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Abstract 9 
 10 
The goal of cognitive neuroscience is to understand how mental operations are performed by 11 
the brain. Given the complexity of the brain, this is a challenging endeavor that requires the 12 
development of formal models. Here, we provide a perspective on models of neural information 13 
processing in cognitive neuroscience. We define what these models are, explain why they are 14 
useful, and specify criteria for evaluating models. We also highlight the difference between 15 
functional and mechanistic models, and call attention to the value that neuroanatomy has for 16 
understanding brain function. Based on the principles we propose, we proceed to evaluate the 17 
merit of recently touted deep neural network models. We contend that these models are 18 
promising, but substantial work is necessary to (i) clarify what type of explanation these models 19 
provide, (ii) determine what specific effects they accurately explain, and (iii) improve our 20 
understanding of how they work. 21 
 22 
Introduction 23 
 24 
There has been a recent surge of excitement in deep neural networks for neuroscience 25 
(Kriegeskorte, 2015; Yamins and DiCarlo, 2016). Major advances in training deep neural 26 
networks were achieved by the artificial intelligence and computer vision communities, and 27 
these networks now achieve unprecedented performance levels on certain computer vision 28 
tasks such as visual object recognition (Krizhevsky et al., 2012). Following these developments, 29 
neuroscientists studying the visual system have shown that responses of units in deep neural 30 
networks correlate strongly with experimentally measured responses in the primate visual 31 
system (e.g., (Agrawal et al., 2014; Cadieu et al., 2014; Eickenberg et al., 2016; Güçlü and van 32 
Gerven, 2015a; Khaligh-Razavi and Kriegeskorte, 2014; Kubilius et al., 2016; Yamins et al., 33 
2014)). Due to these correspondences and similarities in architecture between the artificial and 34 
biological networks, deep neural networks have been touted as excellent models of biological 35 
neural systems. 36 
 37 
In this paper, we use the excitement elicited by deep neural networks as an opportunity to think 38 
carefully and critically about models of brain function. We step back and consider the broad 39 
endeavor of developing models in cognitive neuroscience (Sections 1–2) and provide an 40 
assessment of why we should develop such models (Sections 3–4). We then highlight the 41 
important distinction between functional and mechanistic models (Section 5) and propose 42 
specific criteria for evaluating models (Section 6). We end by using the principles we propose to 43 
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evaluate the merit of deep neural network models (Section 7). While we write this paper as a 1 
Comments and Controversies article, some of the points in this paper may be uncontroversial, 2 
especially to practitioners of model-based neuroscience. However, we think integrating points 3 
into a single document is useful, and we believe this consolidated perspective will be especially 4 
useful for those who are interested in understanding modeling, but who do not necessarily 5 
engage in it. 6 
 7 
1. What is cognitive neuroscience? 8 
 9 
Before reasoning about models in cognitive neuroscience, we must first define these terms. 10 
Gazzaniga, Ivry, and Magnun define ‘cognitive neuroscience’ as 11 
 12 

“the question of understanding how the functions of the physical brain can yield the 13 
thoughts and ideas of an intangible mind” (Gazzaniga et al., 2014). 14 

 15 
It is widely accepted that “thoughts and ideas of an intangible mind,” or mental operations more 16 
generally, can be viewed as information-processing operations: for example, the brain 17 
represents sensory information, stores sensory information, reasons about this information, and 18 
uses information to guide motor behavior. Thus, the brain can be characterized as an organ that 19 
mediates interactions between an organism and its environment, accepting incoming sensory 20 
information and delivering outgoing motor information. With this definition in mind, the broad 21 
question in cognitive neuroscience is, how do the structure (anatomy) and function (physiology) 22 
of neurons and their connections enable the brain to carry out information-processing 23 
operations? 24 
 25 
At a coarse level, we already know what the brain does, that is, what the information-processing 26 
operations are. To use an example from visual neuroscience (DiCarlo and Cox, 2007), we know 27 
that one information-processing operation performed by the brain is to take complex 28 
spatiotemporal patterns of light impinging on the retina and to use this information to decide 29 
what the source of these inputs are (e.g. what type of object is present in the environment). Or, 30 
to use an example from social neuroscience (Kubota et al., 2012), we know that one 31 
information-processing operation performed by the human brain is to form stereotypes about 32 
other humans and use these stereotypes to influence future behavior. But without further work, 33 
we do not know how the brain performs these operations. The beauty and challenge of 34 
neuroscience is that we have tools for measuring in detail the inner workings of the physical 35 
organ that performs these operations. Thus, we can move from 'what does the brain do?' to 36 
'how does this particular neuron, or population of neurons, contribute to the functions performed 37 
by the brain?'. 38 
 39 
2. What is a model? 40 
 41 
A small but growing number of researchers are using model-based approaches to tackle 42 
questions in cognitive neuroscience (e.g., (Brouwer and Heeger, 2013; Forstmann et al., 2011; 43 
Huth et al., 2012; Kay and Yeatman, 2017; O'Doherty et al., 2007; Santoro et al., 2014; Sprague 44 
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and Serences, 2013)). We propose a simple, general definition of ‘model’: a model is a 1 
description of a system. In neuroscience, a model would describe how the nervous system is 2 
physically structured and/or how its activity changes dynamically over time. In the specific field 3 
of cognitive neuroscience, a model would describe how the components of the brain accomplish 4 
behaviorally relevant information-processing tasks, such as decision-making or motor control. 5 
For example, we might ask, for a given brain region, what stimulus, cognitive, or motor 6 
operations are performed by neural activity in that region? 7 
 8 
Given the broadness of our proposed definition, nearly any neuroscience result could be viewed 9 
as providing a model. However, models vary substantially in how precise and quantitative they 10 
are. For example, models can be qualitative, conceptual, and vague about assumptions (e.g., a 11 
description in an introductory textbook, or a ‘word’ model that involves ill-defined jargon), or 12 
models can be quantitative, mathematical, and explicit about assumptions (e.g., a formal 13 
implementation of a model in computer code). Models can depend on concepts and labels 14 
derived from our own cognitive abilities (e.g., oracle models that involve manually labeling 15 
complex audiovisual stimuli (Huth et al., 2012)), or models can provide explicit specification of 16 
concepts and labels independent of a human observer (e.g., a computational implementation of 17 
stimulus category (Kay and Yeatman, 2017)). Models can describe systems at coarse levels of 18 
detail (e.g., overall activity in a brain region) or at fine levels of detail (e.g., ion channels). As 19 
cognitive neuroscientists, we all attempt to describe how the brain performs information 20 
processing, and so technically we are all 'modelers'. Of course, in practice, when we use the 21 
term 'model', we are typically referring to descriptions that have been made precise and 22 
quantitative, and we adopt this usage for the rest of this paper. 23 
 24 
3. Models make falsifiable claims 25 
 26 
Models perform real scientific work, and are not simply ad hoc appendages to an experimental 27 
study (though in some cases they can be). Rather, models make substantive falsifiable claims 28 
and can progressively improve in sophistication and detail. Consider the following simple 29 
experiment (Figure 1, left). We ask a human observer to direct her eyes towards a small dot at 30 
the center of a blank display. The small dot changes color periodically and we instruct the 31 
observer to press a button when the color changes. Meanwhile, we place a stimulus (e.g. a 32 
checkerboard) on the display, and move this stimulus to a variety of different positions. As we 33 
manipulate the stimulus, we record neural activity in the observer's occipital cortex using some 34 
technology (e.g. fMRI). We discover that there is an increase in activity when the stimulus is 35 
present on the display and that there is some variation in activity levels as a function of stimulus 36 
position. 37 
 38 

*** Insert Figure 1 here *** 39 
 40 
In this example, the system consists of the stimulus, task, observer, behavior, measurement 41 
device, and recorded activity. Our goal, as scientists, is to describe this system and, in 42 
particular, to describe why the increases in neural activity occur. There are many possible 43 
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descriptions, or models, that we could propose (Figure 1, right). For example, let us consider 1 
four potential models: 2 
 3 

Model 1. There is visual information on the display (it is not blank). That is why occipital 4 
cortex shows increased neural activity. 5 

Model 2. There is a point-to-point mapping between positions on the display and positions 6 
on cortex (Engel et al., 1997). That is why neural activity at a given cortical position 7 
increases for some stimulus positions but not others. 8 

Model 3. Spatial extent is one property of a visual stimulus. For a given cortical position, this 9 
property is represented through a mathematical operation that takes the spatial 10 
extent of the stimulus and performs a weighted sum using a Gaussian function to 11 
generate the activity level (Dumoulin and Wandell, 2008). Thus, neural activity 12 
levels are what they are because occipital cortex performs this operation. 13 

Model 4. Light reflected from the display enters the eye, is refracted by the lens, and is 14 
focused onto the retina. Photoreceptors in the retina transduce light energy into 15 
electrical voltages. These voltages are communicated by different types of cells to 16 
retinal ganglion cells, which send action potentials to the LGN. In turn, neurons in 17 
the LGN send action potentials to primary visual cortex. At each stage in this 18 
process, sensitivity is local (e.g., photoreceptors are sensitive to light from a 19 
restricted region of the visual field, neurons in the LGN receive input from a specific 20 
collection of neighboring retinal ganglion cells, etc.). The net result of these 21 
processing stages can be summarized by any of the earlier three models. 22 

 23 
Although the above models vary widely in sophistication and detail (and we could go into even 24 
further detail with respect to molecular mechanisms), all of the models describe the system 25 
under consideration and make substantive falsifiable claims. Each model posits certain 26 
variables as being causally related to the observed neural activity and implicitly excludes other 27 
variables. The claim is that the visual stimulus matters to the neural activity, but that for 28 
example, the auditory background noise that happened to be present during the experiment, the 29 
motor behavior, and the internal cognitive state of the observer do not. With additional 30 
experimental measurements, we can test whether the models are indeed sufficient or whether 31 
modifications to the models are necessary. If we find that variables such as auditory stimulation 32 
or cognitive state affect the observed activity, these variables must be included to achieve a 33 
complete description of the system. 34 
 35 
The examples provided above, like many studies in cognitive neuroscience, characterize neural 36 
activity in specific brain regions. This approach assumes we have already accurately identified 37 
the relevant brain regions in a given observer, which can be a challenging endeavor (Benson et 38 
al., 2012; Frost and Goebel, 2012; Glasser et al., 2016; Gordon et al., 2016; Sabuncu et al., 39 
2010; D. Wang et al., 2015; L. Wang et al., 2014; Weiner and Grill-Spector, 2012). We stress 40 
the importance of careful localization of brain regions before developing models of their function. 41 
An increasing number of researchers are developing quantitative models of where distinct 42 
regions and networks are located within the brain (Haxby et al., 2011; Huth et al., 2016; Nelson 43 
et al., 2010; Yeo et al., 2011). Interestingly, locations of regions and networks in cortex do not 44 
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appear to be random and are instead very predictable. Recent research indicates this 1 
predictability may stem from several types of neurobiological substrates. For example, cortical 2 
folding (Benson et al., 2012; Weiner et al., 2014), white matter (Saygin et al., 2011; Yeatman et 3 
al., 2014), cytoarchitectonics (Rosenke et al., 2017; Weiner et al., 2016a), and myelination 4 
(Glasser et al., 2016) can all contribute to predicting the locations of functional regions. 5 
 6 
4. Why are models useful? 7 
 8 
Developing precise and quantitative descriptions of how the brain performs information 9 
processing takes effort. In our view, models provide three main benefits: summary, explanation, 10 
and prediction. We describe these benefits below, and refer the reader to a concrete example 11 
taken from previous work (Figure 2). 12 
 13 
Summary 14 
 15 
Neural measurements are complex and noisy, and there is no limit to the number of 16 
experimental variations that one can investigate. Models can provide compact summaries of the 17 
information processing that a neural system is performing. Thus, a major benefit of a model is 18 
that one can make inferences on a focused set of parameters that summarize the data, instead 19 
of attempting to interpret a large number of noisy individual data points. Parameters derived in 20 
this way can then be compared across brain areas (e.g. (Kay et al., 2013b)) or subject 21 
populations (e.g. (Schwarzkopf et al., 2014)). 22 
 23 
Explanation 24 
 25 
Models posit that specific variables relate to neural activity. As such, models provide 26 
explanations of measurements of the brain. For example, suppose we find that a neuron is 27 
highly active when a clip of rock music is played but is only weakly active when a speech clip is 28 
played. Why does this occur? One model could be that the neuron computes overall sound 29 
intensity, and the reason we observe weak activity for the speech clip is that it has low sound 30 
intensity. Alternatively, there are other candidate models that might explain the phenomenon 31 
(e.g., selectivity for guitar tones, selectivity for speech, variations in attentional engagement). 32 
With appropriate experimental measurements, we can adjudicate different models and decide 33 
which model is most accurate (Naselaris and Kay, 2015). 34 
 35 
Prediction 36 
 37 
There are several different senses in which models provide predictive power. One sense comes 38 
from cross-validation (Hastie et al., 2001), a procedure that is commonly used in model-based 39 
studies. In cross-validation, the researcher sets aside some testing data, fits the parameters of a 40 
model on the remaining training data, and then assesses how well the fitted model predicts the 41 
testing data. The testing data could reflect distinct trials of the same experimental conditions 42 
found in the training data, in which case this demonstrates limited predictive power. 43 
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Alternatively, the testing data could reflect completely novel experimental conditions, which 1 
demonstrates stronger predictive power. 2 
 3 
A different sense in which models provide predictive power is if a model developed in one study 4 
is able to predict the results of a new study that does not involve exactly the same subjects, 5 
stimuli, and task design used in the first study. For example, we have shown that a model 6 
developed using simple artificial stimuli and fMRI measurements successfully generalizes to 7 
complex naturalistic stimuli (Kay et al., 2013a) and data obtained from a different measurement 8 
technique (Winawer et al., 2013). As another example, we have shown that a model that 9 
describes structural-functional relationships in one group of subjects can successfully generalize 10 
to a new group of subjects (Rosenke et al., 2017; Weiner et al., 2016a). 11 
 12 
A third and deep sense in which models provide predictive power is if a model is able to predict 13 
the consequences of physical perturbations to the brain. If we had accurate and detailed 14 
descriptions of how neural systems in the brain coordinate to perform information-processing 15 
operations, we should be able—in principle—to predict, for example, the effects of lesions made 16 
in specific brain areas (Gallant et al., 2000), surgical removal of entire brain areas (Weiner et al., 17 
2016b), the effects of enhancement (Salzman et al., 1990) or disruption (Pascual-Leone and 18 
Walsh, 2001) of neural activity, or the effects of psychoactive drugs (Rokem and Silver, 2010). 19 
These are not easy predictions to make, assuming we are careful to avoid the illusion of 20 
predictive power that comes from making “predictions” after looking at the data. A model 21 
conjured to explain effects that have already been observed generates “postdictions” and 22 
should be treated with skepticism (since the model has been de facto fit and tailored to the 23 
data). 24 
 25 

*** Insert Figure 2 here *** 26 
 27 
5. Functional vs. mechanistic models 28 
 29 
It is important to distinguish between functional models and mechanistic models of neural 30 
information processing (Albrecht et al., 2002; Carandini, 2012; Carandini and Heeger, 2011). 31 
Functional (or computational) models characterize the transformation between input and output 32 
performed by a neuron or population of neurons (Wu et al., 2006), reminiscent of the concept of 33 
functions in mathematics or programming. Mechanistic (or biophysical or circuit) models 34 
characterize the details of the method or mechanism by which a neuron or population of 35 
neurons carry out such a transformation (Priebe, 2016). To illustrate, recall Models 1–3 from the 36 
previous example. These models are all stimulus-referred (Heeger et al., 1996; Wandell et al., 37 
2015) in the sense that they specify how the stimulus relates to activity in occipital cortex. Thus, 38 
the models can be viewed as functional models that characterize the transformation between 39 
input (stimulus) and output (neural activity). In contrast, Model 4 concerns not only the stimulus, 40 
but also the series of physical events that intervene between the stimulus and neural activity. 41 
This model can therefore be viewed as a mechanistic model that characterizes how the brain 42 
carries out the transformation described by Models 1–3. There may be multiple possible 43 
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mechanistic models that are all consistent with a given functional model. Functional models can 1 
be rigorously established for a system, even if the underlying mechanisms are not yet known. 2 
 3 
Functional and mechanistic models are complementary to one another and should be judged on 4 
their own merits. The value of functional models is that they emphasize the outcomes and 5 
meaning of neural information processing. The significance of a signal carried by a neuron or 6 
population of neurons ultimately lies in what that signal conveys about sensory or motor 7 
information for the observer. For example, if an organism encounters a predator, what matters is 8 
successful detection of the predator so that motor behavior can be appropriately guided; how 9 
that detection is accomplished is of secondary importance. Focusing on mechanisms without 10 
addressing sensory or motor significance would generate an incomplete picture of neural 11 
information processing. On the other hand, the value of mechanistic models is that they are 12 
necessary for a complete understanding of a system. To fully describe a functioning brain, we 13 
must specify not only what it and its parts compute, but also how they actually compute it. The 14 
presumption—at least under conventional neuroscientific thinking—is that the overall 15 
information-processing tasks performed by the brain are ultimately the result of neurons and 16 
their interactions, which are governed by basic principles of chemistry and physics. However, 17 
therein still lies immense complexity, given the sheer number of neurons, cell types, and 18 
connections in the brain. 19 
 20 
These points are directly related to David Marr's well-known levels of analysis where distinctions 21 
are made among computational, algorithmic, and implementation levels (Marr, 1982). Slightly 22 
generalizing our definition of ‘mechanistic’ to refer to the details of how something is 23 
accomplished, we see the algorithmic level serves as a mechanistic model for the computational 24 
level and the implementational level serves as a mechanistic model for the algorithmic level. For 25 
example, imagine a situation where an organism is attempting to determine the location of a 26 
predator from auditory inputs. We can describe the system at a computational level by 27 
characterizing the problem that the organism is trying to solve: given auditory inputs, detect the 28 
predator and determine the direction of the predator. We can describe the system at an 29 
algorithmic level by identifying the specific set of auditory and decision-making algorithms that 30 
the brain uses to solve the problem. Or we can describe the system at an implementational level 31 
by identifying the specific configurations of neurons and connections that implement those 32 
algorithms. Each level provides details as to how the level above is accomplished. Presumably, 33 
we should strive to build accurate models at all levels of analysis. 34 
 35 
Many studies in cognitive neuroscience develop functional models and ignore anatomical 36 
implementation. For example, a researcher might use fMRI to investigate how patterns of 37 
population activity represent a stimulus, irrespective of details of how this activity is spatially 38 
organized across cortex. Or, a researcher might use electrophysiology to study how individual 39 
neurons respond to experimental conditions, irrespective of details of cell types or the circuit 40 
that a neuron participates in. Whether this is a fruitful or fruitless approach is open for debate. 41 
Although it is not entirely known how anatomical details—from cortical folding patterns down to 42 
the level of neuron density, cell types, and ion channels—constrain and shape functional 43 
processing (Van Essen, 1997), we believe that anatomy may hold valuable clues to function. If 44 
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the brain spends so much neurobiological energy organizing structure and function across 1 
spatial scales, presumably this orderliness is useful for something. For example, perhaps the 2 
specific way that functional properties are clustered in the brain enables faster and more 3 
efficient readout of information for a particular task (Grill-Spector and Weiner, 2014). However, 4 
we cannot rule out that in some cases, there may be anatomical structures without any 5 
particular functional meaning (Horton and Adams, 2005). The path to understanding anatomical 6 
implementation will be difficult, as even the heavily studied functional property of orientation 7 
selectivity in primary visual cortex has not been resolved in terms of circuit-level mechanisms 8 
(Priebe and Ferster, 2008). Nonetheless, a deeper understanding of anatomical implementation 9 
is critical, especially if we want to be able to predict the effects of physical perturbations to the 10 
brain or make predictions that successfully span vast differences in spatial scale of 11 
measurement in neuroscience (Sejnowski et al., 2014). 12 
 13 
6. What makes a good model? 14 
 15 
Thus far, we have addressed what models of neural information processing are, why they are 16 
useful, and the distinction between functional and mechanistic models. Now suppose in our 17 
daily work, we come across a model put forth by a researcher in the field. How should we 18 
evaluate the merit of the model? We propose two criteria, accuracy and understanding. 19 
 20 
Accuracy 21 
 22 
The first criterion is accuracy, which refers to how well a given model performs in matching the 23 
system under investigation (for example, see Figure 2b). To assess accuracy, we collect 24 
experimental data at some spatial and temporal scale, perform proper preparation and binning 25 
of those data, and then quantify whether the predictions of a model match the data. Typically, 26 
models have free parameters whose values are not known a priori and must be set to obtain 27 
quantitative predictions. These parameters are usually set based on experimental data, and in 28 
such cases, it is crucial to control for overfitting. This can be done by evaluating predictive 29 
performance on left-out data (i.e. cross-validation) or by using techniques that penalize 30 
goodness-of-fit based on number of free parameters (e.g. Akaike Information Criterion). It is 31 
sometimes disparagingly remarked that a model is 'just fitting the data'—on the contrary, 32 
quantitatively matching experimental measurements is exactly what a model ought to do. 33 
 34 
Beyond quantifying predictive power for a set of data, we should consider the range and 35 
diversity of the experimental manipulations represented by those data. A model should describe 36 
how the brain carries out information processing in a broad range of situations, not just the 37 
specific situations used in one or a few particular studies (Felsen and Dan, 2005; Kay et al., 38 
2013b). For example, suppose visual sinusoidal gratings are presented to an observer and a 39 
model is proposed in which the activity of a neuron is calculated as a weighted sum of the 40 
luminance values of the stimulus (Carandini et al., 2005). This model posits that neural activity 41 
reflects a specific visual attribute and, by implication, does not reflect other visual, cognitive, or 42 
motor attributes. Evidence for the accuracy of the model would be greatly strengthened if we 43 
performed a diverse range of experimental tests—for example, using naturalistic visual scenes 44 
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to deliver luminance stimulation (David et al., 2004), manipulating the internal cognitive state of 1 
the observer (McAdams and Reid, 2005), or allowing visual stimulation to occur simultaneously 2 
with motor responses—and still found that the same model (with exactly the same parameters) 3 
accurately predicts neural activity. By performing stringent tests of a model, we gain confidence 4 
in its accuracy. 5 
 6 
We comment briefly on the topic of phenomenological models. It is possible to have a model 7 
that accurately matches a set of data, but performs no actual explanatory work. Such models 8 
(which can also be termed ‘purely descriptive models’) may be useful for comparison purposes, 9 
but do not provide neuroscientific insight (Albrecht et al., 2002). For example, suppose we are 10 
investigating how neural responses to stimuli change as a function of the cognitive task that a 11 
subject is performing (Kay and Yeatman, 2017). We could propose a model that allows each 12 
task to induce an additive offset to neural responses, and this model could be fit and evaluated 13 
like any other model. However, the model does not make a substantive claim about the specific 14 
property of the tasks that is responsible for the additive offsets, and therefore has limited 15 
neuroscientific value. (Imagine trying to predict responses for a novel cognitive task—the model 16 
would be incapable of doing so because it does not provide any insight into the nature of 17 
cognitive tasks.) 18 
 19 
Understanding 20 
 21 
The second criterion for the merit of a model is understanding, which refers to how well we, as 22 
scientists, grasp the relationship between the components of a given model and the outcomes 23 
that the model predicts. Or, in simpler terms, do we know how the model works? To illustrate, 24 
suppose we observe neural activity is higher in one experimental condition compared to 25 
another. A model that describes this system should indicate what property of the first condition 26 
leads to increased neural activity. If the model successfully conveys what this property is, we 27 
will have understood why the effect occurs. In practice, models can be mathematically or 28 
algorithmically complex, and it may take effort to determine which specific model component is 29 
responsible for a given effect (for an example of how this can be done, see Figure 2). 30 
 31 
It is helpful to consider examples where model understanding is poor. Suppose we wish to 32 
characterize the relationship between two continuous variables, x and y. One approach is to 33 
characterize y as a weighted sum of the outputs of nonlinear basis functions defined on x (e.g., 34 
the weighted sum of a large number of Gaussian functions). Another approach is to simply 35 
characterize y as a linear function of x. Now suppose the relationship between x and y is, in fact, 36 
linear. Both the complex nonlinear model and the simple linear model are identical in their 37 
behavior and equally accurate in matching the data. However, the complex model has less 38 
value because it provides less understanding: to understand the model, we would have to 39 
expend additional effort analyzing the tuning properties of the basis functions and the weights 40 
associated with the basis functions. 41 
 42 
As another example, suppose we have two code implementations of a functional model of 43 
neural information processing, one set of code being short, concise, and well-documented, the 44 
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other set of code being long, convoluted, and undocumented. Both sets of code behave 1 
identically in their input-output behavior and achieve the same accuracy in matching 2 
experimental data. However, the longer code has less value because it provides less 3 
understanding: to figure out what model the code implements, we have to pore through and 4 
digest computer code. More generally, this example highlights the importance of clarity in 5 
descriptions of models. Clarity should exist at the verbal or conceptual level (scientific prose), 6 
the mathematical level (equations), and for models that are algorithmically complex, the 7 
computational level (code). An accurate model is useless if not clearly described. 8 
 9 
What are some practical methods for improving understanding of a model? One is to simply 10 
observe the model's behavior. Observing how a model behaves across different experimental 11 
manipulations is useful, even if empirical measurements of those manipulations are not 12 
available. For example, a functional model of visual processing could be probed using a variety 13 
of different stimulus manipulations, such as changing the orientation of a bar, changing the 14 
semantic category of a object, etc. Carefully controlled experimental manipulations help isolate 15 
and identify what effects are explained by a given model (Rust and Movshon, 2005). A second 16 
method for improving understanding is to manipulate the model and examine the effect on the 17 
model's behavior (Kay et al., 2013b; Nishimoto and Gallant, 2011). If we remove a certain 18 
model component or change a certain model parameter, does the model fail to account for the 19 
effect of interest? If the model fails, we have learned that the identified component or parameter 20 
is critical (for an example, see Figure 2). If the model still works, we have learned that the 21 
identified component or parameter is not critical, and we could remove it to obtain a simpler and 22 
easier-to-understand model. A third method is to model the model, that is, perform simulations 23 
of the model’s behavior and attempt to develop a simpler model that accounts for the observed 24 
behavior. For instance, in the previously described example involving variables x and y, we 25 
could take the complex nonlinear model, perform simulations, and eventually realize that a 26 
simple linear model can reproduce the model's behavior. 27 
 28 
7. The case of deep neural networks 29 
 30 
Now that we have covered principles for assessing models of neural information processing, we 31 
turn to the specific case of deep neural networks (DNNs). These networks, inspired by 32 
properties of biological visual systems (Fukushima, 1980; Serre et al., 2007), consist of multiple 33 
layers of processing, where each layer is composed of units that perform relatively simple linear 34 
and nonlinear operations on the outputs of previous layers. Connections between units are 35 
typically designed such that a convolution is performed in the linear weighting step (same 36 
weights are applied at different positions), which parallels the visual system. Parameters of the 37 
networks are typically set using supervised learning techniques, optimizing performance on 38 
specific tasks such as predicting the object category associated with the visual input (Yamins et 39 
al., 2014). Researchers have demonstrated high levels of correlation between activity exhibited 40 
by DNN units and measurements of activity in visual cortex in response to naturalistic objects 41 
and scenes (Eickenberg et al., 2016; Güçlü and van Gerven, 2015b; Khaligh-Razavi and 42 
Kriegeskorte, 2014; Yamins et al., 2014). 43 
 44 
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Do DNNs have merit as models of biological visual systems? The answer depends on the 1 
specific claim that is being made. Suppose the claim is simply that activity in visual cortex 2 
reflects a series of processing operations that are performed on visual inputs provided to an 3 
observer. This minimal interpretation, that ‘visual cortex is a multi-layer neural network that 4 
processes visual inputs’, is a simplistic qualitative model that is neither exciting nor 5 
objectionable, but nevertheless counts as a valid model (see Section 2). Presumably, there is a 6 
deeper, more substantive claim that one wants to make regarding DNNs, and the merit of this 7 
claim will depend heavily on details of the architecture and parameters used in a DNN. Do we 8 
wish to adopt the extreme claim that every parameter value in a DNN is critical and every DNN 9 
unit corresponds to a specific neuron or neural population in the brain? If not, what is the 10 
proposed interpretation? 11 
 12 
An important distinction that affects the interpretation of DNNs is whether they are intended as 13 
functional or mechanistic models (see Section 5). Suppose DNNs are intended only as 14 
functional models of how stimuli (inputs) relate to neural responses (outputs). In this case, there 15 
are a number of open questions to address regarding the accuracy of DNNs. Thus far, 16 
researchers have examined large-scale datasets involving a diversity of complex naturalistic 17 
stimuli and demonstrated general correspondence between artificial and biological responses. 18 
However, much work in visual neuroscience has characterized in detail how specific visual 19 
areas represent specific stimulus dimensions, such as contrast (Albrecht et al., 2002), spatial 20 
extent (Kay et al., 2015), curvature (Brincat and Connor, 2004), color (Horwitz and Hass, 2012), 21 
and spatial frequency (Lennie and Movshon, 2005), just to name a few. Do DNNs accurately 22 
account for these effects? Furthermore, we should scrutinize the range and diversity of 23 
experimental manipulations that have been examined (see Section 6). DNNs provide potential 24 
explanations of stimulus-driven activity, but these are ultimately incomplete descriptions given 25 
that visual activity is affected by non-stimulus factors, such as attention (Luck et al., 1997), 26 
imagery (O'Craven and Kanwisher, 2000), and working memory (Harrison and Tong, 2009). 27 
 28 
Suppose instead that DNNs are intended as mechanistic models that not only characterize 29 
stimulus-response transformations, but also the way in which the brain accomplishes those 30 
transformations (see Section 5). If this is the intention, we again are faced with a number of 31 
open questions. What is the proposed mapping between individual units in a layer of a DNN and 32 
the neurons in a given brain area? Are DNNs attempting to account for variations in the physical 33 
sizes of different visual areas (Dougherty et al., 2003)? Do layer-to-layer connections in a DNN 34 
accurately reflect physical connections in biological visual systems, e.g., the spatial extent of V1 35 
neurons that project to a V2 neuron (Sincich et al., 2003)? How can we reconcile DNNs with the 36 
existence of bypass routes in corticocortical connections (Felleman and Van Essen, 1991) 37 
which violate a strictly hierarchical organization? Can DNNs account for different cell types, the 38 
laminar organization of cortex, and the existence of extensive feedback projections? 39 
 40 
In addition to accuracy, we should also evaluate our understanding of DNNs. The computational 41 
capabilities of DNNs depend critically on the specific parameters used in the models (Coates et 42 
al., 2011; Pinto et al., 2009). However, DNNs have many thousands (or even millions) of free 43 
parameters, and so understanding DNNs is not an easy task. If we fail to understand DNNs 44 
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(either because they are too complex or because we do not want to) and treat these models as 1 
‘black boxes’, they perform the function of prediction but fail to perform the functions of 2 
summary and explanation (see Section 4). They do not summarize well because there are too 3 
many potential parameters that contribute to the description of the system; they do not explain 4 
well because it is not clear which specific parts of the models are necessary to explain a given 5 
effect.  6 
 7 
Overall, we are not claiming that DNNs have no utility, but we are highlighting open questions 8 
and limitations that apply to DNNs (as well as other potential models of neural information 9 
processing). There is substantial work to be done towards clarifying what type of explanation 10 
these models are supposed to provide and determining what specific experimental effects they 11 
accurately explain. We need also to improve our understanding of how these models work. 12 
There are concrete steps we can take towards improving understanding (as discussed in 13 
Section 6). We can observe the models (e.g., inspect responses to controlled stimuli 14 
(Eickenberg et al., 2016)), we can manipulate the models (e.g., perturb parameters and 15 
examine the consequences (Cichy et al., 2016)), and we can model the models (e.g., perform 16 
simulated experiments ‘in silico’ and derive simpler models that achieve the same behavior). 17 
The concerns we voice here have guided our own research approach which produces models 18 
that explain specific effects and have components that are well understood (e.g., (Kay et al., 19 
2013b; Kay and Yeatman, 2017)). 20 
 21 
Conclusion 22 
 23 
We wrote this perspective at a broad level to remove us from the messy, often confusing, details 24 
of different measurement methods (e.g., fMRI, EEG/MEG, electrophysiology), different data 25 
analysis approaches (e.g., multivariate pattern analysis, representational similarity analysis, 26 
voxelwise modeling, functional connectivity), and jargon (e.g., encoding, decoding). Although 27 
technical details matter (Naselaris et al., 2011), the goal of this paper is to emphasize the larger 28 
point that we should be using measurements of the brain to build models of how neurons and 29 
neural populations perform complex information-processing operations. These models should 30 
accurately predict what happens under a broad range of experimental manipulations, and we 31 
should understand these models through clear description, observation, and manipulation. 32 
When we encounter a model in the literature, we should carefully consider questions such as: 33 
How well do they account for the data? How extensive are the experimental manipulations? 34 
How clear is the link between the components of the proposed model and the observed effects? 35 
Is the model attempting to provide a functional or mechanistic explanation? 36 
 37 
It is useful to draw inspiration from other domains of science. In chemistry, we know if we mix a 38 
certain amount of one chemical with another, we will observe certain outcomes, such as 39 
emission of heat. This is because we have working models of the relevant variables (e.g., 40 
molecular composition of the chemicals) and how these variables interact. In astronomy, we 41 
know if we observe two celestial bodies headed towards each other, we will observe certain 42 
outcomes, such as collision or trajectory deviation. This is because we have working models of 43 
the relevant variables (e.g., mass, velocity, presence of other nearby bodies) and how these 44 
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variables interact. In cognitive neuroscience, suppose we developed models that could predict 1 
the behavioral and neural outcomes of an arbitrary experiment involving stimuli and task 2 
instructions. Such models would predict how fast and accurate an observer will be at the task, 3 
what levels of neural activity will be found in different brain areas, and how these neural activity 4 
levels relate to the sensory, cognitive, and motor processes involved. Once we achieve such 5 
models, we might be able to claim to know how the brain works. 6 
 7 
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 1 
 2 
Figure 1. Models describe systems at various levels of sophistication and detail. A typical 3 
cognitive neuroscience experiment consists of a stimulus, task, observer, behavior, 4 
measurement device, and recorded activity (left). A scientist attempts to develop a model of the 5 
system, that is, a description of the events that are occurring in the system (right). Of particular 6 
interest is to characterize why specific levels of neural activity are observed. A variety of 7 
different models can be proposed, ranging in sophistication and detail. 8 
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 1 
 2 
Figure 2. A concrete example of how models provide summary, explanation, and 3 
prediction. Figure adapted from (Kay et al., 2013a). a, Two potential models of how spatial 4 
extent of visual stimuli relates to neural responses. The nonlinear model starts with a contrast 5 
image representing stimulus location, computes a weighted sum of this contrast image using a 6 
2D Gaussian, and applies a compressive nonlinearity. The linear model is identical except that 7 
the compressive nonlinearity is removed, leaving a linear gain. b, Data and model predictions 8 
for a voxel in visual area TO-1. Black bars indicate measured BOLD responses to different 9 
stimulus locations (depicted by small icons). Leave-one-stimulus-out cross-validation was used 10 
to fit the models, and thick lines indicate model predictions. An effect of interest is whether the 11 
response to a full stimulus (open dots) is equal to the sum of the responses to two partial stimuli 12 
(filled dots). The data support sub-additive summation, which is captured by the nonlinear 13 
model. c, Three functions performed in this modeling example. (1) The nonlinear model 14 
summarizes the large set of noisy measurements using just five parameters. (2) The removal of 15 
the compressive nonlinearity leads to linear summation, which does not match the data; thus, 16 
the compressive nonlinearity is necessary for, and explains, sub-additive summation. (3) The 17 
nonlinear model predicts responses to novel stimuli. For example, the nonlinear model predicts 18 
specific levels of tolerance in responses to objects varying in position and size, and 19 
experimental measurements have confirmed this prediction (Kay et al., 2013a). 20 
  21 
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