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Abstract

The lack of multivariate methods for decoding the representational content of interregional neural 

communication has left it difficult to know what information is represented in distributed brain 

circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by 

learning mappings between the activity patterns of the populations as a factor of the information 

being processed. These maps are used to predict the activity from one neural population based on 

the activity from the other population. Successful MCPA-based decoding indicates the 

involvement of distributed computational processing and provides a framework for probing the 

representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in 

realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal 

modalities to evaluate a variety of hypothesis associated with information coding in neural 

communications. We apply MCPA to fMRI and human intracranial electrophysiological data to 

provide a proof-of-concept of the utility of this method for decoding individual natural images and 

faces in functional connectivity data. We further use a MCPA-based representational similarity 

analysis to illustrate how MCPA may be used to test computational models of information transfer 

among regions of the visual processing stream. Thus, MCPA can be used to assess the information 

represented in the coupled activity of interacting neural circuits and probe the underlying 

principles of information transformation between regions.
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1. Introduction

Since at least the seminal studies of Hubel and Wiesel (Hubel and Wiesel, 1959) the 

computational role that neurons and neural populations play in processing has defined, and 

has been defined by, how they are tuned to represent information. The classical approach to 

address this question has been to determine how the activity recorded from different neurons 

or neural populations varies in response to parametric changes in the information being 

processed. Single unit studies have revealed tuning curves for neurons from different areas 

in the visual system responsive to features ranging from the orientation of a line, shapes, and 

even high level properties such as properties of the face (Desimone et al., 1984; Hubel and 

Wiesel, 1959; Tsao et al., 2006). Multivariate methods, especially pattern classification 

methods from modern statistics and machine learning, such as multivariate pattern analysis 

(MVPA), have gained popularity in recent years and have been used to study neural 

population tuning and the information represented via population coding in neuroimaging 

and multiunit activity (Cox and Savoy, 2003; Ghuman et al., 2014; Haxby et al., 2001; 

Haynes and Rees, 2006; Hirshorn et al., 2016; Kamitani and Tong, 2005; Poldrack, 2011; 

Polyn et al., 2005). These methods allow one to go beyond examining involvement in a 

particular neural process by probing the nature of the representational space contained in the 

pattern of population activity (Edelman et al., 1998; Haxby et al., 2014; Kriegeskorte and 

Kievit, 2013).

Neural populations do not act in isolation, rather the brain is highly interconnected and 

cognitive processes occur through the interaction of multiple populations. Indeed, many 

models of neural processing suggest that information is not represented solely in the activity 

of local neural populations, but rather at the level of recurrent interactions between regions 

(Grossberg, 1980; Kveraga et al., 2007; Lee and Mumford, 2003). However previous studies 

only focused on the information representation within a specific population (Freiwald et al., 

2009; Ghuman et al., 2014; Haxby et al., 2001; Hirshorn et al., 2016; Nestor et al., 2011; 

Tsao et al., 2006), as no current multivariate methods allow one to directly assess what 

information is represented in the pattern of functional connections between distinct and 

interacting neural populations with practical amounts of data. Such a method would allow 

one to assess the content and organization of the information represented in the neural 

interaction. Thus, it remains unknown whether functional connections passively transfer 

information between encapsulated modules (Fodor, 1983) or whether these interactions play 

an adaptive computational role in processing. Note that our definition of non-adaptive 

information transfer is equivalent to a static linear projection where no computational 

“work” is done in the interaction between the regions and therefore no information is added 

(from an information theory perspective). Adaptive information transfer is one in which 

computational work related to the behavioral state or condition is performed and therefore 

state or condition specific information is added through the interaction between regions; this 

is equivalent to a non-linear function.

Univariate methods that go beyond assessing the degree of coupling between populations to 

assess changes in the relationship between the activity as a factor of condition also examine 

adaptive communication between regions. For example the psychophysiological interactions 

(PPI; (Friston et al., 1997)) and dynamic causal modeling methods (Friston et al., 2003) are 
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sensitive to adaptive interregional communication. Multivariate methods, however, in 

comparison to univariate methods, allow for “more sensitive detection of cognitive states,” 

“relating brain activity to behavior on a trial-by-trial basis,” and “characterizing the structure 

of the neural code” (Norman et al., 2006). Thus, a multivariate pattern analysis method for 

functional connectivity analysis is critical for decoding the representational structure of 

interregional interactions.

In this paper, we introduce a multivariate analysis algorithm combining functional 

connectivity and pattern recognition analyses that we term Multi-Connection Pattern 

Analysis (MCPA). MCPA works by learning the discriminant information represented in the 

shared activity between distinct neural populations by combining multivariate correlational 

methods with pattern classification techniques from machine learning in a novel way. Much 

the way that MVPA goes beyond a t-test or ANOVA by building a multivariate model of 

local activity that is then used for single-trial prediction and classification, MCPA goes 

beyond PPI by building a multivariate connectivity model that is then used for single-trial 

prediction and classification. This single-trial prediction and classification makes MCPA 

distinct from previous connectivity approaches that only statistically test the absolute or 

relative functional connectivity between two populations (Cribben et al., 2012; Finn et al., 

2015; Richiardi et al., 2011; Shirer et al., 2012; Wang et al., 2015) and allows for a detailed 

probe of the representational structure of the interaction.

The MCPA method consists of an integrated process of learning connectivity maps based on 

the pattern of coupled activity between two populations A and B conditioned on the stimulus 

information and using these maps to classify the information representation in shared 

activity between A and B in test data. The rationale for MCPA is that if the activity in one 

area can be predicted based on the activity in the other area and the mapping that allows for 

this prediction is sensitive to the information being processed, then this suggests that the 

areas are communicating with one another and the communication pattern is sensitive to the 

information being processed. Thus, MCPA simultaneously asks two questions: 1) Are the 

multivariate patterns of activity from two neural populations correlated? (i.e. is there 

functional connectivity?) and 2) Does the connectivity pattern change based on the 

information being processed? This is operationalized by learning a connectivity map that 

maximizes the multivariate correlation between the activities of the two populations in each 

condition. This map can be thought of like the regression weights that transform the activity 

pattern in area A to the activity pattern in area B (properly termed “canonical coefficients” 

because a canonical correlation analysis [CCA] is used to learn the map). These maps are 

then used to generate the predictions as part of the classification algorithm. Specifically, a 

prediction of the activity pattern in one region is generated for each condition based on the 

activity pattern in the other region projected through each mapping. Single trial classification 

is achieved by comparing these predicted activity patterns with the true activity pattern (see 

Figure 1 for illustration). With MCPA single trial classification based on multivariate 

functional connectivity patterns is achieved allowing the nature of the representational space 

of the interaction to be probed.

We present a number of simulations to validate MCPA for a realistic range of signal-to-noise 

ratios (SNR) and to show that MCPA is insensitive to local information processing. We 
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apply MCPA to examine the inter-regional representation for natural visual stimuli in visual 

cortex using functional magnetic resonance imaging (fMRI) data. Specifically, we show that 

the interactions between regions of the visual stream (V1, V2, V3, V4, and lateral occipital 

cortex [LO]) are sensitive to information about individual natural images. We combine 

MCPA with representational similarity analysis to demonstrate that MCPA can be used to 

evaluate computational models and make inferences regarding the underlying neural 

mechanism of information transferring. To demonstrate MCPA’s applicability to 

electrophysiological signals and multivariate oscillatory synchrony, we use MCPA to 

examine the circuit-level representation for faces using intracranial electroencephalography 

(iEEG) data. Specifically, we show that the interaction between the occipital face area (OFA) 

and the fusiform face area (FFA) represents information about individual faces. Despite the 

potential caveat of small effect size due to the limited size of dataset, these results 

demonstrate that MCPA can be used to probe the nature of representational space resulting 

from processing distributed across neural regions.

2. Materials and methods

2.1. Overview

The MCPA method consists of a learning phase and a test phase (as in machine learning, 

where a model is first learned, then tested). In the learning phase, the connectivity maps for 

each condition that characterize the pattern of shared activity between two populations is 

learned. In the test phase, these maps are used to generate predictions of the activity in one 

population based on the activity in the other population as a factor of condition and these 

predictions are tested against the true activity in the two populations. Similar to linear 

regression where one can generate a prediction for the single variable A given the single 

variable B based on the line that correlates A and B, MCPA employs a canonical correlation 

model (a generalization of multivariate linear regression) and produces a mapping model for 

each condition as a hyperplane that correlates multidimensional spaces A and B. Thus one 

can generate a prediction of the observation in multivariate space A given the observation in 

multivariate space B on a single trials basis. In this sense, MCPA is more analogous to a 

machine learning classifier combined with a multivariate extension of PPI (Friston et al., 

1997) rather than being analogous to correlation-based functional connectivity measures.

The general framework of MCPA is to learn the connectivity map between the populations 

for each task or stimulus condition separately based on training data. Specifically, given two 

neural populations (referred to as A and B), the neural activity of the two populations can be 

represented by feature vectors in multi-dimensional spaces (Haxby et al., 2014). The actual 

physical meaning of the vectors would vary depending on modality, for example spike 

counts for a population of single unit recordings; time point features for event-related 

potentials (ERP) or event-related fields; time-frequency features for electroencephalography, 

electrocorticography (ECoG) or magnetoencephalography; or single voxel blood-oxygen-

level dependent (BOLD) responses for functional magnetic resonance imaging. A mapping 

between A and B is calculated based on any shared information between them for each 

condition on the training subset of the data. This mapping can be any kind of linear 
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transformation, such as any combination of projections, scalings, rotations, reflections, 

shears, or squeezes.

These mappings are then tested as to their sensitivity to the differential information being 

processed between cognitive conditions by determining if the neural activity can be 

classified based on the mappings. Specifically, for each new test data trial, the maps are used 

to predict the neural activity in one area based on the activity in the other area and these 

predictions are compared to the true condition of the data. The trained information-mapping 

model that fits the data better is selected and the trial is classified into the corresponding 

condition. This allows one to test whether the mappings were sensitive to the differential 

information being represented in the neural interaction in the two conditions.

The flow of the MCPA framework is demonstrated in Figure 1 and Algorithm 1. An 

implementation of MCPA and sample scripts in MATLAB are freely available at https://

github.com/yuanningli/MCPA.

Algorithm 1

Multi-Connection Pattern Analysis (MCPA)

Input:

training data: matrices  for ROI-A under condition 1,  for ROI-A under condition 2,  for ROI-B under 

condition 1,  for ROI-B under condition 2

testing data: xA for observation in ROI-A, and xB for observation in ROI-B

Output:

Prediction of condition for observation (xA, xB).

Learning phase:

  1

Apply CCA on  and  to get linear mapping function R(1).

  2

Apply CCA on  and  to get linear mapping function R(2).

Testing phase:

  3

Use xA and R(1) to reconstruct activity in ROI-B under condition 1, which yields reconstructed data matrix .

  4

Use xA and R(2) to reconstruct activity in ROI-B under condition 2, which yields reconstructed data matrix .

  5

Compare the correlations between the reconstructions ( ) under different conditions and the real 
observation (xB).

  6 Reverse the direction (project B to A), repeat steps 3 and 4, and compare the correlations between the 
reconstructions under different conditions and the real observation.

  7 Assign the condition that gives maximum average correlation coefficient to the test case (xA, xB).

2.2. Connectivity Map

The first phase of MCPA is to build the connectivity map between populations. The neural 

signal in each population can be decomposed into two parts: the part that encodes shared 
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information, and the part that encodes non-shared local information (including any non-

shared measurement noise, shared measurement noise, such as movement artifacts in fMRI, 

can result in artifactually inflated connectivity, but for well-balanced and randomized 

experiments should not differ between conditions and therefore does not affect MCPA 

discrimination). We assume that the parts of the neural activities that represent the shared 

information in the two populations are linearly correlated (though, this can easily be 

extended by the introduction of a non-linear kernel). The model can be described as follows

where C is the common activity, D and E are local activities, mA, mB are the 

dimensionalities of activity vector in population A and B respectively. Without loss of 

generality, μA = μB = 0 can be assumed. The activity in population A can be decomposed 

into shared activity WAC and local activity D, while activity in B can be decomposed into 

shared activity WBC and local activity E. The shared discriminant information only lies in 

the mapping matrix WA and WB since C always follows the standard multivariate normal 

distribution (though correlation measures that do not assume normally distributed data can 

also be applied with minor modifications to the calculation).

In statistics, canonical correlation analysis (CCA) is optimally designed for such a model 

and estimate the linear mappings (Bach and Jordan, 2005; Hardoon et al., 2004). In brief, let 

S be the covariance matrix

Therefore WA and WB can be estimated by solving the following eigen problem

and we have
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where UAd and UBd are the first d columns of canonical directions UA and UB, and M1, M2 

∈ ℝd×d are arbitrary matrices such that , Pd is the diagonal matrix with the first 

d elements of . Therefore, M1 and M2 are just matrices used to normalize the 

projection of A and B onto the latent space. So M1 and M2 can take arbitrary value as long 

as , where Pd is the diagonal matrix representing the variance along each of the 

d latent dimensions. Therefore, we can just take .

With WA and WB, the shared information C can be estimated using its posterior mean (C|

A) and  (C|B), where  and . Let M1 = M2 and 

equate  (C|A) and  (C|B), this shared information can be used as a relay to build the 

bidirectional mapping between A and B. Specifically, 

 and 

, where .

In the first step, the connectivity map is estimated for each condition separately. Suppose we 

have n1 trials in condition 1 and n2 trials in condition 2 in the training set, the training data 

for the two conditions are represented in matrices as  and 

respectively, where  are the population activity for A and B 

under condition 1 respectively, and  are the population 

activity for A and B under condition 2 respectively. The testing data vector is then 

represented as [xA, xB]T, where xA ∈ ℝmA and xB ∈ ℝmB are population activities in A and 

B respectively. Using CCA, the estimations of the mapping matrices with respect to different 

conditions are R(1) and R(2).

To sum up, by building the connectivity map, a linear mapping function R is estimated from 

the data for each condition so that the activity of the two populations can be directly linked 

through bidirectional functional connectivity that captures only the shared information.

2.3. Classification

The second phase of MCPA is a pattern classifier that takes in the activity from one 

population and predicts the activity in a second population based on the learned connectivity 

maps conditioned upon the stimulus condition or cognitive state. The testing data is 

classified into the condition to which the corresponding model most accurately predicts the 

true activity in the second population.

The activity from one population is projected to another using the learned CCA model, i.e. 

. The predicted projections  are compared to the real observation xB, 

and then the testing trial is labeled to the condition where the predicted and real data match 

most closely. Cosine similarity (correlation) is used as the measurement of the goodness of 

prediction. The mapping is bidirectional, so A can be projected to B and vice versa. In 

practice, the similarities from the two directions are averaged in order to find the condition 

that gives maximum average correlation coefficient.
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2.4. Simulated experiment

2.4.1. Simulations to evaluate the general performance of MCPA—To test the 

performance of MCPA, we used BOLD signal recorded from areas V1 and V2 to simulate 

shared and local activity in two populations and tested the performance of MCPA on 

synthetic data as a factor of the number of dimensions in each population and signal-to-noise 

ratio (SNR; Figure 2a). We further evaluated three control experiments to demonstrate that 

MCPA is insensitive to the presence or change in the local information.

For the first simulation (Figure 2a), we sampled from the empirical distribution of BOLD 

signal recorded from area V1 in the visual cortex and used it as the shared activity, and 

independently sampled signal from the empirical distributions of activity in V1 and V2 as 

the local unshared activity. (See fMRI method described below for experiment details). The 

shared activity for both conditions in population A was drawn from the empirical 

distribution of the first d principal components of V1 activity to mimic a d-dimensional 

normal distribution , for i = 1,2, where Σd is a diagonal matrix with the jth 

element in the diagonal as . The shared activity in population B under two different 

conditions were generated by rotating YA with different rotation matrices separately, 

, where R(1) and R(2) were two d-by-d random rotation matrices 

corresponding to the information mapping functions under condition 1 and 2 respectively, 

and for simplicity, R(i) is orthogonal with R(i)T R(i) = Id. In addition to the shared activity, 

local activity in A and B was randomly drawn from the empirical distributions of the first d 
principal components of V1 and V2 activity respectively and multiplied by a factor of σ to 

simulate white noise E(i) ~  (0, σ2Σd).

The two important parameters here are the dimensionality d and the variance σ2. SNR was 

used to characterize the ratio between the variance of shared activity and variance of local 

activity, and the logarithmic decibel scale SNRdB = −10 log10(σ2) was used. To cover the 

wide range of possible data recorded from different brain regions and different measurement 

modalities, we tested the performance of MCPA with d ranging from 2 to 25 and SNR 

ranging from −20 dB to 20 dB (σ2 ranged from 0.01 to 100). Note that each of the d 
dimensions contain independent information about the conditions and have the same SNR. 

Thus the overall SNR does not change, but the amount of pooled information does change 

with d. For each particular setup of parameters, the rotation matrices R(i) were randomly 

generated first, then 200 trials were randomly sampled for each condition and evenly split 

into training set and testing set. MCPA was trained using the training set and tested on the 

testing set to estimate the corresponding true positive rate (TPR) and false positive rate 

(FPR) for the binary classification. The sensitivity index d’ was then calculated as d′ = 

Z(TPR) − Z(FPR), where Z(x) is the inverse function of the cdf of standard normal 

distribution. This process was repeated 100 times and the mean and standard errors across 

these 100 simulations were calculated. Note that the only discriminant information about the 

two conditions is the pattern of interactions between the two populations, and neither of the 

two populations contains local discriminant information about the two conditions in its own 

activity. We further tested and confirmed this by trying to classify the local activity in 

populations A and B (see below). To avoid an infinity d’ value, with 100 testing trials per 
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condition, the maximum and minimum for TPR or FPR were set to be 0.99 and 0.01, which 

made the maximum possible d’ to be 4.65.

The MCPA method captures the pattern of correlation between neural activities from 

populations and is invariant to the discriminant information encoded in local covariance. To 

see this, we took the simulation data described above and applied MVPA (naïve Bayes) to 

each of the two populations separately. Note that in each of the two populations, we set the 

two conditions to have the same mean and covariance. As a result, there should be no local 

discriminant information within any of the two populations alone.

2.4.2. Robustness of MCPA to non-informative dimensions—In addition to the 

existing simulations that evaluate the influence of SNR and informative dimensionality on 

the performance of MCPA, we evaluated the influence of having non-informative 

dimensionality on the performance of MCPA (Figure 2b). Specifically, we simulated 10 

informative dimensions and simulate P = 30 additional dimensions that are not informative 

for discrimination and apply MCPA to this simulated data without PCA. We changed the 

number of training samples available for MCPA and evaluated the performance of MCPA as 

a factor of the ratio between number of dimensions and the number of training samples per 

condition. The intuition is that, with a fixed amount of informative dimensions, when the 

number of training samples decreases, the model would suffer from overfitting and the 

performance would decay.

2.4.3. Control simulations—For the first control simulation (Figure 2c), we fixed the 

dimensionality at d = 10 and SNR at 0 dB (σ2 = 1). For condition 1,  were drawn 

independently from the empirical distributions of the first d principal components of area V1 

and area V2 using the corresponding empirical distributions; for condition 2, 

were drawn independently from the same distribution in the empirical distributions of the 

first d principal components of area V1 and area V2. Then we changed the local variance in 

one of the conditions. For the features in population A and B under condition 1, we used 

 and , where k ranged from 1 to 9. Thus, in both populations, the 

variance of condition 1 was different from the variance of condition 2, and such difference 

would increase as k became larger. Therefore, there was no information shared between the 

two populations under either condition, but each of the population had discriminant 

information about the conditions encoded in the variance for any k ≠ 1.

For the second control simulation (Figure 2d), we fixed the dimensionality at 10 and SNR at 

0 dB (σ2 = 1) and kept the rotation matrices of different conditions different from each other. 

As a result, the amount of shared discriminant information represented in the patterns of 

interactions stayed constant. Then we changed the local variance in one of the conditions. 

For the features in population A under condition 1, we used , where k ranged 

from 1 to 9. Thus, population A, the variance of condition 1 was different from the variance 

of condition 2, and such difference would increase as k became larger. According to our 

construction of MCPA, it should only pick up the discriminant information contained in the 
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interactions and should be insensitive to the changes in local discriminant information from 

any of the two populations.

For the third control simulation (Figure 2e), we introduced local discriminant information 

into the two populations to demonstrate that MCPA is insensitive to the presence of 

constantly correlated local information (Figure 2e). We fixed the dimensionality at 10 and 

SNR at 0 dB (σ2 = 1) and kept the rotation matrices constant for different conditions. As a 

result, the amount of shared discriminant information represented in the patterns of 

interactions was 0. Then we changed the local variance in one of the conditions. For the 

features in population A and B under condition 1, we used  and , 

where k ranged from 1 to 9. Thus, in both populations, the variance of condition 1 was 

different from the variance of condition 2, and such difference would increase as k became 

larger. Notably, such local information was actually correlated through interactions between 

the populations. However, since the pattern of interaction did not vary as the condition 

changed, there was no discriminant information about the conditions represented in the 

interactions. According to our construction of MCPA, it should not pick up any discriminant 

information in this control case.

2.5. Examining visual cortex coding for natural images using MCPA

2.5.1. fMRI methods—The fMRI dataset was taken from CRCNS.org (Kay et al., 2011). 

See (Kay et al., 2008; Naselaris et al., 2009) for details regarding subjects, stimuli, MRI 

parameters, data collection, and data preprocessing. In the experiment, two subjects 

performed passive natural image viewing tasks while BOLD signals were recorded from the 

brain. The experiment contains two stages: a training stage and a validation stage. In the 

training stage, two separate trials were recorded in each subject. In each trial, a total of 1750 

images were presented to the subject, which yields a total of 3500 presentations of images 

(3500 = 1750 images * 2 repeats). In the validation stage, another 120 images were 

presented to the subject in 13 repeated trials, which yields a total of 1560 presentations 

(1560 = 120 images * 13 repeats). The single-trial response for each voxel was estimated 

using deconvolution method and used for the following analysis. The voxels were assigned 

to 5 visual areas (V1, V2, V3, V4, and lateral occipital [LO]) based on retinotopic mapping 

data from separate scans (Kay et al., 2008; Naselaris et al., 2009).

2.5.2. Categorical image classification—To control for repetition of each individual 

image and to increase the image number being used, we used the data from the training stage 

for the categorical image classification. The 1750 images were manually sorted into 8 

categories (animals, buildings, humans, natural scenes, textures, food, indoor scenes, and 

manmade objects). In order to maintain enough statistical power, only categories with more 

than 100 images were used in the analysis. As a result, 3 categories (food, indoor scenes, and 

manmade objects) were excluded.

For each pair of ROIs, namely V1–V2, V2–V3, V3–V4, and V4-LO, MCPA was applied to 

classify the functional connectivity patterns for each possible pair of image categories (total 

of 10 pairs). For each specific pair of categories, BOLD signal from all the voxels in the 

ROIs were used as features in MCPA. Principal Component Analysis (PCA) was used to 
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reduce the dimensionality to P, where P corresponds to the number of PCs that capture 90% 

of variation in the data, which yielded ~100–200 PCs. Leave-one-trial-out cross-validation 

was used in order to estimate the classification accuracy. This procedure was repeated for all 

10 pairs. Classification accuracy and the corresponding sensitivity index d’ were used to 

quantify the performance of MCPA.

2.5.3. Single image classification using MCPA—For single image classification the 

13 repetitions of each individual image from the validation stage data was used.

For each pair of ROIs, namely V1–V2, V2–V3, V3–V4, and V4-LO, MCPA was applied to 

classify the functional connectivity patterns for each possible pair of images (total of 7140 

pairs). For each specific pair of categories, BOLD signal from all the voxels in the ROIs 

were used as features in MCPA. Considering the limited number of trials in each condition, 

PCA was first used with the data from the training stage to reduce the representation 

dimensionality to 10. Because the top PCs that explain most variations may contain variance 

not related to the stimuli, the 10 PCs were selected from the top 50 PCs, based on 

maximizing the between-trial correlations for single images. As a result, we reduced the 

dimensionality of the validation data from more than 1000 to 10 based on the training 

dataset, which was completely independent from all the validation data that was used in the 

learning and testing stages of MCPA. Leave-one-out cross-validation was then used in order 

to estimate the classification accuracy. This procedure was repeated for all 7140 pairs. 

Classification accuracy and the corresponding sensitivity index d’ were used to quantify the 

performance of MCPA.

2.5.4. MVPA analysis—MVPA was applied to classify the neural activity within each ROI 

(V1, V2, V3, V4, and LO) or from a pair of ROIs simultaneously (V1–V2, V2–V3, V3–V4, 

and V4-LO) for each possible pair of categories (total of 10 pairs). The same features 

extracted from all the voxels within the ROI, as described above, were used in MVPA 

analysis. Naïve Bayes classifier was used as the linear classifier and leave-one-out cross-

validation was used in order to estimate the classification accuracy. This procedure was 

repeated for all 10 pairs. Classification accuracy and the corresponding sensitivity index d’ 

were used to quantify the performance of MVPA.

2.5.5. Permutation test—Permutation testing was used to evaluate the significance of the 

classification accuracy d’. For each permutation, the condition labels of all the trials were 

randomly permuted and the same procedure as described above was used to calculate the 

classification accuracy (d’) for each permutation. The permutation was repeated for a total of 

1000 times. The classification accuracy (d’) of each permutation was used as the test statistic 

and the null distribution of the test statistic was estimated using the histogram of the 

permutation test.

2.5.6. Representational similarity analysis—Based on the classification results, for 

each classification analysis, the representational dissimilarity matrix (RDM) M was 

constructed such that the jth element in the ith row, mij, equals the dissimilarity 

(classification accuracy) between the condition i and condition j in the corresponding 

representational space defined by the analysis. Spearman’s rank correlation was used to 
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compare representational dissimilarity matrices in order to account for outliers and non-

normality in the data.

2.5.7. Psychophysiological interactions—PPI (Friston et al., 1997) was used to 

analyze the pattern of interactions between V1 and V4 for each pair of image categories 

(total of 10). The response in each ROI was extracted by taking the first principal component 

across all voxels. The PPI model can be written as y = β1x1 + β2x2 + β3x3 + ε, where y is 

the response in V4, x1 is the response in V1, x2 is the categorical condition (1 or −1), and x3 

is the psychophysiological interaction (x3 = x1 · x2).

2.5.8. HMAX model and connectivity patterns—The implementation of HMAX 

model by Serre et al. (Serre et al., 2007) was used. Each image was fed into the network and 

the activations in the four layers (S1, C1, S2, and C2) were recorded. At each patch size 

level, for image k (k = 1, 2, …, 120), the activation pattern in simple layer i (i = 1, 2) is 

recorded as , which is a square matrix with retinotopic mapping to the image space. On 

the other hand, the activation pattern in complex layer i (i = 1, 2) is represented as vector 

with each element representing the activation of one single unit (for C1, this is achieved by 

concatenating all the units in the layer into one vector). The activation of each unit in the 

complex layer was calculated by taking a maximum over its corresponding pool of units in 

the previous simple layer. For each complex unit, we recorded the location of the 

corresponding maximum activation simple unit. As a result, we got a Ni-by-2 connectivity 

matrix  for complex layer Ci for image k, where Ni is the total number of units in Ci and 

each row is the 2-D coordinate of the corresponding maximum activation simple unit. Thus, 

the connectivity pattern between simple layer Si and complex layer Ci for image k was 

described by such connectivity matrix . Considering all pairs of images, the RDM of the 

connectivity pattern Mi is calculated by taking the Frobenius norm of the difference between 

each pair of connectivity matrix, i.e. .

The representation space for each single layer was then extracted by concatenating all units 

in the layer into one vector. The RDM of each single layer was calculated using the 

Euclidian distance between the corresponding activation vectors of the images.

2.5.9. Representational similarity analysis and permutation test—Permutation 

test was used to determine the statistical significance of the correlation between the RDM 

from MCPA and the RDM from HMAX. Specifically, for each pair of ROIs (i.e. V1–V2, 

V2–V3, V3–V4, and V4-LO), we calculated the corresponding 120-by-120 RDM for all the 

images from MCPA and averaged across the two subjects, noted as MROI1–ROI2, where 

ROI1–ROI2 = V1–V2, V2–V3, V3–V4, or V4-LO. Then we used the RDMs of HMAX (Mi, 

i = 1, 2) described in the previous part and calculate the Spearman’s rank correlation 

between MROI1–ROI2 and Mi. As a result, we have 

. Then to compare the correlation from different 

layers in HMAX to MCPA, we use  as the test 

statistic. For each permutation, the labels of the 120 images were randomly permuted and 

the above procedure was repeated. With a total of 1000 permutations, we got the empirical 

Li et al. Page 12

Neuroimage. Author manuscript; available in PMC 2018 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution of the test statistic for the null hypothesis that there is no difference between the 

two correlations. A p-value for the real test statistic can then be estimated.

2.6. Examining OFA-FFA coding for individual faces using MCPA

2.6.1 Subject—A human subject underwent surgical placement of iEEG depth electrodes 

(stereotactic electroencephalography) into the right temporal lobe as standard of care for 

surgical epilepsy localization. The subject a 56 year-old male. No epileptiform discharges or 

other evidence of epileptic activity were recorded from the electrode contacts used in this 

study.

The experimental protocols were approved by the Institutional Review Board of the 

University of Pittsburgh. Written informed consent was obtained from the participant. See 

Supplementary Materials for analysis details.

3. Results

3.1. Simulations

We used simulations to test and verify the performance and properties of MCPA on synthetic 

data. Specifically, synthetic data generated based on real fMRI data representing neural 

activity of two distinct populations and the information represented in the interaction 

between those populations was manipulated to construct different testing conditions.

In the first simulation, we evaluated the ability of MCPA to detect information represented in 

the functional connectivity pattern when it was present as a factor of the SNR and the 

number of dimensions of the data. The mean and standard error of the sensitivity index (d’) 

from 100 simulation runs for each particular setup (dimensionality and SNR) are shown in 

Figure 2a. The performance of the MCPA classifier increased when SNR or effective 

dimensionality increased. Classification accuracy saturated to the maximum when SNR and 

number of dimensions were high enough (SNR > 5 dB, dimensionality > 10). The 

performance of MCPA was significantly higher than chance (p < 0.01, permutation test) for 

SNRs above −5 dB for all cases where the dimensionality was higher than 2, when the 

pattern of the multivariate mapping between the activity was changed between conditions.

In addition, we examined how robust MCPA is to uninformative dimensions. This simulation 

assesses performance of MCPA as the number of training samples changes and approaches 

the total number of dimensions. In the evaluation with a fixed number of 10 informative 

dimension and 30 non-informative dimension (40 dimension in total), MCPA was shown to 

be highly robust to uninformative dimensions and gave significant classification accuracy 

until the ratio between the number of total dimensions and the number of training samples 

approaches ~80% (Figure 2b).

The first control simulation was designed to confirm that when two unconnected populations 

both carry local discriminant information, MCPA would not be sensitive to that piece of 

information. As shown in Figure 2c, MCPA did not show any significant classification 

accuracy above chance (d’ = 0) as k changed. On the other hand, the MVPA classifier that 
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only took the data from local activity showed significant classification accuracy above 

chance level and the performance increased as local discriminant information increased.

The second control simulation was designed to test if MCPA would be insensitive to changes 

in local discriminant information when there was constant information coded in neural 

communication. Local discriminant information was injected into the populations by varying 

the ratio of the standard deviation (k) between the two conditions. When MVPA was applied 

to the local activity, increasing classification accuracy was seen as k became larger (Figure 

2d). This result confirmed that discriminant information was indeed encoded in the local 

activity in the simulation. On the other hand, the performance of MCPA did not change with 

the level of local discriminant information (d’ stayed around 1.65 for all cases, 

corresponding to accuracy = 79%), demonstrating that MCPA is only sensitive to changes in 

information contained in neural interactions.

The final control simulation tested whether MCPA is simply sensitive to the presence of 

functional connectivity between two populations per se or is only sensitive to whether the 

functional connectivity contains discriminant information. Specifically, are local 

discriminant information in two populations, and a correlation between their activity, 

sufficient for MCPA decoding? It should not be, considering that MCPA requires that the 

pattern of the mapping between the populations to change as a factor of the information 

being processed (see Figure 1). The final control simulation was designed to assess whether 

MCPA is sensitive to the case where two populations communicate, but in a way that would 

not imply distributed computational processing. Specifically, neural activity in areas A and B 

were simulated such that local discrimination was possible in each population and the 

activity of the two populations was correlated, but the interaction between them was 

invariant to the information being processed. Figure 2e shows that in this case MCPA did not 

classify the activity above chance, despite significant correlation between the regions and 

significant local classification (MVPA). Thus, functional connectivity between the 

populations is a necessary, but not sufficient, condition for MCPA decoding. Therefore, 

MCPA is only sensitive to the case where the mapping itself changes with respect to the 

information being processed, which is a test of the presence of distributed neural 

computation.

3.2. Single image classification of visual cortex interactions using MCPA

To assess its performance on real neural data, MCPA was applied to Blood-oxygen-level-

dependent (BOLD) fMRI measurements of human occipital visual areas, in two subjects 

(Subject 1 and Subject 2) during passive viewing of 13 repetitions of 120 natural images 

(Kay et al., 2011; Kay et al., 2008; Naselaris et al., 2009). MCPA was used for single-trial 

classification of these images for the interactions between V1–V2, V2–V3, V3–V4, and V4-

lateral occipital (LO) cortex (e.g. 4 total region pairs * 2 subjects; see Figure 5 of Naselaris 

et al. (Naselaris et al., 2009) for depictions of these regions in these subjects). Across the 8 

pairs of regions the mean sensitivity index (d’) of the single trial classification was 0.405 

(s.d. = 0.094), with all of the pairs showing significant classification at p < 0.01 corrected for 

multiple comparisons (permutation test). In both subjects, MCPA classification accuracy 

declined going up the classic visual hierarchy. The classification accuracies are shown in 
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Table 1 and statistical tests for the canonical correlations are reported in the Supplementary 

Results.

3.3. Using MCPA-based RSA to test models of between-area information transformation

One important application of MCPA is to evaluate models and test theoretical hypotheses 

regarding the computational operation underlying how representations are transformed from 

one region to another. MCPA-based representational similarity analysis (RSA) can be used 

to compare the representational space derived from the interaction between brain regions to 

representational spaces derived from the transformation of representations in computational 

models. To illustrate this we compare the representational space for natural images in the 

same fMRI dataset described above to the representational space derived from the 

transformation between layers of the HMAX model of the visual processing stream 

(Riesenhuber and Poggio, 1999; Serre et al., 2007). HMAX has four layers going from S1 to 

C1 to S2 to C2 along the hierarchy. The transformation of the representation between S1 and 

C1 (S1-C1 transformation) occurs through a local, non-linear max-pooling operation and the 

transformation between S2 and C2 (S2-C2 transformation) occurs through a more global 

non-linear max-pooling operation. We compared the representational dissimilarity matrices 

(RDMs) derived from these HMAX transformations to the RDMs derived from MCPA 

between V1–V2, V2–V3, V3–V4, and V4-LO. The transformation between C1 and S2 

occurs through a passive filtering that does not give rise to an RDM because the 

transformation is effectively the same across all C1 representations.

As shown in Figure 3, we found that the RDM derived from the S1-C1 transformation in 

HMAX correlates with the V2–V3 RDM based upon MCPA of the fMRI data (mean 

Spearman’s rho = 0.053, p < 0.05, permutation test). Furthermore, the S1-C1 correlation to 

V2–V3 was significantly greater (p < 0.05, permutation test) than the S2-C2 correlation to 

V2–V3. The RDM derived from the S2-C2 transformation in HMAX correlates with the V4-

LO RDM based upon MCPA of the fMRI data (mean Spearman’s rho = 0.112, p = 0.002, 

permutation test). Furthermore, the S2-C2 correlation to V4-LO was significantly greater (p 

< 0.01, permutation test) than the S1-C1 correlation to V4-LO. Additionally, none of the 

individual layers in HMAX showed a consistent significant correlation with the 

connectivity-based RDM from MCPA. Taken together, these results suggest that the 

interaction between the lower layers of the neural visual hierarchy reflects an operation more 

like the operation between the lower layers of the model of the visual hierarchy than 

between higher layers of the model. Furthermore, the interaction between higher layers of 

the neural visual hierarchy reflects an operation more like the operation between higher 

layers of the model than between lower layers of the model.

3.4. Comparing the between region representation to the local representation

To assess whether the information represented in the between region interactions reflected a 

distinct computational process or merely reflected the representation in either of the 

individual areas, RSA was performed. To increase our power, we performed this RSA at the 

category level (animals, buildings, humans, natural scenes, and textures) based on 

classification accuracy rather than the single image level because the dataset contained many 

more repetitions per category than per image (Figure 4). This yielded a total of 24 
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correlations (8 MCPA-based matrices correlated with each of the two regions that contribute 

to each MCPA and with MVPA that takes the two regions together). 20 out of the 24 

correlations were negative, many showing large negative correlation coefficients (see Table 2 

for details and see Supplementary Results for and effect size calculations [Wilks’λ] and 

statistical tests for the canonical correlations, mean Spearman’s rho = −0.420, s.d. = 0.346). 

In other words, categories that were relatively easy to decode based on the activity within 

regions using MVPA were relatively more difficult to decode based on the shared activity 

between that region and the other regions in the visual stream using MCPA and vice versa 

(Figure 4). This negative correlation suggests that the communication between regions 

represents information that has not been explained aspects by local computational processes.

3.5. Comparing MCPA to PPI

To demonstrate the dominance of MCPA over classical univariate methods, we applied PPI 

to the same data to analyze categorical effective analysis between neighboring areas. As a 

comparison, 80 different pairs of categories (10 pairs of categories * 4 pairs of regions * 2 

subjects) were analyzed using both PPI and MCPA. 4/80 PPI results were significant with p 

< 0.05 (uncorrected), while 13/80 MCPA results were significant with p < 0.05 

(uncorrected). As a result, the number of significant MCPA results is significantly larger 

than the number of significant PPI results (p < 0.01, permutation test). Note that it is not 

clear how many of these 80 different pairs of categories are expected to be classifiable given 

that the regions examined are not category sensitive, other than LO. Thus, it is not clear if 

13/80 is close to the number of category pairs that would be classifiable with perfect data or 

if this is a low percentage of that number, but the key point in the context of validating 

MCPA is that MCPA is more sensitive than univariate (PPI) methods.

3.6. Single face identity classification of OFA-FFA interactions using MCPA

To further assess its performance on electrophysiological data, MCPA was applied on 

intracranial electroencephalography (iEEG) data recorded from OFA and FFA in one human 

epileptic patient during a visual perception task (see Figure 5a for the electrode locations). 

MCPA was applied in the classification between each possible pair of faces. Previous studies 

on the timecourse of face individuation (Ghuman et al., 2014) have demonstrated that the 

250–450 ms time window is critical for the processing of face individuation information. For 

MCPA, as shown in Figure 5b, with a chance level of d’ = 0 and corresponding accuracy = 

50%, the classification accuracy was significantly above chance level across that time 

window (averaged d’ = 0.14, mean classification accuracy 52.7%, p < 0.01, permutation 

test). The CCA weights for the FFA and OFA are plotted in Figure 5c, showing that 15–30 

Hz in FFA and 25–40 Hz in OFA contributed most strongly to their interaction in response 

to individual faces, suggesting that there may be a degree of cross-frequency coupling 

involved in the OFA-FFA coding for faces. Using MVPA, classification accuracy was 

significantly above chance level across that time window in FFA (averaged d’ = 0.42, mean 

accuracy 58%, p < 0.01, permutation test), replicating previous reports (Ghuman et al., 

2014), classification accuracy was also above chance level across that time window in OFA 

(averaged d’ = 0.13, mean accuracy 52.6%, p < 0.05, permutation test). In the early time 

window (50 – 250 ms), MCPA did not show significant classification accuracy (averaged d’ 
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= 0.116, mean accuracy 51.6%, p > 0.1, permutation test). See Supplementary Results for 

statistical testing of the single face canonical correlation models.

As a control analysis, we took a contact outside of the fusiform gyrus that did not show face 

sensitivity and performed the same analysis between the control contact and the OFA and 

FFA contacts. As shown in Figure 5b, the averaged d’ of MCPA between the control contact 

and both the OFA and FFA contacts was not significant above chance level (d’ = 0.074 for 

control & FFA, accuracy = 51.2%, d’ = 0.012 for control & OFA, accuracy = 50.3%, both p 

> 0.1, permutation test).

With the caveat that the effect size is small, the results support the hypothesis individual 

level face information is represented in the OFA-FFA interaction pattern.

4. Discussion

This paper presents a novel method to assess the information represented in the patterns of 

interactions between two neural populations. MCPA works by learning the mapping between 

the activity patterns from the populations from a training data set, and then classifying the 

neural communication pattern using these maps in a test data set. Simulated data 

demonstrated that MCPA was sensitive to information represented in neural interaction for 

realistic SNR ranges. Furthermore, MCPA is only sensitive to the discriminant information 

represented through different patterns of interactions irrespective of the information encoded 

in the local populations. Applying this method to fMRI data demonstrated that the 

multivariate connectivity patterns between areas along the visual stream represent 

information about individual natural images. MCPA-based RSA showed that, at the category 

level, the representational structure of the interaction between regions is negatively 

correlated to the representational structure locally within each region. Furthermore, MCPA 

was used to test hypotheses from the HMAX model regarding the computational operation 

that transforms the representation between regions along the visual processing pathway. 

Finally, as an example with electrophysiological data, applying MCPA to iEEG data showed 

that the multivariate connectivity pattern between OFA and FFA represents information at 

the level of individual faces.

One practical consideration with MCPA is that CCA generally requires the number of trials 

to be substantially larger than the number of variables in the two areas. This is often not the 

case in neuroscientific studies and therefore dimensionality reductions may be required. In 

the optimal case, this dimensionality reduction would be performed in the canonical space 

reducing the number of canonical variables used in MCPA-based classification. However, 

we find that performing a PCA to reduce dimensionality prior to CCA generally performs 

better than reducing the dimensionality in the canonical space, which is in line with previous 

in neuroscientific studies using CCA (Karageorgiou et al., 2012; Smith et al., 2015). While it 

is not entirely clear why PCA before CCA performs better than dimensionality reduction 

using CCA alone, it is likely because CCA is known to be very sensitive to noise (Anderson, 

1958; Gittins, 1985) and using PCA for dimensionality reduction can have the added benefit 

of noise reduction.
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4.1. MCPA as assessing adaptive processing

Significant discrimination within each population and significant functional connectivity 

between them is not sufficient to produce MCPA and indeed local classification within each 

population is not even necessary (Figures 2a and 2e respectively). MCPA requires the 

pattern of connectivity (linear correlations) between the two populations to vary across the 

different conditions. In other words, MCPA is sensitive to both the degree of functional 

connectivity in the conditions and how distinct the mappings are across conditions. As an 

example, if the two populations interact, but the interaction behaves like a passive linear 

filter, mapping the activity between the populations in a similar way in all conditions, MCPA 

would not be sensitive to the interaction because the mapping does not change (Figure 2e). 

Instead, MCPA is more akin to testing for non-constant linear filtering or distributed, 

interactive computation that behaves as a non-linear process where the nature of the 

interaction adapts (from a linear perspective) as a factor of the information that is being 

processed. Recent studies demonstrate that neural populations in perceptual areas alter their 

response properties based on context, task demands, etc. (Gilbert and Li, 2013). These 

modulations of response properties suggest that lateral and long-distance interactions are 

adaptive and dynamic processes responsive to the type of information being processed. In 

this context adaptive is meant purely in the sense that the linear transformation between the 

multivariate activity in the two regions change as a factor of condition. As noted previously, 

this is equivalent to a non-linear filter and “adaptive” denotes that information is added to 

the representation in an information theoretic sense. Adaptive not necessarily imply active 

changing of connections in a neuroscientific sense. This type of adaptation can occur 

through a passive non-linear transfer function that accounts for the stimulus condition and 

the structural connectivity certainly does not change in the timeframes measured in 

functional neuroscientific studies. MCPA provides a platform for examining the role of 

interregional connectivity patterns in this type of adaptive process. Indeed, MCPA can be 

interpreted as testing whether distributed computational “work” is being done in the 

interaction between the two populations (Friston et al., 1997) and the interaction does not 

just reflect a passive relay of information between two encapsulated modules (Fodor, 1983).

Passive linear filters do not allow for information to be added to the representation through 

computational work being done in the interaction between regions. Sensitivity to this type of 

computation is a central appeal of fully non-linear models of neural representation and 

neural interactions, such as deep neural network approaches. However, these approaches 

often require tens of thousands or even millions of trials before they achieve good 

performance (Goodfellow et al., 2017), which is impractical for most neuroscientific 

applications. MCPA is not sensitive to multivariate non-linear interactions within conditions, 

but is sensitive to multivariate non-linear relationships between the interregional interaction 

pattern and the conditions. This is effectively a piecewise linear approximation of the 

underlying nonlinear function relating the condition space to the interaction pattern between 

regions. This restriction relative to deep neural network and other non-linear function 

approximation approaches allows MCPA to perform well with reasonable numbers of trials 

(10s of trials in our examples), which is critical for being practically useful in neuroscience. 

Thus, one strength of MCPA is the ability to capture some key aspects of non-linear neural 

computations without requiring an impractical amount of data.
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4.2. MCPA and representation space

In addition to allowing one to infer whether distributed computational work is being done in 

service of information processing, MCPA provides a platform for assessing its 

representational structure (Haxby et al., 2014). Much as MVPA has been used in 

representational similarity analyses to measure the structure of the representational space at 

the level of local neural populations (Edelman et al., 1998; Kriegeskorte, 2011; Kriegeskorte 

and Kievit, 2013), MCPA can be used to measure the structure of the representational space 

at the level of network interactions. Specifically, the representational geometry of the 

interaction can be mapped in terms of the similarity among the multivariate functional 

connectivity patterns corresponding to the brain states associated with varying input 

information. The representational structure can be compared to behavioral measures of the 

structure to make brain-behavior inferences and assess what aspects of behavior a neural 

interaction contributes to. It can also be compared to models of the structure to test 

theoretical hypotheses regarding the computational role of the neural interaction 

(Kriegeskorte, 2011; Kriegeskorte et al., 2008). By comparing the representational space in 

models to the neural representation, one can assess how well these models approximate the 

neural representation in both absolute and relative terms. Much the way MVPA-based RSA 

analyses have been used to examine these models at the level of individual brain regions 

(Kriegeskorte et al., 2008), RSA analyses can be used to assess how well the representation 

inferred by these models’ transfer functions fit the representation measured in the brain 

using MCPA.

The MCPA-based RSA analysis presented here relating the representational space derived 

from the interaction between regions of the visual processing stream to the transformation 

operations in HMAX is a concrete example of how MCPA can be used to test models of how 

representations are transformed between regions. This example also helps illustrate the 

underlying hypothesis being tested by MCPA: that there is a non-constant linear function 

that relates how the transformation of the activity between regions changes with respect to 

the experimental condition. A non-constant linear function is analogous to a local linear 

approximation of a non-linear function, as we have seen in the example of HMAX. The 

existence of this non-constant linear function is what allows for information to be added to 

the representation through distributed computational work. By comparing the MCPA-based 

representational space to models of this function, we can gain insight into what this 

transformation function might be. For example, in the case of the S1-C1 transformation 

HMAX, this function is a local, non-linear max-pooling operation and in the case of the S2-

C2 operation it is a more global, non-linear max-pooling operation (Riesenhuber and 

Poggio, 1999). Furthermore, this is why MCPA could not be compared to the transformation 

between the C1 and S2 layers of the HMAX model because the transformation between 

those layers is a passive filter operation, e.g. a trivial, constant linear function relating the 

between layer transformation to the stimulus condition. This example suggests one 

mechanism by which a network with fixed structural connectivity can give rise to adaptive 

communication, namely through a non-linear transformation operation that are adaptive in a 

linear sense. In addition to testing specific hypothesis-driven transformation operations, such 

as the ones in HMAX, more data-driven models of the transformation operations, such as 
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ones in deep neural network models (Yamins et al., 2014), could also be tested using the 

MCPA-based RSA approach.

4.3. Relationship between MCPA and other functional connectivity/multivariate methods

These two properties of MCPA, 1) being able to assess distributed computational processing 

rather than just whether or not areas are communicating and 2) being able to determine the 

representational structure of the information being processed, set MCPA apart from 

previously proposed functional connectivity methods. In these previous methods the 

functional connectivity calculation is performed separately from the classification 

calculation. Specifically, either functional connectivity is first calculated using standard 

methods, then a model is built on the population of connectivity values and this model is 

tested using classification approaches (Finn et al., 2015; Richiardi et al., 2011; Rosenberg et 

al., 2016; Shirer et al., 2012; Wang et al., 2015) or the model is first built on the activity in 

each region and tested using classification approaches and the classification performance is 

correlated (Coutanche and Thompson-Schill, 2013; Kriegeskorte and Kievit, 2013). These 

methods are very useful for assessing how differences in large-scale patterns of connectivity 

relate to individual subject characteristics (e.g. connectome fingerprinting) in the first case 

and comparing the representational structure between regions in the second case. In contrast, 

in MCPA the model is the connectivity map and classification is done to directly test the 

information contained in these maps. The separation of the connectivity and classification 

calculations in other approaches precludes being able to assess distributed computational 

processes because these methods are sensitive to passive information exchange between 

encapsulated modules, as described above, and thus conflate passive and adaptive 

communication. Critically, they do not specifically probe how connectivity patterns change 

as a factor of condition or state, as is required to efficiently perform the representational 

similarity analysis in a practical manner and decode how the information processed in the 

interaction is encoded and organized. As a concrete example, these previous methods would 

not be able to compare the representational structure of the neural interaction between 

regions to the structure from a computational model, as was done here with fMRI.

MCPA can be roughly considered a multivariate extension of PPI with the addition of a 

prediction and classification framework. Compared to PPI, which is univariate, MCPA 

allows one to exploit the multivariate space of interaction patterns. As a result, MCPA is 

sensitive to aspects of information coded in interregional interactions that PPI may not be 

able to detect (Norman et al., 2006), for example in event-related fMRI designs where PPI is 

known to lack statistical power (O'Reilly et al., 2012). Indeed, in the fMRI data presented 

here, PPI was no better than chance in detecting interregional interactions at the visual 

category level, whereas MCPA was significantly better than chance. Much the way MVPA 

allows one to go beyond ANOVAs/t-tests in a single area/population (e.g. single trial 

classification, RSA, complex model testing), MCPA allows one to go beyond PPI and do 

these types of analyses at the level of the shared activity between regions.

The specific instantiation of MCPA presented here treats connectivity as a bi-directional 

linear mapping between two populations. However, the MCPA framework could be easily 

generalized into more complicated cases. For example, instead of using correlation-based 
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methods like CCA, other directed functional connectivity algorithms, such as Granger 

causality based on an autoregressive framework, potentially using partial CCA for the time-

lagged autoregressive step, could be used to examine directional interactions. This would 

allow one to examine time-lagged multivariate connectivity patterns to infer directionality. 

Additionally, kernel methods, such as kernel CCA (Hardoon et al., 2004), or deep learning 

methods, such as deep CCA (Andrew et al., 2013), could be applied to account for non-

linear interactions. Another possible and more general framework would be to use non-

parametric functional regression method to build a functional mapping between the two 

multidimensional spaces in the two populations. MCPA can also be expanded to look at 

network-level representation by implementing the multiset canonical correlation analysis, 

wherein the cross-correlation among multiple sets of activity patterns from different brain 

areas is calculated (Kettenri.Jr, 1971). MCPA could be used with a dual searchlight approach 

to examine whole brain communication (Kriegeskorte et al., 2006). Also, MCPA could be 

adapted by optimizing the CCA to find the connectivity maps that uniquely describe, or at 

least best separate, the conditions of interest. Furthermore, both with and without these 

modification, the framework of MCPA may have a number of applications outside of 

assessing the representational content of functional interactions in the brain, such as 

detecting the presence of distributed processing on a computer network, or examining 

genetic or proteomic interactions. MCPA is used here with fMRI BOLD signals and iEEG 

signal, but it can be applied to nearly any neural recording modality, including scalp 

electroencephalography, magnetoencephalography, multiunit firing patterns, single unit 

firing patterns, spike-field coherence patterns, to assess the information processed by cross-

frequency coupling, etc.

4.4. Limitations and implication from MCPA results

One caveat with the MCPA results with real data presented here is that many of the effect 

sizes are small. One likely reason for this is that for the decoding of individual images in 

fMRI and faces in iEEG the number of trials per image was very small (13 for individual 

images in fMRI and 15 for individual faces in iEEG). Despite the small number of trials, the 

classification accuracy is roughly on a par with previous exemplar-level individuation 

classification results using fMRI and iEEG (Ghuman et al., 2014; Nestor et al., 2011; Said et 

al., 2010; Skerry and Saxe, 2014). Furthermore, the HMAX-MCPA correlation is roughly on 

par with previously reported correlations between HMAX and single unit activity from non-

human primates (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2013). Given a 

larger number of trials, MCPA classification performance should improve. The classification 

performance seen here can be considered a “worst case scenario” to some extent given the 

low number of trials and yet performance still was not far below what has been previously 

reported using multivariate classification on these types of data. Nonetheless, the low effect 

size and small number of subjects reported here is a strong caveat to the potential 

neuroscientific interpretation of the fMRI and iEEG data.

The MCPA results from visual cortex show that the representational space derived from 

MCPA was negatively correlated to the representational space derived from MVPA from 

either of the local populations. This inverse relationship is consistent with the idea that the 

communication between regions represents information that has not been explained by local 
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computational processes. With the strong caveat that these results require replication in more 

subjects and assessment with paradigms designed to directly test these hypotheses, this 

negative correlation is consistent with the hypothesis that neural interactions code for 

information not resolved in local computational processes (Friston, 2010; Lee and Mumford, 

2003; Rumelhart et al., 1986).

The current prevalent view is that face perception is mediated by a distributed network with 

multiple brain areas including the OFA and FFA. Structural and functional connectivity 

analysis for the core network has shown that FFA is strongly connected to OFA (Gschwind 

et al., 2012; Ishai, 2008; Pyles et al., 2013). While these results suggest the hypothesis that 

face individuation may involve the interaction between these populations (and likely other 

face processing regions), direct evidence for this hypothesis has been lacking. Our results 

here support the hypothesis that individual-level facial information is not only encoded by 

the activity within certain brain populations, but also represented through recurrent 

interactions between multiple populations at a network level. This interaction was biased 

towards frequencies in the Beta and low Gamma bands and exhibited a degree of cross-

frequency coupling. This analysis indicates that assessing cross-frequency interactions 

between regions is another potential application of MCPA. In addition, MCPA showed 

significant face individuation in approximately the 200 – 500 ms time window after stimulus 

onset, but did not show any significant face individuation in the early time window (50 – 200 

ms after stimulus onset), which is consistent with a previous MVPA study based on iEEG 

recording from FFA only (Ghuman et al., 2014). More broadly, the fMRI and iEEG MCPA 

results suggest that the computational work done in service of visual processing occurs not 

only on the local level, but also at the level of distributed brain circuits.

5. Conclusion

Previously, multivariate pattern analysis methods have been used to analyze the sensitivity to 

information within a certain area and functional connectivity methods have been used to 

assess whether or not brain networks participate in a particular process. With MCPA, the two 

perspectives are merged into one algorithm, which extends multivariate pattern analysis to 

enable the detailed examination of information sensitivity at the network level. Thus, the 

introduction of MCPA provides a platform for examining how computation is carried out 

through the interactions between different brain areas, allowing us to directly test hypotheses 

regarding circuit-level information processing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of the connectivity map and classifier of MCPA
The MCPA framework is demonstrated as a two-phase process: learning and testing. Top 
left: an illustration of the learned functional information mapping between two populations 

under condition 1. The representational state spaces of the two populations are shown as two 

planes and each pair of blue and red dots correspond to an observed data point from the 

populations. The functional information mapping is demonstrated as the colored pipes that 

project points from one space onto another (in this case, a 90 degree clockwise rotation). 

Bottom left: an illustration of the learned functional information mapping between two 

populations under condition 2 (in this case, a 90 degree counterclockwise rotation). Top 
right: an illustration of the predicted signal by mapping the observed neural activity from 

one population onto another using the mapping patterns learned from condition 1. The real 

signal in the second population is shown by the red dot. Bottom right: an illustration of the 

predicted signal by mapping the observed neural activity from one population onto another 

using the mapping patterns learned from condition 2. In this case, MCPA would classify the 

activity as arising from condition 1 because of the better match between the predicted and 

real signal.
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Figure 2. Synthetic data and control simulation experiments
The mean and standard error for 100 simulation runs are plotted. The horizontal gray line 

corresponds to chance level (d’ = 0). The dashed line (d’ = 0.42, corresponding accuracy 

58.5%) corresponds to the chance threshold, p = 0.01, based on a permutation test. The 

maximum possible d’ = 4.65 (equivalent to 99% accuracy because the d’ for 100% accuracy 

is infinity). (a) The sensitivity of MCPA for connectivity between two populations as a 

factor of SNR and the number of effective dimensions in each population. MCPA was 

applied to synthetic data, where two conditions had different patterns of functional 

connectivity (measured by SNR and dimensionality). Performance of MCPA was 
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significantly higher than chance level when SNR > −5 dB and the number of dimensions > 

2. Performance of MCPA saturated to maximum when SNR > 5 dB and the number of 

dimensions > 10. (b) The robustness of MCPA to non-informative dimensions. The signal 

was generated in a lower dimensional manifold (# dim = 10), and P = 30 non-informative 

dimensions were added to the space. # of (training) samples per condition is changing 

between 40 and 300. (c) The insensitivity of MCPA when there is variable local discriminant 

information, but no circuit-level information (control case 1). MCPA and MVPA were 

applied to control case 1. The SNR was fixed at 0 dB and the number of dimensions is fixed 

at 10 for panels b, c, and d. k corresponds to the ratio of the standard deviations of the two 

conditions in panels b, c, and d. (d) The insensitivity of MCPA to changes in local 

discriminant information with fixed circuit-level information when there is both local and 

circuit-level information (control case 2). (e) The insensitivity of MCPA to variable local 

discriminant information when the circuit-level activity is correlated, but does not contain 

circuit-level information about what is being processed (control case 3).
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Figure 3. Correlating MCPA and HMAX
Correlation coefficients between the between-layer connectivity patterns in HMAX (S1-C1, 

and S2-C2) and the between-area connectivity patterns in fMRI data extracted by MCPA 

(V1–V2, V2–V3, V3–V4, and V4-LO) were plotted. The correlation was evaluated by 

Spearman’s rank correlation coefficients. For S1-C1, correlation peaked at V2–V3, mean 

Spearman’s rho = 0.053 (* p = 0.036, permutation test within each subject, and p-values 

were combined using Fisher’s method). For S2-C2, correlation peaked at V4-LO, mean 

Spearman’s rho = 0.112 (** p = 0.001, permutation test within each subject, and p-values 

were combined using Fisher’s method).
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Figure 4. MCPA and MVPA results for fMRI categorical data
RSA results based on MCPA and MVPA for V1, V2, V3, V4, and LO from Subjects 1 and 2. 

Categories: A-animals, B-buildings, H-humans, S-natural scenes, T-textures. Row 1: RSA 

based on MCPA for V1–V2, V2–V3, V3–V4, and V4-LO of Subject 1, each entry represents 

the classification accuracy between the corresponding categories; Row 2: RSA based on 

MVPA with two ROIs at a time (V1–V2, V2–V3, V3–V4, and V4-LO) of Subject 1, each 

entry represents the classification accuracy between the corresponding categories; Row 3: 
RSA based on MVPA with one ROI at a time (V1, V2, V3, V4, and LO) of Subject 1, each 

entry represents the classification accuracy between the corresponding categories; Row 4: 
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RSA based on MCPA for V1–V2, V2–V3, V3–V4, and V4-LO of Subject 2, each entry 

represents the classification accuracy between the corresponding categories; Row 5: RSA 

based on MVPA with two ROIs at a time (V1–V2, V2–V3, V3–V4, and V4-LO) of Subject 

2, each entry represents the classification accuracy between the corresponding categories; 

Row 6: RSA based on MVPA with one ROI at a time (V1, V2, V3, V4, and LO) of Subject 

2, each entry represents the classification accuracy between the corresponding categories. 

(chance level: accuracy = 50%).
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Figure 5. iEEG experiments and MCPA results
(a) Location of the electrodes of interest. The blue dot corresponds to the location of the 

FFA contact while the red dot corresponds to the location of the OFA contacts. (b) MCPA 

applied between (1) the OFA and FFA channels, (2) the FFA channel and the control 

channel, (3) the OFA channel and the control channel. The mean d’ of pairwise face 

classification over all 2415 pair of faces across the 200–500 ms timewindow after stimulus 

onset is plotted. * p < 0.01, permutation test. (c) Averaged absolute loading weights in the 

functional connectivity model of MCPA for OFA and FFA across the frequency spectrum 

during the time window of 250–450 ms after stimulus onset. (chance level: d’ = 0, accuracy 

= 50%)
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Table 1

Mean d’ and classification accuracy of MCPA for Subject 1 and Subject 2 (chance level: d’ = 0, accuracy = 

50%)

Subject 1

ROI1–ROI2 V1–V2 V2–V3 V3–V4 V4-LO

d’ 0.477 0.443 0.408 0.319

accuracy 58.5% 57.9% 57.3% 55.7%

Subject 2

ROI1–ROI2 V1–V2 V2–V3 V3–V4 V4-LO

d’ 0.589 0.470 0.330 0.271

accuracy 60.3% 58.5% 55.9% 54.9%
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Table 2

Spearman’s rank correlation coefficients between MCPA of ROI1–ROI2 and MVPA of ROI1–ROI2 in 

Subjects 1 and 2.

Subject 1

ROI1–ROI2 V1–V2 V2–V3 V3–V4 V4-LO

MVPA (both ROIs) 0.333 −0.527 −0.576 −0.309

MVPA (ROI1 only) 0.333 −0.055 −0.721 −0.442

MVPA (ROI2 only) 0.176 −0.370 −0.491 −0.442

Subject 2

ROI1–ROI2 V1–V2 V2–V3 V3–V4 V4-LO

MVPA (both ROIs) −0.685 −0.673 −0.479 −0.527

MVPA (ROI1 only) −0.539 −0.758 −0.782 −0.539

MVPA (ROI2 only) −0.855 −0.794 −0.418 0.055
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