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Raphaël Liégeoisa,1, Timothy O. Laumannb, Abraham Z. Snyderb,c, Juan Zhoud, B.T. Thomas Yeoa,d,e

aDepartment of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for
Neurotechnology and Memory Networks Program, National University of Singapore, Singapore
bDepartment of Neurology, Washington University School of Medicine, St. Louis, MO, USA
cDepartment of Radiology, Washington University School of Medicine, St. Louis, MO, USA

dCentre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
eMartinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA

Abstract

Resting-state functional connectivity is a powerful tool for studying human functional brain networks. Temporal fluc-
tuations in functional connectivity, i.e., dynamic functional connectivity (dFC), are thought to reflect dynamic changes
in brain organization and non-stationary switching of discrete brain states. However, recent studies have suggested
that dFC might be attributed to sampling variability of static FC. Despite this controversy, a detailed exposition of
stationarity and statistical testing of dFC is lacking in the literature. This article seeks an in-depth exploration of these
statistical issues at a level appealing to both neuroscientists and statisticians.

We first review the statistical notion of stationarity, emphasizing its reliance on ensemble statistics. In contrast, all
FC measures depend on sample statistics. An important consequence is that the space of stationary signals is much
broader than expected, e.g., encompassing hidden markov models (HMM) widely used to extract discrete brain states. In
other words, stationarity does not imply the absence of brain states. We then expound the assumptions underlying the
statistical testing of dFC. It turns out that the two popular frameworks - phase randomization (PR) and autoregressive
randomization (ARR) - generate stationary, linear, Gaussian null data. Therefore, statistical rejection can be due to non-
stationarity, nonlinearity and/or non-Gaussianity. For example, the null hypothesis can be rejected for the stationary
HMM due to nonlinearity and non-Gaussianity. Finally, we show that a common form of ARR (bivariate ARR) is
susceptible to false positives compared with PR and an adapted version of ARR (multivariate ARR).

Application of PR and multivariate ARR to Human Connectome Project data suggests that the stationary, linear,
Gaussian null hypothesis cannot be rejected for most participants. However, failure to reject the null hypothesis does
not imply that static FC can fully explain dFC. We find that first order AR models explain temporal FC fluctua-
tions significantly better than static FC models. Since first order AR models encode both static FC and one-lag FC,
this suggests the presence of dynamical information beyond static FC. Furthermore, even in subjects where the null
hypothesis was rejected, AR models explain temporal FC fluctuations significantly better than a popular HMM, sug-
gesting the lack of discrete states (as measured by resting-state fMRI). Overall, our results suggest that AR models are
not only useful as a means for generating null data, but may be a powerful tool for exploring the dynamical properties
of resting-state fMRI. Finally, we discuss how apparent contradictions in the growing dFC literature might be reconciled.

Keywords: stationarity, linear dynamical systems, brain states, dynamic FC, surrogate data, autoregressive model.

1. Introduction

The human brain exhibits complex spatiotemporal pat-
terns of activity fluctuations even during the resting-state
(Greicius et al., 2003; Damoiseaux et al., 2006; Smith et al.,
2013b). Characterizing the structure of these fluctuations
is commonly done via functional connectivity (FC) analy-
ses of resting-state fMRI (rs-fMRI) data (Van Den Heuvel
and Pol, 2010; Buckner et al., 2013). The most common
FC measure is the Pearson correlation between brain re-
gional time courses (Biswal et al., 1995; Vincent et al.,
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2006; Dosenbach et al., 2007; Buckner et al., 2009; Za-
lesky et al., 2010; Power et al., 2011; Yeo et al., 2011,
2014; Margulies et al., 2016), although other measures,
such as partial correlation (Fransson and Marrelec, 2008;
Spreng et al., 2013) or mutual information (Tsai et al.,
1999; Tedeschi et al., 2005; Chai et al., 2009) have been
utilized. These FC measures are static in the sense that
they are invariant to temporal re-ordering of fMRI time
points, thus ignoring temporal information that might be
present in fMRI (Theiler et al., 1992; Oppenheim and Will-
sky, 1997).

In contrast, recent work on dynamic functional con-
nectivity (dFC) suggests that there might be important
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information beyond static FC, e.g., in the temporal fluc-
tuations of FC or in models taking into account the tem-
poral ordering of fMRI time series (see Hutchison et al.
(2013a); Calhoun et al. (2014); Preti et al. (2016) for re-
cent reviews). To interrogate dFC, sliding window corre-
lations (SWC) is by far the most common method in hu-
man (Sakoğlu et al., 2010; Handwerker et al., 2012; Hutchi-
son et al., 2013b; Allen et al., 2014; Leonardi et al., 2014;
Liégeois et al., 2016; Wang et al., 2016) and animal studies
(Grandjean et al., 2017), although many alternative ap-
proaches have been proposed (Majeed et al., 2011; Smith
et al., 2012; Lindquist et al., 2014; Karahanoğlu and Van
De Ville, 2015; Shine et al., 2015).

To assess the statistical significance of dFC, randomiza-
tion frameworks are typically used to generate null data.
Null hypothesis testing can then be performed by com-
paring statistics from the original data against those from
the null data. The two most popular randomization frame-
works are autoregressive randomization (ARR) (Chang and
Glover, 2010; Zalesky et al., 2014) and phase randomiza-
tion (PR) (Handwerker et al., 2012; Allen et al., 2014;
Hindriks et al., 2016). While most papers reported the re-
jection of the null model (Chang and Glover, 2010; Handw-
erker et al., 2012; Zalesky et al., 2014), recent studies have
suggested difficulties in rejecting the null model, especially
in single subject data (Hindriks et al., 2016; Laumann
et al., 2016).

The observed dFC has also been interpreted by many
authors as evidence of non-stationary switching of discrete
brain states (Allen et al., 2014; Hansen et al., 2015). These
states have been associated with mental disorders (Dama-
raju et al., 2014; Rashid et al., 2014; Su et al., 2016;
Du et al., 2016), as well as variation in intra-individual
and inter-individual differences in vigilance, consciousness
and executive function (Barttfeld et al., 2015; Nomi et al.,
2017; Shine et al., 2016; Wang et al., 2016). In contrast,
some have suggested that the brain (as measured by rs-
fMRI) might not be undergoing sharp transition between
discrete states (Leonardi et al., 2014) or that dFC fluctua-
tions might largely reflect sampling variability (Laumann
et al., 2016).

Contributing to the possible confusion in the literature
is the loose use of the term “stationarity” (e.g., Hutchison
et al., 2013a; Allen et al., 2014; Zalesky and Breakspear,
2015; Preti et al., 2016). For example, Hutchison and col-
leagues (Hutchison et al., 2013a) equated static FC and
dFC analyses with assumptions of stationarity and non-
stationarity respectively. However, the very same review
cautioned that a stationary process can exhibit tempo-
ral fluctuations in an FC metric, such as SWC (Hutchison
et al., 2013a). Since null data generation frameworks (e.g.,
PR and ARR) were developed based on strict statistical
definitions of stationarity (Tucker et al., 1984; Efron and
Tibshirani, 1986), the loose usage of statistical terminolo-
gies impedes our understanding of dFC. To the best of
our knowledge, issues of stationarity and assumptions of
null data generation frameworks (PR and ARR) are often

briefly mentioned, but not discussed in detail in the lit-
erature. Exploring these issues in-depth leads to several
surprising conclusions.

We begin by clarifying our definitions of several com-
mon dFC terms, such as “static”, “dynamics” and “time-
varying” (Section 2). A proper explanation of “station-
arity” requires more background knowledge. Therefore in
the following section, we review random variables, ran-
dom processes, and weak-sense stationarity, as well as how
fMRI can be conceptualized as a random process (Section
3). We then show that a two-state hidden Markov model
(HMM; Rabiner, 1989) process is actually stationary, sug-
gesting that stationarity does not necessarily imply the ab-
sence of brain states (Section 4). In the following section,
assumptions behind PR and ARR are discussed, revealing
that both PR and AR generate null data that are linear,
stationary and Gaussian. Therefore rejection of the PR
and ARR null models does not imply non-stationarity. Im-
portantly, AR models encode dynamical interactions be-
tween brain regions, above and beyond static FC (Section
5). Experiments on the Human Connectome Project data
suggests that the PR and ARR null models cannot be re-
jected for most low motion participants, and that bivariate
ARR (a common variant of ARR) can yield false positives
(Section 6). Furthermore, multivariate AR models repli-
cate the rich dynamics of SWC significantly better than
just models of static FC, as well as commonly used HMM-
type models that explicitly encode discrete brain states
(Section 7). We conclude with a discussion of how these
results can be reconciled with the growing literature on
dFC (Section 8).

While our experiments focused on SWC, almost all the
issues we discuss apply to other dFC methods. In addition,
it is worth distinguishing dFC (second order statistics)
from dynamic fMRI activity level (first order statistics).
From the earliest days of resting-state fMRI, the question
of dynamic fMRI activity level during resting-state and its
relationship with behavior has been of great interest (Fox
et al., 2006, 2007; Kucyi et al., 2016). Many of the issues
that we raised in this manuscript also apply to the study
of dynamic activity level. Therefore we will point out rel-
evant lessons to dynamic activity level as and when they
arise.

2. Clarification of “static”, “dynamic” and “time-
varying”

In the literature, the terms “static”, “dynamic” and
“time-varying” are often not explicitly defined. For ex-
ample, some authors use the terms “dynamic” and “time-
varying” interchangeably. Here we clarify our definitions
of these terms, to ensure internal consistency within this
manuscript. While we believe our definitions are reason-
able, other researchers might prefer different definitions.

First, as mentioned in the introduction, we reserve the
term “static” to refer to models or measures that are in-
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Terms Explanations Details

First order
statistics

Statistics based on the random variable raised to the power of 1, e.g., E(x) or mean,
activity level of event-related fMRI responses.

Sec. 1; 3.1

Second order
statistics

Statistics based on the random variable raised to the power of 2, e.g., E(x2), variance,
Pearson’s correlation.

Sec. 1; 3.1

Static A static measure or model is invariant to temporal re-ordering of the data points, e.g.,
Pearson’s correlation, mean.

Sec. 2

Dynamic A dynamic measure or model is affected by temporal re-ordering of the data points,
e.g., autocorrelation, lagged covariance, sliding window correlations. A model can be
both dynamic and stationary.

Sec. 2

Time-varying Time-varying measures encode fluctuations over time (e.g., sliding window correlations),
while time-varying models have parameters that are functions of time (e.g., GARCH;
Bollerslev, 1986). Importantly, stationary processes may exhibit time-varying properties
within a single realization. Some dFC literature used the terms “dynamic” and “time-
varying” interchangeably. Here we specifically distinguish between the two terms.

Sec. 2

Sample
statistics

Statistics computed from a single realization of a random process. Most statistics
computed from fMRI time series are sample statistics.

Sec. 3.3

Ensemble
statistics

Statistics computed across different realizations of the same random process. We usually
don’t have access to ensemble statistics in fMRI.

Sec. 3.3

Stationary A random process is weak-sense stationary if its first and second order ensemble statis-
tics are constant in time. A stationary process may still exhibit meaningful fluctuations.
The space of stationary signals is much larger than one might expect. For example, the
hidden Markov model is stationary.

Sec. 3.2

Ergodic A random process is ergodic if its ensemble statistics are equal to the corresponding
sample statistics.

Sec. 3.3

Brain state In the context of dFC, brain states often refer to distinct FC patterns obtained by
clustering SWC time series. There is often an implicit assumption of sharp transition
between brain states.

Sec. 4; 8.5

One-lag
covariance

The one-lag covariance between two time series is the covariance between the two time
series after shifting one of the two time series by one time point.

Sec. 5.1

Autoregressive
model

The p-th order autoregressive model assumes the signal at time t is a linear combination
of the signal at the p previous time points. The first order autoregressive model exactly
encodes both static FC and one-lag covariance.

Sec. 5.2

Table 1: Glossary of different key concepts used in this paper.

variant to temporal re-ordering of the data points (Theiler
et al., 1992). This is in contrast to “dynamic” models or
measures that are not invariant to temporal re-ordering.
These definitions are consistent with the systems theory
literature that have abundantly documented the proper-
ties of static (or memoryless) versus dynamical models
(e.g., Section 2.2.4 of Theiler et al., 1992; Oppenheim and
Willsky, 1997). Finally, “time-varying” measures encode
fluctuations over time, while “time-varying” models have
parameters that are functions of time (Liégeois, 2015).

For example, Pearson’s correlation of the entire fMRI
time courses is static because permuting the ordering of
the fMRI frames results in the same values. On the other
hand, one-lag covariance (e.g., Eq. (2) in Section 5.1) is
dynamic, but not time-varying. 0-th order autoregres-
sive models are static, while higher order autoregressive
models are dynamic (see Section 5.2). Similarly, the pa-
rameters of the HMM (Rabiner, 1989) and neural mass
models (Deco et al., 2011) are not time-varying, although

they are both dynamic models. SWC and generalized au-
toregressive conditional heteroscedastic (GARCH) model
(Bollerslev, 1986; Lindquist et al., 2014) are dynamic and
time-varying.

It is worth mentioning that the dFC literature does
not typically include lagged covariance as examples of dy-
namic FC and might often equate time-varying FC with
dynamic FC. Here we distinguish between dynamic and
time-varying because an important result in this article
is that first order autoregressive model is able to explain
time-varying SWC during resting-state fMRI very well (Sec-
tion 7), even though first order autoregressive model is
only dynamic, but not time-varying. Table 1 summarizes
various key terms utilized in this article.

3. Interpreting fMRI as a random process

In this section, we first review random variables, ran-
dom processes and weak-sense stationarity (WSS). We then
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distinguish between sample statistics and ensemble statis-
tics. Finally, we formalize fMRI as a random process and
explain why testing dFC within a formal statistical frame-
work is non-trivial.

3.1. Random variables

A random variable is a quantity that is uncertain (Prince,
2012). It may be the outcome of an experiment (e.g., toss-
ing a coin) or real world measurement (e.g., measuring
the temperature of a room). If we observe a random vari-
able multiple times, we will get different values. Some
values occur more frequently than others; this variation in
frequencies is encoded by the probability distribution of
the random variable. Multiple observations of a random
variable are referred to as realizations (or samples) of the
random variable.

The mean or expectation of a random variable X is
denoted as E(X). We can think of E(X) as the average
value of X over many (infinite) realizations of X. Simi-
larly, the variance of a random variable X is denoted as
V ar(X) = E[(X − E(X))2]. We can think of V ar(X)
as the average square deviation of X from its mean over
many (infinite) realizations of X.

In the case of two random variables X and Y , we can
characterize their linear relationship with the covariance
Cov(X,Y ) = E[(X−E(X))(Y −E(Y ))]. We can think of
Cov(X,Y ) as averaging (X−E(X))(Y −E(Y )) over many
(infinite) realizations of X and Y . The covariance mea-
sures how much X and Y co-vary across their respective
means. If the covariance is positive, then for a particular
realization of X and Y , if X is higher than its mean, then
Y tends to be higher than its mean. If the covariance is
negative, then for a particular realization of X and Y , if
X is higher than its mean, then Y tends to be lower than
its mean. We note that Cov(X,X) = V ar(X).

3.2. Random processes and weak-sense stationarity (WSS)

A random process is an infinite collection of random
variables, and is especially useful for the analysis of time
series. For example, suppose we randomly pick a ther-
mometer from a store (with many thermometers) to mea-
sure the temperature of a particular room. Let Ut be the
thermometer measurement at time t. Then Ut is a random
process. Figure 1A illustrates three realizations of the ran-
dom process, where each realization (blue, red or green)
corresponds to a different thermometer. Here we assume
that the room temperature is constant at 20◦C, and that
each thermometer is identical and incurs an independent
(zero-mean unit-variance Gaussian) measurement noise at
each time, i.e., p(Ut) ∼ N (20, 1).

The expectation of a random process Xt at time t is
denoted as E(Xt). We can think of E(Xt) as averaging
Xt across infinite realizations of the random process at
time t. For the toy example Ut (Figure 1A), averaging the
temperature measurements across many thermometers at
a particular time t converges to the true temperature of

the room, and so E(Ut) = 20 for all time t. Similarly, we
can think of V ar(Xt) = E[(Xt − E(Xt))

2] as averaging
the square deviation of Xt at time t from its mean E(Xt)
over infinite realizations of the random process. For the
toy example Ut (Figure 1A), V ar(Ut) = 1 for all time t.

Finally, the auto-covariance Cov(Xn, Xm) = E[(Xn −
E(Xn))(Xm − E(Xm))] measures the co-variation of Xn

and Xm about their respective means at times n and m.
For example, if the auto-covariance is positive, then for a
particular realization of Xt, if Xn is higher than its mean
E(Xn), then Xm tends to be higher than its mean E(Xm).
Conversely, if the auto-covariance is negative, then for a
particular realization of Xt, if Xn is higher than its mean
E(Xn), then Xm tends to be lower than its mean E(Xm).
We note that Cov(Xn, Xn) = V ar(Xn). For the toy ex-
ample Ut (Figure 1A), Cov(Xn, Xm) = 0 for two different
time points n and m since we assume the thermometer
noise is independent at each time point.

We can now define WSS as follows (Papoulis, 2002):

A random process Xt is WSS if its mean E(Xt) is con-
stant for all time t and its auto-covariance Cov(Xn, Xm)
depends only on the time interval τ = n − m, i.e.,
Cov(Xn, Xm) = R(n−m) = R(τ).

Since V ar(Xn) = Cov(Xn, Xn), this implies that V ar(Xn) =
R(0) for a WSS process. In other words, the variance
V ar(Xt) of a WSS process is constant over time.

While there are other forms of stationarity (e.g., strict-
sense stationarity), we will only focus on WSS in this paper
and will use the phrase “stationarity” and “WSS” inter-
changeably. It is also worth mentioning at this point that
the dFC community might not be referring to “station-
arity” or “non-stationarity” in the strict statistical sense.
However, as will be seen in Section 5, the current dFC sta-
tistical testing frameworks do rely on the above definition
of stationarity. Further discussion is found in Section 8.1.

The toy example Ut (Figure 1A) is WSS because E(Ut) =
20 is a constant, and Cov(Xn, Xm) can be written as
R(n−m), where R(0) = 1 (when n = m) and R(n−m) is
equal to 0 for n−m 6= 0. In contrast, suppose the thermo-
stat of the room was changed at time t0, so that the room
temperature increased from 20◦C to 23◦C (Figure 1B).
Then the resulting random process Vt is non-stationary
because E(Vt) = 20 for t < t0 and E(Vt) = 23 for t > t0.

3.3. Ensemble statistics versus sample statistics

It is worth emphasizing that the mean E(Xt), variance
V ar(Xt) and auto-covariance Cov(Xn, Xm) of a random
process are defined across an infinite number of realiza-
tions, rather than within a single realization. To illustrate
this point, suppose at time points t1 and t2, we average
across multiple realizations of the random process Ut re-
sulting in MU (t1) and MU (t2) (Figure 1A). We can think
of MU (t1) and MU (t2) as estimates of E(Ut1) and E(Ut2).
Indeed, as the number of realizations increases, MU (t1)
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Figure 1: Three examples of random processes Ut (left), Vt (middle) and Wt (right) and three realizations in each case illustrating the
distinction between ensemble and sample statistics. Ensemble statistics are computed across realizations, while sample statistics are computed
within a single realization. The random process Ut is weak-sense stationary (WSS) because ensemble statistics (e.g., mean and variance) do
not depend on time, i.e., MU (t1) = MU (t2). Ut is also ergodic because ensemble statistics are equal to sample statistics, i.e., MU (t1) =
M(U1) = M(U2) = M(U3). Random process Vt is not WSS because the ensemble mean is not constant in time, i.e., MV (t1) 6= MV (t2). It is
also not ergodic, i.e., MV (t1) 6= M(V 1). Random process Wt is WSS, i.e., MW (t1) = MW (t2). However, Wt is not ergodic because ensemble
statistics are constant in time but sample mean is not the same for different realizations, i.e., MW (t1) 6= M(W 1) 6= M(W 2) 6= M(W 3).

and MU (t2) will converge to E(Ut1) and E(Ut2) respec-
tively. This convergence holds not just for WSS processes,
but all random processes. In the toy example Vt (Figure
1B), MV (t1) converges to E(Vt1) = 20, while MV (t2) con-
verges to E(Vt2) = 23. We refer to the computation of
statistics across realizations as ensemble statistics.

In contrast, sample statistics are computed within a
single realization. For example, we can average each re-
alization of the random process Ut resulting in M(U1),
M(U2) and M(U3) (blue, green and red in Figure 1A). In
the case of the random process Ut (Figure 1A), as the num-
ber of time points for each realization increases, the sample
statistics converge to the ensemble statistics. More specifi-
cally, M(U1), M(U2) and M(U3) converge to E(Ut) = 20.
However, sample statistics do not converge to ensemble
statistics for non-stationary processes. In the toy exam-
ple Vt (Figure 1B), the sample statistics M(V 1), M(V 2)
and M(V 3) (blue, green and red in Figure 1B) converge
to 21.5.

Therefore ensemble statistics are generally not equiva-
lent to sample statistics in the case of non-stationary pro-
cesses. Based on the toy example Ut (Figure 1A), one
might be tempted to conclude that ensemble and sam-
ple statistics are equivalent in WSS processes. However,
this turns out not to be true. To illustrate this, let’s
again assume the room temperature is constant at 20◦C.
However, each thermometer now incurs an independent
nonzero-mean unit-variance Gaussian noise at each time
p(Wt) ∼ N (20 + b, 1), where the bias b ∼ N (0, 1) is differ-
ent for each thermometer (but held constant within a real-

ization). Three realizations of random processWt are illus-
trated in Figure 1C. The random process Wt is WSS with
E(Wt) = 20 (because the bias b is zero-mean), V ar(Wt)
is constant over time, and Cov(Wn,Wm) = 0 for n 6= m.
The ensemble mean MW (t1) and MW (t2) still converge to
E(Wt) = 20. However, the sample meansM(W 1), M(W 2)
and M(W 3) now converge to 17, 20 and 23 respectively be-
cause we have assumed b = −3, 0, 3 for the blue, green and
red realizations in Figure 1C. We now define ergodicity as
follows (Papoulis, 2002):

A random process Xt is ergodic if its ensemble statistics
and sample statistics converge to the same values. An
ergodic process is WSS.

The distinction between ensemble statistics and sample
statistics becomes important as we conceptualize fMRI as
a random process in the next section.

3.4. Interpreting fMRI as a random process

In the previous examples of random processes (Figure
1), each realization consisted of one uncertain quantity
(temperature) at each time point. However, a random
process Xt can also be multivariate, i.e., each realization
consists of a vector at each time point. fMRI data typically
consists of N time series, where N is the number of voxels
or regions of interest (ROIs). Therefore the fMRI data
can be thought of as a multivariate random process with
an N × 1 vector of measurements at each time point (i.e.,
TR).
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For a multivariate random process, E(Xt) is now an
N×1 vector equivalent to averaging Xt across infinite real-
izations of the random process at time t. The N×N auto-
covariance matrix Cov(Xn, Xm) = E[(Xn−E(Xn))(Xm−
E(Xm))T ] measures the co-variation of Xn and Xm about
their respective vectorial means at times n and m. For
example, if the i-th row and j-th column of the auto-
covariance matrix is positive, then for a particular real-
ization of Xt, if the i-th element of Xn is higher than
its mean (the i-th element of E(Xn)), then the j-th ele-
ment of Xm tends to be higher than its mean (the j-th
element of E(Xm)). For a WSS process, the covariance
Cov(Xn, Xn) = E[(Xn − E(Xn))(Xn − E(Xn))T ] is con-
stant over time.

In the case of fMRI, one could potentially interpret
Cov(Xn, Xn) as the ensemble N×N (un-normalized) func-
tional connectivity matrix among all brain regions at time
n and might therefore be relevant for the topic of dFC.
However, difficulties arise because the auto-covariance and
WSS are based on ensemble statistics, and therefore re-
quire multiple realizations of a random process to esti-
mate. While most researchers can probably agree that the
fMRI data of a single subject can be considered a single
realization of a random process, what constitutes multi-
ple realizations is more ambiguous. Most neuroscientists
would probably balk at conceptualizing the fMRI data of
each subject (of a multi-subject dataset) as a single real-
ization of the same random process. Therefore in most
dFC papers (Chang and Glover, 2010; Handwerker et al.,
2012; Zalesky et al., 2014; Hindriks et al., 2016), the fMRI
data of different subjects are treated as single realizations
of different random processes1. As such, both ensemble
statistics and hypothesis testing only have access to a sin-
gle realization of a random process (i.e., relying on sample
statistics). Yet, for sample statistics to converge to en-
semble statistics (previous section), fMRI must be ergodic,
which in turn implies WSS. This creates conceptual and
practical issues for dFC analyses that will be the focus for
the remainder of this paper.

1Given recent interests in single subject analyses, there has been
increasing amount of data collected for individual subjects, such as
over 80 sessions of fMRI data for Russ Poldrack (Laumann et al.,
2015; Poldrack et al., 2015; Braga and Buckner, 2017; Gordon et al.,
2017). It is unclear to us whether different fMRI sessions of the
same person at different times can be considered realizations of the
same random process given obvious state differences, e.g., Russ was
unfed/uncaffeinated on Tuesday and fed/caffeinated on Thursday.
Ideally, we would like Russ to be scanned across multiple parallel
sessions at the same time, which is obviously impossible. Further-
more, even if we were to treat the different sessions as realizations
of the same random process, we would still face a power issue. For
example, using a standard brain parcellation with 114 ROIs (Section
6), 80 fMRI sessions would not be sufficient to estimate a positive-
definite (ensemble) covariance matrix for each TR (without addi-
tional regularization).

4. Stationarity does not imply the absence of brain
states

The previous section suggests the existence of concep-
tual and practical issues when studying dFC. This section
focuses on the conceptual issue of whether non-WSS and
dFC are equivalent. In the literature, it is often implicitly
assumed that WSS implies the lack of fluctuations in FC
(e.g., as measured by SWC) or FC states (e.g., Allen et al.,
2014). However, we now show that WSS does not imply
the lack of FC fluctuations or FC states.

Consider a toy “brain” with two regions whose sig-
nals correspond to a bivariate random process Xt con-
taining two brain states S1 and S2. If the brain is in

state S1 at time t, then Xt ∼ N
([

0
0

]
,

[
1 0.9

0.9 1

])
, i.e.,

the two brain regions are functionally connected with r =
0.9. If the brain is in state S2 at time t, then Xt ∼

N
([

0
0

]
,

[
1 −0.2
−0.2 1

])
, i.e., the two regions are anti-

correlated with r = −0.2. Finally, let the probability of
transitioning between the two brain states be given by the

following transition probability matrix:

[
0.99 0.01
0.01 0.99

]
, i.e.,

from time t to t+ 1, there is a 0.99 probability of remain-
ing in the same state and a 0.01 probability of switching
state. This random process is known as a hidden Markov
process (HMM) (Baum and Petrie, 1966).
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Figure 2: Three realizations of the Hidden Markov Model (HMM)
process with two brain regions and two states. Time series of the
two brain regions are shown in blue and light green (scale on the
left vertical axis). The sliding window correlation (SWC) between
the two time series (number of frames T = 1200, window size w =
30 frames) is shown in red (scale on the right vertical axis). The
HMM process is stationary, yet exhibits abrupt transitions in SWC
corresponding to the switching between brain states.

Three realizations of this process are shown in Figure 2.
The blue and green time courses correspond to the signals
of the two brain regions. The sliding window correlations
(SWC) between the two regions (red lines in Figure 2)
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exhibit huge fluctuations with correlations close to 0.9 and
−0.2 in states S1 and S2 respectively.

Most neuroscientists would probably agree that this
toy brain exhibits brain states and dFC. However, this
toy brain is also WSS because the ensemble mean E(Xt)
is constant over time, and the ensemble auto-covariance
Cov(Xn, Xm) is only a function of the interval n − m.
More importantly, the ensemble (unnormalized) functional
connectivity matrix Cov(Xn, Xn) in this toy brain is con-
stant over time, despite the presence of brain states and
dFC (Figure 2). This situation arises because dFC and
brain states exist within a single realization, where the FC
at a given time depends on the underlying brain state,
which can change over time in a single realization. How-
ever, these dynamics are averaged out (across realizations)
when considering ensemble notions like WSS. Therefore
WSS does not imply the absence of brain states or fluctu-
ations in FC2.

It is also worth noting that non-WSS does not nec-
essarily imply the presence of dFC either. If the (un-
normalized) functional connectivity matrix Cov(Xn, Xn)
varies as a function of time, then fMRI is non-WSS and
the brain exhibits true fluctuations in FC. However, non-
WSS can arise from just a non-stationary mean E(Xt). In
other words, the first order statistics (mean) can be non-
stationary, while the second order statistics (variance and
covariance) remains stationary. For example, the random
process Vt (Figure 1A) is non-stationary because its mean
E(Vt) is non-constant over time, but its variance V ar(Vt)
is actually constant over time. Therefore, even if fMRI is
shown to be non-WSS, this might be due to non-stationary
spontaneous activity level and/or non-stationary FC. In
other words, non-WSS does not necessarily imply real fluc-
tuations in FC.

While we focus on dFC (second order statistics) in this
paper, many of the same issues also apply to the study of
dynamic activity level (first order statistics). For example,
one could modify the previous HMM example (Figure 2)
so that the two states have different ensemble means, but
the same ensemble covariance matrix. In this case, the
resulting toy brain will be WSS, while still exhibiting real
dynamic spontaneous activity (but not dFC)3.

Despite the caveat that non-WSS does not necessarily
imply real fluctuations in FC, establishing non-stationarity
of fMRI is still a useful step towards establishing dFC.
Therefore in the next section, we leave behind the concep-

2More generally, WSS processes encompass a wide range of sig-
nals because WSS can be the result of “interesting” dynamics being
washed out across realizations. Indeed, given a stationary correlation
time series, one can reverse engineer a bivariate random process ex-
hibiting the correlation time series (like the HMM toy brain). This is
not true for deterministic correlation time series, which is inevitably
a result of non-stationary processes (assuming correlation is not a
constant).

3One could also modify the HMM so that the toy brain will be
WSS, but exhibiting real dynamic spontaneous activity and dynamic
FC.

tual issues raised in this section, and dive into the statisti-
cal testing of non-stationarity when only a single realiza-
tion of the random process is available.

5. Stationarity cannot be tested alone

Statistical testing of FC non-stationarity is difficult for
two reasons. First, observed dFC values (e.g., using SWC)
are only estimates of true values (Hindriks et al., 2016;
Laumann et al., 2016). As such, observed dFC fluctuations
might simply correspond to sampling variability or mea-
surement noise. Second, as explained in previous sections,
the notion of stationarity is based on ensemble statistics
defined across infinite realizations of a random process.
Therefore observing fluctuations in a single realization of
fMRI cannot be directly interpreted as evidence for non-
stationarity but requires further statistical testing.

This section seeks to provide insights into common ap-
proaches for statistical testing of FC stationarity. A sta-
tistical test for non-stationarity requires defining a test
statistic and a procedure to generate null data preserving
certain properties of the single fMRI realization. The test
statistic computed from real data is then compared against
the null distribution of test statistics computed from the
null data. A significant deviation of the real test statistic
from the null distribution of test statistics would result in
the rejection of the null hypothesis.

The test statistic should ideally reflect the null hy-
pothesis being tested. For example, if one is interested
in whether there are “real” fluctuations in FC between
two brain regions, then an intuitive test statistic might be
the variance of the SWC (Hindriks et al., 2016):

κ =
1

T − 1

T∑
t=1

[SWC(t)− µ]2, (1)

where SWC(t) is the SWC between the two brain regions
at time t and µ is the mean of the SWC time series. A
higher κ (relative to a properly generated null distribution)
indicates stronger evidence of dFC.

While there have been a wide variety of test statis-
tics and dFC measures proposed in the literature (Sakoğlu
et al., 2010; Chang and Glover, 2010; Zalesky et al., 2014;
Hindriks et al., 2016), there has been significantly less dis-
cussion about the assumptions behind procedures for gen-
erating null data. Such assumptions are highly important
because if one manages to generate WSS null data that also
preserve all other properties (e.g., possible nonlinearity or
non-Gaussianity) of the original data, then a rejection of
the null hypothesis would imply non-WSS. However, as
will be seen, the two main approaches – autoregressive
randomization (ARR) and phase randomization (PR) –
actually generate linear, WSS, Gaussian data. Therefore
a rejection of the null hypothesis only implies that the
signal is nonlinear or non-WSS or non-Gaussian or any
combination of the above (Schreiber and Schmitz, 2000).

7

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 8, 2017. ; https://doi.org/10.1101/135681doi: bioRxiv preprint 

https://doi.org/10.1101/135681
http://creativecommons.org/licenses/by-nc/4.0/


We begin by discussing properties of the fMRI time
series we hope to preserve in the null data, followed by
explaining how ARR and PR preserve these properties,
and the relationships between the two approaches. Finally,
we illustrate with examples of how the null hypothesis can
be rejected even though the underlying data is WSS.

5.1. Properties to preserve in null data

To test if observed fluctuations in FC (e.g., SWC) can
be completely explained by static FC (e.g., Pearson corre-
lation), the null data should retain the static FC observed
in real data. To preserve static FC, we could simply gener-
ate null data by permuting the temporal ordering of fMRI
time courses. However, this procedure destroys the auto-
correlational structure inherent in fMRI, and therefore the
null hypothesis will be easily rejected. In other words, pro-
cedures for generating null data should also preserve the
auto-correlational structure of fMRI data in addition to
static FC.

Let us define these auto-correlations more precisely.
Suppose we observe fMRI time courses from N ROIs (or
voxels) of length T . Let xt be the N × 1 vector of fMRI
data at time t after each time course has been demeaned.
We define the auto-covariance sequence to be the following
N ×N matrices:

Rl =
1

T − l

T−l∑
t=1

xtx
′
t+l for 0 ≤ l ≤ T − 1 , (2)

where ′ denotes transpose. We note that the diagonal ele-
ments of Rl encode the auto-covariance of individual time
courses, while the off-diagonal terms of Rl encode what is
usually referred to as the cross-covariance between pairs
of time courses.

The auto-covariance sequence {Rl} measures the co-
variance of fMRI data l time points apart. Since the auto-
covariances are computed from a single realization of fMRI
data, the {Rl} are considered sample statistics. R0 is
the (un-normalized) functional connectivity matrix typi-
cally computed in the literature. If fMRI data is ergodic
(and hence WSS), then R0 would be equal to the ensemble
(un-normalized) functional connectivity matrix among all
brain regions (for sufficiently large T ). As will be seen, R0

encodes static properties of fMRI, while the higher order
auto-covariances R1, · · · , RT−1 encode the dynamic prop-
erties of fMRI. We will now examine two frameworks for
generating null data that preserve auto-covariances of the
original data.

5.2. Autoregressive randomization (ARR)

The ARR framework has been utilized by the statistics
and physics community for decades (Efron and Tibshirani,
1986) and adopted by seminal papers in the dFC literature
(Chang and Glover, 2010; Zalesky et al., 2014). Suppose

we have fMRI time courses from N brain regions (or vox-
els). Each fMRI time course is assumed to be demeaned4.
ARR assumes that the fMRI data at time t is a linear
combination of the fMRI data from the previous p time
points:

xt =

p∑
l=1

Alxt−l + εt, (3)

where p ≥ 1, xt is the N×1 vector of fMRI data at time t,
εt ∼ N (0,Σ) corresponds to independent zero-mean Gaus-
sian noise5, and Al is an N ×N matrix encoding the lin-
ear dependencies between time t and time t − l. Eq. (3)
is known as a p-th order Gaussian autoregressive (AR)
model.

ARR proceeds by first estimating the AR model pa-
rameters (Σ, A1, · · · , Ap) from the fMRI data (details in
Appendix A1). Each null fMRI time series is initialized by
randomly selecting p consecutive time points of the orig-
inal data, and then repeatedly applying the AR model
(Eq. (3)) to generate T −p new time points until null data
of length T are generated.

Suppose the estimated AR model is stable. Then the
AR model corresponds to a linear WSS Gaussian pro-
cess whose auto-covariance sequence R0, · · ·Rp matches
those of the original data.

The preservation of the first p+1 auto-covariances of the
original data is a consequence of the Yule-Walker equations
(Yule, 1927; Walker, 1931). Further details are found in
Appendix A2. One consequence of the above result is the
need to verify that the estimated AR model parameters
correspond to a stable AR model (see Appendix A2).

Furthermore, any Gaussian linear process can be ap-
proximated arbitrarily well by an AR model6 (El-Shaarawi
and Piegorsch, 2013). Therefore, significant deviation from
ARR null data (i.e., null hypothesis rejected) might be due
to the fMRI data being nonlinear, non-Gaussian, non-WSS
or any of the above.

The matching of the higher order auto-covariances R1,
· · · , Rp arise from the linear dynamical interactions be-
tween brain regions (Al in Eq. (3)). Therefore the higher
order auto-covariances encode the dynamic properties of
functional connectivity beyond the static FC encoded by
R0.

5.3. Phase randomization (PR)

The PR framework for generating null data has been
utilized in the physics community for decades (Tucker et al.,

4The mean can always be added back to the null data hence
there is no loss of generality to assume the original time courses
were demeaned.

5Σ might not be a diagonal matrix, i.e., the noise does not need
to be independent across brain regions.

6In statistical parlance, AR processes are dense in the class of
linear Gaussian processes.
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1984; Osborne et al., 1986; Theiler et al., 1992; Prichard
and Theiler, 1994). It has been applied to fMRI in several
important dFC papers (Allen et al., 2014; Hindriks et al.,
2016). We again assume without loss of generality that
each fMRI time courses has been demeaned. The PR pro-
cedure generates null data by performing Discrete Fourier
Transform (DFT) of each time course, adding a uniformly
distributed random phase to each frequency, and then per-
forming the inverse DFT. Importantly, the random phases
are generated independently for each frequency, but are
the same across brain regions7.

PR generates data corresponding to a linear WSS Gaus-
sian process whose auto-covariance sequence R0, · · ·RT−1
matches those of the original data.

Proof of WSS is found in Appendix A4. The preservation
of all auto-covariances of the original data is a consequence
of the Wiener-Khintchine theorem (Wiener, 1930; Khint-
chine, 1934; Prichard and Theiler, 1994; Weisstein, 2016);
see further elaborations in Appendix A5. An important
consequence of the above result is that a rejection of the
null hypothesis could be due to the fMRI data being non-
linear, non-Gaussian, non-WSS or any of the above.

PR null data
{Ψ0,Ψ1, . . . ,ΨT−1}

R0, R1, . . . , Rp, Rp+1, . . . , RT−1 (from Eq. (2))︸ ︷︷ ︸
︷ ︸︸ ︷

ARR(p) null data
{Σ, A1, . . . , Ap}

Yule-Walker Equations (Appendix A2)

Wiener-Khintchine theorem

(Appendix A4)

Figure 3: Properties of original data preserved in autoregressive ran-
domized (ARR) and phase randomized (PR) null data. By pre-
serving the power spectral density of the original data, the Wiener-
Khintchine theorem (Appendix A4) ensures that PR null data pre-
serve the full original auto-covariance sequence R0, R1, . . . , RT−1

(Eq. (2)), where T is the number of time points. On the other hand,
ARR null data generated from an AR(p) model (Eq. (3)) preserve the
first p+1 terms of the auto-covariance sequence via the Yule-Walker
equations (Appendix A2).

The relationship between ARR and PR is summarized
in Figure 3. ARR preserves the first p+1 auto-covariances

7In reality, the procedure is slightly more complicated because
the DFT of a real-valued time course (e.g., fMRI) exhibits Hermitian
symmetry, i.e., the Fourier coefficient at frequency k is equal to the
complex conjugate of the Fourier coefficient at frequency T − k. As
such, the random phases for half the frequencies determine the other
half. See Appendix A3 for more details.

of the original data, while PR preserves the entire auto-
covariance sequence. Therefore, if the original data is not
auto-correlated beyond p time points (i.e., Rl = 0 for l
greater than p), then a p-th order ARR would be theoreti-
cally equivalent to PR, except for implementation details.
Differences arising from implementation details should not
be downplayed. For example, estimating the parameters
of a p-th order AR model requires the original data to be
at least of length T = p · (N + 1), where N is the num-
ber of brain regions. The implication is that a (T − 1)-
th order ARR cannot be performed even if it is theoreti-
cally equivalent to PR. Another difference is that PR null
data is only Gaussian for sufficiently long T (Tucker et al.,
1984), while ARR does not have the constraint. On the
other hand, ARR preserves the auto-covariance sequence
for sufficiently long T , while PR preserves the entire auto-
covariance sequence for any T . Yet another difference is
that PR can only generate null data of the same length
as the original data, while ARR can generate null data of
arbitrary length, although in the case of dFC, we are typi-
cally interested in generating null data of the same length
as the original data. As will be seen in the next sections,
both approaches appear to yield similar conclusions in dFC
analyses despite the practical differences.

5.4. Stationary but nonlinear or non-Gaussian data can
be rejected by ARR and PR

To demonstrate that rejection of the null hypothesis
with ARR and PR null data does not imply non-stationarity,
we consider the toy brain in the previous section (Fig-
ure. 2). Recall that the toy brain is a HMM with two
brain regions and two brain states, but is WSS.

Figure 4 shows a single realization of this toy brain
(Figure 4A), and corresponding first order ARR (Figure
4B) and PR (Figure 4C) null data. The blue and green
time courses correspond to the signals of the two brain re-
gions. The PR and ARR null data successfully replicate
the auto-covariance sequence of the original time series.
For example, the static functional connectivity (Pearson
correlation) between the time courses of the two brain re-
gions is equal to 0.35 in the original, ARR and PR data.

On the other hand, the SWC between the two re-
gions in the original data (red line in Figure 4A) exhibit
huge fluctuations with correlations close to 0.9 and −0.2
in states S1 and S2 respectively. However, there is little
variation in SWC correlations for the null data (red lines
in Figures 4A and 4B). Using the κ statistic (Eq. (1)), the
null hypothesis is easily rejected.

This result is indeed good news because the impli-
cation is that using current methodologies, the null hy-
pothesis can be rejected for a WSS brain with states as-
suming sufficient statistical power (e.g., the states have
sufficiently distinct connectivity patterns and the sliding
window is shorter than the average dwell time of a brain
state, etc). However, the bad news is that a rejection of
the null hypothesis does not imply the existence of brain
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Figure 4: Examples of ARR and PR null time series generated from
one realization of the two-state Hidden Markov Model (HMM) pro-
cess with two brain regions. Time series of the two brain regions
are shown in blue and light green (scale on the left vertical axis).
The sliding window correlation (SWC) between the two time series
(number of frames T = 1200, window size w = 30 frames) is shown in
red (scale on the right vertical axis). (A) The original data exhibits
sharp transitions in SWC. (B, C) The null data do not exhibit sharp
transitions in SWC.

states because the rejection might simply be due to non-
Gaussianity. For example, Figure S1 illustrates a linear,
WSS, non-Gaussian process (with no latent states), where
the stationarity, linear, Gaussian null hypothesis is easily
rejected.

In the event that the stationary, linear, Gaussian null
hypothesis is rejected, more advanced approaches can be
utilized to differentiate the underlying causes. The amplitude-
adjusted PR (AAPR; Theiler et al., 1992) controls for
non-Gaussianity in the original data by generating linear,
stationary data whose amplitude distribution matches the
original data. For example, the AAPR null hypothesis is
not rejected for the previous linear, WSS, non-Gaussian
process example (Figure S1), thus indicating that the re-
jection of the PR null hypothesis is simply due to non-
Gaussianity. Nevertheless, these more advanced consider-
ations are moot because experiments with real data (next
section) suggest that the stationary linear Gaussian model
cannot be rejected for most low motion Human Connec-
tome Project (HCP) participants.

6. Stationary linear Gaussian model cannot be re-
jected for most low motion subjects

In this section, we show that for most low-motion Hu-
man Connectome Project (HCP) participants, the station-
ary linear Gaussian model cannot be rejected. In addition,
we show that one form of ARR used in the literature might
result in false positives and should be utilized with care.

6.1. HCP data and SWC computation

We considered ICA-FIX fMRI data from the HCP S900
data release in fsLR surface space (Glasser et al., 2013;
Smith et al., 2013a; Van Essen et al., 2013). Since motion
can potentially introduce false positives in dFC (Laumann
et al., 2016), our analyses were restricted to participants
whose maximum framewise root mean square (FRMS) mo-
tion8 was less than 0.2mm and maximum DVARS was
smaller than 75. Among the four fMRI runs available
for each HCP participant, the second run (REST1 RL)
yielded the most participants (116) who survived these
criteria and was therefore considered (the remaining runs
were ignored). Of the 116 remaining participants (or runs),
the top 100 participants with the smallest average FRMS
were selected. Among these 100 low motion participants,
average FRMS of the second run ranged from 0.051mm to
0.073mm.

For each participant, the fMRI signal was averaged
within each of 114 cortical ROIs (Yeo et al., 2011, 2015;
Krienen et al., 2016) resulting in an 114× 1200 matrix of
fMRI data per participant. Following Zalesky et al. (2014),
SWC was computed using a window size of 83 frames
(59.76s), consistent with window sizes recommended in the
literature (Leonardi and Van De Ville, 2015; Liégeois et al.,
2016). There was no temporal filtering, except for the very
gentle highpass filtering (2000s cutoff) applied by the HCP
team (Smith et al., 2013a).

6.2. PR, multivariate ARR and bivariate ARR

For each participant, null fMRI data were generated
using ARR (section 5.2) and PR (section 5.3). For the
ARR procedure, the most common variant in the litera-
ture (Chang and Glover, 2010; Zalesky et al., 2014) in-
volves estimating for each pair of brain regions, a 2 × 2
Al matrix (Eq. (3)) for each temporal lag l (even though
there are 114 ROIs). In other words, the resulting null
time courses are generated for each pair of brain regions
separately. We refer to this procedure as bivariate ARR. In
contrast, multivariate ARR estimates a single 114×114 Al
matrix (Eq. (3)) for each lag l. For multivariate ARR, an
AR order of p = 1 was utilized. For bivariate ARR, an AR
order of p = 11 was utilized (Zalesky et al., 2014). Chang-
ing the order p did not significantly affect our conclusions
(see additional control analyses in section 6.6). For each
procedure and each participant, 1999 null datasets were
generated9.

6.3. SWC of most pairs of brain regions exhibit stationary,
linear and Gaussian dynamics

We first tested if there exists “dynamic” connections in
the human brain, defined as ROI pairs exhibiting greater

8Values were obtained from Movement RelativeRMS.txt provided
by HCP.

9There were 1999 (and not 2000) null datasets because the real
data is also counted as a dataset when computing p values, so that
a p value of 0 is impossible.
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SWC variance (Eq. (1)) than those from null data. To
this end, for each participant and ROI pair, the observed
SWC variance (computed from real data) was compared
against the null distribution of SWC variance generated
from the 1999 null datasets, resulting in one p value for
each ROI pair10. Within each participant, multiple com-
parisons were corrected by applying a false discovery rate
(FDR) of q < 0.05 to the 6441 p values.

Figure 5 illustrates the number of significant ROI pairs
across the 100 participants. For both multivariate ARR
and PR, 57% of the participants have 0 significant edges.
On average (across 100 participants), 36.8 and 34.2 edges
were significant with multivariate ARR and PR respec-
tively. Therefore a stationary linear Gaussian model was
able to reproduce the SWC fluctuations of more than 99.4%
of ROI pairs.
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Figure 5: Number of edges in each participant exhibiting signifi-
cantly greater SWC variance than (i) phase randomized (PR) null
data, (ii) multivariate ARR null data and (iii) bivariate ARR null
data. On average (across 100 participants), less than 40 (out of 6441)
edges were statistically significant for PR and multivariate ARR. For
bivariate ARR, 306.7 edges were statistically significant on average
(across 100 participants).

On the other hand, for bivariate ARR, 21% of the par-
ticipants have 0 significant edges. On average (across 100
participants), 306.7 edges were significant. In other words,
bivariate ARR tends to be less strict in terms of rejecting
the null hypothesis. We will return to this point in Section
6.5.

6.4. For almost all low-motion HCP subjects, coherent brain
dynamics are stationary, linear and Gaussian

Existence of coherent SWC fluctuations was tested us-
ing the approach of the pioneering dFC paper (Zalesky
et al., 2014). More specifically, this approach involves com-
puting the SWC time series for all ROI pairs and then

10Since there were 114 ROIs, each null dataset generated 6441
(= 114(114− 1)/2) null values, which were pooled across the cortex
into a single, highly-resolved null distribution (Zalesky et al., 2014).
In other words, for a given participant, all the ROI pairs shared the
same null distribution.

selecting the top 100 most dynamic SWC time series as
measured by the SWC variance (Eq. (1)). The percent-
age variance explained by the top principal component of
these 100 SWC time series was utilized as a test statistic
(Zalesky et al., 2014). A high percentage variance would
imply the existence of coherent SWC fluctuations across
the 100 pairs of brain regions. The percentage variance
computed from real data was compared against the null
distribution from 1999 null datasets, resulting in one p
value for each participant. Multiple comparisons across
participants were corrected using a FDR of q < 0.05.

Figure 6A illustrates data from a representative HCP
subject. Representative dynamic null data from PR, first
order multivariate ARR and eleventh order bivariate ARR
are shown in Figure 6B-D, while representative null data
from a static null model (obtained by permuting the orig-
inal fMRI time points) is shown in Figure 6E. The order
of the bivariate ARR was chosen to match Zalesky et al.
(2014). The top 100 most dynamic SWC time series (blue
lines in Figure 6) exhibited massive fluctuations in the rep-
resentative participant and corresponding null data. In the
representative participant (Figure 6A), PR (Figure 6B),
multivariate ARR (Figure 6C), bivariate ARR (Figure 6D)
and static FC model (Figure 6E), the first principal com-
ponent of the 100 SWC time series (red line in Figure 6)
accounted for 62%, 58%, 66%, 11% and 19% of the vari-
ance respectively.

On average (across 100 participants), the first principal
component explained 49%, 46%, 45%, 10% and 27% vari-
ance in real data, PR, multivariate ARR, bivariate ARR
and static null model respectively (Figure S2). For PR
and multivariate ARR null data, the null hypothesis was
rejected for only one participant. Therefore the stationary
linear Gaussian model reproduces coherent SWC fluctua-
tions for 99% of the low motion HCP participants. For
bivariate ARR, the null hypothesis was rejected for all the
participants. This discrepancy is discussed in the following
section.

6.5. Why bivariate ARR might generate false positives

The previous two sections suggest that bivariate ARR
commonly used in the literature (Chang and Glover, 2010;
Zalesky et al., 2014) might be susceptible to false posi-
tives. To understand why this might occur, let us consider
the toy example illustrated in Figure 7. In this toy ex-
ample, there are three brain regions X, Y and Z, whose
signals follow a first order AR model (Figure 7A). With
the multivariate ARR procedure, the AR parameters were
estimated using the time series from all three brain regions.
The estimated AR parameters (Figure 7B) were the same
as the true parameters (Figure 7A). As illustrated in Fig-
ure 7B, there is no arrow directly connecting brain regions
Y and Z. In other words, brain regions Y and Z only
influence each other via brain region X.

On the other hand, the bivariate ARR procedure esti-
mates AR parameters separately for brain regions X and
Y , brain regions X and Z, and brain regions Y and Z. The
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Figure 6: (A) Sliding window correlations (SWC) of a representative low motion HCP subject and example null data from (B) phase
randomization (PR), (C) multivariate ARR, (D) bivariate ARR, and (E) static null model. The 100 most dynamic SWC time series are
shown in blue, while their first principal component is shown in red. The percentage variance explained by the first principal component
measures the coherence of brain dynamics. For the representative subject shown here, the percentage variance of the original data, PR,
multivariate ARR, bivariate AR and static null model were 62%, 58%, 66%, 11% and 19% respectively. Therefore the coherence of brain
dynamics was statistically indistinguishable among real data, PR and multivariate ARR, while bivariate ARR and static null data exhibited
significantly less coherent brain dynamics.
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Figure 7: (A) Example AR model with three regions X, Y and Z.
(B) AR model parameters estimated by considering the data from all
three regions jointly (i.e., multivariate ARR). True AR parameters
were recovered. (C) AR model parameters estimated for each pair of
regions (i.e., bivariate ARR). Wrong AR parameters were recovered.
In particular, direct interactions between regions Y and Z (red in
figure) were found, which were non-existent in the true model.

estimated parameters (Figure 7C) are generally different
from the true AR parameters (Figure 7A). More specifi-
cally, brain regions Y and Z exert direct influence on each
other (which is non-existent under the true model).

When generating null data using multivariate ARR,
the time course at brain region X is generated by taking
into account the influence of both brain regions Y and Z
(Figure 7B). However, in the bivariate ARR procedure, the
time course at brain region X is generated by taking into
account the influence of only brain region Y (left panel of
Figure 7C) or brain region Z (center panel of Figure 7C),
but not both. Therefore bivariate ARR neglects influence
among all brain regions.

Furthermore, since bivariate ARR estimates the AR
parameters for each pair of brain regions separately, any

coherence among pairs of brain regions is destroyed. Con-
sequently, the false positive situation appeared more severe
when evaluating the existence of coherent brain dynamics
(section 6.4) than when evaluating the existence of “dy-
namic” connections (section 6.3).

6.6. Control analyses

To ensure the results are robust to the particular choice
of parameters, the sliding window size was varied from 20
frames to 100 frames, and the AR model order p was var-
ied from 1 to 8. When evaluating coherence of whole brain
dynamics, the number of most dynamic connections was
also varied from 20 to 200. Since thresholding by DVARS
might artificially exclude “real” dynamics, we also consid-
ered all the HCP subjects, rather than just the top 100
participants with least motion and DVARS. We also con-
sidered a higher resolution resting-state parcellation with
400 ROIs (Schaefer et al., 2017). None of these changes
significantly affected the results.

Surprisingly, AR models of orders ranging from 1 to 8
explained similar variations in SWC fluctuations (Figure
S3). However, AR model of order 0 (i.e., only preserving
R0 or static FC) could not explain SWC fluctuations (Fig-
ure S3). Since our results might be sensitive to the choice
of test statistic, the nonlinear statistic utilized in Zalesky
et al. (2014) was also considered. We found that it was
even more difficult to reject the null hypothesis using this
nonlinear statistic.

The ICA-FIX fMRI data utilized in this work have
been processed with a very weak highpass filter (2000s cut-
off; Smith et al., 2013a). Additional highpass (0.0167Hz)
filtering has been recommended to remove aliasing arti-
facts introduced by the SWC windowing procedure (Leonardi
and Van De Ville, 2015). We found that the additional
highpass filtering decreased the amplitude of the SWC
fluctuations of both the original and surrogate data (Fig-
ure S4). Given that the windowing artifacts should also
appear in the surrogate data, it is not obvious that ap-
plying highpass filtering would necessarily weaken statis-
tical significance. However, in practice, highpass filtering
did result in weaker statistical significance (Figure S4).
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Figure 8: PR and multivariate ARR can replicate rich SWC dynamics of real data. Each plot is a T × T functional connectivity dynamics
(FCD) matrix, where the i-th row and j-th column of the matrix corresponds to the correlation between the SWC of time points i and j
matrix. (A) Representative HCP subject, (B) PR null data, and (C) first order multivariate ARR null data exhibit recurring SWC patterns.
(D) Bivariate ARR null data exhibits weak recurring SWC patterns. (E) 3-state HMM null data exhibits sharp SWC transitions not present
in original data. Here the FCD matrices were computed based on a parcellation into 114 ROIs (Yeo et al., 2011, 2015).

For completeness, we also applied bandpass filtering (0.01-
0.1Hz) to the data. Like highpass filtering, bandpass fil-
tering decreased the amplitude of SWC fluctuations and
weakened the statistical significance (Figure S4).

Finally, some authors have suggested that regressing
mean grayordinate signal (akin to global signal regression)
in addition to ICA-FIX might be necessary to remove
global noise artifacts (Burgess et al., 2016; Siegel et al.,
2016). When mean grayordinate signal was regressed, the
SWC fluctuations were less statistically significant. For
example, when evaluating the existence of coherent brain
dynamics, the null hypothesis was not rejected for all 100
participants (Figure S4).

7. Stationary linear Gaussian models explain SWC
fluctuations better than HMM

Section 6 suggests that distinguishing the linear sta-
tionary Gaussian model from real fMRI data is difficult
(at least for the statistics tested). However, failure to re-
ject the null hypothesis could be due to a lack of statisti-
cal power, rather than the null hypothesis being true. It
is entirely possible that HMM-type models (Allen et al.,
2014; Wang et al., 2016) might generate null data that fit
observed fluctuations in SWC better than the linear sta-
tionary Gaussian model.

To test this possibility, Figure 8A shows the T × T
functional connectivity dynamics (FCD) matrix of a rep-
resentative HCP participant, where the i-th row and j-th
column of the FCD matrix corresponds to the correlation
between the SWC of time points i and j (Hansen et al.,
2015). The presence of relatively large off-diagonal entries
(yellow in Figure 8A) suggest the presence of recurring
SWC patterns.

The PR (Figure 8B) and first order multivariate ARR
(Figure 8C) null data were able to replicate the rich dy-
namics of the empirical FCD matrix (Figure 8A), while
first order bivariate ARR null data (Figure 8D) exhibited
significantly weaker recurring SWC patterns. By contrast,

the 3-state HMM null data11 (Figure 8E) exhibited re-
curring SWC patterns with much sharper transitions than
real data (Figure 8A).

To quantify these differences, the FCD matrices of the
four null data generation approaches (Figure 8B-E) were
compared with the empirical FCD matrix (Figure 8A) us-
ing the Kolmogorov-Smirnov statistic (Figure S5). Both
the PR null data and (first order) multivariate ARR null
data fitted the empirical FCD matrix better than the HMM
null data (two-sample t-test p < 1e-32 and p < 1e-30 re-
spectively).

11 states were necessary for the HMM model to per-
form as well as first order multivariate ARR (Figure S5).
However, visual inspection of the FCD matrix (Figure
S6A) suggests that the 11-state HMM still generated SWC
patterns with sharper transitions than real data. For com-
pleteness, Figures S5 and S6B show the FCD results repli-
cated with the Laumann null data generation approach
(Laumann et al., 2016).

Finally, the results were replicated (Figure 9) in the
one subject for whom the stationary, linear, Gaussian null
hypothesis was rejected in Section 6.4. This illustrates
the important point that rejection of the stationary, lin-
ear, Gaussian null hypothesis does not necessarily imply
that the HMM would explain the fMRI data better than
multivariate ARR or PR.

8. Discussion

In this article, we seek to improve our understanding
of observed fluctuations in resting-state FC (e.g., SWC)

11Following popular approaches (Allen et al., 2014; Wang et al.,
2016), SWC of the representative participant were clustered into
three states using k-means. Probability of transitioning between
states were estimated based on the state assignment by k-means.
Timepoints assigned to the same state was utilized to estimate the
mean and covariance matrix of a multivariate Gaussian distribution
using maximum likelihood. The estimated model parameters were
then used to generate null data. It is worth noting that the 3-state
HMM has roughly the same number of parameters as a first order
multivariate AR model.
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Figure 9: FCD matrices for (A) the one HCP subject for whom the stationary, linear, Gaussian null hypothesis was rejected in Section 6.4,
(B) PR, (C) first order multivariate ARR, (D) bivariate ARR, and (E) 3-state HMM. Note the slight difference in scale as compared to
Figures 8 and S6.

widely reported in the literature. These fluctuations have
often been interpreted as dynamic changes in inter-regional
functional interactions, and non-stationary switching of
discrete brain states (e.g., Allen et al., 2014). However,
several recent papers have questioned these interpreta-
tions, especially in the case of single subject fMRI data
(Hindriks et al., 2016; Laumann et al., 2016).

8.1. Linking Stationarity, dFC and brain states

By reviewing the conceptualization of fMRI as a ran-
dom process (Section 3), we highlight that many statisti-
cal notions, such as ensemble auto-covariance and WSS,
are reliant on ensemble statistics. Ensemble statistics are
defined by taking into account an infinite number of re-
alizations of a random process. However, the fMRI data
of multiple participants are often considered as single re-
alizations of different random processes. Therefore all FC
measures in the literature are actually based on sample
statistics (i.e., statistics based on one realization), but not
ensemble statistics. It is possible that in the case of fMRI,
ensemble statistics are equal to sample statistics. However,
in this scenario, fMRI would be ergodic, which would in
turn imply that fMRI is WSS.

Because the definition of WSS involves ensemble statis-
tics, it is possible to come up with a toy brain with dis-
crete brain states (i.e., HMM process) that is both WSS
and ergodic (Section 4). Given that a WSS process can
exhibit sharp transitions in SWC (Figure 2), this suggests
that observed fluctuations in functional connectivity are
not necessarily evidence of a non-stationary system.

The loose use of the term “non-stationarity” in the lit-
erature is not merely a linguistic issue, but can lead to
potential confusion because current dFC statistical test-
ing approaches rely on frameworks from the physics and
statistics communities utilizing strict statistical notions,
including stationarity (e.g., Schreiber and Schmitz, 2000).
This motivates our detailed exploration of the assumptions
behind the popular ARR and PR frameworks for generat-
ing null data for hypothesis testing of dFC.

It is possible that the dFC community might not be re-
ferring to “non-stationarity” in the statistical sense. How-
ever, the widely used null hypothesis testing frameworks

(ARR and PR) do rely on traditional statistical notions of
stationarity. Therefore it is important for the community
to articulate the exact statistical notions (e.g., piecewise
stationarity; Nason (2013)) that might encode the intu-
itive notion of “non-stationarity” mentioned in the dFC
literature. Having the exact statistical notions will lead to
better null hypothesis testing frameworks.

8.2. Preserving auto-covariance beyond static FC

Our review of ARR and PR frameworks (Section 5)
shows that both approaches retain the 0-th sample auto-
covariance (R0 in Eq (2)) of the original fMRI data. R0 can
be interpreted as static FC (being an unnormalized variant
of Pearson’s correlation). Therefore R0 is an important
quantity to preserve in null data since the dFC researcher
is presumably interested in showing that dFC cannot be
completely explained by static FC.

Preserving R0 (static FC) can be easily achieved by
permuting the temporal ordering of fMRI time points.
However, such a procedure ignores well-known auto-correl-
ation in the original fMRI data, which will lead to false
positives in null hypothesis testing. Both PR and ARR
seek to preserve auto-correlations in addition to R0. More
specifically, PR preserves the entire sample auto-covariance
sequence (R0, · · ·RT−1 in Eq (2)) of the original fMRI
data, while ARR of order p preserves only the first p + 1
terms of the auto-covariance sequence (R0, · · ·Rp). For
example, ARR of order 1 preserves R0 and R1.

Since PR potentially preserves higher order auto-covar-
iances than ARR, it might be theoretically advantageous.
However, in our experiments, PR and multivariate ARR
of order 1 were able to explain observed SWC in real fMRI
data equally well (Figures 5, 6 and 8). On the other hand,
ARR of order 0 (i.e., only R0 or static FC is preserved)
does not explain SWC fluctuations at all (Figure S3). The
implication is that fluctuations in SWC can largely be ex-
plained by taking into account auto-covariances of lag 0
(i.e., static FC or R0) and lag 1 (i.e., R1) from the original
fMRI data.
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8.3. Null data generation in the literature
Understanding why ARR and PR are able to preserve

sample auto-covariances of the original data (Figure 3)
is useful for interpreting other null data generation ap-
proaches in the literature. For example, Allen et al. (2014)
applies the PR framework directly on the sliding window
FC time series, and not on the fMRI time series. There-
fore in the case where the same random phase sequence
was added to all dFC phase spectra (i.e., SR1 in Allen
et al., 2014), the null dFC time series have the same auto-
covariance sequence as the original dFC time courses, but
not the auto-covariance of the original fMRI time courses.
Therefore the tested null hypothesis is similar, but not the
same as other papers that applied PR to the fMRI time
series (Handwerker et al., 2012; Hindriks et al., 2016).

ARR has also been widely used in neuroimaging ap-
plications, mostly following the bivariate variant proposed
by Chang and Glover (2010). Our results suggest that bi-
variate ARR neglects higher-order interactions (Figure 7),
resulting in wrongly estimated AR model parameters, po-
tentially leading to false positives. The issue with wrongly
estimated AR model parameters is reminiscent of Friston’s
criticism of functional connectivity (Friston, 2011), where
two regions A and B might be functionally connected be-
cause of mutual effective connectivity with an intermedi-
ary region C. However, it should be noted that AR mod-
els are not effective connectivity models because of the
lack of hemodynamic modeling (Friston, 2009). The false
positive rate associated with bivariate ARR is less serious
when investigating the existence of individual “dynamic”
edges (Figure 5), but extreme when investigating the co-
herence of SWC across dynamic pairs of brain regions.
More specifically, when investigating SWC coherence, the
null hypotheses for all participants were rejected using bi-
variate ARR, compared with only one participant for mul-
tivariate ARR or PR (Figures 6 and S2).

More recently, Laumann et al. (2016) proposed a pro-
cedure to generate null data that matches the static FC
(R0) and the power spectral density of the original fMRI
data (averaged across ROIs). Given the deep relationship
between the auto-covariance sequence and cross-spectral
density of the original fMRI data (Appendix A5), preserv-
ing the average power spectral density retains some (but
not all) information of the original fMRI auto-covariance
structure beyond static FC. The advantage of the Lau-
mann (and PR) approaches over multivariate ARR is that
the number of fitted parameters does not increase quadrat-
ically with the number of ROIs. This allows the generation
of null data with large number of ROIs for which multi-
variate AR model parameters cannot be estimated (see
Appendix A2). However, because the Laumann approach
preserved fewer properties of the original data than PR
or multivariate ARR, one might expect the Laumann null
data to be less close to real data than PR or multivariate
ARR. Indeed, this expectation is empirically confirmed in
Figures S5 and S6B. On the other hand, these results also
suggest that compared with bivariate ARR, the Laumann

procedure generated null data that were more similar to
real data. This explains why Laumann et al. (2016) has
more difficulties rejecting the null hypothesis compared
with Chang and Glover (2010) and Zalesky et al. (2014).

Another approach of generating null data exploits the
approximate scale-free or scale-invariance nature of fMRI.
More specifically, the fMRI power spectrum is known to
approximately follow a power law distribution over the fre-
quency band spanning 0.0005Hz to 0.1Hz (Ciuciu et al.,
2012; He, 2011, 2014). The upper limit of this frequency
band reflects the lowpass characteristics of neurovascular
coupling (Hathout et al., 1999; Anderson, 2008), while the
lower limit reflects the maximum practically achievable du-
ration of continuously awake scanning, which is about 30
minutes.

The exponent of the power law distribution can be used
to inform fMRI stationarity (Eke et al., 2002; He, 2011;
Ciuciu et al., 2012). Hypothesis testing can be performed
by comparing real data to null, stationary, scale-free data
with matched power law exponent. Failure to reject the
null hypothesis indicates scale-invariance and stationar-
ity. Across a variety of sophisticated approaches, including
wavelet leaders, resting-state fMRI has been found to be
stationary (He, 2011; Ciuciu et al., 2012), whereas electri-
cal field potentials and electroencephalograms have been
found to be non-stationary (Miller et al., 2009; Milstein
et al., 2009; Freeman and Zhai, 2009; He et al., 2010;
Van de Ville et al., 2010). One key difference between
the scale-free literature and the PR/ARR framework ex-
plored in this article is that the former has mostly focused
on a single time series from an individual ROI (or voxel or
functional network), while the latter models multivariate
interactions between ROIs.

As we focus in this paper on the importance of con-
sidering the auto-covariance structure of fMRI time se-
ries (Eq. (2)), the Wiener-Khintchine theorem (Appendix
A5) provides a link to the scale-free literature by detailing
the relationship between the power spectrum and auto-
correlation. Based on this, one can for example interpret
a larger power-law exponent as an indicator of stronger
auto-correlation, and vice versa. Intriguingly, the power
law exponent is smaller during task engagement and larger
during drowsiness and sleep (He and Raichle, 2009; He,
2011; Ciuciu et al., 2012, 2014; Churchill et al., 2016).

8.4. The stationary, linear, Gaussian null hypothesis

Our review suggests that PR and ARR generate null
data that are linear, WSS and Gaussian (Section 5). Con-
versely, any linear Gaussian process can be arbitrarily well
approximated by an AR model of sufficiently large order p.
Together, this implies that if the original time series signif-
icantly differ from ARR or PR null data, then the original
data is non-Gaussian or nonlinear or non-stationary. For
example, the null hypothesis was easily rejected for the
stationary two-state toy brain (Figure 4) because the toy
brain is nonlinear and non-Gaussian.
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Nevertheless, this ambiguity is less of an issue because
our results also suggest that the stationary linear Gaussian
null hypothesis cannot be rejected for most low-motion
HCP participants (Section 6). On average (across par-
ticipants), the stationary linear Gaussian null hypothesis
can only be rejected for 0.6% of brain region pairs (Figure
5) when using PR and multivariate ARR. When study-
ing dFC coherence, the stationary linear Gaussian null
hypothesis was only rejected for 1% of the participants
(Figures 6, S2 and S3).

The difficulty in rejecting the null hypothesis is some-
what surprising given that the brain is a complex organ
possessing nonlinear neuronal dynamics (e.g., Hodgkin and
Huxley, 1952; Valdes et al., 1999; Deco et al., 2008; Stephan
et al., 2008; Deco et al., 2011). However, our results are
consistent with previous literature reporting difficulties to
reject the null model, especially in single subject fMRI
data (Hindriks et al., 2016; Laumann et al., 2016). A
close look at the dFC literature suggests similar difficul-
ties in seminal dFC papers. For example, dFC states were
found using null data generated by adding the same ran-
dom phase sequence to all dFC phase spectra during PR
(i.e., SR1 in Allen et al., 2014). Similarly, Zalesky and
colleagues (Zalesky et al., 2014) reported that on average
across subjects, the null hypothesis was rejected for only
4% of edges when using bivariate ARR, which is highly
consistent with our bivariate ARR results, where 5% of
edges were rejected. Therefore, the dFC literature is con-
sistent in finding only small deviations from the stationary,
linear, Gaussian null hypothesis. Much of the controversy
might be due to differences in the interpretation, i.e., view-
ing the glass as half-full or half-empty.

For the small minority of edges or participants whose
null hypothesis is rejected, it is unclear whether this de-
viation is due to non-stationarity, nonlinearity or non-
Gaussianity. It is also unclear whether these deviations
are due to artifacts (e.g., respiration; Laumann et al., 2016;
Power et al., 2017) or neurologically meaningful. One ap-
proach of demonstrating neurological relevance is by as-
sociation with behavior or disease. While there are many
studies linking dFC measures (e.g., SWC, dwell time of
brain states, etc) with behavior and diseases (Damaraju
et al., 2014; Barttfeld et al., 2015; Su et al., 2016; Du
et al., 2016; Nomi et al., 2017; Shine et al., 2016; Wang
et al., 2016), there are far fewer studies explicitly demon-
strating that dFC measures are able to explain behavioral
measures or disease status above and beyond static FC
(e.g., Rashid et al., 2014). Moreover, to the best of our
knowledge, we are unaware of any studies showing dFC-
behavioral associations above and beyond the stationary,
linear and Gaussian model. Therefore, for studies demon-
strating that their dFC measures are more strongly asso-
ciated with behavior than static FC (e.g., Rashid et al.,
2014), the improvement might potentially be explained by
the AR model, which encodes both static FC (R0) and
linear dynamical interactions between brain regions (R1,
etc).

8.5. Does dynamic functional connectivity exist?

Does stationarity, linearity and Gaussianity of fMRI
time series imply that dFC is spurious? Obviously, if dFC
is strictly defined as non-WSS (Section 3.2), then station-
arity does imply the lack of dFC. However, Section 4 sug-
gests that such a definition of dFC would exclude a class of
signals (e.g., HMM) that most neuroscientists would think
of as encoding dFC. Therefore alternative definitions of
dFC should be considered.

If dFC is thought of as corresponding to the brain
sharply switching between discrete states with distinct FC
patterns, then our results suggest a lack of evidence in
resting-state fMRI. The presence of HMM-type states could
potentially lead to the rejection of the stationary linear
Gaussian null hypothesis (Section 4). However, the null
hypothesis was not rejected for most low motion HCP par-
ticipants (Section 6). This non-rejection could be due to
a lack of statistical power. Therefore we tested whether
an HMM-type model explicitly encoding the presence of
states would fit SWC fluctuations better than AR (or PR)
models. We found that ARR and PR reproduced the gen-
tle fluctuations of recurring SWC patterns in real data,
whereas sharp transitions were observed in the HMM (Fig-
ure 8). The result was replicated (Figure 9) even in the one
subject for whom the stationary linear Gaussian model was
rejected12 (Section 6.4). Altogether, this suggests the lack
of discrete brain states as measured by SWC, consistent
with some proposals that SWC might be better explained
by a mixture of states (Leonardi et al., 2014; Miller et al.,
2016). One difficulty in estimating discrete FC states with
SWC is that SWC introduces additional blurring of the
fMRI signal, which is already a smoothed response to un-
derlying neural signal. However, it is worth noting that
a recent approach applying hemodynamic de-convolution
and clustering also yielded overlapping activity-level states
without sharp temporal switching (Karahanoğlu and Van
De Ville, 2015).

If dFC is thought of as the existence of FC information
beyond static FC, then our results do support the exis-
tence of dFC because multivariate AR models explained
SWC fluctuations significantly better than just static FC
(Figure S3). Indeed, AR models are often considered mod-
els of linear dynamical systems (e.g., Casti, 1986; Gajic,
2003). By encoding linear dynamical interactions between
brain regions (A1 in Eq. (3)), the first order AR model

12This is possible because rejection of the null hypothesis only
implies the existence of information beyond the stationary, linear,
Gaussian (SLG) model, and does not preclude the SLG model from
explaining the original data better than an alternative model. For
example, suppose 40% variance of the original data is uniquely ex-
plained by the SLG model, 10% variance is uniquely explained by an
alternative model, and 50% variance is jointly explained by the SLG
and alternative models. In this case, the alternative model explains
some variance not explained by the SLG model. Therefore, using
a metric derived from the alternative model can result in statistical
rejection given enough statistical power. However, the SLG model
is still better than the alternative model because it explains 90% of
the data compared with 60% for the alternative model.
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captures both static FC (i.e., R0 in Eq. (2)) and dynamic
FC structure (i.e., R1 in Eq. (2)). It is worth remind-
ing the readers that the diagonal elements of R1 encode
the auto-correlation within individual brain regions, while
the off-diagonal terms encode lagged cross-covariance be-
tween brain regions. Since the Laumann null data gen-
eration approach (Laumann et al., 2016) explicitly pre-
serves static FC and temporal auto-correlation, but did
not explain SWC as well as first order AR models (Fig-
ure S6), this suggests the importance of the off-diagonal
entries of R1, i.e., lagged cross-covariance between brain
regions. The importance of such resting-state lagged cross-
covariances has been described in humans (Mitra et al.,
2014; Raatikainen et al., 2017) using fMRI and in animals
using a variety of electrophysiological techniques (Moha-
jerani et al., 2013; Stroh et al., 2013; Matsui et al., 2016);
for review, see Mitra and Raichle (2016).

Finally, if dFC refers to the presence of biological infor-
mation in FC fluctuations, then recent evidence suggests
that FC fluctuations within a single fMRI session can be
linked to varying levels of vigilance (Wang et al., 2016).
Others have shown that activity level fluctuations might
also be associated with arousal (Chang et al., 2016), atten-
tion (Kucyi et al., 2016) or emotional states (Kragel et al.,
2016). However, it is currently unclear whether the mental
fluctuations might be more readily explained by fluctuat-
ing activity level (first order statistics) or fluctuating FC
(second order statistics).

It is important to emphasize that stationary, linear,
Gaussian fMRI does not contradict the presence of men-
tal fluctuations during resting-state fMRI. To see this, let
us consider the following toy example. Suppose Alice and
Bob play a game, where Alice tosses a fair coin at each
round of the game. Every time the coin toss results in a
head, Alice pays Bob a dollar. Every time the coin toss
results in a tail, Bob pays Alice a dollar. We can see that
the coin tosses do not possess any interesting dynamics:
coin tossing is stationary and temporally independent (so
it is even less “interesting” than fMRI). However, the out-
comes of the coin toss are still financially (behaviorally)
relevant. Similarly, stationary, linear, Gaussian fMRI dy-
namics might reflect fluctuation in the levels of vigilance,
arousal, attention and/or emotion (Chang et al., 2016;
Kucyi et al., 2016; Kragel et al., 2016; Wang et al., 2016).

8.6. Future directions

Rather than arguing about the existence of dFC, it
might be more useful to re-frame this debate in terms of
adequate models of fMRI time series: (i) what kind of
model reproduces properties of fMRI (and dFC) time se-
ries and (ii) what types of FC fluctuations (shapes, timescales)
are expected in these models? This framing sidesteps the
question of whether ‘dFC exists’, but instead relies on
mathematical models, from which principled predictions
and interpretations might provide further insights into hu-
man brain organization.

Given the ability of AR (and PR) models to gener-
ate realistic SWC, rather than treating them as just null
models, AR models could themselves be utilized to pro-
vide insights into the brain. Since more complex models
are harder to interpret, they should not be preferred un-
less existing models could not fit some important aspect of
fMRI data. For example, since models of static FC cannot
explain SWC dynamics very well (Figure S5), it is clear
that first order multivariate AR model is preferable for a
researcher interested in dFC. The next step would be to
show that the additional dynamics modeled by AR model
(above and beyond static FC) is functionally meaningful,
such as by association with behavior or disease.

Since this article only focuses on SWC and several
statistics (Sections 6.3, 6.4 and 7), it is possible that sta-
tionary linear Gaussian (SLG) models are unable to ex-
plain unexamined aspects of fMRI dynamics captured by
non-SWC approaches or other statistics (Maiwald et al.,
2008; Griffa et al., 2017). In these cases, more complex
generative models, such as those involving mixture of states
(Leonardi et al., 2014) or wavelets (Breakspear et al., 2004;
Van De Ville et al., 2004), might be necessary. Generaliza-
tions of the AR model allowing for time-varying properties
of their parameters, such as the GARCH model (Boller-
slev, 1986) might also be considered (Lindquist et al., 2014;
Choe et al., 2017). Additional examples of more advanced
approaches can be found in the excellent review by Preti
and colleagues (Preti et al., 2016).

However, it is worth emphasizing that following Oc-
cam’s razor, more complex models should be used only
if simpler ones have been proven to fail at capturing im-
portant information encoded in the data. In this paper we
have shown that the stationary linear Gaussian model cap-
tures information beyond classical static models of FC, but
it is not clear whether more complex and more biophysi-
cally realistic models will further explain fMRI dynamics.
For example, the use of the FCD matrices (Figure 8) to
visualize the rich SWC dynamics was pioneered by Hansen
et al. (2015), who demonstrated that nonlinear biophysi-
cal (neural mass) models could replicate some of the rich
SWC dynamics, while a linear dynamical model was not
able to. The linear dynamical model utilized by Hansen
and colleagues is essentially the same as the first order AR
model utilized here. However, the linear dynamical model
was utilized to model neural dynamics, rather than fMRI
data directly. The “output” of the linear neural model was
then fed into a biophysical hemodynamic response model
to generate fMRI data. Importantly, the interactions be-
tween brain regions were set to be the diffusion connectiv-
ity matrix, rather than fitted to real fMRI data. Conse-
quently, the linear dynamical model (Hansen et al., 2015)
did not exhibit the rich dynamics observed in our experi-
ments (Figure 8). Because of the difficulties in estimating
the parameters of the nonlinear neural mass models, it
is unclear whether an optimized neural mass model might
be able to explain FC fluctuations better than a first order
multivariate AR model.
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A recurring criticism of AR modeling of fMRI time se-
ries is that the model parameters cannot be interpreted
as effective connectivity because spatial variability of the
hemodynamic response function is usually not taken into
account (e.g., Friston, 2009). Hence other generative mod-
els such as dynamic causal modelling should be preferred
if one wants to study effective connectivity (Friston et al.,
2003). However, this does not preclude the use of AR
models as a diagnostic tool encoding functional connectiv-
ity information beyond static FC (Rogers et al., 2010). An
obvious challenge will then be to extract the most relevant
information from these models (Liégeois et al., 2015; Ting
et al., 2016).

9. Conclusion

We explore statistical notions relevant to the study of
dynamic functional connectivity. We demonstrate the ex-
istence of a stationary process exhibiting discrete states,
suggesting that stationarity does not imply the absence of
brain states. Our review of two popular null data gener-
ation frameworks (PR and ARR) suggests that rejection
of the null hypothesis indicates non-stationarity, nonlin-
earity and/or non-Gaussianity. We show that most HCP
participants possess stationary, linear and Gaussian fMRI
during the resting-state. Furthermore, AR models explain
real fMRI data better than just static FC, and a popu-
lar approach that explicitly models brain states. Overall,
the results suggest a lack of evidence for discrete brain
states (as measured by fMRI SWC), as well as the ex-
istence of FC information beyond static FC. Therefore
dFC is not necessarily spurious because AR models are
themselves linear dynamical models, encoding temporal
auto-covariance above and beyond static FC. Given the
ability of AR models to generate realistic fMRI data, AR
models might be well suited for exploring the dynamical
properties of fMRI. Finally, our results do not contradict
recent studies showing that temporal fluctuations in func-
tional connectivity or activity level can be behaviorally
meaningful. The code used for this work are available at
GITHUB LINK TO BE ADDED.
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Karahanoğlu, F. I. and D. Van De Ville
2015. Transient brain activity disentangles fmri resting-state dy-

namics in terms of spatially and temporally overlapping networks.
Nature communications, 6.

Khintchine, A.
1934. Korrelationstheorie der stationaryren stochastischen
prozesse. Mathematische Annalen, 109(1):604–615.

Kragel, P. A., A. R. Knodt, A. R. Hariri, and K. S. LaBar
2016. Decoding spontaneous emotional states in the human brain.
PLoS biology, 14(9):e2000106.

Krienen, F. M., B. T. Yeo, T. Ge, R. L. Buckner, and C. C. Sher-
wood
2016. Transcriptional profiles of supragranular-enriched genes
associate with corticocortical network architecture in the hu-
man brain. Proceedings of the National Academy of Sciences,
113(4):E469–E478.

Kucyi, A., M. J. Hove, M. Esterman, R. M. Hutchison, and E. M.
Valera
2016. Dynamic brain network correlates of spontaneous fluctua-
tions in attention. Cerebral Cortex, 27(3):1831 – 1840.

Laumann, T. O., E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J.
Joo, M.-Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nel-
son, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A.
Poldrack, and S. E. Petersen
2015. Functional system and areal organization of a highly sam-
pled individual human brain. Neuron, 87(3):657–670.

Laumann, T. O., A. Z. Snyder, A. Mitra, E. M. Gordon, C. Gratton,
B. Adeyemo, A. W. Gilmore, S. M. Nelson, J. J. Berg, D. J.
Greene, et al.
2016. On the stability of bold fmri correlations. Cerebral Cortex,
Pp. 1–14.

Leonardi, N., W. R. Shirer, M. D. Greicius, and D. Van De Ville
2014. Disentangling dynamic networks: Separated and joint ex-
pressions of functional connectivity patterns in time. Human brain
mapping, 35(12):5984–5995.

Leonardi, N. and D. Van De Ville
2015. On spurious and real fluctuations of dynamic functional
connectivity during rest. Neuroimage, 104:430–436.
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Appendix

A1. Details of ARR procedure and linear Gaus-
sianity

Let xt be the N ×1 vector of fMRI data at time t after
each time course has been demeaned. There are many ap-
proaches to estimate the p-th order AR model parameters
(Σ, A1, · · · , Ap) from the data xt. A common approach is
as follows.

1. EstimateA1, · · · , Ap using the following least-squares
cost function:∥∥∥∥∥

T∑
t=p+1

(
xt −

p∑
l=1

Alxt−l

)∥∥∥∥∥
2

, (A1)

where T is the number of time points. Let A =
[A1, · · ·Ap] (i.e., A is an N ×Np matrix). Then the
optimum to the above criterion corresponds to

Â = XZ ′(ZZ ′)−1, (A2)

where ′ indicates transpose, X is an N × (T − p)
matrix

X = [xp+1, · · · , xT ] , (A3)

and Z is an Np× (T − p) matrix

Z =


xp xp+1 . . . xT−1
xp−1 xp . . . xT−2

...
...

. . .
...

x1 x2 . . . xT−p

 . (A4)

The estimation procedure therefore requires ZZ ′ (in
Eq. (A2)) to be full rank, which implies that T ≥
(N + 1)p. For example, if one utilized a parcellation
with 400 ROIs, then one would need at least 401 ×
3 = 1203 time points for a 3rd order AR model.

2. After estimating Â = [Â1, · · · , Âp], the residual (er-
ror) is defined as follows

δt = xt −
p∑
l=1

Âlxt−l for t = p+ 1, · · · , T (A5)

The covariance matrix Σ can then be estimated via
the empirical covariance matrix:

Σ̂ =
1

T − p

T∑
t=p+1

δtδ
′
t (A6)

Once (Σ, A1, · · · , Ap) are estimated, each ARR null
data is initialized by randomly selecting p consecutive time
points of the original data, and then repeatedly applying
the AR model (Eq. (3)) until null data of length T are gen-
erated. By virtue of the AR model (Eq. (3)), the resulting

null data is linear Gaussian if the resulting system is stable
(see Appendix A2).

In the fMRI literature, it is common to generate null
data where εt in Eq. (3)) are not generated using a Gaus-
sian distribution, but obtained by sampling from the resid-
uals δt of the identified AR model (Chang and Glover,
2010). In practice, the residuals might not follow a Gaus-
sian distribution (Lutkepohl, 2005), and so the resulting
ARR null data would only be linear but not Gaussian.
However, in our experiments (not shown), this difference
does not have any practical effect on our conclusions.

A2. WSS, stability and auto-covariance of ARR
null data

The AR random process (Eq. (3)) is WSS if and only if
the AR model is stable (Lutkepohl, 2005; Zivot and Wang,
2006; Pfaff, 2008). Stability can be assessed by ensuring
that the matrix

A =


A1 A2 . . . Ap−1 Ap
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 (A7)

has eigenvalues with magnitude strictly smaller than one.
Therefore ARR null data is WSS assuming that the

estimated AR parameters correspond to that of a sta-
ble AR model. This stability condition should therefore
be checked when estimating the AR model parameters
(Eq. (A1)). Since the original fMRI data is stable (i.e.,
the fMRI measurements do not diverge to infinity), the
estimated AR model should be stable as long as the esti-
mation procedure is reliable. In our experience with fMRI
data, this is indeed the case if the AR order p is not too
close to its maximal value of pmax = T

N+1 (Appendix A1).
If the order p is too close to pmax, then the estimation
procedure (Eq. (A1)) might require the inversion of an al-
most singular matrix, which might lead to an unstable AR
model.

We now turn our attention to the relationship between
the AR model parameters (Σ, A1, · · · , Ap) (Eq. (3)) and
auto-covariance sequence R0, · · · , Rp (Eq. (2)), which is
governed by the Yule-Walker equations (Yule, 1927; Walker,
1931) assuming infinitely long time courses:

R0 R′1 . . . R′p
R1 R0 . . . R′p−1
...

...
. . .

...
Rp Rp−1 . . . R0




1
A1

...
Ap

 =


Σ
0
...
0

 . (A8)

Eq. (A8) is invertible for sufficiently large T , and so the
AR model parameters are completely determined by the
auto-covariance sequence of the original data (Stoica and
Moses, 2005) and vice versa (e.g., Pollock, 2011, Chapter
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13). Consequently, the AR null data generated by this
framework share the first p+ 1 auto-covariances (Eq. (2))
computed from the original data.

It is also worth noting that for sufficiently large T , the
AR parameters obtained by inverting Eq. (A8) are mathe-
matically and practically equivalent to those obtained from
Appendix A1. For small T , AR model parameters esti-
mated from Eq. (A8) are guaranteed to correspond to a
stable system, while AR model parameters estimated from
Eq. (A2) are not (Stoica and Nehorai, 1987). Therefore one
should always check the stability of the AR system when
using the least squares approach (Appendix A1).

A3. Details of the PR procedure

This appendix elaborates the PR procedure. Let xn

denote the time course of the n-th brain region, while xnt
denote the t-th time point of the n-th brain region (where
the first time point corresponds to t = 0). Without loss
of generality, we assume that the time courses have been
demeaned. PR proceeds as follows:

1. The Discrete Fourier Transform (DFT) for each time
course xn is computed:

ynk = F(xn) =

T−1∑
t=0

xnt exp

(
−i2πk t

T

)
= Qnk exp(iΦnk ) for k = 0, · · · , T − 1, (A9)

where k indexes frequency, and Qnk and Φnk are the
amplitude and phase of the k-th frequency compo-
nent of the DFT. Since the input signal is real, Qnk =
QnT−k and Φnk = −ΦnT−k. Because the signal has
been demeaned, therefore Qn0 = 0.

2. A random phase φk is then added to the DFT coef-
ficients for each brain region n:

ỹnk = Qnk exp(i(Φnk + φk)) for k = 0, · · · , T − 1,
(A10)

where φk is drawn from a uniform distribution on
the [0, 2π] interval. Importantly, φk is the same for
all brain regions and independently sampled for fre-
quencies k = 0, · · · , dT/2e (although we note that
φ0 is useless because Qn0 = 0). For k > dT/2e (d·e
denote the ceiling function), φk = −φT−k because of
the need to ensure the null data remains real (rather
than complex-valued).

3. The inverse DFT is then performed for each brain
region n resulting in the PR null data:

x̃nt = F−1(ỹn) (A11)

=
1

T

T−1∑
k=0

ỹnk exp

(
i2πk

t

T

)
for t = 0, · · · , T − 1,

(A12)

Because Qnk = QnT−k, Φnk = −ΦnT−k, Qn0 = 0, and φk =
−φT−k for k > dT/2e, the null data (Eq. (A12)) can be
written in the following form:

x̃nt = 2

dT/2e∑
k=1

Qnk cos(2πk
t

T
+ Φnk + φk). (A13)

A4. PR null data are WSS

To show that the PR null data is WSS, we show that
the ensemble mean and ensemble auto-covariance do not
depend on the time t.

First, by applying “expectation” to Eq. (A13) and via
the linearity of expectation, the ensemble mean is equal
to:

E[x̃nt ] = 2

T/2∑
k=1

QnkE
[
cos

(
2πk

t

T
+ Φnk + φk

)]

= 2

T/2∑
k=1

Qnk

∫ 2π

0

1

2π
cos

(
2πk

t

T
+ Φnk + φk

)
dφk

= 0, (A14)

where the second equality arises because φk ∼ U[0, 2π].
Therefore the ensemble mean does not depend on the time
t.

Let Cov(xnt , x
m
t−l) be the ensemble auto-covariance be-

tween the signal of brain region n at time t and the signal
of brain region m at time t−l. Because the ensemble mean
is equal to 0 for all time points, therefore

Cov(xnt , x
m
t−l) = E[x̃nt x̃

m
t−l]

= 4E

[
T/2∑
k1=1

Qnk1 cos

(
2πk1

t

T
+ Φnk1 + φk1

)
T/2∑
k2=1

Qmk2 cos

(
2πk2

t− l
T

+ Φmk2 + φk2

)]
= 4(A+B), (A15)

where A corresponds to the products of cosines with dif-
ferent frequencies and B corresponds to the products of
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cosines with the same frequencies. More specifically,

A = E

[
T/2∑
k1=1

∑
k2 6=k1

Qnk1Q
m
k2 cos

(
2πk1

t

T
+ Φjk1 + φk1

)

cos

(
2πk2

t− l
T

+ Φhk2 + φk2

)]
(A16)

=

T/2∑
k1=1

∑
k2 6=k1

Qnk1Q
m
k2E

[
cos

(
2πk1

t

T
+ Φjk1 + φk1

)]

E
[
cos

(
2πk2

t− l
T

+ Φhk2 + φk2

)]
(A17)

= 0 (A18)

where the second equality is true due to the fact that the
random phases φk1 and φk2 are independently sampled,
and the third equality is obtained from straightforward
integration (just like the ensemble mean). On the other
hand,

B = E

[
T/2∑
k=1

QnkQ
m
k cos

(
2πk

t

T
+ Φnk + φk

)

cos

(
2πk

t− l
T

+ Φmk + φk

)]
(A19)

=
1

2
E

[
T/2∑
k=1

QnkQ
m
k

(
cos

(
4πk

2t− l
T

+ Φnk + Φmk + 2φk

)

+ cos

(
2πk

l

T
+ Φnk − Φmk

))]
(A20)

=
1

2

T/2∑
k=1

QnkQ
m
k cos

(
2πk

l

T
+ Φnk − Φmk

)
(A21)

Therefore

Cov(xnt , x
m
t−l) =

1

2

T/2∑
k=1

QnkQ
m
k cos

(
2πk

l

T
+ Φnk − Φmk

)
,

(A22)

which does not depend on time t and only depends on the
interval l between the two time points t and t−l. Therefore
PR null data are WSS. Furthermore, one can also verify
that the sample mean is equal to 0 and the sample auto-
covariance sequence Rl are equal to the ensemble auto-
covariances (Eq. (A22)). Therefore PR null data are also
ergodic.

A5. PR null data preserve auto-covariance sequences

In this appendix, we explain why PR null data pre-
serve auto-covariance sequences (Eq. (2)) of the original
data. This property arises from the Wiener-Khintchine
theorem, first formulated in the univariate case by Wiener

(1930) and Khintchine (1934), and then reported in the
multivariate case as an extension of the Wiener-Khintchine
theorem (Prichard and Theiler, 1994), or cross-correlation
theorem (Weisstein, 2016).

Given two time courses xnt and xmt from brain regions
n and m, their (sample) cross spectral density (CSD) is
defined as Ψn,m

k = F(xnt )F∗(xmt ), where F(·) is the DFT,
k indexes frequency, and ∗ is the complex conjugate. Let
Rn,ml correspond to the n-th row and m-column of the
auto-covariance matrix Rl defined in Eq. (2). Then ac-
cording to the multivariate Wiener-Khintchine theorem:

Rn,ml = F(Ψn,m
k ), Ψn,m

k = F−1(Rn,ml ). (A23)

In other words, the (sample) CSD and the auto-covariance
sequence of a multivariate random process encode the same
information about the data.

Let the PR null time courses for brain regions n and m
be denoted as x̃nt and x̃mt . Their sample CSD corresponds
to

Ψ̃n,m
k = F(x̃nt )F∗(x̃mt ) (A24)

= Qnk exp(i(Φnk + φk))Qmk exp(−i(Φmk + φk))
(A25)

= Qnk exp(iΦnk )Qmk exp(−iΦmk ) (A26)

= Ψn,m
k , (A27)

where the second equality is obtained by plugging in Equa-
tion (A10), and the random phase φk is the same for all
brain regions and therefore cancels out in the third equal-
ity. Since the sample CSD is the same between brain
regions n and m in the PR null data, then their auto-
covariance sequence is also the same according to Wiener-
Khintchine theorem (Eq. (A23)).
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Supplementary material

S1. Rejection of the stationary linear Gaussian model does not imply presence of states

Figure S1 (top) shows a representative time course generated from the following univariate model:

xt = a · xt−1 + εt (S1)

where a = 0.2 and εt is noise with uniform distribution: εt ∼ U [−0.5, 0.5]. This process is stationary, linear and
non-Gaussian. It is also clear that there is no discrete state associated with this process.

0 20 40 60 80
−1

0

1

Original linear, stationary, non-Gaussian time course

0 20 40 60 80 100
−1

0

1

ARR surrogate

0 20 40 60 80 100
−1

0

1

PR surrogate

Time

100

Ku=1.87

Ku=2.98

Ku=3.09

Figure S1: The stationary linear Gaussian model can be rejected because of non-Gaussianity of the original time course. (A) Original time
course (top), one ARR surrogate (middle) and one PR surrogate with kurtosis (bottom). Kurtosis (Ku) of the original time course is 1.87
and Kurtosis of the sample surrogates are 2.98 (ARR) and 3.09 (PR).

PR and ARR were utilized to generate 999 surrogates (Figure S1). Kurtosis (Ku) was utilized as a test statistic
(Figure S1). The kurtosis of the original time course is 1.87. The kurtosis of the surrogate time courses ranges from 2.43
to 4.10 (for ARR) and 2.31 to 4.36 (for PR). The stationary, linear, Gaussian null model was rejected with p < 0.001.
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S2. Coherence of SWC dynamics
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Figure S2: Distribution of percentage variance of first principal component across 100 participants in original, phase randomized (PR),
multivariate ARR, bivariate ARR, and static null data. For 99% of the subjects, the stationary linear Gaussian null-model cannot be rejected
using a false discovery rate of q < 0.05. (12 subjects had an uncorrected p value of less than 0.05).

S3. Impact of ARR order p
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Figure S3: Impact of AR model order p. AR model of order 0 (static model) does not capture fluctuations in coherent brain dynamics (as
measured by percentage variance of first principal component) present in the original (OR) data. AR models of orders 1 to 8 capture similar
fluctuations in coherent brain dynamics.
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S4. Impact of temporal filtering and mean grayordinate regression (MGR)
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Figure S4: Impact of bandpass filtering (BPF), highpass filtering (HPF) and mean grayordinate regression (MGR). (Left) ICA-FIX original
data. From left to right: bandpass filtered original data (0.01-0.1Hz) and corresponding phase randomized surrogates; highpass filtered
original data (≥0.0167 Hz following the rule of thumb provided in Leonardi and Van De Ville (2015)); original data with mean grayordinate
regression (MGR) and corresponding phase randomized surrogates. BPF, HPF and MGR reduce the percentage variance explained by the
first principal component and the statistical difference between original and corresponding surrogates is also lowered.

S5. Comparing Stationary Linear Gaussian Model and Hidden Markov Model
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Figure S5: Distribution of Kolmogorov-Smirnov (KS) statistics between the functional connectivity dynamics (FCD) matrices of the original
data and 100 null data from PR, multivariate ARR, bivariate ARR, 3-state hidden Markov model (HMM), 11-state HMM, and Laumann
et al. (2016). A smaller KS statistic implies a better match between original data and null data as the KS statistics measures the maximum
distance between two distributions.
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S6. FCD matrices computed with other surrogates
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Figure S6: FCD matrices of (A) 11-state hidden Markov model (HMM) and (B) Laumann et al. (2016)
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