, 2015). Here we have shown 
that methodological approaches with univariate analysis of induced responses 
may not sufficiently capture the spatial patterns of orientation selectivity. Thus, 
we hope to motivate future studies of orientation anisotropies to use multivariate 
approaches, capable of resolving spatially distributed neuronal patterns. Such 
investigations would highlight the dependence of orientation information to 
contrast (Maloney and Clifford, 2015), differentiate information encoded in 
gamma power versus frequency peak (Jia et al., 2013), and identify whether 
MEG/EEG can capture broadband frequencies that encode stimulus relevant 
information (D. Hermes et al., 2015; Ray and Maunsell, 2011), beyond the 
narrowband frequencies detected here. 
 

5.4 Relationship between induced 50-58 Hz and 24-32 Hz bands 
 
Multivariate pattern analysis greatly facilitated the assessment of orientation 
information in a broad range of frequency bands, with the decoding time-
frequency maps (Fig. 2B) revealing a distinct separation of two relevant 
frequency bands, 50-58 Hz and 24-32 Hz. Substantial evidence confirms they 
are related to each other, possibly reflecting different aspects of the same 
underlying neuronal process. First, the 24-32 Hz band was a subharmonic of the 
50-58 Hz band, with the ratio of high/low frequency peaks being approximately 2 
separately for each subject, despite across-subject variability in frequency peaks 
(Suppl. Fig. 3). Second, the two bands had overall similar representational 
structure, with the cardinal model predominantly explaining their representations. 
Third, the two bands co-localized in EVC (Fig. 6). 
 
While the existence of two orientation-selective bands was unexpected, the result 
is not original but rather may have been overlooked in literature, with prior 
studies pointing to similar findings. Hoogenboom et al., (2006) identified two 
clearly separate visually induced gamma bands in some of their subjects, though 
at a higher range (one band around 40 Hz and another around 70-80 Hz). 
Numerous other studies show spectra with two visual gamma bands, though the 
lower one is typically weak and not discussed (examples include Fig 3A in 
Hadjipapas et al., 2007; Fig. 1 in Perry et al., 2013; and Fig. 3 in Tallon-Baudry, 
2004). Notwithstanding these results, the strength of the 24-32 Hz band in our 
study is unusual and more investigation will be necessary to identify whether a 
particular selection of experimental parameters contributed to this effect. 
 
Periodic sensory input, such as tactile vibrations and periodic auditory noise 
clicks, are known to produce nonlinear responses characterized by components 
at different harmonic frequencies (Khan et al., 2015; Langdon et al., 2011; 
Spencer et al., 2008). However, here gamma oscillations were produced by a 
stationary stimulus and not a periodic sensory input, thus the neural mechanism 
is probably different. A possible explanation for the generation of both 50-58 Hz 
and 24-32 Hz rhythms could relate to a progressively reduced firing output of 
pyramidal excitatory neurons following prolonged periods of visual stimulation, 
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akin to the 800 ms stimulus presentation in our experiment. Over time, pyramidal 
neurons may not be able to fire fast enough to follow the fast pace of gamma 
oscillations, and therefore skip cycles leading to a subharmonic. Evidence 
supporting this view comes from the progressive reduction of 50-58 Hz power 
over time versus the increase of 24-32 Hz power over time (Fig. 6DE). This 
reverse behavior could signify neurons initially contributing to the fast rhythm 
eventually contributing to the slower rhythm.  
 
Given the strong relation between the 50-58 Hz and 24-32 Hz components, we 
argue that the 24-32 Hz component should be characterized as a lower gamma 
rhythm, rather than a beta rhythm, which is typically associated with different 
functional roles. 
 

5.5 Multivariate methods offer a principled approach to link gamma 
responses to the perceptual Gestalt 

 
The precise functional role of visual gamma oscillations remains controversial 
(Ray and Maunsell, 2015), with studies offering opposing evidence regarding the 
necessity of gamma oscillations in seeing (Brunet et al., 2014; D. Hermes et al., 
2015; Dora Hermes et al., 2015). Here we propose a methodological framework 
to investigate the role of gamma responses to perceptual Gestalt. We have 
shown that multivariate spatial patterns of induced gamma responses robustly 
encoded a simple stimulus feature, the orientation of Cartesian grating stimuli. 
This opens the possibility of using multivariate methods to study how induced 
gamma responses could encode other more complex stimulus features.  
 
Such investigations could link the rhythmic firing of neurons in the gamma band 
to the binding of stimulus features into coherent wholes (Engel et al., 1991; 
Singer, 1999; Tallon-Baudry and Bertrand, 1999). For example, one could devise 
models hypothesizing perceptual relations across stimuli, analogously to the 
cardinal and angle disparity models we devised to test hypothesized relations 
across orientations. These models could then be compared against the gamma 
responses, revealing the nature of perceptual information encoded in gamma 
responses.  
 

5.6 Relationship between induced and evoked responses in 
orientation selectivity 

 
While evoked and induced responses originate from different neural machineries, 
with evoked components phase-locked to the stimulus and induced responses 
showing trial-to-trial latency variations, both have been linked to orientation 
selective neural processing (Arakawa et al., 2000; Koelewijn et al., 2011; Song et 
al., 2010). In particular, electrophysiological studies have reported event-related 
potentials with greater amplitude for cardinal than oblique orientations in early P1 
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and N1 components (Moskowitz and Sokol, 1985; Proverbio et al., 2002), as well 
as late P2 and P3  components (Yang et al., 2012). 
 
Using multivariate pattern analysis, we extended these studies by obtaining a 
more sensitive and holistic description of the evoked responses. Our results 
showed we could discriminate orientation information from evoked responses, 
with an early transient response the first couple hundred milliseconds after 
stimulus, followed by more sustained representations later (Fig. 4AD). 
Orientation information was predominantly explained by the categorical cardinal 
model, though the ordinal angle disparity model was also significant early in the 
response. 
 
The functional role of evoked responses, capturing slowly varying neuronal 
signals, is understood to be different than that of induced responses. Indeed, the 
angle disparity model dissociated the two responses, indicating that unlike 
induced responses, early evoked responses differentially encoded orientation 
with progressively disparate angles. However, for most of the response time, the 
cardinal model explained both evoked and induced responses near noise ceiling, 
indicating that both largely encode the same orientation information. Thus, 
seemingly different responses when viewed from a univariate perspective, 
provided converging results when studied with a multivariate approach. Future 
studies, investigating both evoked and induced responses together, may reveal 
other possible relations in encoding orientation information between the two 
responses, such as their dependence on stimulus contrast (Maloney and Clifford, 
2015). 
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