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Abstract

The emergence of flexible information channels in brain networks is a fundamen-

tal question in neuroscience. Understanding the mechanisms of dynamic routing

of information would have far-reaching implications in a number of disciplines

ranging from biology and medicine to information technologies and engineering.

In this work, we show that the presence of a node firing at a higher frequency in

a network with local connections, leads to reliable transmission of signals and

establishes a preferential direction of information flow. Thus, by raising the fir-

ing rate a low degree node can behave as a functional hub, spreading its activity

patterns polysynaptically in the network. Therefore, in an otherwise homoge-

neous and undirected network, firing rate is a tunable parameter that introduces

directionality and enhances the reliability of signal transmission. The intrinsic

firing rate across neuronal populations may thus determine preferred routes for

signal transmission that can be easily controlled by changing the firing rate in

specific nodes. We show that the results are generic and the same mechanism

works in the networks with more complex topology.
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Introduction

How does the brain integrate the multiplicity of local processes dispersed

through its entire extent? Complex network analysis of brain activity recorded

with functional magnetic resonance imaging (fMRI) or electroencephalography

(EEG) suggests the existence of influential nodes in the network with a promi-

nent role in integration (Sporns (2014)). Several topological properties have

been suggested to define highly influential nodes, the most important being the

“hub-nodes”, i.e., nodes (brain regions) with a disproportionately large number

of connections to other parts of the brain. Network hubs have been hypoth-

esized to play a crucial role not only in the integrity of the normal brain but

also in disease states (van den Heuvel and Sporns (2013)). For instance, disrup-

tion in hub nodes and their connections have been proposed as a hallmark for

Alzheimer’s disease (Buckner et al. (2009), schizophrenia (Fornito et al. (2012)),

and disorders of consciousness (Achard et al. (2012)).

In contrast to other complex networks, in the nervous system dynamic func-

tional connections ride on top of the anatomical structure, providing resiliency to

the communication channels hardwired in the network topology (Friston (2011);

Fries (2005, 2015)). Therefore, the influence of a node does not only depend

on its degree and position in the network ((Amit and Tsodyks (1992); Zbinden

(2011)) but importantly also on its internal dynamics. The fundamental func-

tional characteristic of such dynamic networks is that the set of nodes and

links that critically define activity propagation in the system can be optimized

independently for different contexts or tasks, resulting in diverse network config-

urations and providing flexibility. This optimization, in the case of the nervous

system, needs to expand across orders of magnitude in temporal and spatial

scales to accommodate the diversity of neural processing ((Park and Friston

(2013); Logothetis (2012)).

In the present paper, we study activity propagation in networks with local

connections and homogeneous topology when inhomogeneities are introduced in

the dynamical characteristics of the constituent nodes. To this end, we consider
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a mutually-coupled network where each node represents a unit composed of ex-

citatory and inhibitory neurons. In our study, all nodes except one, produce

a local oscillation with frequency ν0 in the gamma range. An inhomogeneity

is introduced in the network by placing the remaining node –source node– to

oscillate at a different intrinsic frequency ν = ν0+∆ν, in the otherwise homoge-

neous ensemble. To assess the network response to local inputs, we first perturb

the system with a signal superimposed on one of the nodes and then we use a

generalization of the phase response curve (PRC) for the network (Kawamura

et al. (2008)). Network PRC (nPRC) is defined as the average change of the

period T of the mean firing activity of the network due to a local perturbation.

We find that long-range influences of the local perturbation are facilitated when

the node that receives the perturbation has a higher intrinsic frequency as com-

pared to the rest of the nodes. In the second part of the study, we examine

the implications of this result in the propagation of signals in the networks. To

this end, we superimpose a periodic input over one of the nodes and test the

maximum of the power spectrum of all the nodes at the frequency of the exter-

nal signal. We find, for modulation frequencies higher than ν0, a constructive

role of the inhomogeneity in the propagation of the signal through the network.

Interestingly, this mechanism is generic and works for highly heterogeneous and

complex topologies including CoCoMac connectome network. The presence of

high frequency nodes can be crucial for the propagation of signals in networks

with local connections. With this simple mechanism, we propose a model to

explain how complex networks with fixed anatomical structures can generate a

multiplicity of functional states.

Material and Methods

Neuron’s and synaptic model. The neurons are modeled as leaky Integrate-

fire (LIF) model which is described by the first order differential equation (Burkitt

(2006))

τi
dvi
dt

= −(vi − vleak) + Ii + ηi(t) +
∑
j

Iij(t) + Ji(t), (1)
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where vi is the membrane potential of the neuron i and vleak is the leak mem-

brane potential. Ii is a constant bias current, ηi is an independent Gaussian

white noise current with zero mean and standard deviation σ impinging neuron

i, Iij represents the synaptic current from neuron j to i and Ji(t) accounts for

a local current signal. Every time the membrane potential exceeds a threshold

potential vth, the neuron spikes and the potential resets to a resetting potential

vres, and is clamped at this potential for 0.5 ms as the absolute refractory pe-

riod. The membrane time constant τi is equal to CmRm where Cm and Rm are

the capacitance and the resistance of the membrane, respectively. While the

inputs appear as currents, they are measured in units of the membrane poten-

tial (mV) because a factor of the membrane resistance has been absorbed into

their definition (Babadi and Abbott (2013)). Assuming a reasonable value for

the membrane resistance, e.g. Rm = 100 MΩ, a voltage of 1 mV translates to

a current of 10 pA in the standard units (Bayati and Valizadeh (2012)). The

synaptic current is described as

Iij(t) = aijgij
∑
k

δ(t− tkj ) (2)

where aij characterizes the connectivity and is equal to 1 if two neurons i, j are

connected; otherwise aij = 0. gij is the efficacy of the synapse from neuron j to

neuron i . In the simulations we have taken the resetting potential vres = 0 mV

and the threshold vthr = 10 mV. The membrane time constants of the neurons

are chosen from a uniform random distribution with mean 10 ms and standard

deviation 0.1 ms (Cortes and Vreeswijk (2015)). Input current to each neuron

is taken I0 = 11 mV with σ = 0.1 mV unless otherwise noted. To integrate the

equation 1 with the synaptic currents given by equation 2 we use the Milshtein

algorithm with a time step of 0.1 ms. All the simulations were carried out in

MATLAB environment.

Structure of the network. We construct a chain of N nodes, each con-

sisting of 80 excitatory (E) and 20 inhibitory (I) neurons (see Figure 1). Within

the nodes, the connections between excitatory and inhibitory neurons are cho-

sen with probabilities pEE = pII = pEI = pIE = pin = 0.1 (E stands for
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excitatory and I for inhibitory and the first and second letters in subscript de-

note the presynaptic and postsynaptic neurons, respectively). Between nodes,

only excitatory neurons of adjacent populations are mutually connected with

probability pext = 0.1. Excitatory synaptic strengths are chosen all equal to

0.2 mV (except when we vary them) while inhibitory connections are equal to

0.8 mV. The delay in the connections between neurons in the same network is

taken 0.5 ms and between the neurons of neighboring networks 1 ms. In the

results presented in Fig. 9 we use two other topologies: a ring in which the

first node is connected to N th-node, and a starlike topology in which one of the

nodes is connected to several other nodes as is schematically shown in Fig. 9

(c and d). As the final example, we test the validity of our results in a biologi-

cally realistic structure extracted from CoCoMac connectome data (available at

the Brain Connectivity Toolbox, https://sites.google.com/site/bctnet/) whose

characteristics are depicted in Fig. 10.

Network response to local signals. To quantify the response of the

network to the local external signals, we use the network phase resetting curve

(nPRC), as a generalization of the PRC notion for single neurons. This quantity

measures the average change in the oscillation phase of the nodes, due to the

impact of a pulse to one of the nodes (host) in the network. In other words,

nPRC is a measure on how the collective activity of a node is influenced by a

pulse imposed on the same node, or on the other nodes. To calculate nPRC

we first run a simulation for the unperturbed system and calculate the firing

rate of each node with a Gaussian time window of the width 4 ms. Then we

apply a weak pulse to all the excitatory neurons in a node, keeping the rest

of the network parameters fixed, and using the same input noise to all the

neurons (noise is frozen in the two simulations). The time interval between two

consecutive peaks of the network oscillation of the host node is divided into

0.5 ms time bins. A pulse of duration 2 ms and amplitude 0.25 mV is imposed

on all excitatory neurons of the host node. Then, by calculating the firing rate

of each node, and subtracting the period before and after the application of

the pulse, we calculate the PRC of each node. By taking the mean change of
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the period of all the nodes for each pulse, the nPRC of the whole network is

calculated.

To further study the propagation of local external signals along the network,

we apply a periodic signal J(t) = A sin(2πft) to all of the excitatory neurons

of the host node. The response of the individual nodes is calculated in two

ways: In both the methods we first calculate the network activity for each node

by convolving the firing activity of the node with a Gaussian window of 50 ms

width. Then the first response measure is defined as the maximum of the power

spectrum of the network activity at the frequency of the external signal. In the

second method, we take the cross-covariance of the network activity with the

external signal for different nodes.

Then, two signals with different frequencies are simultaneously imposed on

two different nodes to compare their propagation in the network and infer the

effective connectivity and the response, as described above, is measured to probe

the propagation of the two signals through the network.

Information transfer and effective connectivity. Effective connectiv-

ity is formally defined based on the causal relationship between the activity of

the nodes in a network. We hypothesize that the notion of effective connectivity

has a close relationship with the transmission of local signals in the network.

To detect a causal relationship between the dynamics of two nodes, we used

time-delayed mutual information (δMI) which quantifies the directionality of

the information flow between every two nodes of the network Kirst et al. (2016).

In this method, the activity of one neuronal population shifted by a time lag

d is compared with the instantly recorded neuronal activity of another popu-

lation. Delayed mutual information is defined based on the Shannon’s formula

for discrete time-series

δMIi,j(d) = δMI(Xi(t), Xj(t+ d))

= H(Xi(t)) +H(Xj(t+ d))−H(Xi(t), Xj(t+ d)),

where H(Xi(t)) is the marginal entropy of series Xi, computed using the stan-
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dard definition

H(Xi) = −
∑
k∈Xi

Pk log(Pk)

where log is logarithm to the base 2, Pk is the probability of occurrence of kth

position at discretized series Xi(t), and H(Xi(t), Xj(t+ d)) is the joint entropy

of Xi and Xj , where the latter is time-shifted by d

H(Xi(t), Xj(t+ d)) = −
∑

n∈Xi(t)

∑
m∈Xj(t+d)

Pn,m log(Pn,m).

Here Pn,m is the joint probability of nth and mth positions occurring together

at discretized series Xi(t) and Xj(t+ d), respectively. Integrating delayed mu-

tual information for positive lags measures the MI transferred from the ith

population to the jth one (MIi→j =
∫∞
0
δMIi,j(d

′) dd′), and integration over

the negative lags quantifies the MI flow in the reverse direction (MIj→i =∫ 0

−∞ δMIi,j(d
′) dd′). Subtracting these two values gives the preferred direction

of the information flow (δMIi,j = MIi→j −MIj→i), and the direction of the

connection in the effective network.

Results

We consider a network consisting of N = 11 nodes (or nodes) where each

node is composed of 80 excitatory and 20 inhibitory neurons sparsely connected

with probability 0.1. Excitatory neurons of adjacent nodes are connected via

current-based excitatory synapses with probability 0.1 (Figure 1). The dynam-

ics of the neurons is described by the leaky integrate-fire (LIF) model. The

external current and intra-node connections are set such that all the nodes,

except one (source node), produce an internal rhythm in the gamma range

(ν0 ' 42 Hz) when isolated, i.e., when inter-node connections are absent (see

Figure 2). Heterogeneity in the network is introduced by changing the external

current to the excitatory neurons of one of the nodes by an amount ∆I, which

in this case and without loss of generality, is chosen as the middle node (node

6). By changing ∆I we can control the oscillation frequency ν of the middle
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node as is shown in Figure 2d. Results obtained with conductance-based models

are qualitatively similar (see Supplementary Information). Moreover, we have

checked that changes in the proportion of excitatory-inhibitory neurons and the

strength of the internal connectivity do not qualitatively alter our findings.

Response function of the network

When the nodes are connected by excitatory synapses, they all oscillate

with the same frequency (i.e., the nodes fall into the 1 : 1 frequency locking

regime) if the inhomogeneity ∆I is small (Figure 2). To infer the response of

the system to local inputs, we perturb the network by injecting a weak current

pulse into all the excitatory neurons of one of the nodes (host node) at a time τ ,

or equivalently at a phase φ defined as φ = 2π τT (where T is the period of the

network oscillation), between two consecutive peaks of the oscillations of the

host node. We vary φ over 2π and evaluate the response of the whole network

which is defined as the mean change in the oscillation period of all the nodes

due to the application of the current pulse (see Material and Methods).

To highlight the role of the high-frequency node in shaping the response of

the system to a local input, we change the host node into which the pulse is

injected. Initially, we test a homogeneous system, where all the nodes have

almost the same intrinsic frequency ν0, and then a heterogenous network con-

taining a high frequency node. As shown in Figure 3a, in the homogeneous

network (∆ν = 0) the response function is independent, as expected, of the

node on which the pulse is applied. Moreover, the response is negligibly small

regardless of the phase at which the pulse is applied and the location of the host

node. On the contrary, in the presence of a high-frequency node, the response

critically depends on the node at which the current pulse is applied. The re-

sponse considerably increases when the pulse is applied on the high-frequency

node and sharply decays when it is applied progressively away from it. So, the

presence of a high-frequency node not only creates an inhomogeneity in the spa-

tial response of the system, but also increases the sensitivity of the system to

local perturbations which are imposed on, or in the vicinity of, the source node.
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We then test how the response of the system changes with the level of inho-

mogeneity and the inter-node connection strength, to find the optimum range of

parameters that maximizes the system response. To this end, we impose a short

current pulse on the high-frequency node at the oscillation phase around which

the response of the system is maximum (' 3π/2 as can be seen in Figure 3).

In Figure 4 it is shown how the response changes for increasing values of ∆ν

(due to the changes ∆I in the input current) of the source node for different

values of inter-node connection strength gIN . We find that by increasing the

source node’s intrinsic oscillation frequency by ∆ν, the mean response initially

increases and then gradually decreases. A qualitatively similar trend is seen in

the signal-to-noise ratio (SNR), defined as the ratio of the mean response to the

standard deviation of the response due to the trial-to-trial variability. The two

measures indicate that there is an optimum range of ∆ν for which the response

is the largest and most reliable. Both the response and the signal-to-noise ra-

tio are maximized for intermediate strength of inter-node connections gIN (see

right panels of Figure 4).

Signal propagation in the network

In this section, we show that the presence of a high-frequency node also

facilitates the propagation of local signals. To this end, a slowly-varying periodic

signal is injected into all the excitatory neurons of the middle node. Then the

network response is evaluated as the value of the power spectrum of the activity

of the nodes at the frequency of the external signal. Also, the cross-covariance

of the node activities and the external signal is calculated (see Material and

Methods). In Figure 5 (a and b) it can be seen, for an input signal of frequency

f0 = 4 Hz, how the activity of one node (in this case node 10) and its power

spectrum change with the oscillating frequency of the host node (node 6). An

optimum response, accompanied with a maximum in the power spectrum, is

observed for ∆ν = 4.8 Hz, i.e., when the oscillation frequency of the host node

is ν = 46.8 Hz. The response rapidly increases from ∆ν = 0 and slowly decreases

for ∆ν & 7 Hz. The maximum response of the different nodes is also plotted
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in Figure 5c versus the inhomogeneity parameter ∆ν. It can be seen that the

response increases until a maximum value is reached around ∆ν = 5 Hz. This

large response maintains for a relatively wide range of ∆ν, which does not

depend much on the coupling strength (see Figure 5c). It is worth noting, also

in Figure 5c, that negative values of ∆ν, which result in a lower oscillation

frequency of the host node, decrease the response of the network. This result

indicates that activity propagation in this system can be regulated (enhanced

or depressed) through the same mechanism, this is, by controlling the firing rate

in the host node.

To check if the increase of the network response is a result of a resonance

of the external signal with the internal frequency of the network, we vary the

frequency f0 of the external signal and record the response of the network. It

can be seen in Figure 5d that when varying f0, the maximum response stays

around ∆ν = 5. However, its maximum value decreases almost linearly with the

input frequency indicating that slower signals are better amplified than faster

ones. The results rule out a resonant behavior and show a low-pass filter-like

behavior where slow varying signals can better propagate along the network by

modulating the firing rate of the populations (Figure 5d). It is worth noting that

the periodicity of the external signal is not a criterion of validity of the results;

any slowly varying non-periodic signals yield similar behavior as is shown in

Supplementary Fig. S1.

For the sake of a better illustration in Figure 6 we show the mean firing

rate of the 11 nodes for different values of the inhomogeneity parameter ∆ν,

when a signal of frequency f0 = 4 Hz is injected into node 6. It is evident

that for intermediate values of the inhomogeneity parameter the signal better

propagates along the whole network. For ∆ν = 4.8 Hz the input signal clearly

reaches both sides of the network. For other values of ∆ν the signal does not

propagate (panel a and d) or propagates just weakly (panel c).
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Information transfer and effective feed-forward connectivity

The results presented in the previous sections suggest that the propagation

of an external pulse or signal through the network is facilitated if the host node

oscillates at a higher frequency as compared to the other nodes. Therefore, de-

spite the homogeneous symmetric connections, the presence of a high frequency

node establishes a preferred feedforward direction for the signal transmission.

To reveal this effective connectivity in a complementary way, we inject two peri-

odic signals in two different nodes of the network. Without loss of generality, we

apply a signal of frequency f1 = 4.5 Hz on node 5, which oscillates at a higher

frequency, and a signal of frequency f2 = 6.5 Hz on node 7, which oscillates at

frequency ≈ ν0.

Figure 7 shows the activity of the network when these two signals are applied

simultaneously. In Figure 7a the power spectra of the mean activity of nodes

2 and 10 can be seen. Since the two signals arrive at node 10, a double peak

in the power spectrum is observed. On the contrary, node 2 exhibits only one

peak at the frequency of the signal injected into node 5. This indicates that

the signal injected into node 7 does not reach node 2. These results confirm

that the signal propagates only in a preferential direction, moving away from

the high frequency node.

In Figure 7b we plot the value of the power spectrum of all nodes at fre-

quencies 4.5 Hz and 6.5 Hz. While the signal applied to the source node elicits

response in all nodes, the signal applied to the low frequency node only influ-

ences those nodes that are located in the direction away from the high frequency

node.

Since the response of the network also depends on the frequency of the

external input (Figure 5d), we compute the network response while changing

the frequency of the signals applied to nodes 5 and 7. Results depicted in

Figures 7c and d show qualitatively similar results as those of Figures 7a and

b, highlighting that the frequency of the input signal does not play any role in

establishing effective connectivity directions.

In order to directly measure information transfer in the network, we further

11



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

compute the time-delayed mutual information (δMI), as explained in the Ma-

terial and Methods. The total information transfer from node i (j) to node j

(i) is determined by the integral of the δMI for positive (negative) delay times.

The difference between these two integrals gives the direction and strength of

the effective link between the two nodes (see Material and methods). The re-

sults shown in Fig. 8 (see also Supplementary Fig. S3) further demonstrate that

information transfer takes a preferential direction in the presence of a high a

frequency node.

From these observations, we conclude that: (i) nodes oscillating with a

higher frequency can broadcast their incoming signals throughout the network

and (ii) introduce a preferential directionality in the propagation of signals in

parallel channels. This occurs despite the symmetric bidirectional nature of

the connectivity between nodes and sets effective connectivity channels in the

system as is shown in Figs. 7 and 8).

Robustness of the results across network topologies

Although networks have been extensively used as basic structures in sensory

systems (Fukushima (2013)), it remains to be demonstrated that the results

obtained so far apply to different network topologies. In this section, we extend

our study to larger chains and different topologies and evaluate the response of

the system to multiple signals imposed on different nodes, similar to what we

did in the previous section. For simplicity, we show only results for a detuning

∆ν =7.4 Hz for which the response of the network is optimal.

We first increase the number of nodes in the chain to check if the obtained

results hold for larger networks (in this case N = 31 nodes). The results shown

in Fig. 9a indicate that an increasing number of nodes does not qualitatively

change the response of the network to the external inputs.

In a second test, we consider a ring structure with N = 11 nodes, to check

whether our previous observations are altered in the closed network. Results

shown in Fig. 9b are qualitatively similar to those obtained for the chain. In both

Fig. 9a and b it is clear that the presence of a high frequency node facilitates
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activity propagation in the network when the input signal is applied to this

node.

We next check whether the results also hold true in a network with het-

erogeneous topology, i.e., with nodes that have a different number of links. In

these topologies, nodes with a higher degree (structural hubs) are expected to

have maximum influence on the other nodes (Barabási and Albert (1999)). We

consider a network combining a starlike structure and a chain (see Fig. 9 in-

sets). In this topology, there is a structural hub whose degree is larger than

those of the other nodes in the network. Initially, we assume the hub (node 6)

to be a high frequency node and evaluate the propagation of two different sig-

nals applied simultaneously to nodes 6 and 8. As shown in Fig. 9c), the signal

applied to node 6 clearly transmits to all nodes of the network, as expected,

while the signal applied to node 8 is blocked by the high frequency node 6.

Interestingly, when a node different to the structural hub is the high-frequency

node, the signal applied to the latter propagates through the whole network,

while the signal applied to node 6 does not. This indicates that the dynamical

effect predominates over the network structure containing a hub. Our results

suggest that low degree but high frequency nodes could work as network hubs

for information transmission. We refer to them as functional hubs.

The 47 nodes CoCoMac connectome

As a final example, we use the 47 nodes CoCoMac connectome network

(available at the Brain Connectivity Toolbox, https://sites.google.com/site/bctnet/)

to check whether a HFN can overcome the activity of other nodes of this bio-

logically realistic network with higher degree. In figure 10 we show the network

connectivity matrix (47 nodes, 505 links) (panel (a)) and the number of out-

going and incoming connections of each node (panel (b)). In panel (c) the

network structure is depicted. Two nodes are highlighted for the following anal-

ysis: node 16 with an intermediate degree (outgoing (incoming) degree 7 (5))

and node 20 with a high degree of connectivity (outgoing (incoming) degree

23 (17)). The latter is considered a structural hub. Each of the 47 nodes is
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modeled, as in previous examples, with 80 excitatory and 20 inhibitory neu-

rons with the same internal connectivity used in the previous simulations. The

synaptic weights within the population are chosen as 0.2. The minimum synap-

tic weights between population are taken as 0.01. The rest of the weights are

chosen as gij = 0.01dgmax/dgi where gij is the connection weight from node j

to node i, dgmax is the maximum in-degree of the network (in this case 23 which

corresponds to the hub node number 6) and dgi is the in-degree value of node i.

To highlight our results, and without loss of generality, the outgoing synapses

of nodes 16 and 20 are taken 0.1. Two periodic signals of amplitude 0.3 and

frequencies ω1 = 3.7 Hz and ω2 = 5.3 Hz are applied on nodes 16th and 20th,

respectively.

Initially, we look for the optimal frequency detuning (∆ν) for which an

external signal will better propagate in the network. In figure 11 we plot the

response of the network, defined as the mean FFT amplitude of the firing rate

of all nodes. In panels (a) and (b) it is clear that for node 16, ∆ν = 2.4 Hz

optimizes the response while from panels (d) and (e) it is evident that ∆ν =

3.6 Hz optimizes the response of the network when node 20 is considered as

HFN. The fact that different values of ∆ν are optimum for different nodes is

not surprising since the two nodes have a different degree of connectivity. When

the two signals with ω1 = 3.7 Hz and ω2 = 5.3 Hz are applied on nodes 16th

and 20th, respectively, their propagations strongly depend on the oscillating

frequency of the host node. In panels (c) and (f) the time-delayed mutual

information (δMI) of nodes 16 and 20 with all other nodes of the network is

plotted for the optimum value of the inhomogeneity (which is ∆ν = 2.4 Hz for

(c) and ∆ν = 3.6 Hz for (f)). Top/bottom figures of panels (c) and (f) show

the δMI of node 16/20 to all other nodes of the network. Positive (negative)

value of δMI indicates that the information preferentially flows in the outward

(inward) direction of the node. In panel (c), when node 16 is the HFN, the

δMI from node 16 to all other nodes, is almost always positive, confirming that

the signal of 2.4 Hz propagates to all other nodes. Instead, the signal applied

on node 20 propagates only to some of the nodes even though the node is a
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structural hub. In panel (f) we plot the δMI computed from node 16 and 20

when node 20 is the HFN. In the top panel, results indicate that δMI from

node 16 is positive to some nodes and negative to others, indicating that it only

effectively communicates with part of its target nodes. On the contrary, δMI

from node 20 is positive to almost all nodes indicating that, in addition to being

a structural hub, the high frequency further converts it in a functional hub.

Discussion

Propagation of signals in the nervous systems, either in the form of synfire

propagation or rate propagation has been a core line of study in neuroscience

in recent years (Vogels and Abbott (2005)). Several computational models have

been proposed to guaranty reliability of the propagation of signals along with

the prevention of the exploding activity in the network (Vogels and Abbott

(2005); Kumar et al. (2010)). In this study, we showed that a heterogeneity

in the firing rate of certain neuronal populations is enough to affect the prop-

agation of signals in interconnected networks. Our main postulate is that each

population is characterized by an endogenous collective oscillation whose fre-

quency is the pivotal factor to determine the direction of signal propagation in

the network. We showed that in a network with symmetric bidirectional con-

nections, local perturbations on the dynamics of one node will propagate in the

network, being detected by other nodes, if the node receiving the perturbation

has a higher intrinsic frequency. In the same network, the perturbations on

other nodes (with lower frequency), or perturbations on any site in a homoge-

nous array where all the nodes oscillate with almost the same frequency, elicit

no response in the nodes other than the host node. In such a network, the high

frequency nodes seem to play the role of a source (Rubinov et al. (2011b)), being

highly influential in activity propagation despite the symmetric homogeneous

structure. Interestingly, it has been previously shown that high frequency units

can suppress chaos and induce order (Braiman et al. (1995); Gavrielides et al.

(1998); Valizadeh et al. (2010); Rajan et al. (2010)), and shape the structure of
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neural networks through synaptic plasticity (Bayati et al. (2015)).

Our results further show that slowly varying local signals can propagate

along the network if the node that receives the input signal has a higher intrin-

sic firing rate. We showed that high frequency units determine the direction

of signal propagation, so the effective connectivity in such a network. While

structural network connections are bidirectional and symmetric, in the effective

network the connections are directed outward from the high frequency node.

Any population in this network can take the role of the source node in the effec-

tive network by increasing the frequency of its intrinsic oscillation. In this way,

the effective connectivity can be changed on demand in a very simple and fast

way by applying an extra control input on the population receiving the input

signal, or by varying the strength of the existing inputs (e.g., by short- and

long-term synaptic plasticity or neuromodulation). We envision source nodes as

functional hubs whose capacity to influence activity propagation in the network

is dynamically regulated, in opposition to classical (structural) hubs with rather

fixed communication properties. Our simulations with heterogeneous networks,

including the CoCoMac connectome network, confirm that high frequency nodes

can act as functional hubs despite the presence of structural hubs in the net-

work. In addition to this flexibility, it is important to note that transient source

nodes can be also stabilized in certain conditions, in virtue of synaptic plas-

ticity mechanisms introducing long-lasting changes in synaptic strengths. For

instance, computational studies showed that through spike-timing-dependent

plasticity, high frequency units can drive an initially symmetric structure into

a feedforward network (Babadi and Abbott (2013); Jun and Jin (2007)). Also,

the presence of a high frequency population in a locally connected random net-

work has been shown to lead to the potentiation of the links outgoing from

the high frequency neurons, and the depression of the incoming ones (Bayati

et al. (2015)). Therefore, source nodes might regulate information flow at quite

diverse time scales, as fast as firing rate can be regulated in a neuronal popula-

tion by increasing their input, and as long lasting as synaptic potentiation can

be durably changed in the network. Interestingly, experimental findings lend
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support to this hypothesis. fMRI studies in rodents have demonstrated that

long-term potentiation of synaptic strength induced locally in the hippocam-

pus, produce a functional reorganization of longer-range brain networks lasting

several hours and shaping effective connectivity (Canals et al. (2009); Álvarez-

Salvado et al. (2013)).

Which circuit elements and mechanisms underlay the influential capacity

of source nodes? It has been hypothesized from experimental work that dif-

ferent phase relations between the rhythms generated by local sub-populations

of neurons can control the routes of communication between brain areas (Fries

(2005, 2015)). For appropriate phase relations, the spikes generated at a source

area arrive at the target area in the time range over which the latter is highly

excitable, e.g., when the inhibitory recurrent input within the target area is min-

imum (Fries (2009)). In our model, the response of the LIF neurons just after

spiking is minimal and it increases exponentially with the phase (see Figure 3).

For any two mutually coupled units in the 1 : 1 locked mode, the phase of the

unit with the larger intrinsic frequency advances that of the low frequency unit.

So in every period, the spikes of the high-frequency node impact those of low

frequency at the time when the target is highly excitable. Similarly, the spikes

of the low-frequency unit have a small impact due to the low responsiveness of

the high-frequency unit after firing.

Overall our study highlights a number of properties introduced by source

nodes in networks with homogeneous connectivity. First, the influence of a

node on the global dynamics not only depends on its position in the network

nor its degree (Amit and Tsodyks (1992); Zbinden (2011)) but also on its inter-

nal dynamics, providing a fast and tunable mechanism to regulate information

transmission. Second, source nodes transmit local information to distant nodes

even in the absence of direct connections (polysynaptic propagation). This

can reduce the wiring cost for effective long range connectivity (Laughlin et al.

(1998); Bassett et al. (2010); Rubinov et al. (2011a)). Third, the high frequency

unit introduces an effective direction for the transmission of information in the

network, even in networks with symmetric connections. Fourth, our results rec-
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ommend the distinction between functional and structural hubs, and highlight

that in heterogeneous network topologies structural hubs are not necessarily the

most influential nodes.

Finally, it is worth mentioning that, although we presented results using a

current-based leaky I&F model, qualitatively similar results were obtained with

conductance-based leaky I&F model (see Supplementary Fig. S2), highlighting

the wide validity of our findings. Despite the limitations of the model, the con-

cepts and arguments of the present study can be used in a variety of systems of

coupled oscillators to control the patterns of effective communication (see (Kirst

et al. (2016))).
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Figure 1: Network configuration. The network is composed of 11 neuronal layers (or

nodes), each containing 80 excitatory (triangles) and 20 inhibitory (circles) neurons. Neurons

within the nodes are randomly connected to each other with probability 0.1. Excitatory

neurons of adjacent nodes are mutually connected with 0.1 probability (green arrows).
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Figure 2: Network dynamics and locking region. (a) Characteristic raster-plot of the

spiking activity of an isolated node. Blue (Red) dots represent Excitatory (Inhibitory) neu-

rons. (b) Mean firing rate of the excitatory neurons of an isolated node (i.e., in the absence

of inter-node connections). The power spectrum of the node shown in (c) shows an activity

in the gamma range whose frequency ν0 ∼ 42 Hz can be controlled by the external current as

it is shown in panel (d). Panel (e) shows the frequency difference between two adjacent nodes

(in this case 5 and 6) for an increasing value of the inter-node connection strength (gIN ). The

region with light blue color indicates that the populations are locked in the 1 : 1 regime, i.e.,

they oscillate at the same frequency.
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Figure 3: Spatio-temporal response of the network. (a) In a homogeneous network

where ∆ν = 0, i.e., all nodes oscillate at the frequency ≈ ν0 ∼ 42 Hz, the response function

is negligible small and, as expected, independent of the location of the host node and phase

at which the current pulse is injected. (b) In the presence of a high-frequency node (with

ν = ν0 + ∆ν = 44.4 Hz) the response critically depends on the location of the node that

receives the input and phase at which the current pulse is injected. The response sharply

decays when the host node is moved away from the high frequency node and the phase moves

away from ∼ 3
2
π. The network consists of 11 nodes and the 6th node is the high frequency

node in panel (b).
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Figure 4: Dependence of the response on the level of inhomogeneity (a) Mean re-

sponse of the network and (b) SNR (mean value normalized to the standard deviation) are

plotted vs. the inhomogeneity parameter ∆I (or equivalently the oscillation frequency mis-

match ∆ν, see Figure 2 (d)) for different values of the inter-node (IN) synaptic strength gIN .

Both measures show that an optimum response is attained for a relatively small value of ∆ν.

In the right panels of (a) and (b) the maximum values of the mean response and the SNR

are plotted versus the inter-node connection strengths. The results were obtained averaging

over 500 trials. Dots in (a) and (b) show the simulation data and lines are the result of a

polynomial fit.
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Figure 5: Response of the network to a local periodic signal. (a) The mean firing rate

of a sample node (node 10) is plotted for different inhomogeneity values in the middle node

(node 6). The population rate is calculated over a Gaussian time window of 50 ms width. The

amplitude of the external sinusoidal signal is 0.5 mV and its frequency f0 = 4 Hz (see Material

and Methods section). (b) The Fourier amplitude of the population rate is plotted for several

∆ν values. It can be seen that the height of the Fourier transform at the frequency of the

external signal depends on the inhomogeneity value. (c) Cross covariance between all nodes

calculated at the frequency of the external signal f0=4 Hz as a function of ∆ν (equivalently

∆I in the upper axis). Colors indicate the node number. The maximum response of the

network is found for an intermediate value of ∆ν ∼ 5 Hz (∆I ' 0.4 mV). (d) The response of

a sample node (node 10) vs. the inhomogeneity parameter ∆ν is plotted for several values of

the frequency of the external signal f0 (from 1 to 10 Hz). The maximum response decreases

for higher frequencies as is shown in the inset.
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Figure 6: Response of the network to an external signal. The firing rate of all the nodes

in the array is shown for several values of the inhomogeneity parameter (∆ν =0, 4.8, 12.2,

and 18.3 Hz). A clear propagation of the signal from the middle node to other nodes is seen

for ∆ν = 4.8 Hz. Colors code represents the mean activity of the nodes which is calculated

over a Gaussian time window of width 50 ms.
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Figure 7: Effective connectivity is determined by the high frequency node. To reveal

the effective connectivity in the network in the presence of a high frequency node (node 5), we

inject two periodic signals. One signal with frequency f1 is injected into the high-frequency

node 5 and another signal with frequency f2 into another node of oscillating frequency ν0

(in this case node 7). (a) Power spectra of the activity of nodes 2 and 10. While the signal

applied to the high-frequency node is received by the two sampled nodes, the signal applied to

the low frequency node only reaches node 2, which is located to the left of the high frequency

node. (b) Response of all the nodes to a signal with frequencies f1 (f2) applied to node 5 (7).

The green curve indicates that the signal of frequency f1 reaches all nodes while the signal

of frequency f2 (red curve) only propagates in the direction away of the high-frequency node.

Results presented in panels (c) and (d) are similar to those presented in panels (a) and (b)

but with the external signal frequencies interchanged (see legends).
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Figure 8: Difference δMI transfer in a chain of nodes (δMI). Information flow, com-

puted via the difference of the delayed-mutual information index, in a chain of 11 nodes. Red

curve corresponds to the δMI computed when two signals with frequencies 4.5 and 6.5 Hz are

applied simultaneously on nodes 5 (the high-frequency node (HFN) and 7, respectively. The

blue curve corresponds to the δMI computed for one signal with frequency 4.5 applied on the

HFN (in this case node 6). In both cases, the flow of information is such that it moves away

from the HFN. The frequency of HFN node is ν = ν0 + ∆ν = 46.8 Hz.
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Figure 9: Response of nodes in different topologies. Results are shown for the optimum

value of the frequency of the HFN, in this case ν = ν0 + ∆ν ∼ 49.3 Hz. The barplot in the

right of each panel shows the δMI of two selected nodes with all the other nodes. Positive

(Negative) value of δMI for the nodes X and Y shows that the information propagated from

X to Y (from Y to X). (a) Response of a chain composed by 31 nodes subject to two signal.

As occurs for the case of less number of nodes, the signal applied on the HFN (node 10)

propagates along the whole chain (dashed line) while that applied to a normal node (node

20; solid line) only propagates in the direction away from the HFN. The inter-node synaptic

weights are 0.2. In panel (b) we plot the response of the nodes in a ring configuration (11

nodes) when two signals are applied at the 3rd (the HFN) and 7th nodes. The signal applied

on HFN node is detected by all other nodes, while the signal applied at the 7th node fades

away. The inter-node synaptic weights are 0.2. (c) Combination of a starlike and a chain

configuration. The network has a structural hub (6th) node, which is connected to nodes 1

to 5 and 7. In this panel, the HFN is node 6. Signals are applied to nodes 6 and 8. While

the signal applied at the HFN reaches the whole network, the one applied at node 8 only

propagates away from the HFN. The inter-node synaptic weights from node 6 to nodes 1-

7 are 0.05 and from nodes 1-5,7 to node 6, 0.25. For the rest of the nodes, the inter-node

synaptic weights are 0.2. When the HFN is not the structural hub (panel d) the signal applied

at the HFN (node 8) propagates along the whole network (including the star). However, the

signal applied at the structural hub (node 6, oscillating at frequency ν0) can only propagate

to the nearest neighbors since it is blocked by the HFN. The inter-node synaptic weights form

nodes 1-5 to 6 are 0.04, from 7 to 6 0.12 and from 6 to the others 0.25. For the rest of the

nodes, the inter-node synaptic weights are 0.2.
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Figure 10: Macaque connectome details. (a) Adjacency matrix of Macaque connectome

(N=47, K=505). Each dark square shows presence of a connection between regions with

labels given in top x- and left y-axis. To address the node through the text we use the cor-

responding labels in bottom x- and right y-axis. (b) Top/Bottom panel shows the number of

outgoing/incoming connections of each node to/from other nodes. (c) Graphical representa-

tion of the connectome network. The two red circles (node 16 with an intermediate degree and

node 20 which is a structural hub) are the nodes that we chose to study the signal propagation.
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Figure 11: Double signal propagation in Macaque47 connectom. Two signal with

ω1 = 3.7 Hz and ω2 = 5.3 Hz are applied on nodes 16th and 20th, respectively. In left panels

(a-c) the 16th node is the HFN while the hub, 20th node, oscillates with the same average

frequency of the other nodes. In right panels (d-f) the node 16th is a normal node while the

node 20th is the HFN as well as the hub. In panels (a) and (d) we plot the FFT amplitude

of the firing rate of all the nodes. The FFT amplitude of node 16 and 20 are discarded in

the representation for the sake of better clarity of the figures. In (b) and (e) the mean of

FFT amplitude of the firing rate of all the nodes at the signal frequency applied on nodes 16

(blue line) and 20 (black line) are plotted versus the inhomogeneity ∆ν when the activity of

the directly connected nodes to node 16 and 20 are excluded. In (c) and (f) the time-delayed

mutual information δMI of nodes 16 and 20 with all nodes of the network is plotted at the

optimum value of their inhomogeneities (∆ν = 2.4 Hz for node 16 and ∆ν = 3.6 Hz for node

20). Top/bottom panels show the δMI of node 16/20 to all other nodes of the network.

Positive/Negative values of δMI indicate that the information flow is in the outward/inward

direction from/to the node. In (c) the outgoing δMI of node 16 is positive at almost every

node indicating that the information propagates outward from node 16 to all other nodes. On

the contrary, the information generated in node 20 propagates only to some of the nodes. In

(f) the outgoing δMI of node 16 is positive for some nodes and negative for others, indicating

that it sends/receives information to/from other nodes. The δMI measured from the signal

generated at node 20 is positive to almost all other nodes indicating that this node is not only

a structural hub but also a functional hub.
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