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A B S T R A C T

State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional
MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to
achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of
acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling.
We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI
protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical
spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice
acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used
vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers,
with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise
removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-
noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and
nuisance regression. Both sequence types reliably identified known functional networks with stronger functional
connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits
from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The
resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T,
with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals
from BOLD signals in the frequency domain.
1. Introduction

Recent advances in undersampled multiband magnetic resonance
imaging (MRI) (Larkman et al., 2001) and increasing availability of
state-of-the-art simultaneous-multi-slice echo-planar imaging (SMS-EPI)
(Setsompop et al., 2012) has made application of three- to eight-fold
slice-accelerated whole-brain diffusion MRI and functional MRI (fMRI)
feasible on a routine basis (Breteler et al., 2014; Miller et al., 2016; Smith
et al., 2013; Sotiropoulos et al., 2013; U�gurbil et al., 2013). As opposed to
spin-echo-based diffusion MRI, which benefits from the “snap shot”
character of SMS-EPI, gradient-echo-based fMRI does not suffer from
27, Bonn, Germany.
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severe sub-millimeter motion artifacts, if image acquisition is distributed
across multiple shots. Three-dimensional echo planar imaging (3D-EPI)
(Poser et al., 2010) with controlled aliasing in volumetric imaging
(2D-CAIPIRINHA) (Breuer et al., 2006) has therefore been suggested (e.g.
(Narsude et al., 2013; Narsude et al., 2014b; Poser et al., 2013, 2014;
Stirnberg et al., 2016b)) as a potential alternative to SMS-EPI with
blipped controlled aliasing in parallel imaging (blipped-CAIPI) (Set-
sompop et al., 2012). Particularly at ultra-high fields 3D-EPI has the
potential to achieve high acceleration factors at high spatial resolutions
without exceeding specific-absorption-rate (SAR) or radiofrequency (RF)
peak power limits (Poser et al., 2010; Stirnberg et al., 2013). This is due
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Fig. 1. Sequence diagrams of a generic SMS-EPI (A, multiband excitation), a corre-
sponding 3D-EPI (B, slab-selective excitation) and the efficiency-optimized 3D-EPI (C,
slab-selective water excitation). For each volume acquisition, the inner loop (i.e. optional
CHESS fat-saturation, excitation, phase correction scans, EPI readout and spoiler gradi-
ents) runs several times, which defines the minimum volume TR. The number of excita-
tions per volume is defined by the final number of reconstructed slices (#slices) or PE2
steps (#PE2) divided by the acceleration factor, AF (slice acceleration factor or PE2
undersampling factor, respectively). The Gaussian CHESS RF pulses in (A) and (B) and the
adiabatic SPAIR RF pulse in (C) (gray) are fat selective. The EPI color gradient and the
dashed arrows in (C) indicate that the ETL, and hence the TR across excitations,
is variable.
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to much simpler “singleband” spatially- or frequency-selective excitation
pulses (Stirnberg et al., 2016a) or composite pulses that even allow for
relatively simple parallel transmission field homogenization (Tse
et al., 2016).

3D-EPI and SMS-EPI share several properties. For instance, both
suffer from typical, susceptibility-induced geometric distortions only
along the primary phase encode (PE) direction, as opposed to single-shot
echo-volumar imaging (EVI) (Mansfield et al., 1989). As a matter of fact,
blipped-CAIPI SMS-EPI and 2D-CAIPIRINHA 3D-EPI are equivalent under
a generalized 3D Fourier description (Zahneisen et al., 2014) and can be
reconstructed with identical g-factor penalties (Zahneisen et al., 2015). A
thorough proof-of-concept characterization of SMS-EPI and 3D-EPI
across a range of matching sequence parameters, in particular with re-
gard to physiological noise, is of great scientific value. However, a
stringent comparison is not as trivial in practice. Even if matching pulse
sequence and on-line image reconstruction implementations were
available, certain time-critical sequence aspects, such as the excitation
pulse duration, cannot reasonably be equalized without unfairly penal-
izing one sequence type. Furthermore, 3D-EPI exclusively offers com-
plementary acceleration techniques not based on parallel imaging
principles (Poser et al., 2010; Stirnberg et al., 2014, 2016a), which are
82
impossible to account for in such a hypothetical comparison.
This work, instead, aims at an application-oriented comparison of

SMS-EPI and 3D-EPI at 3 T. The use of readily available on-line image
reconstruction is of particular importance for actual feasibility and high-
throughput utilization, e.g. for clinical or population-based studies
(Breteler et al., 2014; Miller et al., 2016). The SMS- and 3D-EPI protocols
investigated here are individually optimized for fast whole-brain fMRI
with equal spatial and temporal resolution and otherwise – to the greatest
possible extend – matching parameters. As a precondition, the imaging
rate shall be fast enough to preclude aliasing of high cardiac frequencies
(60–100 beats per minute) into typically considered BOLD fre-
quencies (0.01–0.08 Hz).

2. Methods

All experiments were performed on a 3 T MAGNETOM Prisma scan-
ner (Siemens Healthcare, Erlangen, Germany, software baseline VE11C)
equipped with a nominal 80 mT/m and 200 T/m/s gradient system and a
64 channel head/neck receive array, of which the 52 head elements
were utilized.
2.1. Custom 3D-EPI sequence

A time-optimized 3D-EPI sequence was developed in-house, which
allowed for the introduction and combination of several dedicated
techniques for enhancement of the sampling efficiency, as
explained below.

2.1.1. 2D-CAIPIRINHA
Following several recent publications (Narsude et al., 2016, 2013;

Poser et al., 2013; Zahneisen et al., 2015), we implemented an echo-
planar 2D-CAIPIRINHA sampling scheme that minimizes the number of
excitations per volume repetition time (TR). Following excitation, the
k-space trajectory traverses as many secondary PE locations (PE2) as
possible under the constraint of a constant bandwidth along the primary
PE direction (PE1) and a virtually infinite bandwidth along PE2 (steady
progression along PE1, as opposed to single-shot EVI or 3D-EPI with
reduced number of segments without 2D-CAIPIRINHA (Narsude et al.,
2014a)). Analogous to blipped-CAIPI SMS-EPI (Setsompop et al., 2012),
this requires blipped gradients along both PE1 and PE2, as illustrated by
the sequence diagrams in Fig. 1 (A,B). The inset in Fig. 2(F) demonstrates
such a k-space sampling scheme on the example of a R ¼ 1� 6ð2Þ CAI-
PIRINHA pattern, where the superscript denotes the CAIPIRINHA shift in
units of the PE2 increment (Breuer et al., 2006). For image reconstruction
we utilize a generic, vendor-provided 2D-GRAPPA (Griswold et al., 2002)
implementation compatible with 2D-CAIPIRINHA sampling, which we
refer to as CAIPIRINHA reconstruction.

2.1.2. Variable echo train lengths
The sampling scheme is extended by two elliptical sampling options

that restrict the actually sampled (PE1,PE2) k-space points to either an
“elliptical” or “semi-elliptical” subset, whereby the radius is determined
by the nominal desired image resolution (Bernstein et al., 2001). Such 2D
k-space masking implies that the complete image is defined along two PE
directions; a corresponding technique is thus, to the best of our knowl-
edge, not available to SMS-EPI. Applied to 3D-EPI, skipping of k-space
points outside the elliptical mask results in variable echo train lengths
(vETL) across excitations, which can be used to increase imaging speed
(Stirnberg et al., 2014). The fraction of k-space outside a full elliptical
mask corresponds to 1� πð0:5Þ2 � 21% of the total rectilinear k-space
volume. Accordingly, “elliptical” and “semi-elliptical” sampling can
theoretically save up to 20% and 10% readout time, respectively. Skip-
ping only points at the end of a given EPI echo train results in a variable
TR across excitations (cf. Fig. 2 B), whereas skipping also points at the
beginning of the echo train additionally results in variable TE (cf. Fig. 2



Fig. 2. Different vETL and masking approaches demonstrated on simulated 3D-EPI images. Bottom left: numerical phantom; top rows: complex modulation transfer function for off-
resonant GM (hatched ¼ skipped); bottom rows: corresponding images and relative difference images with respect to full sampling (A). Color scaling is constant across columns
(except relative difference in C). Semi-elliptical vETL (B) and conventional k-space sampling (A) lead to almost identical images including off-resonance pixel shifts, aside from a global
signal reduction of approximately 3% due to a reduced average TR across excitations. Variable TE (C) leads to severe off-resonance artifacts in addition to a circular PSF. (D,E) demonstrate
the pure masking effects, without vETL, on the PSF. (F) corresponds to the fast 3D-EPI protocol adopted in this work, including SPAIR fat suppression. The red line in (F) indicates the
k-space trajectory of the first echo train per volume. The inset in (F) illustrates the 1� 6ð2Þ CAIPIRINHA sampling pattern (black dots). The relative difference images of (D) and (F) indicate
minimal deviation from the fully sampled reference.
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C). Variable TR (with constant TE) across excitations has negligible effect
on the point spread function (PSF) since, first, the resulting periodic
magnitude variations along PE2 are smooth and small (0.3% coefficient
of variation in Fig. 2 B), and second, only strongly decayed T2*-weighted
signals outside the elliptical mask are skipped. The corresponding spatial
frequencies with minimal T2*-weighting on the opposite part of k-space
are not skipped (cf. Fig. 2 D). However, the reduction of the average TR
across excitations also causes a small signal decrease, as demonstrated by
the relative difference image in Fig. 2(B). Variable TE, on the other hand,
can lead to: first, a reduced BOLD contrast due to an emphasized
contribution of short TE signals (e.g. at kPE1 ¼ 0), second, to severe
off-resonance artifacts due to phase discontinuities (cf. Fig. 2 C), and
third, to a circular point spread function due to the elliptical mask (cf.
Fig. 2 E). The numerical phantom images in Fig. 2 have been simulated
using the extended phase graph approach (Hennig, 1991a, 1991b) for
realistic k-space signal envelopes along PE2, combined with a
mono-exponential T2* decay/linear phase accrual along PE1. Approxi-
mate white matter (WM) and gray matter (GM) relaxation times at 3 T
(T1/T2/T2* ¼ 800/80/35 and 1500/80/35 ms, respectively; 0 and
150 Hz off-resonant) and imaging parameters according to the fast
3D-EPI protocol used below have been assumed. Based on the simula-
tions it was decided to only pursue the semi-elliptical vETL approach.

2.1.3. Rapid water excitation and fat-selective inversion recovery
Robust fat suppression in EPI is typically achieved by means of

chemical shift selective fat excitation (CHESS (Haase et al., 1985)) fol-
lowed by gradient crushers prior to each excitation per volume. The
default duration of a single fat saturation module in our vendor-supplied
EPI sequences is about 12 ms. In a typical BOLD imaging scenario
(TE ¼ 30–35 ms, readout duration 30 ms) this means that about 20% of
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the total sequence are not spent on signal acquisition. Hence, more
efficient schemes for avoiding fat contributions are highly desirable.
Particularly rapid narrowband water excitation (WE) can be performed
using the simplest 11-type of binomial excitation consisting of only two
sub-pulses, which we refer to as binomial-11 WE (Hore, 1983). Note that
the included free-precession period (~1.2 ms at 3 T) requires relatively
short sub-pulses, which are in practice only feasible with “singleband”
excitation. In addition to increased imaging efficiency (TR reduction on
the order of 20%), binomial-11 WE has been shown to avoid the signif-
icant signal-to-noise ratio (SNR) reduction in 3D-EPI that otherwise re-
sults from the frequent application of high-energy CHESS pulses
(Stirnberg et al., 2016a). More elaborate, longer composite pulses, such
as binomial-121 WE, could be used, if greater robustness against main
field inhomogeneities is required. Such pulses are, however, more
restrictive with regard to the minimum possible TE.

The targeted short TR facilitates an alternative means, complemen-
tary to binomial-11 WE, by utilizing the short T1 of fat, which is robust
against an insufficient or drifting shim. A spectral adiabatic inversion
recovery (SPAIR) module was implemented, as a fat-selective, adiabatic
variant of short inversion time inversion recovery (STIR) (Bydder et al.,
1985). One SPAIR module of approximately 29 ms duration runs only
prior to the first WE per volume TR (cf. Fig. 1 C), such that the longitu-
dinal fat magnetization is approximately nulled at the excitation time
corresponding to the kPE2 ¼ 0 trajectory. Hence, residually excited fat
magnetization is as small as possible. At 3 T the required duration from
inversion to the WE preceding the kPE2 ¼ 0 trajectory is in the order of
200–300 ms. As a secondary effect, the longitudinal relaxation period
between the last and the first excitation of successive volume acquisitions
is prolonged. According to numerical phantom simulations (cf. Fig. 2 B
and F), SPAIR may thus lead to a beneficial signal increase without



Table 1
Summary of SMS- and 3D-EPI sequence parameters.

Parameter SMS-EPI 3D-EPI

Matrix size 80� 80� 56 80� 80� 60
Voxel size
[mm3]

2:4� 2:4� 2:4 2:4� 2:4� 2:4

Nominal FOV
[mm3]

192� 192� 134:4 192� 192� 144:0

Actual FOV
[mm3]

192� 192� 134:4 192� 192� 134:4

Parallel
imaging

slice acceleration factor: 8 k-space undersampling: 1� 6

Controlled
aliasing

blipped-CAIPI shift: FOV/
3

2D-CAIPIRINHA shift: 2Δk

Calibration
data

56 slices� 36 PE 36 PE1 � 36 PE2

Reconstruction
algorithm

Slice-GRAPPA 2D-GRAPPA

Readout
bandwidth
[Hz/pixel]

2604 2604

Echo spacing
[ms]

0:55 0:55

Echo train
lengths

f80;80;80;80;80; 80;80g f58;70;76;79;80; 80;80;77;71;64g

Fat suppression 7� CHESS fat sat: 1� SPAIR; 10� binomial-11 WE
TE [ms] 30 30
TR [ms] 530 530
TIn [ms] � 220þ n⋅TR
Nominal flip
angle [�]

45 16

Measurements
(retained)

1152 (1133) 1152 (1133)

TA (retained)
[min:sec]

10:19 (10:00) 10:25 (10:00)

Fig. 3. Schematic representation of the nipype preprocessing pipeline. Subject-specific
input and output is indicated by gray background color. Nodes with black background
color are executed with several combinations in parallel (temporal filter: high pass/band
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adversely affecting the PSF.

pass; GLM regression: none/motion/motion and nuisance). The asterisks indicate that the
inverse of affine and warp field are also utilized to initially extract nuisance regressors
from well defined masks in individual subject space. Note that no explicit smoothing is
involved and that normalization is performed as a very final step.
2.2. Product SMS-EPI sequence

We use the vendor-supplied state-of-the-art SMS-EPI sequence, which
is based on the recently developed blipped-CAIPI technique and employs
slice-GRAPPA image reconstruction (Setsompop et al., 2012) with slice
leakage suppression (Cauley et al., 2014). The PE field-of-view (FOV)
shift and the excitation pulse are automatically set depending on imaging
parameters (Xu et al., 2013).
2.3. Data acquisition

Ten healthy young subjects (age 24±3 years, 5 female) attended two
scanning sessions after providing informed consent in accordance with
local institutional review board regulations. In order to asses test/retest
reliability each session included both SMS-EPI and 3D-EPI resting-state
fMRI scans. Between sessions the subjects left the scanner for approxi-
mately one hour. The acquisition order of SMS- and 3D-EPI scans was
pseudo-randomized across subjects. To preclude variable main field
shims affecting image quality, the shim currents were automatically
adjusted only prior to the first EPI scan per session and kept unchanged
thereafter. Respiration and heart beat were recorded synchronously with
the EPI scans using the vendor-provided respiration belt and plethys-
mograph. During the first session a 0.8 mm isotropic sagittal T1-weighted
scan was acquired for anatomical reference (MP-RAGE (Mugler and
Brookeman, 1990) using elliptical sampling and 2D-CAIPIRINHA accel-
eration (Brenner et al., 2014), R ¼ 1� 3ð1Þ,
TI/TE/TR ¼ 1100 ms/5 ms/2560 ms, 7∘ flip angle, TA ¼ 3:43 min). The
default receive inhomogeneity correction, which utilizes an initial
body-coil reference pre-scan, was enabled for all scans. For the sake of
brevity, and if applicable, the two EPI protocols are referred to as “3D”
and “SMS” in the remainder of this work.

A (192 mm)2 axial FOV with conventional anterior–posterior PE
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direction and (2.4 mm)2 in-plane resolution was used for both 3D and
SMS. The slice orientation was tilted by additional 6∘ to the coronal plane
with respect to the automatic AC-PC-like FOV alignment featured by the
scanner software. Detailed sequence parameters are listed in Table 1. The
3D protocol applied slab-selective binomial-11 WE using apodized sinc
sub-pulses of 0.8 ms duration with a bandwidth-time-product of 35,
yielding an approximate slab thickness of 134.4 mm at 2.4 mm slice
resolution. Folding of the side bands was prevented by extending the
nominal slice-FOV to 144 mm (60 slices, i.e. two slices discarded on
either side of the slab). The SMS-EPI protocol acquired a 134.4 mm stack
of 56 slices (2.4 mm nominal slice thickness, no gaps). In both cases the
slice number had to be an integer multiple of the slice acceleration factor.

The 3D-EPI protocol employed semi-elliptical vETL and binomial-11
WE combined with SPAIR fat suppression and thus required only R ¼ 1�
6ð2Þ CAIPIRINHA sampling (cf. Fig. 2 F) to achieve a volume TR of
TRmin ¼ 530 ms at TE ¼ 30 ms. Slice partial Fourier sampling was spe-
cifically not employed to avoid potentially increased signal drop outs in
regions of large magnetic susceptibility gradients. Approximating the
Ernst angle in GM at 3 T, the effective binomial-11 WE flip angle was set
to 16∘ (8∘ for each sub-pulse). With otherwise matching sequence pa-
rameters, but using CHESS fat saturation and automatically prepared
multiband excitation (five-lobe apodized sinc envelope of 6.8 ms dura-
tion), SMS-EPI required a slice acceleration factor of eight (FOV/3 PE
shift) to achieve the same TR (the actual TRmin with a slice acceleration
factor of seven and eight was 560 ms and 500 ms, respectively). A cor-
responding Ernst angle of 45∘ was adopted to maximize GM signal.

The autocalibration scan (ACS) for the vendor-supplied default CAI-
PIRINHA reconstruction was acquired prior to the 3D-EPI imaging scans
as a fully sampled central 36� 36 k-space subset. To minimize the



Fig. 4. Example whole-brain PSD with SMS-EPI (top) and 3D-EPI (bottom) using high pass temporal filtering only (green), additional motion regression (red), and additional motion &
nuisance regression (black). The gray arrows indicate the aliasing of the fundamental cardiac frequencies for the second example subject. The PSDs of the raw plethysmograph (dark gray)
and respiration belt measurements (light gray) are not aliased due to a high sampling rate of 400 Hz.
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influence of physiologically induced data inconsistencies and phase er-
rors, a line-by-line fast low angle shot (FLASH) approach, using isolated
readout gradient and excitation pulses identical to the ones used for the
subsequent EPI acquisition, was adopted with a flip angle of 3∘ (Ivanov
et al., 2015; Talagala et al., 2016). Following ACS, a short longitudinal
recovery period of 3 s and a single, global adiabatic inversion pulse are
introduced to generate a rich inversion recovery (IR) T1 contrast while
the subsequent “dummy” scans are acquired (cf. Fig. 1 C). For SMS-EPI 36
central PE lines of the complete set of 56 slices were acquired as ACS data
for the vendor-supplied slice-GRAPPA reconstruction. Since only slice
acceleration, and no undersampling along the PE direction was per-
formed, the recently proposed fast low-angle excitation echo-planar
technique (FLEET) for SMS-EPI (Bhat et al., 2014; Blazejewska et al.,
2017) corresponded to a single-shot EPI acquisition. All preparation
scans, 19 stored “dummy” volumes (10 s) and 1133 “steady state” vol-
umes (10 min) resulted in total acquisition times (TA) of 10:25 (3D) and
10:19 (SMS) minutes. An additional, short SMS-EPI scan, using a slice
acceleration factor of six, was acquired only for the purpose of computing
corresponding tSNR maps (280 vol, TA ¼ 3:22 min). To keep changes
minimal, all protocol parameters were identical to the resting state SMS-
EPI protocol, except for the number of slices (60) and the volume TR
(690 ms ¼ TRmin). Accordingly, steady-state signal increases of approx-
imately 12.7%/8.1% can be expected in GM/WM compared to the resting
state SMS-EPI protocol.
2.4. Data preprocessing

The EPI time series were preprocessed within the nipype python
framework (Gorgolewski et al., 2011) (version 0.11.0) as outlined in a
simplified form in Fig. 3. Retrospective motion correction (realignment)
to the first of the 1133 “steady state” volumes, linear co-registration to
the T1-weighted image and non-linear registration to a 2 mm
T1-weighted Montreal Neurological Institute (MNI) standard template
were performed using FSL's MCFLIRT, FLIRT (BET) and FNIRT interfaces
(version 5.0), respectively (Jenkinson et al., 2012). Linear co-registration
was aided by a “high-contrast” EPI reference image obtained from the
“dummy” volumes as either the very first acquired SMS image, or a
high-T1-contrast 3D image. Adapting the approach from (O'Brien et al.,
2014), the latter is computed from the first three IR “dummy” images,
I0;1;2, and the mean steady state image, μ, according to Eq. (1), where the
constant η ¼ 4095 � I0;1;2 is used to suppress noise in air regions.

HC ¼ max
�
0;
I1 þ I2 � I0 � 2η

2ðμþ ηÞ þ 1
�

2 ½0; 1� (1)

In order to generate three time-courses of mean WM, mean
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cerebrospinal fluid and mean global brain signal for later nuisance
regression, the inverse of the normalization transform (affine and warp
field) was used to define corresponding masks in subject space based on
the 2 mm Harvard-Oxford subcortical MNI atlas provided with FSL
(indicated by asterisks in Fig. 3). The WM mask was eroded in three it-
erations to eliminate GM voxels prior to subject space transformation (cf.
Fig. 5 top, right). 14 additional nuisance regressors were derived from
the external measurement units using in-house python implementations
of the RETROICOR method with up to second-order harmonics (Glover
et al., 2000) and the RVHRCOR (Chang et al., 2009) method using car-
diac and respiratory response functions as defined by Eq. (5) in Chang
et al. (2009) and Eq. (3) in Birn et al. (2008), respectively. 24 motion
regressors were derived from the realignment parameters (3 translation,
3 rotation, 6 derivatives, 12 squared (Power et al., 2014)).

Temporal high pass (HP) or band pass (BP) filtering of the EPI time
series was performed using a second-order digital butterworth filter (cut-
off frequencies HP: 0.01 Hz, BP: 0.01 Hz and 0.08 Hz) applied using the
forward-backward scipy.signal.filtfilt function (Oliphant, 2007). Motion
and nuisance regression were performed simultaneously following tem-
poral filtering using the fMRI general linear model (GLM) implementa-
tion within the nipy library (Millman and Brett, 2007). As recommended
in Hallquist et al. (2013), the identical temporal filter as used for the EPI
time series was applied to the GLM regressor array before being passed to
the regression node. To compare the effects of temporal filters and
nuisance regressors on SMS and 3D data, the respective nodes were
performed with all combinations given by [HP; BP] � [no GLM re-
gressors; 24 motion regressors; 24 motion þ 17 nuisance regressors].
Following GLM regression the “clean” time series was used to compute
voxel-wise tSNR and the mean brain power spectrum density (PSD). The
time series and the tSNR map were both finally normalized using FNIRT.
Note that no explicit smoothing was applied.

2.5. Temporal signal-to-noise ratio analysis

For visualization purposes, we averaged the normalized tSNRmaps of
the first session across subjects for each combination of temporal filter
and GLM regression. For quantitative tSNR analysis, the median values of
several regions-of-interest (ROIs) were extracted from the corresponding
native tSNRmaps of each subject and compared by sequence type using a
two-sided paired T-test (scipy.stats.ttest_rel). Just as the image-based
nuisance regressor masks, these ROIs were first defined based on the
2 mm Harvard-Oxford subcortical MNI atlas (cortical and subcortical
GM) and the 2 mm Cerebellum atlas (cerebellar GM) provided with FSL,
then eroded to minimize potential misclassification (cerebellar/subcor-
tical/cortical GM: 1/1/2 iterations, cf. Fig. 5 top, right) and finally
transformed to individual subject space.



Fig. 5. Comparison of group mean maps with SMS-EPI (left) and 3D-EPI (center). Top panel: “high-contrast” reference image and time series mean. Middle and bottom panel: group mean
tSNR maps for temporal high pass and temporal band pass filtered data and the ratio of tSNR with 3D-EPI and SMS-EPI (right). Within each panel the improvement by motion regression
(middle row) or motion and nuisance regression (bottom row) in addition to temporal filtering is displayed as a spatial map of relative tSNR increase. The superimposed GM contours,
serving as visual guides, correspond to the original, non-eroded GM masks. The masks displayed in the top panel (right) correspond to the eroded WM and CSF masks used to define
nuisance regressors, and to the eroded cortical, subcortical and cerebellar GM masks used for the ROI analysis.
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2.6. Functional connectivity analysis

Functional connectivity estimates where derived from the normalized
HP time series, after motion and nuisance regression, using a template
based rotation (TBR) method (Schultz et al., 2014). The TBR method
works similar to the dual-regression approach in independent component
analysis (ICA) (Beckmann and Smith, 2005), although it differs in several
details. TBR estimates weights of predefined templates (i.e. prediction of
templates as a linear combination of functional time courses) instead of
estimating the weights of independent components (i.e. prediction of
functional time courses as a linear combination of predefined templates).
We used the “default” templates derived from a data set of 675 subjects as
previously described (Schultz et al., 2014). The TBR method effectively
regresses all voxels at each time point for an individual subject onto the
matrix of all voxels for each template in the reference dataset. The
resulting beta-weights are estimated for each template and reflect the
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unique variance attributable to a time point in the subject's data (factor
loading). These voxel-wise factor loadings are equivalent to voxel-wise
component loadings in an ICA. Similar to ICA, TBR does not suffer
from autocorrelations by a seed region. The TBR templates also consist of
multiple regions distributed across the brain that help avoid this form of
over-fitting to the time-course of a single region. The comparison be-
tween TBR, ICA and seed-based approaches has been previously pub-
lished (Schultz et al., 2014). One advantage of the TBR method is that
individual connectivity estimates can be obtained for predefined net-
works in relation to an independent reference dataset. Thus, using
out-of-sample templates makes it easy to compare results from different
sequences. Using TBR, we estimated the factor loadings in each voxel for
each network (F ¼ 20), subject (n ¼ 10), session (test/retest) and
sequence type (SMS/3D).

We conducted ROI and whole-brain voxel-wise group analyses on the
TBR connectivity maps. First, we defined the ROIs based on previous



Fig. 6. Group mean tSNR maps of six-fold (A) and eight-fold (B) accelerated SMS-EPI data
following temporal high pass filtering. The corresponding tSNR ratio map is displayed in
(C). An additional tSNR ratio map of six-fold accelerated SMS-EPI and 3D-EPI is shown
in (D).
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work (Van Dijk et al., 2010) using the mean of a 5 mm sphere from
a-priori coordinates in MNI standard space: the motor network connec-
tivity estimates (TBR: Factor-03) were extracted from the left
[MNIðx; y; zÞ ¼ �36;�25;57] and right [MNIðx; y; zÞ ¼ �36;�25; 57]
motor cortex, the default-network connectivity estimates (TBR:
Factor-02) from the posterior cingulate cortex
[MNIðx; y; zÞ ¼ 0;�53;25] and medial prefrontal cortex
[MNIðx; y; zÞ ¼ 0; 52;�6] and visual network connectivity estimates
(TBR: Factor-04) from the left [MNIðx; y; zÞ ¼ �30;�88;0] and right
[MNIðx; y; zÞ ¼ 30;�88; 0] visual cortex. The estimates were then aver-
aged across both ROIs to obtain a single connectivity estimate per
network. Next, we conducted repeated measure ANOVA including a
factor for sequence (SMS/3D), session (test/retest) and the interaction
term. For whole-brain connectivity analyses we used SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/) in combination with GLM_Flex (http://
mrtools.mgh.harvard.edu). Statistical group maps were projected to the
cortical surface using FreeSurfer (v5.1) via a standard MNI to the Free-
Surfer average template transformation. Finally, we calculated the
voxel-wise intraclass correlation coefficient (ICC(2,1)) to visualize tes-
t/retest reliability for connectivity estimates in each voxel for SMS and
3D separately (Shrout and Fleiss, 1979, Bennett and Miller (2010)). The
group ICC maps where smoothed with a 8 mm FWHM kernel for visu-
alization purposes and projected to the cortical surface.

3. Results

Fig. 4 displays the mean brain PSD of two example subjects obtained
from SMS and 3D data of the same session for increasing degrees of data
“cleaning”. To identify the origins of the physiological noise peaks, the
PSDs of the external respiratory and cardiac measurements sampled at
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400 Hz are added in light and dark gray color. While both subjects had
similar respiratory frequencies, subject two had a relatively high heart
rate between 70 and 80 beats per minute (~1.17–1.33 Hz), which is not
yet considered tachycardia. Owing to the high Nyquist frequency
(TR ¼ 0.53 s corresponds to ~0.943 Hz), the first alias signals
(~0.55–0.72 Hz) do not overlap with the BOLD frequencies.

3.1. Temporal signal-to-noise ratio

The top panel of Fig. 5 displays group mean maps of the anatomical
reference image involved in the preprocessing co-registration step (first
row) and of the time series mean image (second row). The remaining
panels show absolute groupmean tSNRmaps for SMS- and 3D-EPI in case
of HP (middle) and BP filtering (bottom). To identify particular regions of
improvement we have displayed maps of relative tSNR increase by mo-
tion regression and bymotion and nuisance regression with respect to the
corresponding tSNR maps with temporal filtering only. Overall, the
highest increases are observed in cortical GM for both SMS and 3D. For
each combination of temporal filter and regression, the explicit tSNR
ratio map (3D/SMS) is shown on the right. A small number of voxels in
frontotemporal and lower occipetal brain areas show ratios barely below
1.0 without motion and/or nuisance regression. A clear majority of
voxels, however, shows ratios well above 1.0, in particular in CSF (about
1.5) and central WM areas (about 2.0). A corresponding tSNR ratio map
of six-fold vs. eight-fold accelerated SMS-EPI, as displayed in Fig. 6 C,
shows a similar tSNR benefit in the center of the brain. However, the
maximum ratio is in the order of 1.5 irrespective of the tissue type, and
the geometric pattern is more sharply defined across the inferi-
or–superior direction. Such a pattern is absent in the corresponding tSNR
ratio map of SMS-EPI vs. 3D-EPI, both six-fold accelerated (cf. Fig. 6 D),
which exhibits increased values in CSF (about 1.5), decreased values in
WM throughout the brain (about 0.8) and a ratio about 1.0 in GM.

Box plots for cerebellar, subcortical and cortical GM using all inves-
tigated temporal filtering and GLM regression combinations are shown in
Fig. 7. Groupmean values, additionally plotted as colored dots, match the
group median values well and indicate, across all ROIs, a clear tSNR
benefit of 3D (blue) over SMS (red). The symbol “#”marks the only tSNR
difference between 3D and SMS found to be statistically nonsignificant.
All other differences were found highly significant (p< 0:001). The
numbers in the center and right panels (B,C,E,F) give an estimate of the
relative group mean tSNR increase by GLM regression in addition to
temporal filtering. Table 2 states all group mean tSNR values and their
ratios (3D:SMS) including relative standard errors (in parentheses) as
well as the explicit T and p values from the paired T-tests. The letters “M”

and “N” stand for motion and nuisance regression. According to Fig. 7
and Table 2 the largest improvements by motion and nuisance regression
are observed in cortical GM for both sequences (SMS/3D) and temporal
filters (HP/BP). Notably, in case of HP filtering, 3D benefits about twice
as much from motion and nuisance regression (~20% increase to 64±2)
as SMS (~10% increase to 51±2). In case of BP filtering, cortical GM
tSNR is increased by about 90% to 241±10 (3D) compared to approxi-
mately 70% increase to 200±10 (SMS). A similar trend is observed in
cerebellar and subcortical GM for both temporal filters.

3.2. Functional connectivity

Fig. 8 shows the results of the ROI functional connectivity analysis in
the motor, default and visual network. In the motor network, we found
greater connectivity for 3D ½Fð1;27Þ ¼ 18:0; p< 0:001�, while we found
no effects of session (test/retest)½Fð1;27Þ ¼ 0:67; p ¼ 0:42� or interac-
tion ½Fð1;27Þ ¼ 0:66; p ¼ 0:42�. In the default-network, we also found
greater connectivity for 3D [Fð1; 27Þ ¼ 47:1; p<0:001] and no effect of
session ½Fð1;27Þ ¼ 2:00; p ¼ 0:17�. However, we also observed an
interaction ½Fð1;27Þ ¼ 6:01; p ¼ 0:021�, indicating the main effect of
sequence type should not be interpreted. Finally, in the visual network,
we found greater connectivity for 3D ½Fð1;27Þ ¼ 20:8; p<0:001�, while

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://mrtools.mgh.harvard.edu/
http://mrtools.mgh.harvard.edu/


Fig. 7. Quantitative group analysis of the median tSNR in cerebellar, subcortical and cortical GM. The top and bottom panels reflect temporal high pass (A–C) and temporal band pass
filtered data (D–F). Numbers at the bottom indicate the relative tSNR increase of the group mean (colored dots) by motion regression (B,E), and by motion and nuisance regression (C,F)
relative to the group mean with temporal filtering only (A,D). All differences between SMS-EPI and 3D-EPI (except #) are highly significant (p<0:001).
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we found no effects of session½Fð1;27Þ ¼ 1:88; p ¼ 0:18� or interaction
½Fð1;27Þ ¼ 0:00; p ¼ 0:97�. Fig. 9 shows whole-brain connectivity maps
across both sessions separately for SMS and 3D (left) and the corre-
sponding ICC maps (right).

4. Discussion

We have proposed several modifications to a 3D-EPI acquisition
scheme that result in greater SNR and sampling efficiency than typically
applied state-of-the-art SMS-EPI. Specifically, the time efficiency was
achieved by use of fast water excitation and semi-elliptical sampling with
variable echo train lengths. No slice partial Fourier sampling was
employed to maintain comparability with SMS-EPI with respect to signal
drop outs and actual image resolution. Both sequences utilized equiva-
lent parallel imaging acceleration techniques with controlled aliasing.
We were thus able to set up two corresponding, application-oriented
whole-brain fMRI protocols at above-average spatial resolution at 3 T.
Thanks to the opportunities for time saving that are unique to 3D-EPI, a
k-space undersampling factor of only six (3D) compared to a slice ac-
celeration factor of eight (SMS) were required to achieve the same short
volume TR of 0.53 s. Accordingly, using 3D-EPI a much reduced SNR
penalty was expected, compared to SMS-EPI.

The high temporal resolution was fundamental, since we aimed at
minimal probability of cardiac frequency overlap with the typical BOLD
frequency range. In fact, prolonging TR to � 0.7 s, e.g. by relaxing the
SMS-EPI slice acceleration factor from eight to six (Nyquist frequency ≲
0.71 Hz), would shift the cardiac alias peak, as observed in the second
example PSD shown in Fig. 4, from ~0.55–0.72 Hz to ~0.09–0.26 Hz or
even below, i.e. the fundamental cardiac frequencies would overlap with
(or be very close to) the BOLD frequencies. Furthermore, a likely overlap
of the cardiac alias peak with the respiratory peak would impede
discriminating the two, whichmay potentially impact the effectiveness of
data “cleaning” approaches based on the GLM (as used here) or on ICA
(Salimi-Khorshidi et al., 2014). Even though the frequency separation
may not be as critical in general (which is beyond the scope of this work),
our findings may thus provide a practical recommendation when in-
vestigators aim to minimize the influence of physiological noise on
BOLD signal.
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The short volume TR suggested the implementation of SPAIR fat
suppression into our 3D-EPI as a complementary means to improve
robustness of binomial-11 WE. While the combination of binomial-11
WE and SPAIR is not easily applicable, if TR is significantly increased,
more effective but slightly longer binomial-121 WE pulses, which are
not limited to short TRs, could instead be employed alone. To the best of
our knowledge, comparable multiband WE pulses with acceptable slice-
profiles are not yet feasible and compatible with RF peak power and
SAR limitations (recall that binomial WE requires a pulse spacing of
approximately 1.2 ms at 3 T). Therefore, we currently consider CHESS
fat saturation (here ~12 ms) and relatively long multiband pulses (here
~7 ms) as the most limiting factor for SMS-EPI in the context of rapid
whole-brain fMRI (~25% of TR ¼ 530 ms compared to SPAIR and
binomial-11 WE, which add up to only ~9% of the 3D-EPI volume TR).
Slab-selective 3D-EPI, on the other hand, may require discarding of
slices covering the side band of the excited slab, if not included in the
fMRI analysis. Due to the k-space based six-fold undersampling, it is
difficult to quantify the actual acquisition time for the four slices dis-
carded in the present study (ten excitations would be required regard-
less of whether 60, 56 or 55 slices were to be reconstructed). However,
if six slices were discarded, one excitation would only be performed for
the purpose of slice oversampling. This would correspond to approxi-
mately 10% of the total volume TR, depending on whether or not semi-
elliptical vETL was applied. Conservative slice partial Fourier sampling
(e.g. 9/10) could be applied to compensate for the extra time needed for
slice oversampling.

We demonstrated essential and exclusive 3D-EPI time savings by
applying vETL along 2D phase encode trajectories at above-average
spatial resolution at 3 T. Previously, vETL has been utilized to ac-
quire high-resolution 3D-EPI data along 1D phase encode trajectories
at 3 and 7 T (Stirnberg et al., 2014). It is noteworthy that, for the
present 3D-EPI protocol, the additional duration of one SPAIR module
occurring every ten excitations (~29 ms � 5% of TR ¼ 530 ms)
approximately corresponded to the time saved by applying
semi-elliptical vETL (~35 ms � 7% of TR ¼ 530 ms). Conversely, with
vETL and without SPAIR even a TR of 500 ms could have been ach-
ieved at only six-fold k-space undersampling, which is identical to the
minimum TR possible using the eight-fold accelerated SMS-EPI. On the



Table 2
Temporal SNR group analysis.

GM ROI Processing SMS-
EPI

3D-EPI Ratio p T

Cortical HP 46
(3.9%)

54
(3.6%)

1.18
(5.3%)

3.7⋅10�6 9.9

HP, M 52
(3.7%)

59
(3.1%)

1.23
(4.8%)

9.3⋅10�8 15.3

HP, M, N 51
(3.6%)

64
(2.8%)

1.27
(4.6%)

2.3⋅10�9 23.3

BP 118
(5.8%)

126
(7.1%)

1.07
(9.1%)

1.3⋅10�1 ð#Þ 1.7

BP, M 164
(5.2%)

190
(5.2%)

1.16
(7.3%)

2.3⋅10�4 5.9

BP, M, N 200
(4.8%)

241
(4.0%)

1.21
(6.2%)

1.1⋅10�5 8.8

Subcortical HP 20
(3.1%)

30
(2.9%)

1.50
(4.3%)

4.9⋅10�9 21.5

HP, M 20
(3.1%)

31
(2.8%)

1.54
(4.2%)

2.0⋅10�9 23.7

HP, M, N 21
(3.1%)

33
(2.7%)

1.57
(4.1%)

6.8⋅10�10 26.8

BP 67
(3.7%)

88
(5.4%)

1.32
(6.5%)

1.8⋅10�4 6.1

BP, M 88
(3.4%)

128
(3.5%)

1.45
(4.9%)

1.8⋅10�7 14.2

BP, M, N 104
(3.3%)

156
(2.8%)

1.50
(4.3%)

5.6⋅10�9 21.1

Cerebellar HP 36
(3.3%)

49
(4.3%)

1.34
(5.5%)

4.0⋅10�6 9.9

HP, M 38
(3.2%)

52
(3.6%)

1.39
(4.9%)

5.2⋅10�7 12.6

HP, M, N 39
(3.2%)

55
(3.7%)

1.41
(4.9%)

5.9⋅10�7 12.4

BP 111
(4.4%)

136
(6.5%)

1.22
(7.9%)

8.3⋅10�4 4.9

BP, M 152
(4.0%)

201
(4.5%)

1.32
(6.0%)

1.7⋅10�6 11.0

BP, M, N 182
(3.4%)

246
(4.1%)

1.35
(5.4%)

6.8⋅10�7 12.2
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other hand, the numerical phantom simulations in preparation of this
study (cf. Fig. 2) indicate that the extra longitudinal relaxation period
between volume acquisitions along with SPAIR, recovers the 3% signal
loss encountered when only using vETL (reduced average TR across
excitations). In fact, the average TR across excitations with SPAIR and
vETL almost corresponds to the TR per excitation without SPAIR and
constant ETL. Hence, the same tSNR can be expected, albeit with the
benefit of more robust fat suppression.

The PSDs in Fig. 4 suggest that, for both EPI protocols, data
“cleaning” via motion regression primarily reduces the respiratory peak
while additional nuisance regression effectively removes the cardiac
peak. In both cases, low-frequency signals attributed to the regressors
are reduced as well. Note that a constant (thermal) noise floor remains
prevalent across all frequencies that pass the temporal filter, irrespective
of nuisance and/or motion regression. The group average maps of
relative tSNR increase in Fig. 5 indicate that motion regression pri-
marily affects the edge voxels of the brain, where most contrast changes
driven by respiration-induced motion combined with partial voluming
are in deed expected. In case of BP filtering, there is a nearly constant
tSNR increase across WM, as opposed to HP filtering. Irrespective of the
temporal filter, simultaneous motion and nuisance regression appar-
ently results in largest tSNR increases in GM voxels, edge voxels and
voxels that can be assigned to major blood vessels. This is observed for
both protocols, while generally the tSNR increase by data “cleaning” is
clearly stronger for the 3D protocol. Largest tSNR increases are observed
for BP-filtered data, which can be explained by the increased impact of
reducing the low-frequency physiological noise components relative to
the small thermal noise fraction that has passed the temporal filter.

The increased benefit of 3D-EPI from data “cleaning” may be
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explained by the inherently increased sensitivity of 3D-EPI to physio-
logical noise (Triantafyllou et al., 2005), even with considerable par-
allel imaging acceleration (Triantafyllou et al., 2011). Hence,
physiological noise removal by RETROICOR, for instance, can have
larger effects on 3D-EPI data than on conventional 2D-EPI, as previously
shown on the example of high-resolution fMRI at 3 T (Lutti et al., 2013).
It is known that physiological noise in 3D-EPI may be reduced by
smaller segmentation factors (Van Der Zwaag et al., 2012). However,
ten excitations per volume, as used here, already corresponds to the
minimum segmentation possible at the given TE, matrix size and
undersampling pattern. Nevertheless, the 3D protocol still corresponds
to a segmented acquisition as opposed to the SMS protocol. Hence, the
effect of improvement by nuisance and motion regression is larger for
3D than for SMS.

The most distinct absolute tSNR advantage of 3D over SMS is located
in WM regions in the center of the brain, where tSNR is up to twice as
large in 3D compared to tSNR in SMS (Fig. 5). This primarily affects
WM, subcortical and cerebellar GM and is most likely a result of both the
reduced g-factor and the different T1 contrast of SMS-EPI and 3D-EPI.
This is supported by Fig. 6, which shows, first, a similar but more clearly
defined central tSNR benefit of the six-fold over the eight-fold acceler-
ated SMS-EPI (primarily different g-factors, comparable tissue contrast).
Second, Fig. 6 D indicates a homogeneous tSNR benefit of about 25%
throughout WM with 3D-EPI over SMS-EPI, if both sequences are
accelerated by a factor of six (primarily different T1 contrast, compa-
rable g-factors). Notably, tSNR in GM is approximately equivalent in the
case of matched acceleration factors (3D may have ~14% increased
sensitivity, though, due to 30% more more volumes per unit time).
Using the TR-matched protocols, as Fig. 7 and Table 2 show, also in
cortical GM regions 3D-tSNR clearly supersedes SMS-tSNR. This be-
comes particularly clear, if motion and nuisance regression has been
employed and if temporal HP filtered data are preferred over temporal
BP filtered data. According to the paired T-test (cf. Table 2) the observed
tSNR benefit with 3D is highly significant (p<0:001) in all ROIs, except
for cortical GM after BP filtering without nuisance or motion regression
(cf. Fig. 7 D).

The 3D-EPI acquisition results in higher functional connectivity
estimates as compared to the SMS-EPI acquisition. Given that we ac-
quired resting-state data for only ten minutes, which is not sufficient to
reach a ceiling value, higher values are favored (Birn et al., 2013).
Using very fast sequences for functional connectivity analysis may
require higher-order autoregressive models to account for increased
temporal autocorrelation (Arbabshirani et al., 2014). However, we do
not expect differences with this regard between SMS-EPI and 3D-EPI, if
both are TR- and TE-matched, since individual volumes are
self-contained in either case The ICC maps displayed in Fig. 9 next to
the corresponding connectivity maps represent a rough, spatially
resolved measure for test/retest reliability. ICCs are defined as the
ratio of between-subjects divided by within-subjects variance. Both
large intra-individual differences and low test/retest variance increase
the ICCs. The fact that the ICC maps match the mean connectivity maps
is therefore non-trivial. It indicates that reliability is high in places
where connectivity is high and intra-individual differences are mean-
ingful. The ICCs appear to favor 3D-EPI for the motor and
default-network, while the ICCs are rather similar for the visual
network. The increased functional connectivity estimates suggest that
the total scan time of a corresponding 3D-EPI resting state fMRI pro-
tocol may be reduced, compared to SMS-EPI, while maintaining
identical statistical power. Reducing acquisition time is especially
attractive for large cohort studies, as it leaves opportunity for other
scans (Breteler et al., 2014; Miller et al., 2016). Higher sensitivity and
reliability are also vital in large cohort studies, as variance across in-
dividuals and across longitudinal visits, are the primary signal. In
contrast, when testing a specific hypothesis, the 3D-EPI protocol may
allow for smaller groups than the SMS-EPI protocol.

The time-efficient 3D-EPI sequence allowed for less “aggressive”



Fig. 8. Region-of-interest (ROI) analyses of functional connectivity for each sequence (SMS/3D) averaged over both sessions (test/retest) for the motor (top), default (middle) and visual
(bottom) network. Blue markers indicate the ROIs used for quantitative connectivity analyses. The activity map is only shown for illustrative purposes to appreciate the locations of the
ROIs. The box plots compare the distribution of connectivity estimates by sequence type separately for left (l) and right (r) motor (MOT) and visual (VIS) cortex as well as posterior
cingulate cortex (PCC) and medial prefrontal cortex (mPFC). The ANOVA results stated in the text refer to the average connectivity of the two ROIs per network.
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k-space undersampling to achieve the same short TR as with a corre-
sponding SMS-EPI protocol. As a consequence, we found a significant
tSNR benefit throughout the brain, in particular in central brain re-
gions that often suffer from strong g-factor increases, if high slice ac-
celeration factors are applied. This resulted in stronger functional
connectivity measures for several standard networks – not only, but in
particular after motion and nuisance regression is performed to remove
physiological noise. Although we presented results for potentially
“overfitted” noise regressions, we found similar results with six motion
regressors and/or “only” RETROICOR and RVHRCOR. Relaxing the TR-
constraint slightly would have allowed us to use an SMS-EPI protocol
with a slice acceleration factor of seven (TRmin ¼ 560 ms for 56 slices),
whereas the 3D-EPI protocol would have remained unchanged, besides
a slightly relaxed average TR across excitations (TRmin ¼ 580 ms/
630 ms for 55/60 slices using an acceleration factor of five). However,
extrapolating from the tSNR ratio maps for matching acceleration
factors of six (cf. Fig. 6 D), which indicates only a tSNR benefit of SMS-
EPI over 3D-EPI in CSF, we would expect similar results with respect to
tSNR and functional connectivity, though not that strongly differing
between SMS-EPI and 3D-EPI in cerebellar and subcortical GM. We
emphasize that our SMS and 3D data quality depended on a dedicated
slice-GRAPPA reconstruction, on the one hand, and a generic CAIPI-
RINHA reconstruction, on the other hand, which has explicitly been
accepted for applicability under realistic conditions (on-line image
reconstruction). Changing reconstruction approaches or parameters
might influence the findings. Sequence details, such as the CAIPIRI-
NHA or slice-GRAPPA ACS acquisition method, can also have signifi-
cant impact on 3D-EPI and SMS-EPI tSNR (Vu et al., 2014, Ivanov et al.
(2015), Talagala et al. (2016)) and across-run variability (Blazejewska
et al., 2017). While we have tailored our custom 3D-EPI sequence to
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maximize tSNR, we relied on an optimal SMS-EPI implementation by
the vendor. We also note that the EPI protocols compared here were
optimized for a high-end commercial scanner with powerful gradients
and a 52-channel head receive array, which allowed for relatively
“aggressive” acceleration. This might limit translation of our protocol
to scanners with weaker gradients or fewer receive coils. However, the
underlying idea to utilize exclusive volumetric acceleration techniques
complementary to parallel imaging, can be translated with ease. This
includes cases, which are per se not compatible with parallel imaging
principles. Combined, slice partial Fourier sampling (up to 12.5–37.5%
TR reduction), rapid water excitation, instead of fat saturation (up to
20% TR reduction and global tSNR increase (Stirnberg et al., 2016a)),
and variable echo train lengths (up to 10% TR reduction with
semi-elliptical sampling) may result in considerable tSNR- and
BOLD-sensitivity benefits, even if no, or only moderate parallel
imaging-based acceleration can be employed. In either case, our
findings show it is important to consider corrections for physiological
noise when developing, or optimizing, a 3D- or SMS-EPI protocol.

5. Conclusion

Rapid whole-brain 3D-EPI has significant advantages over SMS-EPI
when using additional dedicated techniques to boost acquisition effi-
ciency. Some beneficial techniques are exclusively available to 3D-EPI,
including variable echo train lengths, fast water excitation and slice
partial Fourier sampling. Our results suggest that optimally acquired 3D-
EPI data benefits considerably more frommotion and nuisance regression
than SMS-EPI data. The analytic SNR advantage, as a result of less k-space
undersampling, is hence even more pronounced. Consequently, our
optimized 3D-EPI sequence has improved sensitivity in functional



Fig. 9. Cortical surface maps of average functional connectivity on the left and ICC maps indicating test/retest reliability on the right. Each side shows estimates for the left and right
hemisphere and midline, separated by sequence type for the motor (top), default (middle) and visual (bottom) network.
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connectivity analyses compared to SMS-EPI. This benefit of 3D-EPI is
expected to become even more apparent at higher field strengths.
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