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1 Abstract

Multivariate pattern analysis of magnetoencephalography (MEG) and
electroencephalography (EEG) data can reveal the rapid neural dynamics
underlying cognition. However, MEG and EEG have systematic differences in
sampling neural activity. This poses the question to which degree such
measurement differences consistently bias the results of multivariate analysis
applied to MEG and EEG activation patterns. To investigate, we conducted a
concurrent MEG/EEG study while participants viewed images of everyday
objects. We applied multivariate classification analyses to MEG and EEG data,
and compared the resulting time courses to each other, and to fMRI data for an
independent evaluation in space. We found that both MEG and EEG revealed
the millisecond spatio-temporal dynamics of visual processing with largely
equivalent results. Beyond yielding convergent results, we found that MEG and
EEG also captured partly unique aspects of visual representations. Those unique
components emerged earlier in time for MEG than for EEG. Identifying the
sources of those unique components with fMRI, we found the locus for both MEG
and EEG in high-level visual cortex, and in addition for MEG in early visual
cortex. Together, our results show that multivariate analyses of MEG and EEG
data offer a convergent and complimentary view on neural processing, and
motivate the wider adoption of these methods in both MEG and EEG research.

2 Introduction

Multivariate pattern analysis of magnetoencephalography (MEG) and
electroencephalography (EEG) data provide a fine-grained characterization of
the temporal dynamics of neural activity. Recent research efforts have applied
multivariate analyses, such as pattern classification and representational
similarity analysis (RSA) (Kriegeskorte and Kievit, 2013a), in a rapidly expanding
range of studies, demonstrating that MEG and EEG signals contain information
about a diverse array of sensory and cognitive processes (e.g. see Groen et al.,
2013; Cichy et al., 2014; Clarke et al., 2014; Isik et al., 2014; King and Dehaene,
2014; Kaneshiro et al., 2015; Kietzmann et al., 2016).

While in principle MEG and EEG signals arise from the same neuronal sources,
typically postsynaptic currents from apical dendrites of pyramidal cells in cortex,
there are consistent physical differences in the generated magnetic and electric
fields (Cohen and Hosaka, 1976; Cohen and Cuffin, 1983; Hamalainen et al.,
1993) for several reasons. Radially-oriented sources are prominent in EEG but
nearly silent in MEG, suggesting the existence of unique information coded in
EEG signals. Further, the MEG and EEG spatial patterns of tangentially-oriented
sources are 90° relative to each other, leading to differential spatial sampling of
neural activation. Also, EEG has higher sensitivity to deep sources than MEG.
Unlike MEG, though, volume currents measured by EEG are deflected and
smeared by the inhomogeneity of the tissues comprising the head.
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These differences suggest that MEG and EEG are sensitive to partly common,
and partly unique aspects of neural representations. This has been asserted by a
large body of previous research encompassing theoretical argument as well as
practical and experimental investigations mainly in the context of source
localization and epilepsy research (e.g., Leahy et al., 1998; Henson et al., 2003;
Sharon et al., 2007; Molins et al., 2008; Fokas, 2009). However, the relation of
MEG and EEG in the context of multivariate analysis methods such as
classification and RSA has not been investigated. Thus, two open questions
remain: how comparable are the results of multivariate analyses when applied to
either MEG or EEG, and to which extent do they resolve common or unique
aspects of visual representations?

To address these open questions, we conducted an experiment with concurrent
recording of MEG and EEG signals while participants viewed images of objects
of different categories. We then applied equivalent multivariate pattern analyses
to data from each modality and compared results in the time domain by 1)
assessing the time courses with which objects and categories were discriminable
by pattern classification, and 2) characterizing common vs. unique aspects of
visual representations using representational similarity analysis. In space, we
compared MEG and EEG by assessing the fusion of the temporally-informed
MEG and EEG representations with spatially-informed fMRI representations
using representational similarity analysis (Cichy et al., 2014, 2016c).

3 Methods

3.1 Participants

16 healthy human volunteers (7 female, age: mean £ s.d. = 24.1 + 4.5 years,
recruited from a participant pool at Massachusetts Institute of Technology)
participated in the experiment. Written informed consent was obtained from all
subjects. The study was approved by the local ethics committee (Institutional
Review Board of the Massachusetts Institute of Technology) and conducted
according to the principles of the Declaration of Helsinki.

3.2 Visual stimulus set and experimental design

The stimulus set consisted of 92 color photographs (Kiani et al., 2007;
Kriegeskorte et al., 2008; Cichy et al., 2014, 2016b) of human and non-human
faces and bodies, as well as natural and artificial objects isolated on a gray
background (Fig. 1a). Participants viewed images presented at the center of the
screen (4° visual angle) for 500ms and overlaid with a light gray fixation cross.
Each participant completed 15 runs of 290 s duration each. Every image was
presented twice in each run in random order, and the inter-trial interval (ITl) was
set randomly to 1.0 or 1.1 s with equal probability. Participants were asked to
maintain fixation and to press a button and blink their eyes in response to a
paper clip image shown randomly every 3 to 5 trials (average 4). The paper clip
image was not part of the 92 image set, and paper clip trials were excluded from
further analysis.


https://doi.org/10.1101/095620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/095620; this version posted December 20, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

114 3.3 MEG and EEG acquisition and preprocessing

115 MEG and EEG signals were acquired simultaneously. We recorded MEG signals
116  from 306 sensors (204 planar gradiometers, 102 magnetometers, Elekta

117 Neuromag TRIUX, Elekta, Stockholm), and EEG signals from 74 sensors

118 (custom-made cap with MEG compatible Ag/AgCl sensors; Easycap, Germany;
119  sensor layout in Supplementary Fig. 1). Acquisition was continuous with a

120  sampling rate of 1,000 Hz, and MEG/EEG data was filtered online between 0.03
121 and 330 Hz. Raw MEG data was preprocessed using Maxfilter software (Elekta,
122 Stockholm) to perform noise reduction with spatiotemporal filters and head

123  movement compensation (Taulu et al., 2004; Taulu and Simola, 2006). We

124  applied default parameters (harmonic expansion origin in head frame = [0 0 40]
125 mm; expansion limit for internal multipole base = 8; expansion limit for external
126  multipole base = 3; bad sensors automatically excluded from harmonic

127  expansions = 7 s.d. above average; temporal correlation limit = 0.98; buffer

128 length = 10 s). Further preprocessing was carried out using Brainstorm (Tadel et
129  al., 2011). In detail, we extracted the peri-stimulus MEG/EEG data of each trial
130 from -100 to +900 ms with respect to stimulus onset, removed baseline mean,
131 smoothed data with a 30Hz low-pass filter and divided the data of each sensor by
132  the standard deviation of the pre-stimulus baseline signal of that sensor. This
133 procedure yielded 30 preprocessed trials for each of the 92 images per

134  participant.

135 3.4 Multivariate analysis

136  As the basis for multivariate pattern classification and subsequent comparison of
137 MEG and EEG-based results in representational space, we sampled MEG and
138 EEG data by sensors in four different ways: i) all 74 EEG sensors, ii) all 306

139 MEG sensors, iii) a random subset of 74 MEG sensors, thus equal to the number
140 of EEG sensors, and iv) the combination of all 380 MEG and EEG sensors. In
141  supplementary analyses we further report on other samplings of MEG and EEG
142  data: i) 32 EEG sensors to determine whether basic EEG setups also enable
143  multivariate analysis, ii) all magnetometers and iii) all gradiometers to investigate
144  both types of MEG sensors separately, and iv) 74 magnetometers and v) 74

145  gradiometers to equate the number of sensors to EEG. We use the labels MEG,
146 EEG, MEG&EEG for the full sensor arrays (306 MEG sensors, 74 EEG sensors,
147 380 M/EEG sensors), and provide the number of sensors in brackets only for
148 reduced data sets, e.g. MEG (74), EEG (32), etc. All reduced data sets were

149  constructed with equiprobable random samplings of the corresponding full sensor
150 arrays (see next section).

151

152  Note that while we report results based on the four main sensor samplings in the
153  main manuscript, for clarity we do not reference supplementary figures and

154  tables with supplementary sensor samplings. These results are referenced in the
155 main figure captions and tables, since they share the same formatting structure.

156 3.4.1 Time-resolved single image classification
157  We first determined the time course with which single experimental conditions,
158 i.e. images, are discriminated by MEG and EEG activation patterns (Fig. 1B).
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Discrimination was assessed using linear support vector machine (SVM)
classification (Muller et al., 2001), as implemented in the libsvm software (Chang
and Lin, 2001) with a fixed regularization parameter C = 1. The classification
approach was time-resolved, with pattern vectors created from MEG and EEG
sensor measurements separately for every millisecond. In particular, for each
time point f (from -100 to +900 ms in 1 ms steps), condition-specific sensor
activation values for each trial (M = 30) were concatenated to pattern vectors,
resulting in 30 raw pattern vectors. To reduce computational load and improve
the signal-to-noise ratio, we sub-averaged the M vectors in groups of k = 5 with
random assignment, obtaining M/k = 6 averaged pattern vectors. For all pair-wise
combinations of conditions, we trained and tested the SVM classifier on the
averaged pattern vectors. In detail, M/k-1 pattern vectors were assigned to a
training set to train the SVM. The withheld pattern vectors were assigned to a
testing set and used to assess the performance of the trained SVM (% decoding
accuracy). The training and testing procedure was repeated 100 times with
random assignment of raw pattern vectors to averaged pattern vectors. For the
case of reduced sensor data sets, this also involved resampling the sensors for
each iteration to obtain an unbiased estimate of decoding accuracy. For each
time point, we stored the classification result averaged across iterations in
matrices of 92 x 92 size, indexed in rows and columns by the classified
conditions. This decoding matrix is symmetric and has an undefined diagonal (no
classification within condition).

3.4.2 Time-resolved object category discrimination

We evaluated when MEG and EEG activation patterns allow discrimination of five
different object categorizations at the super-ordinate (animate vs. inanimate,
natural vs. artificial), ordinate (bodies vs. faces) and sub-ordinate category level
(human vs. animal bodies and faces). For this, we partitioned the 92 x 92
decoding matrices into within- and between-category segments for the relevant
categorization according to the pairs of conditions indexed by each matrix
element. (Fig. 2A). The average of between minus within-category decoding
accuracy values is a measure of clustering by category, indicating information
about category membership over and above the discriminability of single
images.

3.5 Common and unique aspects of visual representations in MEG
and EEG data
To reveal the common versus unique aspects of visual representations captured
by multivariate pattern analysis of MEG and EEG data, we used representational
similarity analysis (RSA) (Fig. 3A). We interpret decoding accuracy as a
dissimilarity measure (Cichy et al., 2014, 2016c¢, 2016a): the higher the decoding
accuracy, the more dissimilar the activation patterns are for the classified
conditions. Thus, MEG and EEG decoding matrices can be interpreted as
representational dissimilarity matrices (RDMs) allowing a direct comparison
between the two modalities. The basic idea is that if EEG and MEG measure
similar signals, two objects that evoke similar patterns in EEG should evoke
similar patterns in MEG, too.
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204

205 A valid comparison of RDMs requires they are constructed from independent
206 data (Henriksson et al., 2015). Otherwise, trial-by-trial signal fluctuations

207 unrelated to experimental conditions, such as cognitive states (attention,

208 vigilance) or external noise (movement, electromagnetic noise) will inflate, distort,
209 and bias the similarity between EEG and MEG. For an independent construction
210 of MEG and EEG RDMs we split the data in half by assigning even and odd trials
211 to different sets. We then compared (Spearman’s R) the RDMs from split half 1
212 vs. split half 2 both within and across MEG and EEG measurement modalities
213  using RSA (Fig 3A). Comparing RDMs across imaging modalities (MEG vs.

214 EEG) revealed only the common aspects of visual representations. Comparing
215 RDMs within imaging modalities (MEG vs. MEG and EEG vs. EEG; across data
216  splits) resulted in a reliability estimate that includes both common and unique
217  aspects. The difference of within-modality minus across-modality similarities thus
218 revealed the unique aspects of visual representations measured with either MEG
219 or EEG. For this analysis, the time-resolved classification was performed

220 similarly to single image classification described above, but the sub-averaged
221  pattern vectors were constructed by averaging k = 3 pattern vectors given the
222 reduced number of trials.

223 3.6 fMRI stimulation protocol, acquisition, preprocessing and

224 processing

225 We reanalyzed an existing fMRI data set reported in Cichy et al. (2014). Here we
226  summarize the key points in fMRI data acquisition, preprocessing and processing
227  for RSA-based fusion between fMRI and MEG/EEG data.

228 3.6.1 Experimental paradigm

229 15 participants viewed the same 92 image set while fMRI data was recorded.
230 Each participant completed two sessions on two separate days, where each
231  session consisted of 10-14 runs of 384 s duration each. During each run every
232 image was presented once, and image order was randomized. On each trial the
233 image was shown for 500ms. The inter trial interval was 3 s. 25% of all trials
234 were null trials during which only a gray background was presented, and the
235  fixation cross turned darker for 100ms. Participants were instructed to report the
236  change in fixation cross luminance with a button press.

237 3.6.2 fMRI acquisition

238 We acquired MRI data on a 3T Trio scanner (Siemens, Erlangen, Germany) with
239 a 32-channel head coil. Structural images were acquired in each session using a
240 standard T1-weighted sequence (192 sagittal slices, FOV = 256 mm?, TR =

241 1,900 ms, TE = 2.52 ms, flip angle = 9°). Functional data were acquired with a
242  gradient-echo EPI sequence (192 volumes, TR = 2,000 ms, TE = 31 ms, flip

243  angle = 80°, FOV read = 192 mm, FOV phase = 100%, ascending acquisition,
244 gap = 10%, resolution = 2 mm isotropic, slices = 25). The acquisition volume was
245  partial and covered the ventral visual pathway.
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3.6.3 fMRI activation estimation

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to process fMRI data. For
each participant, we realigned fMRI data and co-registered it to the T1 structural
scan acquired in the first MRI session. This formed the basis for the subsequent
region-of-interest analysis. For the searchlight analysis (see below), fMRI data
was additionally normalized to an MNI template. The subsequent processing was
equivalent for both unnormalized and normalized data. To estimate the fMRI
response to the 92 image conditions we used a general linear model (GLM).
Onsets of image presentation entered the GLM as regressors and were
convolved with the standard hemodynamic response function. Additional
nuisance regressors were movement parameters and two regressors modelling
session (1 for each volume of a session, 0 otherwise). Condition-specific GLM
parameters (beta-values) were converted into t-values by contrasting each
condition estimate against the implicitly modeled baseline. In addition, we
modelled the overall effect of visual stimulation as a separate t-contrast of
parameter estimates for all 92 conditions against baseline.

3.6.4 fMRI region-of-interest definition

We assessed two regions-of-interest (ROIs): primary visual area V1 and inferior
temporal cortex (IT). V1 was defined separately for each participant based on an
anatomical eccentricity template, and contained all voxels assigned to the central
3 degrees of visual angle (Benson et al., 2012). IT was defined based on a mask
consisting of bilateral fusiform and inferior temporal cortex (WFU PickAtlas,
IBASPM116 Atlas (Maldjian et al., 2003)). To match V1 and IT ROls in average
size, we chose the 361 most activated voxels in the t-contrast of all image
conditions vs. baseline.

3.6.5 Region-of-interest-based fMRI representational similarity analysis
We constructed fMRI RDMs for each participant independently using a
correlation-based dissimilarity measure. For each ROI we extracted and
concatenated the fMRI voxel activation values for each image condition. We then
calculated all pair-wise correlation coefficients (Pearson’s R) between the pattern
vectors for each pair of image conditions and stored the result in a 92 x 92
symmetric matrix indexed in rows and columns by the compared conditions. We
transformed the correlation similarity measure into a dissimilarity measure by
subtracting the correlations coefficients from 1 (i.e., 1 — R). For further analyses,
we averaged the resulting dissimilarity measures across sessions resulting in
one RDM for each subject and ROI.

3.7 Spatial localization of MEG and EEG visual representations
using fMRI-MEG/EEG fusion.

To identify the spatial sources of the temporal dynamics observed in MEG and

EEG, and to compare them to each other, we used a RSA-based MEG-fMRI

fusion approach (Cichy et al., 2014, 2016c). The basic idea is that if locations

resolved in fMRI and time points resolved in MEG/EEG correspond to each

other, their corresponding RDMs should be similar.
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289 3.7.1 Region-of-interest-based fMRI-MEG/EEG fusion

290 For each ROI and subject we calculated the similarity (Spearman’s R) between
291 the subject-specific f/MRlI RDM and the subject-averaged MEG or EEG RDM for
292  each time point, yielding time courses (n = 15) of MEG-fMRI or EEG-fMRI

293 representational similarity for each ROl and subject (Fig. 4A).

294 3.7.2 Spatially unbiased searchlight fMRI-MEG/EEG fusion

295  For spatially unbiased fusion of fMRI with MEG and EEG beyond the ROI-based
296  approach, we used a searchlight approach as introduced in Cichy et al. (2016)
297  (Fig. 5a). We conducted the searchlight analysis separately for each fMRI subject
298 (n=15) and time point from -100 to +500 ms in 5 ms steps. For each voxel v, we
299 extracted condition-specific t-value patterns in a sphere centered at v with a

300 radius of 4 voxels (searchlight at v) and arranged them into pattern vectors. We
301 calculated the pairwise dissimilarity between pattern vectors by 1 minus

302 Pearson’s R for each pair of conditions, resulting in a fMRlI RDM. We then

303 calculated the similarity (Spearman’s R) between the searchlight-specific fMRI
304 RDM and the subject-averaged MEG or EEG RDMs. Repeating this analysis for
305 every voxel in the brain, we obtained a 3D map of representational similarities
306 between fMRI and MEG or EEG at each time point. Repeating the same

307 approach for all time points, we obtained a series of 3D maps revealing the

308 spatio-temporal activation of the human brain during object perception as

309 captured with MEG and EEG respectively.

310 3.8 Statistical testing

311  We conducted non-parametric random effects statistics throughout. We used
312 permutation tests for cluster-mass inference, and bootstrap tests to determine
313 confidence intervals of peak latencies (Nichols and Holmes, 2002; Pantazis et
314 al., 2005; Maris and Oostenveld, 2007).

315

316 For the statistical assessment of the classification analysis, the MEG-EEG

317 comparison by RSA, and the ROI-based fMRI-MEG/EEG fusion analysis we

318 randomly shuffled the sign of the data points (10,000 permutation samples) for
319 each subject to determine significant effects at a threshold of P < 0.05, two sided.
320 To correct for multiple comparisons across voxels (fMRI) or time points

321 (MEG/EEG), we used cluster-mass inference (i.e. number of significant elements
322  weighed by the value of those elements) with a cluster extent threshold of P <
323 0.05). In addition, for multiple tests of the same hypothesis (as reported by a

324  figure subpanel) we further Bonferroni corrected the cluster extent threshold.

325

326  The statistical assessment of the fMRI-MEG/EEG searchlight fusion analysis was
327 as follows. To determine a cluster-defining threshold, we averaged the subject-
328 specific fusion results (4-dimensional, i.e., 3 spatial x 1 temporal dimension)

329 across subjects, and aggregated voxel values across space and time points from
330 -100 to 0 ms to form an empirical baseline voxel distribution. When comparing
331 representational similarity between fMRI and MEG/EEG, we determined the

332 right-sided 99.99% threshold of the distribution, constituting a baseline-based
333 cluster defining threshold at P < 0.001, one-sided. For comparison of results for
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334 different sensor samplings, we used an equivalent two-sided test procedure (P <
335 0.001, two-sided).

336

337 To obtain a permutation distribution of maximal cluster mass, we randomly

338 shuffled the sign of subject-specific data (1,000 permutation samples). For each
339 sample, we averaged data across subjects, and determined 4-dimensional mass
340 of clusters (i.e. number of significant spatially and temporally connected elements
341 weighed by their absolute value) exceeding the right-sided cluster threshold. We
342  then determined the maximal cluster size. This yielded a distribution of maximal
343 cluster sizes under the null hypothesis. We report clusters as significant if they
344  were larger than the 95% threshold of the maximal cluster size distribution,

345 corresponding to a P = 0.05 one-sided threshold. For two-sided tests, two

346 distributions of maximal cluster size under the null were created, and clusters are
347  reported as significant if they passed the 97.5% threshold, corresponding to a P
348 = 0.05 two-sided threshold.

349 4 Results

350 4.1 Commonalities and differences in the time courses of single

351 image classification from MEG and EEG data

352  We first investigated whether MEG/EEG signals allow for time-resolved

353 discrimination of individual object images. For every time point, we averaged
354 across all elements of the decoding matrices, yielding a time course of grand
355 average decoding accuracy across all experimental conditions (Fig. 1C). We
356 observed significant effects for all four main sensor samplings of MEG/EEG

357 sensors (for peak latencies see Table 1; for references to Supplementary Tables
358 and Figures reporting results based on supplementary sensor samplings please
359 confer the figure and legend captions here and throughout the manuscript). This
360 demonstrates that in principle both MEG and EEG signals lend themselves to the
361 same kind of multivariate analysis, and reproduced the MEG-based results of
362 Cichy et al. (2014).

363

364 We observed several differences in the EEG- and MEG-based time courses.
365  First, classification accuracy for MEG was consistently higher than for EEG for
366 most post-stimulus period. To quantify this effect, we subtracted the EEG from
367 the MEG time course (Fig. 1D). Note that the higher number of sensors in the
368 MEG analysis did not trivially explain this difference, as the reduced MEG (74)
369 sensor data set yielded equivalent results (Fig. 1C,D; for details see Table 1). A
370 second aspect in which MEG and EEG differed was peak latency: MEG-based
371 time courses peaked significantly earlier than the EEG-based time course (P <
372  0.001, for details see Table 2, also independent of sensor number).

373

374 In combination, the differences in grand average decoding and peak latency
375 suggest that MEG and EEG may reflect partially different aspects of emerging
376  visual representations. One prediction of this hypothesis is that combining MEG
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and EEG before multivariate pattern classification should yield higher decoding
accuracy than MEG alone. We found this to be the case: the grand average
decoding accuracy time course for combined MEG&EEG data was significantly
higher than for MEG alone (Fig. 1C,D).

In sum, we found that both MEG and EEG signals carry information at the level
of single object images, but with differing temporal evolution suggesting
sensitivity to partly different aspects of visual representations.
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Fig 1. Classification of single images from EEG and MEG signals. A) The image set consisted of
92 silhouette images of everyday objects belonging to different categories. B) Multivariate pattern
classification procedure, here shown for EEG data. C) Time courses of grand average decoding
for different samplings of MEG and EEG sensors. D) Difference curves for the results shown in C.
Lines above curves (same color-code) indicate significant time points (n = 15, cluster-defining
threshold P < 0.05, corrected significance level P < 0.05 Bonferroni-corrected by number of plots
for each subpanel, both two-sided). The gray vertical line indicates image onset. For equivalent
results based on additional sensor samplings see Supplementary Fig. 2.
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395
Sensor Sampling Peak latency
(ms)
A) Decoding results
MEG 112 (109 — 124)
EEG 181 (131 - 195)
MEG (74) 114 (109 — 125)
MEG&EEG 114 (10 — 134)
B) Differences in decoding results
MEG — EEG 107 (99 — 115)
MEG (74) — EEG 107 (96 — 115)
MEG&EEG — MEG 197 (177 — 201)
396

397 Table 1. Peak latency of single image classification time courses for several samplings of MEG
398 and EEG sensor data A), and differences therein B). Numbers in brackets indicate 95%

399  confidence intervals. For equivalent results based on additional sensor samplings see

400  Supplementary Table 1.

401
Comparison Latency Significance
difference (ms) (P -value)
MEG vs. EEG 69 (18 — 83) 0.001
MEG (74) vs. 67 (15— 83) 0.001
EEG
MEG&EEG vs. 67 (12 -82) 0.015
EEG
402

403  Table 2. Comparison of peak latencies between single image classification time courses for
404  different samplings of MEG and EEG sensor data. Significance was determined by bootstrapping
405 the participant pool (n = 15, 10,000 bootstraps). Numbers in brackets indicate 95% confidence
406 intervals. For equivalent results based on additional sensor samplings see Supplementary Table
407 2.

408 4.2 Time courses of visual category membership resolved with MEG
409 and EEG are similar

410 Given the MEG and EEG qualitative and quantitative differences in decoding
411  single images, we investigated whether MEG and EEG also differ in revealing
412  information about object category processing at different levels of categorical
413  abstraction. Following the same approach as in Cichy et al (2014), we partitioned
414 the decoding accuracy matrix into two subdivisions (Fig. 2A-E, left panel): images
415 Dbelonging to the same (light gray) and to different (dark gray) subdivisions with
416  respect to a particular categorization. The comparison of within and between

417  average subdivision decoding accuracies serves as a measure of clustering by
418 category membership. This is a measure of the explicitness of a representation,
419 in the sense that category membership could be read out from it in linear fashion
420 (DiCarlo and Cox, 2007).

422  We conducted this analysis for five different categorical subdivisions: at the

423  super-ordinate category level for animacy (Fig. 2A) and naturalness (Fig. 2B), at
424  the ordinate category level for faces vs. bodies (Fig. 2C) and at the sub-ordinate
425 category level for human bodies vs. non-human bodies (Fig. 2D) and human
426  faces vs. non-human faces (Fig. 2E). We found significant signals for category
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membership for all five subdivisions in all four samplings of MEG and EEG
sensors (Fig 2A-E, middle panel, except naturalness in EEG (for details see
Table 3). This result reinforces the point that multivariate pattern classification is
similarly powerful when applied to EEG as when applied to MEG.

Analogous to the investigation of the grand average time courses above, we
investigated differences between MEG and EEG based results in decoding
accuracy, differences in peak latency, and whether combining MEG&EEG
signals yielded higher decoding accuracy than MEG alone. Concerning the
difference between category-specific curves derived from MEG and EEG data
(Fig. 2, right panels), we found only minor and transient statistical differences (for
details see Table 4). Comparing peak latency differences, we found no significant
effects (all P > 0.12). Finally, the comparison of the results based on sampling
MEG&EEG vs. MEG revealed a difference in all cases, except for naturalness
(Fig. 2A-E).

Together, these results show that for category-specific signals, MEG and EEG
resolve visual representations with similar time courses, and further suggest that
MEG and EEG may be partially sensitive to different aspects of visual
representations.
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Fig 2. Time course of category membership from EEG and MEG data. Object category
membership was assessed by representational clustering analysis for A) animacy, B)
naturalness, C) faces vs. bodies, D) human versus nonhuman bodies and E) human versus
nonhuman faces. For this, we partitioned the decoding matrix (left panels) in regions containing
pairwise decoding accuracies within (dark gray) and between (light gray) the relevant categorical
subdivisions (for peak latencies see Table 3). Right panels report the difference curves for results
obtained from different samplings of MEG and EEG sensors (for peak latencies see Table 4).
Lines above curves indicate significant time points (n = 15, cluster-defining threshold P < 0.05,
corrected significance level P < 0.05 Bonferroni-corrected by number of plots for each subpanel,
both two-sided). The gray vertical line indicates onset of image presentation. For equivalent
results based on additional sensor samplings see Supplementary Fig. 3.
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Sensor Sampling Peak latency
(ms)
A) animacy
EEG 159 (145 - 174)
MEG 151 (146 — 292)
MEG&EEG 157 (148 — 246)
MEG (74) 152 (146 — 290)
B) body vs. face
EEG 146 (127 - 171)
MEG 132 (129 — 161)
MEG&EEG 140 (132 - 162)
MEG (74) 134 (128 — 159)
C) human vs. animal body
EEG 239 (127 — 270)
MEG 121 (114 — 359)
MEG&EEG 241 (121 - 333)
MEG (74) 123 (113 - 366)
D) human vs. animal face
EEG 133 (128 — 202)
MEG 128 (125 - 211)
MEG&EEG 200 (126 — 210)
MEG (74) 128 (124 — 212)
E) natural vs. artificial
EEG 248 (133 — 585)
MEG 202 (116 — 307)
MEG&EEG 203 (125 -638)
MEG (74) 204 (115 -303)

460

461 Table 3. Peak latency of category membership time courses for A) animacy, B) naturalness, C)
462  face vs. body, D) human vs. animal face, and E) human vs. animal body. Numbers in brackets
463 indicate 95% confidence intervals. For equivalent results based on additional sensor samplings

464  see Supplementary Table 3.
465
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Sensor Sampling

Peak latency
(ms)

A) animacy
MEG - EEG
MEG&EEG - MEG
MEG (74) - EEG

B) body vs. face
MEG - EEG
MEG&EEG - MEG
MEG (74) - EEG

C) human vs. animal body
MEG - EEG
MEG&EEG - MEG
MEG (74) - EEG

D) human vs. animal face
MEG - EEG
MEG&EEG - MEG
MEG (74) - EEG

240 (145 — 296)
163 (157 — 615)

242 (133 — 298)

129 (104 — 301)
150 (142 — 328)
128 (58 — 816)

445 (76 — 837)
243 (-22 - 268)
442 (76 - 837)

111 (102 — 625)
201 (139 — 349)
111 (75 - 632)

E) natural vs. artificial
MEG - EEG
MEG&EEG - MEG
MEG(74) — EEG

199 (-50 — 851)
631 (-100 — 638)
118 (-50 — 856)

Table 4. Peak latency of differences of category membership time courses for A) animacy, B)
naturalness, C) face vs. body, D) human vs. animal face) and E) human vs. animal body. For
equivalent results based on additional sensor samplings see Supplementary Table 4.

4.3 Comparison of MEG and EEG data by representational similarity
analysis revealed both common and unique aspects of neural
representations

Grand average single image decoding accuracy and category-specific signals

are summary statistics that only partially reflect the rich multivariate information in

MEG and EEG data. How do MEG and EEG compare if the entire structure of

representational space captured by the decoding matrices is considered?

To investigate, we used representational similarity analysis (RSA) (Kriegeskorte,
2008; Kriegeskorte and Kievit, 2013b) on the full decoding matrix. The idea is
that decoding accuracy can be seen as a dissimilarity measure: condition pairs
that have similar representations yield low decoding accuracy, and condition
pairs that have dissimilar representations yield high decoding accuracies (Cichy
et al., 2014, 2016a). The decoding matrices for MEG and EEG can be thus
interpreted as representational dissimilarity matrices (RDMs), summarizing
similarity relations between sensor activation patterns related to experimental
conditions. MEG and EEG decoding matrices can then be compared directly for
similarity. Importantly, to yield an unbiased measure of similarity, RDMs must be
based on brain data recorded independently, i.e. for different trials (Henriksson et
al., 2015). We thus split the MEG and EEG data in half (even versus odd trials),
and conducted multivariate pattern classification based on each split half data

15
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set, equivalently to the analysis of the full data as explicated above. All RDM
comparisons (Spearman’s R) were then conducted across split halves (Fig. 3A).

Comparing RDMs across imaging modalities (Rwvec eec) revealed the common
aspects of visual representations (Fig. 3B, blue line, for peak latencies see Table
5A). We found a positive and significant representational similarity time course,
indicating aspects of visual representations resolved by both modalities.
Comparing RDMs within imaging modalities (Rvec,mec and Reec eec) resulted in a
reliability estimate that includes both common and unique aspects of visual
representations (Fig 3B, gray and red line respectively). These were also
significant, and notably, higher than the across-modality representational
similarities, indicating that MEG and EEG resolve partly unique aspects of visual
representations. The difference of within-modality minus across-modality
similarity curves, a measure that quantifies the unique information in each
modality, statistically ascertained this result (Fig. 3C, for details see Table 5A).

The time course of MEG- and EEG-unique signals was different: the peak
latency was significantly earlier for MEG than for EEG (A = 91ms; P = 0.0003).
Importantly, this result was not dependent on sensor number differences, as
equivalent results were obtained when equating the number of MEG and EEG
sensors (A =91ms; P = 0.0001; Fig. 3D,E, Table 5B).

Together, these results demonstrate that MEG and EEG resolve partially

common, and partially unique aspects of visual representations in the brain, with
differentiable temporal dynamics for unique components.

16


https://doi.org/10.1101/095620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/095620; this version posted December 20, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

A
Measurement Comparison of RDMs Representational similarity
modality (Spearman’s R) across split half Difference
" _ _
MEG RMEGMEG 3 MEG-unique
Z aspects
_RMEG,EEG w
2 EEG-unique
= aspects
EEG < > REEG'EEG
Split half 1 Split half 2
B C
0.5 0.5
0.41 0.4
—Reeares
MEG,MEG
@ 0.3f =R\ e mea @ 0.3f Reea.eea ~ Pvec.eea
w ’ 0 — R -R
- i MEGMEG ~ ' MEG,EEG
o2 go2 .
© @ n
3 3 i
® 0.1 ® 0.1 iy
! \'l}'m“

\ n a] o/ THSARR . .
P e rar oy SR ey
KO TP RSSO E P O E SRS E P

Time (ms) Time (ms)

D E

0.5 0.5

0.41 R 0.41

RMEG(?A)‘MEG(M)
o 03} ~—Reeamecrs) « 0.3} . ‘n
» » EEG,EEG ' EEG,MEG(74)
c c
© [ R R
£ 0.2 € 0.2 " = "MEG(74)MEG(74) " EEG,MEG(74)
@ & n
s 3 A
@ 0.1 @ 0.1 i \*
AT

W oy y S L
Or"‘ 0 f‘.‘,u'" Iy Vgl “*»‘..n«.n.q@.ﬂ»""‘,-m
R aprarar e S e e R R
D0 XSS S S N0 PP OSSR S

Time (ms) Time (ms)

517
518 Fig. 3. Time course of common and unique aspects of visual representations as resolved with

519 MEG and EEG A) Procedure. We split the MEG and EEG data in half (even and odd trials) to
520 conduct two independent multivariate pattern classification analyses, yielding split-half specific
521 RDMs. We then calculated representational similarity (Spearman’s R) across splits for the same
522 measurement modality (MEG and EEG color-coded gray and red) and across modalities (color-
523 coded blue). Comparing RDMs within imaging modalities resulted in a reliability estimate that
524 includes both common and unique aspects of visual representations. Comparing RDMs across
525 imaging modalities revealed the common aspects of visual representations. Thus the difference
526 within-modality minus across-modality indicated the aspects of visual representations unique to
527 each measurement modality (color-coded dark gray striped for MEG, and light gray striped for
528 EEG. Within and across technique similarities are reported for B,C) EEG and MEG and D,E) EEG
529 and MEG (74). Lines above curves indicate significant time points (n = 15, cluster-defining

530 threshold P < 0.05, corrected significance level P < 0.05 Bonferroni-corrected by number of plots
531 for each subpanel, both two-sided). The gray vertical line indicates image onset. For equivalent
532  results based on additional sensor samplings see Supplementary Fig. 4.

17


https://doi.org/10.1101/095620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/095620; this version posted December 20, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

533

534
535
536
537
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

under aCC-BY-NC-ND 4.0 International license.

Representational similarity across split-halves Across-modality minus within-modality difference
for
A) EEG & MEG
Sensor Peak latency (ms) Sensor sampling Peak latency
sampling (ms)
REEG,EEG 139 (123 - 193) RMEG,EEG - REEG,EEG 193 (124 - 206)
RwvEG MEG 102 (99 — 132) Rweg,EeG - RmEG MEG 102 (100 — 109)
RwvEc,eEG 134 (121 -201)
B) EEG & MEG (74)
RwvEG,EEG - 193 (124 - 206) RwvEG(74).EEG - REEG EEG 192 (124 - 209)
Reeceec
RwvEG,EEG - 102 (100 — 109) RwMEG(74),EEG - 101 (100 — 109)
Rwmec MeG RmeG(74) MEG(74)

Table 5. Peak latency of representational similarity time courses within and across measurement
modalities (EEG and MEG) (left half) and differences of across-modality minus within-modality
similarities (right half) for A) full sensor set, and B) MEG (74). Numbers in brackets indicate 95%
confidence intervals. For equivalent results based on additional sensor samplings see
Supplementary Table 5.

4.4 Fusion with fMRI revealed the locus of unique and common

aspects of visual representations resolved with MEG and EEG
To investigate the cortical locus of the unique and common aspects of neural
representations resolved by MEG and EEG as identified above, we used the
fMRI-MEG/EEG fusion approach proposed in Cichy et al., 2014. By objectively
evaluating MEG and EEG data against an independent data set of fMRI, fusion
bypasses the inherent ambiguities of spatial localization methods relying on
MEG/EEG alone.

We first investigated the source of EEG and MEG signals in the ventral visual
stream per se. For this, we compared the representational similarity between
fMRI-based RDMs for two cortical regions — early visual cortex (V1) and inferior
temporal cortex (IT) — with the time-resolved RDMs for MEG and EEG
respectively (Fig. 4A).

We found significant fMRI and MEG/EEG representational similarities in both V1
and IT for all the investigated sensor samplings of MEG and EEG (Fig. 4B,D, for
details see Table 6). Consistent with the view of visual processing as a spatio-
temporal cascade along the ventral visual stream, representational similarities
between fMRI and MEG/EEG signals peaked earlier for V1 than for IT (for all
sensor samplings, P < 0.01, Bonferroni-corrected for multiple comparisons). This
reproduces previous results from MEG-fMRI fusion (Cichy et al., 2014), extends
them to EEG, and reinforces the view of visual processing as a spatio-temporal
cascade from posterior to anterior visual regions over time.
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Fig. 4. Relating fMRI to MEG/EEG signals using a ROI-based fusion approach. A) Procedure.
For two regions-of-interest (V1, IT) we calculated representational dissimilarity matrices (fMRI
RDMs) based on fMRI activation patterns to the same image set as in the MEG and EEG data. In
detail, for every time point t, we calculated the similarity (Spearman’s R) between fMRI and MEG
or EEG RDMs. This resulted in time courses of representational correspondence between
MEG/EEG and fMRI in B) V1 and D) IT. MEG and EEG had similar time courses, with
representational correspondence emerging earlier in time for V1 than for IT. C,E) Difference
curves for results reported in B and D, revealing stronger signals for MEG than for EEG. Lines
above curves indicate significant time points (n = 15, cluster-defining threshold P < 0.05,
corrected significance level P < 0.05 Bonferroni-corrected by number of plots for each subpanel,
both two-sided). The gray vertical line indicates onset of image presentation. For equivalent
results based on additional sensor samplings see Supplementary Fig. 5.
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Sensor Samplings V1 IT
A) fMRI fusion results with
EEG 89 (87 — 125) 387 (145 —388)
MEG 109 (81 —245) 262 (250 — 306)
MEG&EEG 109 (78 — 247) 283 (250 — 286)
MEG(74) 109 (78 — 246) 262 (259 — 282)
B) Differences in fMRI-MEG/EEG fusion results
MEG - EEG 525 (-25 - 770) 318 (-50 — 321)
MEG(74) — EEG 525 (-26 —769) 261 (-50 — 321)
MEG&EEG — MEG -17 (-17 —=734) 733 (-18 - 733)

Table 6. Peak latency for A) ROI-based fMRI-MEG/EEG fusion results for V1 and IT, and B)
difference curves for different sensor samplings. Numbers in brackets indicate 95% confidence
intervals. For equivalent results based on additional sensor samplings see Supplementary Table
6.

We next investigated whether the representational similarity between MEG/EEG
and fMRI patterns in V1 and IT is due to unique or common aspects in MEG or
EEG in three analyses. First, we compared peak latency differences for the
different samplings of MEG and EEG data. We found no significant differences
(all P> 0.14 bootstrap across participants, 10,000 iterations), suggesting that
potential differences between MEG and EEG are not to be found in the shape of
the time courses.

Second, we subtracted EEG- from MEG-based fusion results (Fig. 4C,D) to
determine which modality bore closer similarity to the fMRI patterns. Overall, we
found MEG-based fusion consistently stronger than EEG-based fusion. However,
comparison of MEG&EEG versus MEG alone produced inconsistent results with
opposite sign for V1 and IT (for details see Table 6). Thus, this analysis did not
reveal consistent difference either.

Third, for a particularly strong and sensitive test, we used a partial correlation
analysis to investigate the relation between fMRI and MEG/EEG when the effect
of either modality is partialled out (Fig. 5A, example of fMRI-EEG fusion in V1
when partialling out the MEG RDM). Such analysis should reveal
representational similarities specific to a modality, by controlling for the effects of
the other modality. We found that for V1, partialling out MEG from EEG abolished
the significant representational correspondence to fMRI, whereas partialling out
EEG from MEG did not (for details see Table 7). This suggests that MEG is
sensitive to unique sources in V1 as compared to EEG. For IT, we found stable
and significant representational correspondence for both MEG and EEG with
fMRI when the effect of either EEG or MEG was accounted for. This shows that
MEG and EEG both resolve unique aspects of representations in IT.

Overall, these results demonstrate that both MEG and EEG are well suited for
RSA-based fusion analysis with fMRI. While both MEG and EEG are sensitive to
unique aspects of visual representations in IT, only MEG is sensitive to unique
aspects of visual representations in V1.
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Fig. 5. Relating fMRI to MEG/EEG signals using a ROI-based fusion approach and partial
correlation analysis. A) Procedure. For every time point t, we calculated the similarity
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(Spearman’s R) between fMRI and EEG RDMs while partialling out the MEG RDMs. Equivalent

Analyses were conducted for different MEG/EEG sensor samplings. Results of the partial

correlation analysis are reported for B) V1 and C) IT. Lines above curves indicate significant time

points (n = 15, cluster-defining threshold P < 0.05, corrected significance level P < 0.05

Bonferroni-corrected by number of plots for each subpanel, both two-sided). The gray vertical line

indicates image onset. For equivalent results based on additional sensor samplings see

Supplementary Fig. 6.
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Fusion analysis V1 IT

EEG (partial out MEG) - 371 (371 -572)
EEG (partial out MEG(74)) - 371 (371 -572)
MEG (partial out EEG) 133 (80 — 253) 262 (242 — 318)
MEG(74) (partial out EEG) 108 (78 —251) 261 (241 — 282)

Table 7. Peak latency of the ROI-based fMRI-MEG/EEG fusion results after partialling out the
effects of the other modality. For equivalent results based on additional sensor samplings see
Supplementary Table 8.

4.5 MEG and EEG equally resolved the spatiotemporal dynamics of
the ventral pathway as revealed by searchlight-based fusion with
fMRI

What are the sources of MEG/EEG activity beyond the two investigated ROIs V1

and IT? To create a spatially unbiased view of the spatiotemporal dynamics in

the ventral pathway, we used a searchlight-based fusion analysis (Fig. 6A). In
particular, we investigated whether the fusion of fMRI with MEG, introduced in

Cichy et al. (2016), can be directly extended to EEG, and whether such approach

can reveal MEG and EEG differences beyond V1 and IT.

Both MEG and EEG-based fusion with fMRI data revealed a feed-forward
cascade of representational similarity in the ventral visual stream (Fig. 6B): early
representational relations were similar in the occipital pole, rapidly spreading
along the ventral visual stream with comparable dynamics. This reproduced
previous findings with MEG, and demonstrated the feasibility of the spatially
unbiased searchlight-based fusion approach with EEG. Equivalent results were
found for the reduced 74-sensor MEG data set, as well as combining MEG and
EEG data prior to fusion (Fig. 6B).

We next compared the fusion results across the different MEG and EEG data
sets. There were no significant effects for MEG versus EEG, irrespective of using
the complete or the reduced 74-sensor MEG array (cluster definition threshold P
< 0.001 cluster threshold P < 0.05, two sided). Similarly, comparison of MEG
versus MEG&EEG fusion-based analysis did not yield significant results.

Together, the results demonstrate that both MEG and EEG are well suited for
RSA-based fusion with fMRI data to reveal cortical information flow, but did not
reveal further sources of sensitivity of MEG/EEG to unique aspects of visual
representations.
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Fig. 6. Spatially unbiased fusion analysis of fMRI with MEG and EEG. A) Procedure. Time-
resolved MEG/EEG RDMs were compared (Spearman’s R) to space-resolved fMRI RDMs
derived with searchlight analysis. In particular, for each voxel v in the brain we extracted fMRI
activation patterns in the local vicinity of the voxel and calculated fMRI RDMs based on these
patterns. Repeating for each voxel in the brain, this yielded a map of fMRI RDMs across the
whole brain. Fusion of the time-resolved MEG/EEG RDMs with the space-resolved fMRI RDMs
produced the spatiotemporal dynamics of representational correspondence. B) Snapshots at 75,
120 and 165ms for EEG, MEG, MEG(74) and MEG&EEG. All analyses revealed comparable
spatio-temporal dynamics during object vision in the ventral visual stream: representational
correspondence emerged first at the occipital pole, before extending rapidly anterior along the
ventral visual pathway. Red voxels indicate statistical significance (n = 15, cluster-definition
threshold P < 0.001, cluster threshold P < 0.05, both two-sided). A time-resolved movie is
available (Supplementary movie 1). Inset axis indicate orientation of transparent brains (L/R=
left/right; P/A = posterior/anterior; I/S = inferior/superior).

5 Discussion

5.1 Summary

To investigate how relative sampling differences of neural activity inherent to
MEG and EEG impact multivariate pattern analysis, we compared concurrently
acquired MEG and EEG data. We found that all analyses yielding significant
results in one measurement modality yielded significant results in the other
modality, too. Comparison of MEG and EEG by classification-based time
courses, as well as directly by representational similarity analysis yielded
evidence for sensitivity to both common as well as unique aspects of neural
representations. Fusion of MEG and EEG with fMRI localized the unique
aspects: both modalities captured unique aspects of representations in high-level
visual cortex, and MEG also in early visual cortex.
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5.2 Both EEG and MEG are well suited for multivariate analyses
methods to reveal human cortical dynamics
A recently and rapidly emerging range of research efforts have applied
multivariate analyses to both EEG and MEG, demonstrating that both modalities
resolve information about a diverse array of sensory and cognitive processes.
These include discrimination of visual stimuli during passive viewing (Carlson et
al., 2013; Cichy et al., 2014; Clarke et al., 2014; Kaneshiro et al., 2015),
associative retrieval and learning (Kurth-Nelson et al., 2016), the emergence of
invariance to changes in viewing conditions (Isik et al., 2014; Kietzmann et al.,
2016), the temporal stability of neural signals (King and Dehaene, 2014), the
maintenance of neural representations in dual tasks (Marti et al., 2015), and the
comparison of neural representations with computational models (Groen et al.,
2013; Cichy et al., 2016a), and across imaging modalities (MEG-fMRI) (Cichy et
al., 2016c) and species (human-monkey) (Cichy et al., 2014).

While the successful application of multivariate methods to EEG and MEG in
isolation demonstrates the potential of both modalities, it leaves open how the
two relate, i.e. whether one modality is better suited for a particular analysis, and
whether the results obtained from MEG and EEG measurements are
comparable. Here we have shown in direct comparison of MEG and EEG for a
large range of analyses, ranging from single image classification to fusion with
fMRI data based on representational similarity analysis, they yield largely
convergent results.

Our results have several practical implications for the application of multivariate
analysis methods to MEG and MEG. As the availability and number of EEG
devices vastly surpasses the number of MEG facilities, we hope that the
observed comparability in results greatly increases the reach of this
methodology. Moreover, most effects were robustly detectable when even only
32 EEG electrodes were sampled (Supplementary Figures 2,3,5,6). This shows
that multivariate pattern analysis methods are suitable tools even when only a
low numbers of sensors are recorded, e.g. in clinical settings. Further, in most
analyses the effect size was smaller for EEG than MEG. This suggests that if
MEG and EEG are equally accessible and time is a hard constraint, MEG might
be preferred. If time is not a constraint, long EEG recording times may possibly
offset any MEG advantage. It is also conceivable that modern high-density EEG
electrode arrays, reaching a few hundred sensors, offer considerably improved
results than our 74 passive electrode setup.

We hope that our results will motivate further researchers to widely use
multivariate methods such as classification and RSA on both EEG and MEG data
to shed further insight into the spatial and temporal neural dynamics underlying
human cognition.
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5.3 Multivariate analysis of MEG and EEG reveals both common and
unique aspects of neural representations
Previous studies have yielded qualitatively comparable results for several kinds
of multivariate analyses in MEG and EEG independently (Carlson et al., 2012;
Cichy et al., 2014; Kaneshiro et al., 2015), thus suggesting sensitivity to common
aspects of neural representations for MEG and EEG. However, for quantitative
comparison and isolation of common and unique components it is important to
establish correspondence in the same subjects recorded under the same
experimental conditions. Otherwise, factors that differ across subjects or
recording times may bias the comparison, including internal factors such as
attention, vigilance, movement, cortical folding patterns, as well as differences in
external conditions, such as noise and visual stimulation conditions.

Using multivariate analyses methods on concurrently recorded MEG and EEG
data, we avoided those pitfalls, and presented corroborating evidence that MEG
and EEG capture common and unique aspects of neural representations.
Strongest evidence for both common and unique aspects was provided by direct
comparison of MEG and EEG split-half data through RSA, which reveal within-
and across-modality representational similarities millisecond by millisecond.

Further evidence specifically for unique aspects were differences in the time
course of single image decoding and MEG/EEG-fMRI fusion, with later peaks for
EEG than for MEG. Fusion of MEG/EEG with fMRI suggested that differential
sensitivity to unique aspects of neural representations in early and late visual
areas might explain this pattern. Only MEG revealed unique aspects in early
visual areas, whereas both measurement modalities did so for later visual areas.

Last, the observation that effect sizes were larger when MEG and EEG data
were combined, rather than used in separation, is consistent with the hypothesis
that MEG and EEG are sensitive to unique aspects. However, an alternative
possibility is that the gain in effect size was due to an increase of signal-to-noise
ratio by combining measurements of common aspects with partially independent
noise. Future in-depth quantitative evaluation and modelling efforts to equate
noise levels across sensor sets are necessary to rule out this alternative
explanation.

What are the reasons for the observed differences between MEG and EEG, and
how do our findings relate to previous research? While MEG and EEG signals
have the same underlying neural generators, there are well known and
systematically explored differences in the literature (Cuffin and Cohen, 1979;
Cohen and Cuffin, 1983; Hamalainen et al., 1993). Prominently, radially-oriented
sources are prominent in EEG but nearly silent in MEG, suggesting unique
sensitivity of EEG to neural representations that are radially oriented.
Additionally, EEG has higher sensitivity to deep sources than MEG, thus
suggesting unique sensitivity to representations in cortical regions far away from
the sensors. In contrast, volume currents measured by EEG are deflected and
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smeared by the inhomogeneity of resistance of the skull, scalp, and the different
tissues of the human brain, potentially mixing signals from different sources more
than MEG. Together, those differences make plausible the reasons for
differential sensitivity of MEG and EEG in multivariate pattern classification, too.

In particular, a large body of theoretical, practical, and experimental
investigations exploring the complementary nature of MEG and EEG data agrees
with our observation that combining MEG and EEG increases effect size.
Theoretical investigations predict the benefits of MEG/EEG data integration
(Fokas, 2009). Practical and experimental investigations showed that combining
MEG and EEG improves source reconstruction (Fuchs et al., 1998; Baillet et al.,
1999; Pflieger et al., 2000; Liu et al., 2002; Yoshinaga et al., 2002; Liu et al.,
2003; Babiloni et al., 2004; Huang et al., 2007; Sharon et al., 2007; Molins et al.,
2008; Fokas, 2009; Henson et al., 2009).

Finally, our results suggest a potential future venue for the study of the
complementarity of MEG and EEG responses. One pertinent prediction of the
selective sensitivity of EEG to radial sources is that in a fusion-based comparison
to fMRI, representations in cortical areas oriented radially should show stronger
representational similarity to EEG than to MEG. Fusion-based analysis with
custom designed fMRI RDMs selective of voxel patterns with preference to radial
or tangential sources could improve localization and highlight the differential
sensitivity of MEG and EEG signals to tangential and radial sources. Note, this is
beyond the scope of this study, as fMRI was recorded in different subjects than
EEG/MEG, making such and individualized analysis based on cortical folding
patterns impossible.
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