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A B S T R A C T

Timbre, or sound quality, is a crucial but poorly understood dimension of auditory perception that is important in
describing speech, music, and environmental sounds. The present study investigates the cortical representation of
different timbral dimensions. Encoding models have typically incorporated the physical characteristics of sounds
as features when attempting to understand their neural representation with functional MRI. Here we test an
encoding model that is based on five subjectively derived dimensions of timbre to predict cortical responses to
natural orchestral sounds. Results show that this timbre model can outperform other models based on spectral
characteristics, and can perform as well as a complex joint spectrotemporal modulation model. In cortical regions
at the medial border of Heschl's gyrus, bilaterally, and regions at its posterior adjacency in the right hemisphere,
the timbre model outperforms even the complex joint spectrotemporal modulation model. These findings suggest
that the responses of cortical neuronal populations in auditory cortex may reflect the encoding of perceptual
timbre dimensions.
Introduction

Timbre, the perceptual quality or color of a sound, is defined as
everything by which a listener can distinguish between two sounds with
the same loudness, pitch, spatial location, and duration (ANSI, 2013). For
instance, it is differences in timbre that allow us to distinguish a violin
from a guitar, or one vowel sound from another. Among the typical ad-
jectives that fall under the category of timbre are “brightness”, “clarity”,
“harshness”, “fullness”, and “noisiness” (Stepanek, 2006). Efforts have
been made to identify and quantify the most salient aspects of timbre
through the use of multidimensional scaling (MDS) techniques (e.g.,
Grey, 1977; Elliott et al., 2013). MDS utilizes subjective measures to
determine how perceptually similar a selection of sounds are to one
another, thereby creating a geometric representation that derives the
subjective distances between a diverse set of stimuli using as few di-
mensions as possible (Grey, 1977). After collecting similarity ratings for
musical instrument sounds with unique timbres, Grey (1977) used MDS
to identify three dimensions that best represented the distribution of
timbres. The first dimension was related to the spectral energy distri-
bution of the sounds (ranging from a low to high spectral centroid,
ctober 2017; Accepted 24 October 20
corresponding to timbral descriptors ranging from dull to bright), and the
other two related to temporal patterns, such as whether the onset was
rapid (like a struck piano note or a plucked guitar string) or slow (as is
characteristic of many woodwind instruments) and the synchronicity of
higher harmonic transients.

Grey's influential study contained only sixteen instrumental sounds
from three instrument families, placing some limits on the generaliz-
ability of the outcomes, and used sounds that may not have all had
exactly the same fundamental frequency (F0), which itself may have
affected some aspects of timbre judgments (e.g., Moore and Glasberg,
1990;Warrier and Zatorre, 2002; Allen and Oxenham, 2014). Elliott et al.
(2013) extended Grey's approach by using 42 natural orchestral in-
struments from five instrument families, all with the same F0 (311 Hz,
the E♭ above middle C). After collecting similarity and semantic ratings,
they performed multiple analyses, including MDS. They consistently
found five dimensions to be both necessary and sufficient for describing
the timbre space of these orchestral sounds.

The aim of the current study was to determine whether similar di-
mensions can be identified in the cortical representations of timbral
differences. Although the literature on the neural representations of
17
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timbre is limited, there is some evidence to suggest it is processed in both
primary and secondary auditory cortical regions including superior
temporal sulcus (STS), posterior Heschl's gyrus (HG), and planum tem-
porale (PT), bilaterally, with possible hemispheric asymmetries (Casey
et al., 2012; Halpern et al., 2004; Menon et al., 2002; Staeren et al., 2009;
Warren et al., 2005). However, previous studies have not attempted to
differentiate the neural representations of different timbral dimensions,
and have not explored the possibility that a subjectively based model of
timbre could predict patterns of cortical activation in response to sound.
In the present study, we use fMRI encoding (Kay et al., 2008; Moerel
et al., 2012; Santoro et al., 2014) to determine whether neural pop-
ulations in the cortex can represent the timbre dimensions identified by
Elliott et al. (2013), and compare this model's performance with that of
models based on the spectral and temporal characteristics of the sounds.

Materials and methods

Ethics statement

The experimental procedures were approved by the Institutional
Review Board (IRB) for human subject research at the University of
Minnesota. Written informed consent was obtained from each participant
before starting the measurements.

Participants

Ten right-handed subjects (mean age of 28.6 years, standard devia-
tion [STD] ¼ 8.6 years; five females, five males) participated in this
study. All subjects had normal hearing, defined as audiometric pure-tone
thresholds of 20 dB hearing level (HL) or better, at octave frequencies
between 250 Hz and 8 kHz, and were recruited from the University of
Minnesota community. Musical experience of subjects ranged from zero
Fig. 1. Spectrograms of the sounds with (columns from left to right) the two most positive, tw
(rows). Abbreviations: v ¼ vibrato, m ¼ muted, h ¼ harmonic.
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to 18 years, with eight of the 10 subjects having at least 10 years of
musical experience.

Stimuli and procedure

The stimulus set consisted of 42 professionally recorded natural
Western orchestral instrument sounds, taken from the study of Elliott
et al. (2013). The sounds were originally obtained from the McGill
University Master Samples collection (Opolko and Wapnick, 2006) and
were manipulated to all have the same F0 of 311 Hz (E♭), and a subjective
duration of 1 s, as described in Elliott et al. (2013). Spectrograms for a
subset of these sounds are shown in Fig. 1. Instrument families included
strings, flutes, brass, single reeds, and double reeds. When the rms of the
stimuli was normalized, the perceptual loudness of the sounds at the level
of 75 dB SPL varied noticeably. In order to equalize the perceived
loudness of the stimuli, we processed them using a loudness model (Chen
et al., 2011; Moore, 2014), and scaled the sounds to produce roughly
equal predicted loudness for each sound. This resulted in perceptually
equal loudness for 41 of the 42 sounds. One of the sounds, a muted C
trumpet, required manual adjustment to subjectively match the percep-
tual loudness of the other sounds, presumably because certain aspects of
the sound (e.g., sharp attack and broad spectrum) were not adequately
captured by the loudness model. The adjusted level was selected by four
raters (inter-rater differences were no more than 2 dB).

After the loudness adjustments, the average level of the sounds was
74 dB SPL and the range was 62–81 dB SPL (STD¼ 3.2 dB). Sounds were
presented via MRI-compatible Sensimetrics (Malden, MA) S14 earphones
with custom filters.

Magnetic resonance imaging

Images were acquired in a 3T MR scanner (Siemens Prisma) at the
o intermediate, and the two most negative values on each of the five timbre dimensions
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Center for Magnetic Resonance Research (CMRR, University of Minne-
sota) using a 32-channel head coil. For each subject, we collected
anatomical images and a functional dataset. The MPRAGE T1-weighted
anatomical image parameters were: repetition time (TR) ¼ 2600 ms;
echo time (TE) ¼ 3.02 ms; matrix size ¼ 256 � 256; 1 mm isotropic
voxels. The acquisition parameters for the functional scans were:
TR ¼ 2400 ms; time of acquisition (TA) ¼ 1000 ms; silent gap ¼ TR –

TA ¼ 1400 ms; TE ¼ 30 ms; multiband factor ¼ 4; number of slices ¼ 44;
matrix size ¼ 672 � 672; 2 mm isotropic voxels. Slices were angled to
align with the Sylvian Fissure, and covered the majority of the brain.
However, for most subjects the top of the parietal and frontal lobes were
excluded, along with the bottom of the occipital lobe.

The functional dataset followed an event-related design, where the
sounds were presented in the silent gaps between acquisitions. Six
functional runs were collected per subject. In each run, a unique subset of
seven of the 42 sounds was repeated four times in pseudo-random order.
The division of sounds into separate sets of seven was important for
maintaining independence between training and testing datasets in the
fMRI encoding analysis (see below). The stimuli within each sound set
were manually selected to include a variety of instruments across mul-
tiple instrument families. These sound sets remained consistent across
subjects, but the presentation order of the stimuli within each set was
randomized, and the order of the sets throughout the scanning session
was counterbalanced across subjects in a Latin-square design. The pre-
sentation times of the sound trials were pseudo-randomly jittered with an
interstimulus interval of 2, 3, 4, or 5 TRs. Three silent trials (with no
stimuli present) and three catch trials were also included in each run. For
the catch trials, intended to keep subjects alert, they were instructed to
perform a one-back task in which they pressed a button any time a suc-
cessive repeat of the same sound was presented. This one-back task never
occurred for the same sound more than once in a given run. For the one-
back task repeats, the maximum jitter was set to 4 TRs (9.6 s). The one-
back task catch trials were excluded from analysis. With the 28 test
sounds (four repetitions of seven sounds from the collection) and 3 catch-
trial sounds, a total of 31 sounds were presented per run, along with 3
silent trials. Including about 10 s of silence preceding each run and about
5 s following each run, the total duration of one run was approxi-
mately 5 min.

The data were preprocessed in BrainVoyager QX (Brain Innovation,
Maastricht, The Netherlands). Preprocessing included slice scan time
correction (using cubic spline), 3D motion correction (using trilinear/
sinc interpolation) aligned to the first volume of the first run, and a high-
pass filter (GLM-Fourier) cutoff of 3 cycles per run. Distortion correction
was performed using the Correction based on Opposite Phase Encoding
(COPE) plugin in BrainVoyager QX, which estimated distortions based on
volumes from a posterior-anterior (PA) phase-encoding (PE) direction
and volumes from an AP PE direction (Fritz et al., 2014), and applied
corrections to the functional data. Functional slices were coregistered to
the anatomical data, and then normalized to Talairach space (Talairach
and Tournoux, 1988). Automatic segmentation with manual corrections
of the grey matter (GM) - white matter (WM) boundary was performed
using the anatomical data. Using this boundary, each hemisphere for
each subject was then inflated and brought to Cortex Based Aligned
(CBA) space (Goebel et al., 2006). CBA-averaged group-level GM-WM
meshes were also generated in BrainVoyager QX.

Sound representation by the encoding models

We used fMRI encoding to test several hypotheses for how the brain
represents the timbre of natural orchestral instruments. Under the fMRI
encoding approach, each hypothesis is defined as an encoding model. We
can distinguish between hypotheses by comparing the accuracy with
which each of the trained models is able to predict the fMRI response
patterns to novel testing sounds. We tested the performance of four
encoding models, described below.

First, the subjective timbre model represents the hypothesis that
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responses to the sounds are well described by the five dimensions of
timbre identified by Elliott et al. (2013) (see Fig. 1). The first dimension,
D1, was semantically described as ‘hard, sharp, high-frequency energy
balance’. The second dimension, D2, was described as ‘varying level,
dynamic, vibrato, ringing release’. D3 was characterized as ‘noisy, small
instrument, unpleasant’. Sounds scoring high on D4 were described as
‘compact, steady pitch, pure’. Finally, D5 had no significant correlates
among semantic descriptor pairs. Fig. 2A shows the sounds' representa-
tion in the space of the timbremodel. The values of each sound on each of
the five dimensions were taken from Elliott et al. (2013). As they were
obtained using MDS, the five timbral dimensions were not corre-
lated (Fig. 2B).

Second, the joint spectrotemporal modulation (STM) model represents
the hypothesis that cortical sound processing is well represented by the
frequency-specific spectrotemporal modulation tuning of neuronal pop-
ulations. Sounds are expressed by their frequency-specific spec-
trotemporal modulation content, obtained as the output of a two-stage
biologically inspired model of auditory processing (Chi et al., 2005;
Santoro et al., 2014; NSL Tools package, available at http://www.isr.
umn.edu/Labs/NSL/Software.htm). This model is similar to the timbre
model in that it takes into account both spectral and temporal properties
of sound, but relies solely on the physical description of sound (trans-
formed via simulated auditory processing), and not on any human sub-
jective judgments. The first stage of this model mimics ‘early’ auditory
processing, and consists of 128 overlapping bandpass filters equally
spaced along a logarithmic frequency axis (180–7040 Hz; range of 5.3
octaves). The output of this ‘early’ stage is a spectrogram, which serves as
input to the second ‘cortical’ stage of the model. This stage uses a set of
modulation filters (temporal modulation center frequencies, ω) and
spectral modulation center frequencies (cycles/octave, Ω) to extract the
spectrotemporal modulation content from the spectrograms. The modu-
lation filters are applied at each time-frequency bin, and the absolute
value of the complex-valued model output is then averaged over time.
The full STM model contained ω ¼ 30 features, and Ω ¼ 15 features. We
divided the frequency axis into 128 bins with equal bandwidth in oc-
taves, and averaged the modulation energy within each frequency bin,
resulting in 57,600 features (128�30�15). The sounds' frequency-
specific spectrotemporal modulation characteristics as represented by
this full model are shown in Fig. 2D–F. This full model was then reduced
to 36 features in order to fit it to the fMRI data. The 36 features were:
ω¼ [3, 9, 27] Hz�Ω¼ [0.5, 1, 2] cycles/octave, with the frequency axis
divided into 4 bins with equal bandwidth in octaves. The spectral and
temporal modulation filters had Q3dB values of 1.2 and 1.8, respectively.
The 36-feature limit was chosen on account of having 42 unique sounds
in our stimulus set and wanting to ensure that the number of features in
the model was less than the number of unique sounds in our stimulus set.
Correlations between the model's 36 features are shown in Fig. 2C.

Third, the cochlear filter mean model represents the hypothesis that
responses to the sounds are well described by the spectral content of the
sounds and the frequency tuning exhibited in the cochlea. This model
therefore postulates that the cortical responses reflect primarily the long-
term spectral profile of sounds, as filtered by the cochlea, without regard
to their temporal properties. The representation of the sounds in the
space of this model was obtained based on the output of the first stage of
the model underlying the STMmodel. The resulting “cochleograms”were
averaged over time, and the frequency axis was divided equally into 36
logarithmic frequency bins (resulting in 36 model features).

Finally, the spectral centroid model represents the hypothesis that
cortical coding of timbre is dominated by the spectral centroid of a sound,
corresponding to the perception of “brightness” or “sharpness” (e.g., von
Bismarck, 1974), as represented by Grey's (1977) first dimension, and
reflected by cortical tuning to the sounds' spectral centroids. This is
essentially a simplified version of the cochlear filter mean model, in that
it postulates that the spectral centroid of the sound dominates the rep-
resentation over other spectral features. The spectral center of gravity c,
for each sound was identified by taking the sum of the frequencies fi,
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Fig. 2. Sound representation by the timbre and STM models and frequency-specific spectrotemporal modulation content of the sounds. (A) MDS values for all 42 sounds across the five
dimensions (i.e., features) of the timbre model, taken from Elliott et al. (2013). (B) Correlation between each of the five timbre model features. (C) Correlation between each of the 36 STM
model features reflecting a high correlation between spectrotemporal modulation features within the same frequency bin. Frequency bins are labeled on the right y-axis. (D) The dis-
tribution of temporal modulations across frequency, (E) the distribution of spectral modulation across frequency, and (F) spectral modulations as a function of temporal modulations. The
mean and standard deviation (STD) across sounds are shown in the left and right column, respectively.
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weighted by their normalized amplitudes ai:

c ¼ ΣðfiaiÞ
Σai

The sounds' representation in the model space was then obtained by
creating a [1 x f] vector of zeros for each sound (where f represents the
center frequencies of the frequency bins of the cochlear filter meanmodel),
and assigning the frequency bin that contained that sound's spectral
centroid with a value of one. Frequency bins that did not contain the
63
centroid for any of the 42 sounds were removed. A total of 17 frequency
bins remained, resulting in 17 features for this model.

Model training and testing

Model training and testing was done using MATLAB (Mathworks,
Natick, MA). We performed the analysis independently for the training
and testing runs, which contained completely distinct sets of sounds. That
is, model training and testing were performed with 6-fold cross-
validation. For each cross-validation, 5 runs (i.e., 35 sounds) served for
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model training and one run (i.e., 7 sounds) was left out for model testing.
The fMRI responses to the 42 natural orchestral instrument stimuli

were estimated as follows. For each cross-validation, the training data
were used to compute noise regressors using the GLMdenoise technique
(Kay et al., 2013; GLMdenoise available at: http://kendrickkay.net/
GLMdenoise/), and to estimate the hemodynamic response function
(HRF) of each voxel across all sounds. This HRF was fixed, and was used
in a regression analysis that included the regressors as estimated by
GLMdenoise, to estimate the amplitude of the voxel's response (i.e., the
beta weight) to each of the training and testing sounds. Next, we iden-
tified the voxels that responded significantly to the sounds (T > 3.5,
p < 0.001, uncorrected). For these voxels, regularized linear regression
(ridge regression; see Santoro et al., 2014; for details) was used to
compute the relationship between the measured fMRI responses and the
stimulus features of each model. This relationship (i.e., the trained
model) represented howmuch each feature contributed to a given voxel's
response, referred to as the voxel's population response function.

The trained model was evaluated by its ability to predict the fMRI
responses to the set of testing sounds that were not used for model
training. First, to gain insight into overall model performance (across all
regions with a significant response to the sounds) we computed a sound
identification prediction accuracy score. Activity patterns for each of the
test sounds were used to predict the sound identity based on its corre-
lations with the predicted patterns of activity for each of the seven test
sounds. These correlations were then sorted and assigned a rank score
between one and seven (seven being the lowest rank). In the case of
perfect performance, the correlation between the predicted and actual
patterns would always be ranked higher for comparisons within the same
sound than across different sounds, so the correlation rank, ri, would
always be 1. In the case of chance performance, the expected correlation
rank would be in the middle, i.e., 4. Prediction accuracy Pi was then
computed for each sound i using the following formula:

Pi ¼ 1�
�

ri � 1
Ntest � 1

�

where ri is the rank across the Ntest ¼ 7 sounds in the test set. The overall
prediction accuracy was then computed as the mean of P across all
sounds (i.e., averaging across the 6 cross-validation folds), yielding a
value between zero and one (perfect prediction score¼ 1; chance¼ 0.5).
This method for calculating prediction accuracy, while less common than
forced-choice accuracy measures that look exclusively at stimuli that are
accurately classified (i.e., those that ranked first), has the advantage of
taking into account the whole distribution of ranks (beyond those ranked
first) to assess the model performance (see e.g., Kay et al., 2008; Moerel
et al., 2012; Santoro et al., 2014).

Second, in order to gain insight into the variations in model perfor-
mance throughout brain areas, we evaluated model accuracy per voxel.
For each voxel, we computed the correlation between predicted and
measured responses to the testing sounds. Resulting correlations were
Fisher's z transformed, and averaged across cross-validations to obtain a
map of prediction accuracy per subject for each encoding model.

Group map generation and analysis
Group maps of model prediction accuracy were computed by

smoothing single subject prediction accuracy maps, with local averaging
up to a distance of four vertices (repeat value¼ 4) that were then brought
into CBA space. For each vertex that was included in at least eight indi-
vidual subject maps, a one sample t-test was performed to test if the
observed prediction accuracy (i.e., the correlation between predicted and
observed responses to testing sounds) was significantly greater than 0.
Following the correction for multiple comparisons using False Discovery
Rate (FDR), resulting maps were thresholded at q (FDR) < 0.05.

In order to compare the prediction accuracy of two encoding models,
single subject prediction accuracy maps were smoothed (repeat
value¼ 4) and brought into CBA space. For each vertex that was included
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in at least eight individual maps, a paired samples t-test was performed to
test if there was a significant difference between the prediction accu-
racies of the two encoding models. If more than eight subjects were
available for a given vertex, paired t-tests were run on a random selection
of eight subjects out of all available subjects (this step was taken to ensure
equal degrees of freedom and equal number of possible permutations
across vertices, see below). To correct for multiple comparisons we used a
cluster size thresholding method based on nonparametric permutations.
That is, for each vertex we applied the paired t-test to all possible per-
mutations of the eight subjects across the two models (28 ¼ 256 per-
mutations), resulting in 256 permuted maps. We then generated a null
distribution of cluster size, considering a single-voxel threshold of t > 1.8.
Cluster sizes that occurred less frequently than in 5% in the null distri-
bution were considered significant.

Finally, we created group maps for each dimension of the trained
timbre model. This was an exploratory analysis, with the aim of gaining
insight into the cortical representation of the timbre dimensions. For
each timbre dimension, we obtained the single subject map as the voxels’
weights under the trained timbre model and smoothed the maps with a
Gaussian kernel of 2 mm full-width at half-maximum (FWHM). We
converted the individual subject maps to binary maps, by setting the
voxel to �1 or 1 if the weight was smaller or greater than zero, respec-
tively. Next, the individual subject binary maps were brought to CBA
space. Probability maps were created by assigning each voxel with the
proportion of subjects that showed the same sign in their weight map
(chance¼ 0.5; perfect congruency among subjects¼ 1; map threshold set
to 0.75).

Results

We observed significant responses to the sounds throughout the su-
perior temporal cortex bilaterally (see Fig. 3). The temporal auditory
responsive regions included Heschl's gyrus (HG), and adjacent regions on
Heschl's sulcus (HS), planum polare (PP), planum temporale (PT), su-
perior temporal gyrus (STG), and superior temporal sulcus (STS). Beyond
the auditory cortices, we observed responses to the sounds in the inferior
frontal gyrus, the inferior frontal sulcus, the postcentral gyrus, and the
intraparietal sulcus.

Prediction accuracies for the four encoding models are shown in
Fig. 4. All models except for the spectral centroid model performed
significantly above chance (0.5) in a one-tailed t-test (mean [SE]; timbre:
63% [0.02], t9 ¼ 5.97, P¼ 0.0001, d¼ 1.89; STM: 60% [0.01], t9 ¼ 6.72,
P < 0.0001, d ¼ 2.12; cochlear filter mean: 56% [0.02], t9 ¼ 3.39,
P ¼ 0.004, d ¼ 1.07). The timbre model performed significantly better
than the cochlear filter meanmodel (t9¼ 2.93, P¼ 0.02, d¼ 0.93), and the
spectral centroid model (t9 ¼ 3.89, P ¼ 0.004, d ¼ 1.21). The STM model
also performed significantly better than the spectral centroid model
(t9 ¼ 3.70, P ¼ 0.005, d ¼ 1.13). There was no significant difference
between the timbre model and the STM model (t9 ¼ 1.26, P ¼ 0.24,
d ¼ 0.40), nor between the cochlear filter mean model and the spectral
centroid model (T(9) ¼ 0.41, P ¼ 0.69, d ¼ 0.49).

To test whether the STM model's prediction accuracy might improve
with the inclusion of more features, we also ran a version of the model
that contained 576 features (36 frequency bins X 4 spectral modulations
[0.5 1 2 4] X 4 temporal modulations [1 3 9 27]. The average prediction
accuracy [SE] in this case was: 59% [0.02], which was not significantly
different from the 36-feature version (t9 ¼ 0.48, P ¼ 0.64, d ¼ 0.15), nor
did it outperform the timbre model (t9 ¼ 1.59, P ¼ 0.15, d ¼ 0.50).

Cortical variation in encoding model prediction accuracy

Fig. 5A shows variations in model performance throughout the cor-
tex. These maps indicate how well the measured responses from indi-
vidual voxels to sounds were represented by the different models. Given
that the spectral centroid model did not perform significantly above
chance, we excluded it from further analysis. Although all models
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Fig. 3. Brain maps showing average activation across all runs and across all sounds compared to baseline. (A) fMRI response of a single subject to sound stimuli. (B) Group-level fixed-
effects GLM maps. Both the single subject and group maps are thresholded at P < 10�4 (corresponding to q (FDR) < 0.001), cluster thresholded (cluster size ¼ 25), with nearest-neighbor
interpolation.

Fig. 4. Mean prediction accuracy across the encoding models. Average model performance across ten subjects for the timbre, STM, cochlear filter mean, and spectral centroid models. Error
bars represent ± 1 standard error of the mean. Blue lines indicate which models performed significantly worse than the timbre model, and red lines indicate which models performed
significantly worse than the STM model. No other significant differences were found across models.
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displayed the highest prediction accuracies around the superior temporal
plane (STP) and STG, significantly above-chance accuracy was also
observed in frontal regions. Note that differences in the performance of a
single model across the brain could result from location-specific differ-
ences in noise level (for a review, see Schoppe et al., 2016), and therefore
the differences within each panel of Fig. 5A should be interpreted
with caution.

Contrast maps

In order to compare the models in terms of the significant regional
differences in their performance, we contrasted each model with the
65
timbre model (see Fig. 5B). Warmer colors indicate regions in which the
timbre model has significantly better performance compared to the other
models, and cooler colors indicate regions where the other models have
significantly better performance than the timbremodel. Overall, the maps
show more warm colors than cool colors, reflecting the overall higher
performance of the timbremodel (i.e., higher sound identification score).
The timbre model outperformed all other models in representing pro-
cessing in right hemispheric regions posterior to HG (covering HS and
anterior PT). A comparison of the two best-performing models, the STM
and timbremodels, revealed considerable overlap, but also some regional
differences. Specifically, the timbre model's representation is superior to
that of the STMmodel in regions at the medial end of HG bilaterally, and



Fig. 5. Group-level model performance. (A) The maps show the cortical regions with a significant (q [FDR] < 0.05) correlation between measured and predicted responses to sounds. From
top to bottom, performance of the timbre, STM, cochlear filter mean, and spectral centroid model are shown. (B) Group-level differences between models. Positive values (warmer colors)
indicate voxels for which the timbre model performed significantly better, and negative values (cooler colors) indicate voxels for which the STM or cochlear filter mean (in the top and
bottom panel, respectively) performed significantly better. White dotted lines indicate HG.
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at the posterior and anterior adjacency of HG (i.e., HS and first transverse
temporal sulcus (FTS), respectively) in the right hemisphere. These areas
may reflect either primary or belt regions of auditory cortex (Moerel
et al., 2014). The timbremodel also outperforms the STMmodel in a small
region on the STG of the right hemisphere, likely reflecting a belt region
of auditory cortex. Conversely, the STM model outperforms the timbre
model in a small region at the posterior end of the STG in the left
hemisphere, potentially corresponding to the parabelt region of the
auditory cortex (Moerel et al., 2014). Furthermore, compared to the
cochlear filter mean model, the timbre model performs better in regions
along the HG and STG bilaterally, and HS in the right hemisphere. The
superior performance seen in lateral HG may correspond to a difference
in core auditory regions, while the differences observed in HS of the right
hemisphere and the STG bilaterally may correspond to belt and parabelt
regions, respectively (Moerel et al., 2014).
Analysis of the timbre dimensions

According to Elliott et al. (2013), around 90% of the perceptual
variance in the acoustic stimuli is explained by these five dimensions, and
the dimensions are ordered by the amount of variance explained, with
D1-D3 explaining the most variance. In order to explore a possible cor-
respondence between this perceptual variance and the neural variance,
we tested each dimension of the timbre model separately. The mean
prediction accuracy results were: D1: 56%, D2: 60%, D3: 58%, D4: 49%,
D5: 52%. In a one-tailed t-test, the first three dimensions were signifi-
cantly above chance (t9¼ 4.00, P¼ 0.003, d¼ 1.26; t9¼ 5.28, P¼ 0.001,
d¼ 1.67; and t9¼ 4.21, P¼ 0.002, d¼ 1.33, respectively), suggesting the
first three dimensions best predict responses to novel test sounds.

We explored the overlap in the sound representations captured by the
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timbre and STM models by using canonical correlation analysis (CCA)
(Hotelling, 1936) and linear regression. CCA was used to identify two
new sets of features that share the largest amount of information (i.e., the
maximum correlation), and linear regression was used to compute the
transformation that best describes the features of one model in terms of
the features of the other. We describe each approach and report the re-
sults below.

CCA and linear regression procedures
CCA was performed in a four-fold cross-validation loop (where a

random 75% of the sounds and their representation in the models' space
were used for training, and the remaining 25% for testing on an inde-
pendent data set), repeated 1000 times, to evaluate the canonical cor-
relation using an independent data set. Overfitting of the STMmodel (36
features, 42 sounds) was prevented by using the first 14 principal com-
ponents (PCs) of the model. These 14 PCs explained 99.8% of the vari-
ance in the training data and 98.2% of the variance in the test data. The
PC decomposition was performed on the training data and the test data
was projected on the PC space. Since the timbre model contains only five
features, dimensionality reduction on the timbre model was not needed.
For each cross-validation, the CCA was run on the training data. Next, we
computed the proportion of variance in the original STM model that
could be explained by the canonical covariates of the timbre model, and
likewise, the proportion of variance in the original timbre model that
could be explained by the canonical covariates of the STM model. For
each cross-validation, this was computed by projecting the test data of
each model to the canonical covariate space obtained on the training
data. On the test data sets, a linear regression between the full set of
canonical covariates of one model to the set of original features of the
other model was performed. Performing this analysis on test data
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independent from the (training) data used to compute the canonical
covariates avoids overfitting.

The linear regression between the twomodels was also performed in a
four-fold cross validation loop, repeated 1000 times, and the average
values of the explained variance on the test data were reported. Each
feature of one model was described as a linear function of all of the
features in the other model. The total variance in one model that could be
explained by the other was computed as the sum of the explained vari-
ances of each feature. When the STMmodel was used as the independent
dataset, overfitting was prevented by means of principal components
regularization. For consistency with CCA analysis, the linear regression
was performed on the subspace spanned by the first 14PCs of the STM
model. When the timbre model was used as the independent variable, no
regularization was required and ordinary least squares (OLS) regression
was used.

CCA and linear regression results
For the CCA we found, on average, across cross-validations and 1000

repetitions, that the canonical covariates of the timbre model explained
34.4% of the variance of the original STM model, while the canonical
covariates of the STM model explained 41.6% of the variance of the
timbre model. For the linear regression we found, on average, across
cross-validations and 1000 repetitions, that a linear combination of the
features of the timbre model explained 37.1% of the variance of the
original STM model, while a linear combination of the features of the
STMmodel explained 38.2% of the variance of the timbremodel. The CCA
results are in overall accordance with the linear regression results and
suggest that while there is a clear overlap between the two models, of-
fering the possibility of (partially) understanding the timbre model in
terms of basic acoustic features, there remains a substantial amount of
variance in the timbre model that cannot be explained by the STM model
and vice versa.

Linking the timbre dimensions to acoustic features
To further explore the acoustic basis of each of the timbre dimensions,

we display 3D correlation heat maps between the STM model features
and each of the five timbre model dimensions (Fig. 6A). Additionally, to
explore the neurobiological correlate of each of the five timbre di-
mensions and quantify the consistency across subjects, we conduct an
exploratory analysis of the trained timbre model, displaying those voxels
for which the sign of the voxel's weight in the trained timbre model is
consistent across the majority of subjects (Fig. 6B).

The first timbre dimension, D1, is semantically associated with “hard,
sharp, high-frequency energy balance” (Elliott et al., 2013), and corre-
lates most strongly with a combination of high frequencies and slow
temporal modulations (Fig. 6A). The positive weights on medial HG
suggest that these regions respond more strongly to sounds that score
high on D1. In contrast, negative weights are distributed along STG,
indicating that these cortical locations respond more strongly to sounds
that score low on D1 (Fig. 6B). This may reflect the tonotopic organiza-
tion of the auditory cortex, with a high frequency preference at the
medial border of HG, and a low frequency preference along the STG
(Langers et al., 2007; Moerel et al., 2012), suggesting this dimension, at
least in part, reflects the frequency content of sounds.

D2 is semantically associated with “varying level, dynamic, vibrato,
and ringing release”, and is positively correlated with fast temporal
modulations, especially in combination with intermediate frequency
features (Fig. 6A). These characteristics seem appropriate for the se-
mantic descriptor “ringing release”. In contrast, negative correlations
with low temporal modulations are seen at low-to mid-range frequencies
and low spectral modulations. D2 weights were consistently positive
across a large number of voxels on the supratemporal plane (STP),
indicating that these regions respond more strongly to faster temporal
modulations. This is in accordance with previous studies that showed a
strong bilateral activation of the auditory cortices for sounds with fast
temporal modulations (e.g., Zatorre and Belin, 2001; Joanisse and
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DeSouza, 2014).
D3, which is semantically associated with “noisy, small instrument,

and unpleasant”, correlates positively with high frequency features of the
STM model especially when combined with fast temporal modulations
(possibly corresponding to greater spectral irregularity and roughness),
and negatively to low frequency features (Fig. 6A). In contrast, the
strongest negative correlations were found for slow temporal modula-
tions at low-to mid-range frequencies. This suggests that high frequency
sounds with fast modulations may be perceived as more noisy and un-
pleasant. Like D2 weights, D3 weights were consistently positive across
the STP. This is in accordance with previous work, which found un-
pleasant sounds to be associated with increased bilateral activation
throughout auditory cortex (Plichta et al., 2011).

D4 corresponds to “compact, steady pitch, pure”, and correlates
positively with the lowest STM frequency features, and negatively with
mid-range frequency features. Positive D4 weights appear on primary
auditory cortical regions centered on HG, suggesting that these regions
respond more strongly to more compact and pure sounds. In contrast,
negative weights are situated along the STG, which may respond more
strongly to broader, more complex sounds. This organization is consis-
tent with hierarchical auditory processing, with simple tones being
processed in early auditory cortical areas and more complex sounds
undergoing greater processing in secondary or tertiary auditory regions
(Patterson et al., 2002; Tian and Rauschecker, 2004).

D5 is difficult to interpret, as the previous work by Elliott et al. (2013)
did not reveal a semantic association with this dimension. D5 has strong
positive correlations with features that combine mid-range frequencies,
slow temporal modulations (~3 Hz), and middle spectral modulations
(~1 cycle/octave; Fig. 6A). Furthermore, the anterolateral portion of HG
displays positive D5 weights, bilaterally. This may point toward a
lower-level dimension in the processing hierarchy, potentially associated
with pitch strength (Penagos et al., 2004).

Discussion

In this study, we used fMRI encoding to compare a timbre model
derived from listeners’ ratings of the sounds with acoustic models based
on physical sound characteristics. We observed that the timbremodel was
able to predict a significant portion of the variance in the sound-evoked
cortical activation. Furthermore, it performed significantly better than
the other models tested, with the exception of a complex joint spec-
trotemporal modulation model. This finding, along with the observation
that the two models shared a large part of the variation in the stimulus
domain and the inferior performance of the uniquely spectral encoding
models, supports the idea that joint spectrotemporal features are critical
for capturing timbre perception (Patil et al., 2012).

However, we observed that the timbre model outperformed the joint
STMmodel in a subset of the auditory cortical locations. Specifically, the
timbre model performed significantly better in regions medial and pos-
terior to HG, particularly in the right hemisphere. This suggests that
while the timbre model only contains five features, it may be capturing
some semantic or perceptual tuning properties of the auditory cortex that
extend beyond those captured by the spectrotemporal model. Specifically,
the differences observed in terms of the amount of shared variance be-
tween the timbre and STM models identified via CCA and linear regres-
sion may be a result of the timbre model capturing some nonlinear
combination of physical features not represented in the STMmodel. This
may be a distinguishing component of higher-level semantic processing
(Kay and Yeatman, 2017). In light of this, it would be tempting to
combine these two models in hopes of achieving better model perfor-
mance. However, concatenation of these models is suboptimal as the
timbremodel is made of features that are orthogonal to each other and the
STMmodel has many collinear features. As a result, the regularization to
be applied to each model separately differs substantially and concate-
nation would result in over-penalizing the timbre model. Therefore, an
area that warrants future research is the development of methods to



Fig. 6. Exploratory analyses of the timbre dimensions. (A) Slice plots showing marginal correlations between each of the five timbre dimensions and the features in the STM Model at
several different frequencies. (B) Group-level maps of the five dimensions of the timbre model. For each timbre dimension, warm and cool colors reflect across-subject consistently positive
and consistently negative scores, respectively. A positive or negative weight reflects that as sounds scored higher or lower on that dimension, respectively, the BOLD response in the voxel
increased. White dotted lines indicate HG.
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optimally combine models that explain different parts of the variance
(see e.g., de Heer et al., 2017).

In addition to auditory regions, responses to sounds in frontal regions,
such as the inferior frontal gyrus (IFG), were consistently predicted above
chance across models. This may indicate that timbre features are also
represented in frontal regions, but could also reflect higher-level auditory
processing that is correlated with the features of the employed encoding
models. One possible explanation is that model accuracy in frontal re-
gions could be driven by sound recognition, since our stimuli were
common musical instruments. Maeder et al. (2001) found certain regions
to be more active for sound recognition compared to sound localization,
including the left posterior IFG. Further, Broca's area may be included in
the well-predicted cortical regions. While Broca's region is typically
thought to be a higher-level language processing area, it has been sug-
gested to also play a role in music processing (for a review, see Fadiga
et al., 2009).

Timbre is a notoriously elusive acoustic feature to define and to
investigate experimentally. In this study, the use of fMRI encoding
(Naselaris and Kay, 2015) allowed us to explicitly test the representation
of timbre-varying sounds throughout cortical neuronal populations.
Employing natural sounds, this approach furthermore ensured that
timbre varied across sounds in an ecologically valid manner. While many
earlier studies have used encoding models that represented the physical
characteristics of natural images (Kay et al., 2008; Naselaris et al., 2009)
or sounds (Santoro et al., 2014), our work along with more recent studies
(Huth et al., 2016; Kay and Yeatman, 2017) demonstrates the utility of
incorporating higher-level perceptual features into the encoding models.
This represents a next evolution in fMRI encoding, where the method can
be used to tackle those aspects of perception and cognition that are
extremely challenging to capture using classical approaches.

The timbremodel provides an efficient representation of processing in
human auditory cortex via a compact model whose features are based on
subjective ratings of timbre. Our results suggest that the distributed
neural representation of timbre in the cortex may align with perceptual
categorizations of timbre. Consequently, it may be possible to assign
semantic labels to the multidimensional tuning of neuronal populations.
Since the employed timbremodel was customized for this particular set of
orchestral instruments, studies that test a broader range of stimuli (i.e.,
more musical instruments, speech, and other natural sounds) are rec-
ommended in order to determine the extent of this model's
generalizability.

Acknowledgements

This work was supported by the National Institute of Deafness and
other Communication Disorders at the National Institutes of Health
(grant number R01 DC005216), the Brain Imaging Initiative of the Col-
lege Liberal Arts, University of Minnesota, the Erasmus Mundus Student
Exchange Network in Auditory Cognitive Neuroscience (ACN), the
Netherlands Organisation for Scientific Research (NWO; VENI grant 451-
15-012, and VICI grant 453-12-002), and the Dutch Province of Limburg.
Juraj Mesik, Philip Burton, Cheryl Olman, Jordan Beim, and Taffeta
Elliott provided helpful advice and assistance. The authors declare no
competing financial interests.

References

Allen, E.J., Oxenham, A.J., 2014. Symmetric interactions and interference between pitch
and timbre. J. Acoust. Soc. Am. 135, 1371–1379.

ANSI, 2013. S1.1-2013, American National Standard Acoustical Terminology (American
National Standards Institute, New York, 1960).

Casey, M., Thompson, J., Kang, O., Raizada, R., Wheatley, T., 2012. Population Codes
Representing Musical Timbre for High-level FMRI Categorization of Music Genres, in:
Machine Learning and Interpretation in Neuroimaging. Springer, Berlin Heidelberg,
pp. 34–41.

Chen, Z., Hu, G., Glasberg, B.R., Moore, B.C.J., 2011. A new method of calculating
auditory excitation patterns and loudness for steady sounds. Hear. Res. 282,
204–215. https://doi.org/10.1016/j.heares.2011.08.001.
69
Chi, T., Ru, P., Shamma, S. a, 2005. Multiresolution spectrotemporal analysis of complex
sounds. J. Acoust. Soc. Am. 118, 887. https://doi.org/10.1121/1.1945807.

de Heer, W.A., Huth, A.G., Griffiths, T.L., Gallant, J.L., Theunissen, F.E., 2017. The
hierarchical cortical organization of human speech processing. J. Neurosci. 37,
6539–6557. https://doi.org/10.1523/JNEUROSCI.3267-16.2017.

Elliott, T.M., Hamilton, L.S., Theunissen, F.E., 2013. Acoustic structure of the five
perceptual dimensions of timbre in orchestral instrument tones. J. Acoust. Soc. Am.
133, 389–404. https://doi.org/10.1121/1.4770244.

Fadiga, L., Craighero, L., D'Ausilio, A., 2009. Broca's area in language, action, and music.
Ann. N. Y. Acad. Sci. 1169, 448–458. https://doi.org/10.1111/j.1749-
6632.2009.04582.x.

Fritz, L., Mulders, J., Breman, H., Peters, J., Bastiani, M., Roebroeck, A., Andersson, J.,
Ashburner, J., Weiskopf, N., Goebel, R., 2014. Comparison of EPI distortion
correction methods at 3T and 7T!. In: OHBM Annual Meeting.

Goebel, R., Esposito, F., Formisano, E., 2006. Analysis of functional image analysis contest
(FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group
general linear model analysis and self-organizing group independent component
analysis. Hum. Brain Mapp. 27, 392–401. https://doi.org/10.1002/hbm.20249.

Grey, J.M., 1977. Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc.
Am. 61, 1270–1277.

Halpern, A.R., Zatorre, R.J., Bouffard, M., Johnson, J.A., 2004. Behavioral and neural
correlates of perceived and imagined musical timbre. Neuropsychologia 42,
1281–1292. https://doi.org/10.1016/j.neuropsychologia.2003.12.017.

Hotelling, H., 1936. Relations between two sets of variables. Biometrica 28, 321–377.
Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L., 2016. Natural

speech reveals the semantic maps that tile human cerebral cortex. Nature 532,
453–458. https://doi.org/10.1038/nature17637.

Joanisse, M.F., DeSouza, D.D., 2014. Sensitivity of human auditory cortex to rapid
frequency modulation revealed by multivariate representational similarity analysis.
Fr. ont.Neurosci 8, 306. https://doi.org/10.3389/fnins.2014.00306.

Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L., 2008. Identifying natural images from
human brain activity. Nature 452, 352–355. https://doi.org/10.1038/
nature06713.Identifying.

Kay, K.N., Rokem, A., Winawer, J., Dougherty, R.F., Wandell, B.A., 2013. GLMdenoise: a
fast, automated technique for denoising task-based fMRI data. Front. Neurosci.
https://doi.org/10.3389/fnins.2013.00247.

Kay, K.N., Yeatman, J.D., 2017. Bottom-up and top-down computations in word- and face-
selective cortex. Elife 6, 191–195. https://doi.org/10.7554/eLife.22341.

Langers, D.R.M., Backes, W.H., van Dijk, P., 2007. Representation of lateralization and
tonotopy in primary versus secondary human auditory cortex. Neuroimage 34,
264–273. https://doi.org/10.1016/j.neuroimage.2006.09.002.

Maeder, P., Meuli, R., Adriani, M., Bellmann, A., Fornari, E., Thiran, J.-P., Pittet, A.,
Clarke, S., 2001. Distinct pathways involved in sound recognition and localization: a
human fMRI study. Neuroimage 14, 802–816. https://doi.org/10.1006/
nimg.2001.0888.

Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H.,
McAdams, S., 2002. Neural correlates of timbre change in harmonic sounds.
Neuroimage 17, 1742–1754. https://doi.org/10.1006/nimg.2002.1295.

Moerel, M., De Martino, F., Formisano, E., 2014. An anatomical and functional
topography of human auditory cortical areas. Front. Neurosci. 8, 1–14. https://
doi.org/10.3389/fnins.2014.00225.

Moerel, M., De Martino, F., Formisano, E., 2012. Processing of natural sounds in human
auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity.
J. Neurosci. 32, 14205–14216. https://doi.org/10.1523/JNEUROSCI.1388-12.2012.

Moore, B.C.J., 2014. Development and current status of the “cambridge” loudness
models. Trends hear. 18 https://doi.org/10.1177/2331216514550620,
233121651455062.

Moore, B.C.J., Glasberg, B.R., 1990. Frequency discrimination of complex tones with
overlapping and non-overlapping harmonics. J. Acoust. Soc. Am. 87, 2163–2177.

Naselaris, T., Kay, K.N., 2015. Resolving ambiguities of MVPA using explicit models of
representation. Trends Cogn. Sci. 19, 551–554. https://doi.org/10.1016/
j.tics.2015.07.005.

Naselaris, T., Prenger, R.J., Kay, K.N., Oliver, M., Gallant, J.L., 2009. Bayesian
reconstruction of natural images from human brain activity. Neuron 63, 902–915.
https://doi.org/10.1016/j.neuron.2009.09.006.

Opolko, F., Wapnick, J., 2006. The McGill University Master Samples Collection on DVD.
Patil, K., Pressnitzer, D., Shamma, S., Elhilali, M., 2012. Music in our ears: the biological

bases of musical timbre perception. PLoS Comput. Biol. 8, e1002759. https://
doi.org/10.1371/journal.pcbi.1002759.

Patterson, R.D., Uppenkamp, S., Johnsrude, I.S., Griffiths, T.D., 2002. The processing of
temporal pitch and melody information in auditory cortex. Neuron 36, 767–776.
https://doi.org/10.1016/S0896-6273(02)01060-7.

Penagos, H., Melcher, J.R., Oxenham, A.J., 2004. A neural representation of pitch salience
in nonprimary human auditory cortex revealed with functional magnetic resonance
imaging. J. Neurosci. 24, 6810–6815. https://doi.org/10.1523/JNEUROSCI.0383-
04.2004.

Plichta, M.M., Gerdes, A.B.M., Alpers, G.W., Harnisch, W., Brill, S., Wieser, M.J.,
Fallgatter, A.J., 2011. Auditory cortex activation is modulated by emotion: a
functional near-infrared spectroscopy (fNIRS) study. Neuroimage 55, 1200–1207.
https://doi.org/10.1016/j.neuroimage.2011.01.011.

Santoro, R., Moerel, M., De Martino, F., Goebel, R., Ugurbil, K., Yacoub, E., Formisano, E.,
2014. Encoding of natural sounds at multiple spectral and temporal resolutions in the
human auditory cortex. PLoS Comput. Biol. 10, e1003412. https://doi.org/10.1371/
journal.pcbi.1003412.

http://refhub.elsevier.com/S1053-8119(17)30884-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref2
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref2
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref3
https://doi.org/10.1016/j.heares.2011.08.001
https://doi.org/10.1121/1.1945807
https://doi.org/10.1523/JNEUROSCI.3267-16.2017
https://doi.org/10.1121/1.4770244
https://doi.org/10.1111/j.1749-6632.2009.04582.x
https://doi.org/10.1111/j.1749-6632.2009.04582.x
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref9
https://doi.org/10.1002/hbm.20249
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref11
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref11
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref11
https://doi.org/10.1016/j.neuropsychologia.2003.12.017
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref13
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref13
https://doi.org/10.1038/nature17637
https://doi.org/10.3389/fnins.2014.00306
https://doi.org/10.1038/nature06713.Identifying
https://doi.org/10.1038/nature06713.Identifying
https://doi.org/10.3389/fnins.2013.00247
https://doi.org/10.7554/eLife.22341
https://doi.org/10.1016/j.neuroimage.2006.09.002
https://doi.org/10.1006/nimg.2001.0888
https://doi.org/10.1006/nimg.2001.0888
https://doi.org/10.1006/nimg.2002.1295
https://doi.org/10.3389/fnins.2014.00225
https://doi.org/10.3389/fnins.2014.00225
https://doi.org/10.1523/JNEUROSCI.1388-12.2012
https://doi.org/10.1177/2331216514550620
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref25
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref25
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref25
https://doi.org/10.1016/j.tics.2015.07.005
https://doi.org/10.1016/j.tics.2015.07.005
https://doi.org/10.1016/j.neuron.2009.09.006
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref28
https://doi.org/10.1371/journal.pcbi.1002759
https://doi.org/10.1371/journal.pcbi.1002759
https://doi.org/10.1016/S0896-6273(02)01060-7
https://doi.org/10.1523/JNEUROSCI.0383-04.2004
https://doi.org/10.1523/JNEUROSCI.0383-04.2004
https://doi.org/10.1016/j.neuroimage.2011.01.011
https://doi.org/10.1371/journal.pcbi.1003412
https://doi.org/10.1371/journal.pcbi.1003412


E.J. Allen et al. NeuroImage 166 (2018) 60–70
Schoppe, O., Harper, N.S., Willmore, B.D.B., King, A.J., Schnupp, J.W.H., 2016.
Measuring the performance of neural models. Front. Comput. Neurosci. 10, 10.
https://doi.org/10.3389/fncom.2016.00010.

Staeren, N., Renvall, H., De Martino, F., Goebel, R., Formisano, E., 2009. Sound categories
are represented as distributed patterns in the human auditory cortex. Curr. Biol. 19,
498–502. https://doi.org/10.1016/j.cub.2009.01.066.

Stepanek, J., 2006. Musical sound timbre: verbal descriptions and dimensions. In:
Proceedings of the 9th International Conference on Digital Audio Effects (DAFx-06),
pp. 121–126. Montreal.

Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain.
Thieme Medical, New York.
70
Tian, B., Rauschecker, J.P., 2004. Processing of frequency-modulated sounds in the lateral
auditory belt cortex of the rhesus monkey. J. Neurophysiol. 92, 2993–3013. https://
doi.org/10.1152/jn.00472.2003.

von Bismarck, G., 1974. Timbre of steady sounds: a factorial investigation of its verbal
attributes. Acustica 30, 146–159.

Warren, J.D., Jennings, A.R., Griffiths, T.D., 2005. Analysis of the spectral envelope of
sounds by the human brain. Neuroimage 24, 1052–1057. https://doi.org/10.1016/
j.neuroimage.2004.10.031.

Warrier, C.M., Zatorre, R.J., 2002. Influence of tonal context and timbral variation on
perception of pitch. Percept. Psychophys. 64, 198–207.

Zatorre, R.J., Belin, P., 2001. Spectral and temporal processing in human auditory cortex.
Cereb. Cortex 11, 946–953.

https://doi.org/10.3389/fncom.2016.00010
https://doi.org/10.1016/j.cub.2009.01.066
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref37
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref37
https://doi.org/10.1152/jn.00472.2003
https://doi.org/10.1152/jn.00472.2003
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref42
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref42
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref42
https://doi.org/10.1016/j.neuroimage.2004.10.031
https://doi.org/10.1016/j.neuroimage.2004.10.031
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref40
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref40
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref40
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref41
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref41
http://refhub.elsevier.com/S1053-8119(17)30884-4/sref41

	Encoding of natural timbre dimensions in human auditory cortex
	Introduction
	Materials and methods
	Ethics statement
	Participants
	Stimuli and procedure
	Magnetic resonance imaging
	Sound representation by the encoding models
	Model training and testing
	Group map generation and analysis


	Results
	Cortical variation in encoding model prediction accuracy
	Contrast maps
	Analysis of the timbre dimensions
	CCA and linear regression procedures
	CCA and linear regression results
	Linking the timbre dimensions to acoustic features


	Discussion
	Acknowledgements
	References


