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Abstract 

We present a fiber tractography approach based on a random forest classification and voting process, guiding 

each step of the streamline progression by directly processing raw diffusion-weighted signal intensities. For 

comparison to the state-of-the-art, i.e. tractography pipelines that rely on mathematical modeling, we performed 

a quantitative and qualitative evaluation with multiple phantom and in vivo experiments, including a comparison 

to the 96 submissions of the ISMRM tractography challenge 2015. The results demonstrate the vast potential of 

machine learning for fiber tractography. 

1. Introduction 

Fiber tractography on the basis of diffusion-weighted magnetic resonance imaging (DW-MRI) has been a research 

topic for almost 20 years. A vast spectrum of tractography algorithms has been presented over the last years 

ranging from local deterministic approaches (Basser, 1998; Chao et al., 2008; Lazar et al., 2003; Mori et al., 1999; 

Tournier et al., 2012) through probabilistic methods (Behrens et al., 2007; Berman et al., 2008; Descoteaux et al., 
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2009; Friman et al., 2006; Vorburger et al., 2013; Zhang et al., 2013) to global tractography (Aganj et al., 2011; 

Daducci et al., 2015; Fillard et al., 2009; Jbabdi et al., 2007; Lemkaddem et al., 2014; Mangin et al., 2013; Reisert 

et al., 2011). To infer information about the complex microstructure of brain tissue and to optimally exploit the 

acquisition dependent signal characteristics of diffusion-weighted images, tractography algorithms employ 

mathematical models calculated from the diffusion-weighted signal. Prominent examples include the diffusion 

tensor (Basser et al., 1994), multi tensor models (Kreher et al., 2005; Malcolm et al., 2010), spherical 

deconvolution (Alexander, 2005; Jeurissen et al., 2014; Schultz et al., 2010; Tournier et al., 2007), persistent 

angular structures (Jansons and Alexander, 2003), Q-ball modelling (Aganj et al., 2009; Descoteaux et al., 2007) 

as well as a large variety of multi-compartment models (Assaf et al., 2008; Assaf and Basser, 2005; Panagiotaki et 

al., 2012; Sotiropoulos et al., 2012; Zhang et al., 2012). To obtain such a model representation of certain local 

tissue properties, the corresponding inverse problem has to be solved using the measured signal. Depending on 

the model, this imposes different constraints on the data quality and acquisition sequence, such as a minimum 

number of diffusion-weighting gradients and a high signal to noise ratio (SNR). Usually, the more expressive a 

model is, the more demanding is its calculation and the higher are the requirements for the signal. Choosing the 

optimal model is not a trivial problem. Oversimplified modelling can, for example, hamper the ability to resolve 

crossing fiber situations. Modeling approaches make various assumptions about signal and tissue properties that 

are highly variable across subjects, locations in the brain and acquisition schemes. This issue has been discussed 

extensively and there is still no solution that is optimal in all situations (Daducci et al., 2014; Farquharson et al., 

2013; Jbabdi and Johansen-Berg, 2011; Neher et al., 2015a; Nimsky, 2014). Furthermore, depending on the model 

and the dataset, a certain number of tractography parameters, such as a termination criterion, e.g. on the basis 

of a threshold on the fractional anisotropy (FA), have to be adjusted manually, which requires expert knowledge. 

In the context of signal modeling, initial studies have successfully shown the potential of machine learning 

techniques, e.g. for the tasks of image quality transfer and tissue micro-structure analysis (Alexander et al., 2014; 

Golkov et al., 2016; Nedjati-Gilani et al., 2014; Reisert et al., 2016) and to estimate the number of distinct fiber 

clusters per voxel (Schultz, 2012). These methods avoid or alleviate some of the issues that come with the usage 

of diffusion-signal models. 

Here, we present the first approach to fiber tractography on the basis of machine learning, which has several 

advantages: There is no need to explicitly solve the inverse problem to obtain a representation of the diffusion 

propagator or the tissue microstructure from the diffusion-weighted signal. Also, classical modeling approaches 

often struggle with artifacts that are not included in the mathematical model, such as noise and distortions, while 

a machine learning based approach can, to a certain extent, deal with such signal imperfections by learning them 

from the training data. While the desired information has of course to be encoded in the signal, there are no 

general restrictions on the type of image acquisition, e.g. regarding the number of diffusion-weighting gradients 

or the b-value. This enables straight-forward optimization of the method to a specific acquisition scheme. 

Furthermore, the distinction between white matter and non-white matter tissue is directly learned from the 

training data. This means that additional white matter mask images or model derived thresholds, such as on the 

FA or on the magnitude of the peaks determined by the model, are not necessary to constrain the tractography. 

Additionally, in classical streamline tractography, the decision about the next direction of the streamline 
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progression is typically based solely on the signal information at the current streamline position. The probabilistic 

nature of our approach enables the meaningful integration of the information obtained from multiple signal 

samples in the local neighborhood, guiding each step of the streamline progression. 

This work is based on the preliminary results and methods presented at MICCAI 2015 (Neher et al., 2015b). Here, 

we introduce new types of classification features and training data. The evaluation of our method was extended 

to the data and results from the ISMRM tractography challenge 2015, including 96 tractography methods for 

comparison. Furthermore, we extensively assessed the capabilities of our method to generalize from in vivo to in 

vivo, in vivo to in silico and in silico to in vivo data. In our experiments, we show that the method performs as 

good as or better than the state-of-the-art and generalizes well to unseen datasets. 

2. Materials and Methods 

Standard streamline tractography approaches reconstruct a fiber by iteratively extending the fiber in a direction 

depending on the current position. The directional information is usually inferred from a signal model at the 

respective location, such as the diffusion tensor (DT), fiber orientation distribution functions (fODF) or diffusion 

orientation distribution functions (dODF). The method presented in this work also iteratively extends the current 

fiber but in contrast to standard streamline approaches, the determination of the next progression direction relies 

on a different concept: 

1. Instead of mathematically modeling the signal the presented method employs a random forest classifier 

working on the raw diffusion-weighted image values in order to obtain information about local tissue 

properties, such as tissue type (white matter or not white-matter) and fiber direction (cf. sec. 2.1).  

2. To progress or possibly terminate a streamline, not only the image information at the current location but 

also at several sampling points distributed in the neighborhood are taken into account. The final decision 

on the next action is then based on a voting process among the individual classification results at these 

sampling points (cf. sec. 2.2).  

2.1. Learning fiber directions using random forest classification 

Classification features: We evaluated two types of input features for the random forest classifier: raw signal 

intensities as well as the voxel-wise coefficients of the corresponding spherical harmonics fit of the diffusion-

weighted signal. In both cases, multiple b-values can be handled by concatenating the feature vectors of the 

individual b-shells. For the first case, the signal is resampled to 100 directions equally distributed over the 

hemisphere using spherical harmonics, to become independent of the gradient scheme used to acquire the data. 

In addition to the diffusion-weighted signal features, the normalized previous streamline direction is added to the 

list of classification features, thus enabling the method to better overcome ambiguous situations. Each signal 

feature is used twice for training, one time in conjunction with the directional feature and a second time with a 

zero-vector instead of the direction feature to enable valid classifications at streamline seed points. We 
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furthermore investigated the effect of adding features such as T1 signal values or scalar indices derived from the 

diffusion-weighted signal, such as the generalized fractional anisotropy (GFA) (Tuch, 2004). 

Reference directions: To train the classifier, reference fiber tracts corresponding to the respective diffusion-

weighted image are necessary. In our experiments, we explore two variants of obtaining these reference tracts. 

(1) we use a previously performed standard tractography to obtain the reference tracts. The impact of the 

tractography algorithm choice on the presented approach was systematically evaluated in our experiments. While 

this approach introduces a dependency of the training step on the quality of the reference tractogram, we 

perform further experiments (2) with simulated datasets and the corresponding known ground truth tracts for 

training. Multiple variations of training and test data are explored to analyze this aspect of our method. 

Classifier output: The classifier produces a probability 𝑃(𝑣𝑖) for each of 100 different possible fiber directions 

𝑣𝑖  (1 ≤ 𝑖 ≤ 100) equally distributed over the hemisphere as well as a non-fiber probability 𝑃𝑛𝑜𝑛𝑓𝑖𝑏 .  

2.2. Streamline progression using neighborhood sampling 

At each step of the streamline progression the signal is sampled at 𝑁 positions 𝑝𝑗  (1 ≤ 𝑗 ≤ 𝑁) located on a 

half-sphere in front of and in distance r of the current streamline position 𝑝. At the seed points, where no 

previous streamline direction 𝑣𝑜𝑙𝑑  is available, the 2𝑁  sampling points are distributed over the complete 

sphere. 

Classification is performed at each 𝑝𝑗  to infer a weighted local direction proposal 𝑣𝑗 . The subsequent 

streamline direction 𝑣  is determined as the normalized sum of the weighted proposals: 𝑣 =
∑ 𝑣𝑗

𝑗

‖∑ 𝑣𝑗
𝑗 ‖

. Each 

proposal direction 𝑣𝑗  is determined based on the normalized previous streamline direction 𝑣𝑜𝑙𝑑  and the 

probabilities 𝑃𝑗(𝑣𝑖) of each possible direction: 𝑣𝑗 = ∑ 𝑤𝑖𝑣𝑖𝑖 , with 𝑤𝑖 = 𝑃𝑗(𝑣𝑖)〈𝑣𝑖 , 𝑣𝑜𝑙𝑑〉. The dot product is a 

directional prior that promotes straight fibers. An additional hard curvature threshold is employed that, when 

exceeded, sets 𝑤𝑖 = 0. 

If the non-fiber probability of sample 𝑗 exceeds the cumulated weighted probabilities of all possible directions 

(𝑃𝑛𝑜𝑛𝑓𝑖𝑏
𝑗

> ∑ 𝑤𝑖𝑖 ), a potential tract boundary is identified and a vote for termination of sample 𝑗 is considered. 

Now, the position vector 𝑑 = 𝑝𝑗 − 𝑝  is related to the previous direction 𝑣𝑜𝑙𝑑  in order to decide whether 

termination is preferable or should be avoided. A termination is considered more likely if non-fiber regions lie 

straight ahead (i.e. in the current direction of streamline progression 𝑣𝑜𝑙𝑑). If the streamline progresses more or 

less parallel to the detected fiber bundle margin, a premature termination is rather avoided. To this end an 

auxiliary sample position 𝑝̂𝑗  is evaluated that is determined by a 180° rotation of 𝑑 around 𝑣𝑜𝑙𝑑 :  

𝑝̂𝑗 = 𝑝 − 𝑑 + 2〈𝑣𝑜𝑙𝑑 , 𝑑̅〉𝑣𝑜𝑙𝑑  

with 𝑑̅ =
𝑑

‖𝑑‖
. If 𝑃𝑛𝑜𝑛𝑓𝑖𝑏  at the new position 𝑝̂𝑗  is > ∑ 𝑤𝑖𝑖 , 𝑣𝑗  is set to (0,0,0) (vote for termination, cf. 

Figure 1a), otherwise 𝑣𝑗  is set to 𝑑̂ = 𝑝̂𝑗 − 𝑝 to deflect the streamline away from the detected fiber margin 
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(cf. Fig. Figure 1b). A streamline terminates if the majority of all frontal sampling points, meaning sampling points 

that are located in a 90° cone around 𝑣𝑜𝑙𝑑  ahead of 𝑝, vote for termination. If no 𝑣𝑜𝑙𝑑  is available, which is the 

case at the seed location of each streamline, all sampling points have to vote for termination. 

 

Figure 1: Illustration of the voting process leading to a termination after the next step (a) or to a streamline 

deflection (b). The current streamline position is denoted 𝑝 . 𝑝𝑗  and 𝑝̂𝑗  are the sampling points and 

corresponding alternative sampling points, 𝑣𝑗  is the direction proposal at sampling point 𝑝𝑗  and 𝑣𝑜𝑙𝑑  is the 
direction of the previous streamline progression step. 

2.3. Experiments 

We performed four types of experiments to evaluate our approach. 

Experiment 1: To determine the optimal choice of the tractography algorithm used to create the training data for 

our approach and to obtain an initial evaluation of its performance, we used a simulated replication of the 

FiberCup phantom (cf. Figure 2) (Fillard et al., 2011). The dataset was simulated using the Fiberfox simulation tool 

(Neher et al., 2014) with the following parameters: 30 gradient directions, a b-value 1000 𝑠 𝑚𝑚−2 , 3 𝑚𝑚 

isotropic voxels and a signal-to-noise ratio of about 40. Tractography was performed with 12 combinations of the 

following openly available tractography and local modelling techniques (cf. Table 1 for corresponding toolkits): 

 Tractography algorithms:  

 Deterministic streamline tractography (DET)  

 Fiber assignment by continuous tracking (FACT)  

 Tensor deflection tractography (TEND) 

 Probabilistic streamline tractography (PROB)  

 Global Gibbs tractography  

 Local modeling techniques:  

 Single-Tensor model (DT)  

 Two-Tensor model (DT-2)  

 Constrained spherical deconvolution (CSD) 

 Constant solid angle Q-ball (CSA)  
Figure 2: Structure of the FiberCup phantom. 
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The presented approach was trained individually with each of the 12 benchmark methods. Based on the results 

of this analysis, the most promising algorithm was chosen to obtain the training tractogram for all further 

experiments (𝐴𝑡𝑟𝑎𝑖𝑛). 

To quantify the performance of the methods, the following metrics from the Tractometer evaluation protocol 

(Côté et al., 2013) were analyzed: the fraction of no connections (NC), valid connections (VC), invalid connections 

(IC) and bundle overlap (OL), as well as an additional measure for the local angular error (AE) (Neher et al., 2015a). 

Seeding was performed homogeneously within the image. Not white-matter mask was used to constrain the 

tractography. All tractography algorithms were run with their default parametrization. Only the stopping criteria 

(FA and ODF peak thresholds) were manually adjusted to obtain plausible results (FA threshold 0.15, peak 

threshold for CSA 0.085 and peak threshold for CSD 0.15). 

The presented method was run with N=50 sampling points, a step size of 0.5⋅f (f is the minimal voxel size in mm), 

r=0.25⋅f, a minimum fiber length of 20mm, a maximum fiber length of 200mm, and a hard curvature threshold at 

a maximum angle of 45° between two steps or a maximum directional standard deviation of 30° over the last 

centimeter. The classifier was trained using 30 trees, a maximum tree depth of 50 and a Gini splitting criterion. 

The training data was sampled equidistantly (0.5⋅f) along the input tractogram fibers as well as on 50 randomly 

placed points in each non-fiber voxel. The defaults for step size and angular thresholds were empirically 

determined and are typical for streamline based fiber tractography approaches. The number of sampling points 

and the forest parameters yielded stable results in a broad range and increasing them further would mainly 

impact the computational cost of the method. In this experiment we used the raw diffusion-weighted signal 

values, resampled to 100 directions equally distributed over the hemisphere using spherical harmonics (cf. sec. 

2.1), as input for the classifier. 

Experiment 2: The in vivo performance of our approach in comparison to the 12 methods described in Experiment 

1 was qualitatively evaluated on basis of reconstructions of the corticospinal tract (CST) and by an analysis of the 

spatial distribution of fiber end points. The dataset was acquired using 81 gradient directions, a b-value 3000 𝑠 

𝑚𝑚−2 and 2.5 𝑚𝑚 isotropic voxels. All methods were run with their default parameterization, which is the 

same as in Experiment 1. In contrast to Experiment 1, no manual adjustment of FA and ODF peak thresholds was 

necessary in vivo. As in Experiment 1, the interpolated raw signal values were used as input features for the 

classifier. To obtain the training reference, we used the method determined in Experiment 1 (𝐴𝑡𝑟𝑎𝑖𝑛).  

Experiment 3: In this experiment, we assessed the performance of the presented method using the ISMRM 

tractography challenge 2015 data (Maier-Hein et al., 2016) (www.tractometer.org/ismrm_2015_challenge/). The 

ground truth fiber bundles mimic the shape and complexity of 25 well known in vivo fiber bundles (cf. Figure 3). 

The diffusion-weighted dataset was simulated with 32 gradient directions, a b-value 1000 𝑠 𝑚𝑚−2 and 2 𝑚𝑚 

isotropic voxels. 
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This experiment enabled us to compare our approach to all 96 original submissions of the tractography challenge 

comprising a large variety of tractography pipelines with different pre‐processing, local reconstruction, 

tractography and post‐processing algorithms.  

As preprocessing step, the dataset was denoised and corrected for distortions using MRtrix (dwidenoise & 

dwipreproc, http://www.mrtrix.org/). 

The random forest classifier was trained using all combinations of the following parameters, resulting in a total 

of 8 trained classifiers: 

 Classification features:  

1. Interpolated raw signal values 

2. Spherical harmonics coefficients (order 6) 

 Additional features:  

1. no additional features 

2. T1 signal and GFA 

 Training tractograms: 

1. Ground truth fibers (𝐺𝑇𝑡𝑟𝑎𝑖𝑛) used to simulate the phantom image 

2. Tractogram obtained using the method 𝐴𝑡𝑟𝑎𝑖𝑛  

To reduce the computational load and since the parameters yielded stable results across a broad range, the 

maximum tree depth was reduced to 25 and the number of sampling points N during tracking was reduced to 30. 

To obtain balanced classes, the number of non-fiber samples was chosen automatically to match the number of 

fiber samples. 

For each of the 8 classifiers, tractography was performed two times using 1 and 3 seed points per voxel, 

respectively.  

The same evaluation metrics as presented in the original challenge were analyzed for all 16 tractograms using the 

official evaluation pipeline: valid bundles (VB), invalid bundles (IB), valid connections (VC), bundle overlap (OL) 

and bundle overreach (OR). 
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Figure 3: Illustration of the phantom generation process (a) and its constituent 25 fiber bundles (b). For details 
about the ISMRM tractography challenge 2015 and the phantom, please refer to (Maier-Hein et al., 2016) and 
the challenge homepage www.tractometer.org/ismrm_2015_challenge/. 

Experiment 4: Our final experiments aim at evaluating the generalization capability of the presented method using 

in vivo and in silico data:  

As in vivo data we used five datasets of the Human Connectome Project (HCP) (Van Essen et al., 2012, 2013; Van 

Essen and Ugurbil, 2012) for training and five other HCP datasets for testing (HCPtrain [Subject IDs: 984472, 979984, 

978578, 994273, 987983] and HCPtest [Subject IDs: 992774, 991267, 983773, 965771, 965367]). The HCP datasets 

are acquired using 270 gradient directions, three b-values (1000 𝑠 𝑚𝑚−2, 2000 𝑠 𝑚𝑚−2, 3000 𝑠 𝑚𝑚−2) and 

1.25 𝑚𝑚 isotropic voxels.  

As in silico data for this experiment, we employed the IMSRM tractography challenge phantom already used in 

Experiment 3. Since the phantom and the HCP datasets were acquired with different imaging sequences, they 

feature different image contrasts. Therefore, the phantom dataset was normalized to feature the same mean and 

standard deviation inside the white matter as the HCP datasets. 

Three types of generalization were tested: 

(1) In vivo  in vivo: In this part of the experiment, we trained our method using HCPtrain and evaluated its 

performance on the unseen datasets of HCPtest. Training was performed using multi-tissue CSD (Jeurissen 

et al., 2014) deterministic tractography as 𝐴𝑡𝑟𝑎𝑖𝑛, about 12 million samples per dataset and spherical 

harmonics coefficients as classification features calculated from the 𝑏 = 3000 𝑠 𝑚𝑚−2 shell of HCPtrain. 

We only used the highest b-shell instead of all three available shells to avoid to triple the amount of 
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required memory for the features. Since the HCP datasets feature a much higher resolution compared 

to the datasets used in the other experiments, tractography on HCPtest was performed using an increased 

sampling distance (0.7⋅f). Streamlines were seeded five times in every brain voxel. Evaluation was 

performed qualitatively by manually extracting the corticospinal tract (CST), cingulum (Cg) and fornix (Fx) 

from each of the five test results and a successive visual inspection of the tracts. 

(2) In vivo  in silico: In this part of the experiment, we trained our method using HCPtrain and evaluated its 

performance on the unseen phantom dataset already used in Experiment 3. The same tractography 

parameterization as in Experiment 3 and the same training tractograms already employed in part (1) 

were used. To match the b-value of the phantom dataset, the spherical harmonics coefficients from the 

𝑏 = 1000 𝑠 𝑚𝑚−2  shell of HCPtrain were used as training features. The resulting tractogram was 

evaluated quantitatively using the same measures already described in Experiment 3. 

(3) In silico  in vivo: In this part of the experiment, we trained our method on the phantom dataset and 

the corresponding ground truth fibers introduced in Experiment 3 and tested it on the five in vivo HCPtest 

datasets. As in (2), the 𝑏 = 1000 𝑠 𝑚𝑚−2 shells of HCPtest datasets were used to calculate the features 

for our method. Evaluation and tractography was performed analogous to (1). 

3. Results 

Experiment 1: An overview The best results on the phantom image were obtained using the CSD DET tractography 

(Tournier et al., 2007, 2012) for training our approach (𝐴𝑡𝑟𝑎𝑖𝑛 = CSD DET). With this configuration, the presented 

approach outperformed all benchmark methods in four out of the five metrics (cf. Table 1). Only 3% of the tracts 

terminated prematurely. Furthermore, the presented approach yielded the highest percentage of valid 

connections (93%), the highest bundle overlap (94%) and the lowest local angular error (4%). All 7 valid bundles 

in the phantom were reconstructed successfully. Also, the percentage of invalid connections (4%) is rather low 

compared to the majority of benchmark algorithms (rank 4 out of 13). When varying the method that was used 

for training, the percentage of prematurely ending fibers and valid connections yielded by the presented 

approach improved on average by 56% and 36% respectively as compared to the benchmark tractograms. The 

average percentage of invalid connections, however, was increased by 21%. 
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Model Type NC VC IC OL AE 

DT
1
 DET

1
 60% 25% 15% 21% 5° 

DT
1
 FACT

1
 62% 23% 14% 24% 6° 

DT
1
 TEND

1
 84% 8% 8% 21% 10° 

DT
2
 PROB

2
 57% 23% 20% 27% 8° 

DT
1
 Global

1
 82% 10% 8% 42% 12° 

CSA
1
 DET

3
 24% 67% 9% 70% 8° 

CSA
1
 PROB

3
 91% 5% 4% 83% 18° 

CSA
1
 Global

1
 81% 14% 5% 74% 13° 

DT-2
2
 DET

2
 60% 37% 3% 58% 6° 

CSD
3
 DET

3
 21% 78% 1% 86% 4° 

CSD
3
 PROB

3
 66% 28% 7% 93% 4° 

CSD
3
 Global

1
 81% 17% 2% 72% 12° 

- Proposed 3% 93% 4% 94% 4° 

Table 1: Results of Experiment 1. The best scores per metric are highlighted bold. The toolkits used to obtain the 
12 reference tractograms are 1MITK Diffusion (www.mitk.org/wiki/DiffusionImaging), 2Camino 
(camino.cs.ucl.ac.uk/) and 3MRtrix (www.mrtrix.org, v0.2). 

Experiment 2: Based on the results of Experiment 1, the CSD DET tractography was used as training method 𝐴𝑡𝑟𝑎𝑖𝑛 

for the in vivo experiments. In vivo, our approach successfully reconstructed a whole brain tractogram including 

challenging regions such as the crossing between the corpus callosum, the CST and the superior longitudinal 

fasciculus. Our method was furthermore able to reconstruct parts of the CST that other approaches often missed 

(cf. lateral projections of the CST in Figure 4b). In comparison to the benchmark algorithms, most of the fibers 

reconstructed by the presented approach correctly terminated in the cortex (cf. Figure 4a). 
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Figure 4: Results on the in vivo Experiment 2. (a) shows the max-normalized voxel-wise number of fiber endpoints, 
maximum intensity projected over 20 sagittal slices. (b) shows the corticospinal tracts obtained with all 13 
algorithms. The green bars schematically depict the inclusion regions used for all whole brain tractograms to 
extract the respective CST. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 30, 2017. ; https://doi.org/10.1101/104190doi: bioRxiv preprint 

https://doi.org/10.1101/104190


12 

 

Experiment 3: Figure 5 depicts the results of our approach in comparison to the original challenge results. For 

reference, the same numbering of the teams as in the challenge paper were used. Team number 1-20 belong to 

the 20 teams that submitted results to the challenge. To obtain a clear presentation of our results, we split them 

into two groups (Team 21 and 22) according to the respectively employed training tractogram (Tractogram 

obtained with 𝐴𝑡𝑟𝑎𝑖𝑛 or the ground truth tracts 𝐺𝑇𝑡𝑟𝑎𝑖𝑛). In the following paragraphs we analyze our results in 

comparison to the original tractography submissions and with respect to the different training and tractography 

parameterizations described in Section 2.3, Experiment 3. 

General observations: The presented approach is the only method that was able to reconstruct all 25 valid 

bundles. Regardless of the pipeline configuration, the minimum number of valid bundles reconstructed by our 

approach was 24, which could not be matched by any other approach. Furthermore, none of the original 96 

submissions reached valid connection and bundle overlap ratios larger than 50% while keeping the overreach 

ratio smaller than 50%, in contrast to all 16 new tractograms. Compared to the mean scores over all 96 benchmark 

submissions, the mean scores over the new tractograms were improved for all metrics except the bundle 

overreach (VB: +2.82, IB: -1.49, VC: +14.83, OL: +31.26, OR: +12.09). While the overreach was increased by 

12.09%, the increase in bundle overlap was almost three times as high. 

Training data (Team 21 vs. 22): As expected, the presented method performs clearly better when using the 

𝐺𝑇𝑡𝑟𝑎𝑖𝑛 tracts as training data as compared to the training tractogram obtained with 𝐴𝑡𝑟𝑎𝑖𝑛. Especially the valid 

connections, bundle overlap and bundle overreach are distinctly improved using the ground truth. 

Effect of the different diffusion-weighted features: Using spherical harmonics coefficients instead of the raw 

signal values as classification features results in consistently higher valid connection ratios and a higher overlap 

at the cost of a lower valid bundle score (maximum VB is 24) and a slightly higher overreach.  

Effect of additional features: The differences are very small and consistent effects could only detected when 

training on the ground truth (Team 22), where inclusion of T1 and GFA features lead to a slight increase of valid 

connections, a higher overlap and a lower overreach. 

Effect of the varying number of seed points: Using a larger number of seed points resulted in a higher sensitivity 

– all configurations that yielded 25 valid bundles used 3 seed points – and a higher bundle overlap, while at the 

same time increasing the overreach and number of invalid bundles. 
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Figure 5: Scores of the 16 new tractograms obtained using the presented method (color) in comparison to the 
original challenge submissions (gray). The tractograms in Team 21 (red, star) were obtained using 𝐴𝑡𝑟𝑎𝑖𝑛  to 
generate the training reference and the tractograms in Team 22 (green, pentagon) with the ground truth tracts 
𝐺𝑇𝑡𝑟𝑎𝑖𝑛  as training reference. 

 

Experiment 4: Overall, the presented approach was able to generalize well to unseen datasets. The following 
paragraphs describe the individual results of the three parts of this experiment. 

(1) In vivo  in vivo: Figure 6 shows the tracts extracted from the five HCP test tractograms. All tracts were 
reconstructed successfully, which demonstrates that the classification based approach is capable of 
generalization to unseen datasets. 

(2) In vivo  in silico: The method trained on five HCP datasets was able to reconstruct 24/25 valid bundles 
in the ISMRM tractography challenge phantom, while reconstructing 88 invalid bundles, which is 
comparable to the results of Experiment 3, where the approach was directly trained on the phantom 
dataset. The fraction of valid connections (38%) and the bundle overlap (46%) on the other hand were 
considerably lower. With 34%, the bundle overreach was again similar to the results of Experiment 3. 

(3) In silico  in vivo: As in (1), the approach trained on simulated data was able to reconstruct the 3 tracts 
of interest in all five unseen in vivo test datasets (cf. Figure 7).  
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Figure 6: Cingulum (left), corticospinal tract (middle) and fornix (right) reconstructed from the five HCP test 
subjects (cf. sec. 2.3 Experiment 4 (1)). The results were obtained with the presented approach after training on 
five different HCP subjects. 
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Figure 7: Cingulum (left), corticospinal tract (middle) and fornix (right) reconstructed from the five HCP test 
subjects (cf. sec. 2.3 Experiment 4 (3)). The results were obtained with the presented approach after training on 
the ISMRM tractography challenge phantom. 

4. Discussion and Conclusion 

We presented a random-forest classification-based approach to fiber tractography using neighborhood 

information that guides each step of the streamline progression.  
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The presented approach is the first to utilize machine learning for fiber tractography. The method systematically 

exploits the diffusion-weighted signal not only locally but also in the neighborhood of the current streamline 

position in order to increase sensitivity, which is rarely done in current tractography pipelines. 

We thoroughly evaluated the performance of the presented method in comparison to over 100 state-of-the-art 

tractography pipelines on simulated phantom datasets as well as in vivo. 

In the in vivo experiments (Experiment 2), our approach yielded very good results in reconstructing difficult tracts 

(e.g. the lateral projections of the CST) and a much lower number of fibers ending prematurely inside the brain. 

As expected, tensor based approaches had difficulties in detecting the lateral projections of the CST. However, 

even the benchmark method that performed best in the phantom experiments (𝐴𝑡𝑟𝑎𝑖𝑛 = CSD DET) was unable 

to detect these projection fibers. The benchmark methods that showed a relatively high sensitivity in this region 

(CSA+CSD PROB and DT-2 DET) displayed a very low specificity in the phantom experiments (Experiment 1) as well 

as with respect to the in vivo end-point distribution. In contrast, the presented algorithm showed a constantly 

high sensitivity and specificity. 

In the quantitative analysis on the ISMRM tractography challenge phantom dataset (Experiment 3), our approach 

showed the highest sensitivities in terms of reconstructed valid bundles while still yielding a specificity in terms 

of reconstructed invalid bundles above average. It is furthermore the only approach to reach bundle overlap 

scores above 50% while at the same time keeping the bundle overreach below 50%. 

The capability of the presented approach to generalize to unseen datasets was successfully demonstrated in 

Experiment 4. We showed that generalization is possible between different in vivo images acquired with the same 

MR sequence as well as between in vivo images and simulated datasets (in both directions). The latter experiment, 

generalizing from simulated datasets to in vivo, is especially important, since it enables us to train on datasets 

with known ground truth. This eliminates the bias introduced by training on tracts obtained with a conventional 

tractography method.  

While the presented results are promising, there are still some challenges to address. Further work is necessary 

to quantify and improve the performance of the presented approach when training on simulated datasets. One 

important aspects in this regard is the simulation of further datasets to obtain more comprehensive training data 

with respect to image contrast and fiber structure. Another aspect where methodological improvements are 

definitely possible is the currently employed naïve approach to generalize between the simulated and in vivo 

domain, using approaches of unsupervised domain adaptation and transfer learning (Götz, Michael et al., 2014; 

Heimann et al., 2014; Long et al., 2016, 2014; McKeough et al., 2013; Pan and Yang, 2010; Sener et al., 2016). 

Another challenge is the still high number of invalid bundles, which is a known issue of current fiber tractography 

approaches (Maier-Hein et al., 2016). This is a challenge the whole fiber tractography community is facing and 

that does not have a simple solution. However, it seems promising to incorporate as much additional knowledge 

in the tractography process as possible, for which machine learning based approaches seem to be well suited. 

Interesting candidates would be functional MRI data or prior knowledge in form of cortical parcellations. An 

extension of the presented method to directly include a distinction between different non-white matter tissue 
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types, such as gray matter and corticospinal fluid, seems promising to further improve the decision on where to 

terminate the fiber progression. This includes addressing further interesting aspects of the fiber termination such 

as orthogonality to and uniform coverage of the gray-white-matter interface. We are also planning to analyze 

how the process of including neighborhood information can be improved further, e.g. by applying patch-based 

classification at the current streamline position in order to obtain a more ‘global’ view on the image that might 

be necessary to avoid invalid connections.  

The source-code of all methods presented in this work is available open-source and integrated into the Medical 

Imaging Interaction Toolkit (MITK) (Fritzsche et al., 2012; Nolden et al., 2013). The datasets used in Experiment 1 

and 2 are available for download at www.nitrc.org/projects/diffusion-data/. The dataset used in Experiment 3 as 

well as many other resources regarding the ISMRM tractography challenge are available at 

www.tractometer.org/ismrm_2015_challenge/. The HCP datasets used in Experiment 4 are available on 

www.humanconnectome.org/data/. 
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