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A B S T R A C T

With the proliferation of multi-site neuroimaging studies, there is a greater need for handling non-biological
variance introduced by differences in MRI scanners and acquisition protocols. Such unwanted sources of varia-
tion, which we refer to as “scanner effects”, can hinder the detection of imaging features associated with clinical
covariates of interest and cause spurious findings. In this paper, we investigate scanner effects in two large multi-
site studies on cortical thickness measurements across a total of 11 scanners. We propose a set of tools for
visualizing and identifying scanner effects that are generalizable to other modalities. We then propose to use
ComBat, a technique adopted from the genomics literature and recently applied to diffusion tensor imaging data,
to combine and harmonize cortical thickness values across scanners. We show that ComBat removes unwanted
sources of scan variability while simultaneously increasing the power and reproducibility of subsequent statistical
analyses. We also show that ComBat is useful for combining imaging data with the goal of studying life-span
trajectories in the brain.
Introduction

Large-scale efforts aimed at collecting diverse neuroimaging datasets
for dissemination and sharing are rapidly growing in number and scale
(Di Martino et al., 2014; Keator et al., 2013; Mennes et al., 2013). Having
multiple scanning sites is necessary in large-scale studies due to logistical
issues and geographic variability in subject populations (Van Horn and
Toga, 2009). However, a major drawback of combining neuroimaging
studies across sites is the introduction of non-biological sources of vari-
ability to the data, typically related to image acquisition protocol
idemiology, and Informatics, Perelm
hinohara).

ber 2017; Accepted 12 November 20
and hardware.
Properties of MRI scanners such as field strength, manufacturer,

gradient nonlinearity, subject positioning, and longitudinal drift have
been long understood to increase bias and variance in the measurement
of brain volume changes (Takao et al., 2011), regional cortical thickness
(Han et al., 2006), voxel-based morphometry (Takao et al., 2014), and
structural, functional, and diffusion images in general (Jovicich et al.,
2006; Takao et al., 2011). Such unwanted sources of bias and variability
are typically included as confound variables in the analysis of neuro-
imaging data. Recent work has suggested that standard methods for
an School of Medicine, University of Pennsylvania, United States.
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Table 1
Description of the EMBARC and VDLC study samples.

Scanner N subjects N females (%) Age range N Depressed (%)

EMBARC study 187 116 (62) [18,65] 187 (100)
CU 46 29 (63) [18,61] 46 (100)
MG 26 21 (81) [18,60] 26 (100)
TX 72 42 (58) [19,65] 72 (100)
UM 43 24 (56) [18,59] 43 (100)

VDLC study 236 139 (59) [58,95] 177 (75)
W_Sonata_A 23 15 (65) [58,83] 23 (100)
W_Sonata_B 78 61 (78) [59,92] 62 (81)
W_TIMTrio_A 16 8 (50) [62,85] 2 (13)
W_TIMTrio_B 40 23 (58) [59,80] 37 (93)
D_TIMTrio_A 24 7 (29) [60,95] 24 (100)
D_TIMTrio_B 38 19 (50) [59,84] 25 (66)
D_SIGNA 17 6 (35) [60,83] 3 (18)
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including confound variables for the prediction of an outcome using
neuroimaging data perform no better than baseline models which ignore
confounding (Rao et al., 2017). Furthermore, non-biological confounders
typically have a priori unpredictable effects, thus compromising consis-
tency and reproducibility of the downstream analyses across studies. This
suggests that non-biological sources of variability should be handled
differently. Similar to batch effects in genomics (see Leek et al., (2010) for
a review of batch effects), we use the term scanner effects in neuroimaging
to refer to unwanted variation that is (1) non-biological in nature and (2)
associated with differential scanning equipment or parameter configu-
rations. Because different imaging sites use different physical scanners,
site effects are one example of scanner effects.

Recently, ComBat (Johnson et al., 2007), a batch-effect correction
tool commonly used in genomics, has been adapted for the modeling and
removal of site effects in multi-site DTI studies (Fortin et al., 2017).
ComBat was found to be an effective harmonization technique that both
removes unwanted variation associated with site and preserves biolog-
ical associations in the data.

In this paper, we propose to use ComBat for harmonizing cortical
thickness measurements obtained frommultiple sites. We investigate this
in region-level cortical thickness measurements in two large multi-site
datasets: the Establishing Moderators and Biosignatures of Antidepres-
sant Response in Clinical care study (EMBARC) (Trivedi et al., 2016), a
multi-center study with 4 sites, and the Vascular Depression: Longitudi-
nal Changes (VDLC) study, which was conducted at Washington Uni-
versity in St. Louis and Duke University and used a total of 7 scanners. We
first propose a set of tools for the visualization and identification of site
effects that are generalizable to other modalities. We then harmonize the
data using ComBat, and compare to two other harmonization methods:
residuals and phenotype-adjusted residuals. We show that Combat is
successful at removing scanner and site effects, while preserving the
variability associated with biology. We also show that ComBat can be
used to combine datasets across multiple sites for the study of life-span
trajectories.

Methods

Data and preprocessing

EMBARC dataset
The EMBARC study aims to identify moderators and mediators of

antidepressant response in adult patients with Major Depressive Disorder
(Trivedi et al., 2016; Webb et al., 2016). The dataset used for our analysis
includes structural images, demographic variables and clinical variables.
Participants were 200 unmedicated depressed individuals with Major
depressive disorder and 40 healthy individuals recruited for EMBARC
(see Table 1). Subjects were 18–65 years old, had to report age of
depression onset before age 30 and had to be fluent in English. Clinical
variables included the Hamilton Depression Rating Scale (HAMD)
(Hamilton, 1960), the Mood and Anxiety Symptom Questionnaire
(MASQ) (Watson and Clark, 1991), the Snaith-Hamilton Pleasure Scale
(Snaith et al., 1995), the Spielberger State-Trait Anxiety Inventory (STAI)
(Spielberger, 1983) and the Quick Inventory for Depression Symptom-
atology (QIDS) depression score (Rush et al., 2003).

The scans were acquired at four different imaging sites, with acqui-
sition protocols described in Greenberg et al., (2015). The four sites were
Columbia University (CU), University of Texas Southwestern (TX),
Massachusetts General Hospital (MG) and the University of Michigan
(UM). All of the sites used 3T scanners, however the manufacturer
differed from site to site: UM used a Philips Ingenia 3T scanner, TX used a
Philips Achieva 3T scanner, MG used a Siemens TIM Trio 3T scanner and
CU used a GE SIGNA HDx 3T scanner. Imaging parameters for each
scanner are described in Greenberg et al., (2015). Participants with
excessive motion (> 4 mm), low slice signal-to-noise ratio (<80), and
severe slice artifacts were excluded from the study, leaving us with a final
baseline dataset of 187 subjects.
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VDLC dataset
The Vascular Depression: Longitudinal Changes (VDLC) study aims to

study the longitudinal effect of vascular disease in the pathogenesis of
late-life depression (LLD) (Barch et al., 2012; Mettenburg et al., 2012).
Participants were 177 individuals affected by LLD and 59 healthy con-
trols, for a total of 236 participants. Participants were 58–95 years old
(see Table 1). For the purpose of investigating site effects, we only
considered one time point for each participant; we retained the scan from
the last visit. Scans were acquired at two sites: Duke University and
Washington University in St. Louis, across 7 different scanners described
in Table 2.
Extraction of cortical thickness measurements

For the extraction of the cortical thickness measurements, we ran the
ANTs cortical thickness (CT) pipeline which has been shown to provide
accurate and robust cortical thickness measurements (Tustison et al.,
2014) on each dataset separately. We analyzed VDLC dataset in early
2016 and the EMBARC in late 2014, each using contemporaneous in-
stallations of ANTs compiled from source. The ANTs CT pipeline that we
describe below, requires a population template for registration and prior
knowledge of the different tissues. We used an average labeled template
previously constructed from a subset of 35 participants from the Open
Access Series of Imaging Studies (OASIS) (Marcus et al., 2007). The
participants’ age ranges from 19 to 90 years old. All subjects were
healthy, except one who was diagnosed with mild dementia. For each
image, a manual brain segmentation was performed by Neuro-
morphometrics, Inc (http://Neuromorphometrics.com/). using the
brainCOLOR labeling protocol. Multi-Atlas Label Fusion (MALF (Wang
et al., 2013)) was used to create the consensus labels for the average
template, for a total of 134 labelled regions, fromwhich 98 are part of the
cortex. We provide the list of the 98 cortical regions in Supplementary
Table 1. We note that the population template is publicly available on
Figshare (https://figshare.com/articles/ANTs_ANTsR_Brain_
Templates/915436).

The ANTs CT extraction pipeline starts by performing a N4 bias field
correction (Tustison et al., 2010) to minimize field inhomogeneity ef-
fects, and then performs brain extraction using a hybrid regis-
tration/segmentation method described in Tustison et al., (2014). For
each participant, a tissue segmentation is performed using Atropos
(Avants et al., 2011) to create six tissue masks: cerebrospinal fluid (CSF),
grey matter (GM), white matter (WM), deep gray matter, brain stem, and
cerebellum. Atropos allows prior knowledge to guide the segmentation
algorithm, and we used the labels from the OASIS population template as
priors. Cortical thickness measurements are then estimated using the
DiReCT algorithm (Das et al., 2009). Briefly, the DiReCT method esti-
mates the GM/WM interface and the GM/CSF interface and computes a
diffeomorphic mapping between the two interfaces, from which thick-
ness is derived. We note that this is performed in native space and no
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Table 2
Description of the scanning parameters CU: Columbia University; MG: Massachusetts General Hospital; TX: University of Texas Southwestern; UM: University of Michigan; Duke: Duke
University; WashU: Washington University in St. Louis.

Location Manufacturer Platform Field (T) TR (ms) TE (ms) Angle (�) ST (mm)

EMBARC study
CU CU GE SIGNA HDx 3 6 2.4 9 1
MG MG Siemens TIM Trio 3 2300 2.54 9 1
TX TX Philips Achieva 3 2100 3.7 12 1
UM UM Philips Ingenia 3 8.2 3.7 12 1

VDLC study
W_Sonata_A WashU Siemens Sonata 1.5 f500,1900g f3.93,17g f8,90g f1; 2;3; 5g
W_Sonata_B WashU Siemens Sonata 1.5 f500,1900g f3.93,17g f8,90g f1; 2;3; 5g
W_TIMTrio_A WashU Siemens TIM Trio 3 2400 f3.13,3.16g 8 1
W_TIMTrio_B WashU Siemens TIM Trio 3 2400 3.13 8 1
D_TIMTrio_A Duke Siemens TIM Trio 3 f2300,2400g f3.19,3.43g f8,12g 1
D_TIMTrio_B Duke Siemens TIM Trio 3 2300 f2.98,3.43g 12 1
D_SIGNA Duke GE SIGNA Excite 1.5 8.3 3.3 20 1.2
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correction for total brain volume was applied.
In the EMBARC data, we built a study-specific population template

and performed pseudo-geodesic joint label fusion by combining pre-
computed warps from the OASIS atlases to the EMBARC template with
warps from the average template to each subject. The atlases and labels
were warped to subject space and input to joint label fusion (Wang et al.,
2013). The fused labels were masked with the subject's gray-matter
segmentation image, which is the domain over which thickness is
computed in the ANTs pipeline. For the VLDC data, given the heteroge-
neity of the acquisition parameters we used the OASIS population tem-
plate and directly propagated the consensus labels from the OASIS
template to each image with nearest neighbor interpolation. For both
datasets, mean thickness was computed for each of the 98 cortical regions
in the subject space, these were in turn averaged to produce whole-brain
mean cortical thickness.

After the processing steps described above, we performed manual
quality control of the images by visual inspection. We specifically looked
at the quality of the skull stripping, registration and mesh reconstruction.
We flagged a few images distributed across the sites that appeared to be
abnormal, but we did not see differences in the cortical thickness mea-
surements as compared to other images. We note that the ANTs pipeline
has been shown to perform exceptionally well for registration (Klein
et al., 2009) as well as cortical thickness measurement in terms of min-
imal failure rate, higher repeatability, and improved predictive perfor-
mance in thousands of images even compared to the state-of-the-art
FreeSurfer (Tustison et al., 2014).

Harmonization procedures

For the removal of site effects, we compare three different harmoni-
zation procedures: (1) Removal of site effects using linear regression
without adjusting for biological covariates. We refer to the method as
Residuals; (2) Removal of site effects using linear regression, adjusting for
known covariates. We refer to the method as Adjusted Residuals; (3)
Removal of site effects using ComBat (Johnson et al., 2007). We also
compare the three methods to the absence of harmonization, that we
refer to as Raw. We describe below the different harmonization
techniques.

To describe each of these different methods, we use the following
notation: let yijv be the n� 1 vector of cortical thickness measurement for
imaging site i, for participant j and feature v, for a total of ðkþ 1Þ sites, n
participants and V features. Depending on the cortical thickness modal-
ity, the features can either be ROIs, vertices or voxels. Furthermore, let X
be the p� n matrix of biological covariates of interests, and let Z be the
k� n matrix of site indicators (deviations from a baseline site).

Residuals harmonization
The residuals harmonization method adjusts the images for site ef-

fects using linear regression. It does not take into account the potential
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confounding between the site variables and the biological covariates of
interest in the study. The regression model can be written as

yijv ¼ αv þ ZT
ijθv þ εijv (1)

where αv is the average cortical thickness for the reference site for feature
v and where θv is the k� 1 vector of the coefficients associated with Z for
feature v. We assume that the residual terms εijv have mean 0. For each

feature separately, we obtain an estimate bθv of the parameter vector θv
using regular ordinary least squares (OLS). The removal of site effects is
done by subtracting the estimated site effects, that is we set the residuals-
harmonized cortical thickness values to be

yResijv ¼ yijv � ZT
ij
bθv

Adjusted residuals harmonization
The adjusted residuals harmonization method supervises the removal

of site effects by adjusting for biological covariates, using the following
linear regression model:

yijv ¼ αv þ XT
ijβv þ ZT

ijθv þ εijv (2)

where αv is the average cortical thickness for the reference site for feature
v, where θv is the k� 1 vector of the coefficients associated with Z for
feature v and where βv is the p� 1 vector of coefficients associated with X
for feature v. We assume that the residual terms εijv havemean 0. For each
feature separately, we obtain estimates ~θv and ~βv using regular ordinary
least squares (OLS) on the full model described in Equation (2). The
removal of site effects is done by subtracting the estimated site effects
only, that is we set the adjusted-residuals-harmonized cortical thickness
values to be

yAdjijv ¼ yijv � ZT
ij
~θv

ComBat harmonization
The Combat harmonization model (Johnson et al., 2007) extends the

adjusted residuals harmonization model presented in Equation (2) in two
ways: (1) it models site-specific scaling factors and (2) it uses empirical
Bayes to improve the estimation of the site parameters for small sample
sizes. It posits a unique linear model of location and scale at each feature,
making the assumption that scanners (or sites) have both an additive and
multiplicative effects on the data. The model assumes that the expected
values of the imaging feature measurements can be modeled as a linear
combination of the biological variables and the site effects, whose error
term is modulated by additional site-specific scaling factors. The algo-
rithm uses empirical Bayes to improve the estimation of the model pa-
rameters in small sample size studies. The ComBat model, originally
developed for gene expression microarray data, was reformulated in
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Fortin et al., (2017) for the harmonization of DTI data scalar maps. Using
the previous notation, the model can be written as

yijv ¼ αv þ XT
ijβv þ ZT

ijθv þ δivεijv; (3)

where αv is the average cortical thickness for the reference site for feature
v, where θv is the k� 1 vector of the coefficients associated with the site
indicators Z for feature v and where βv is the p� 1 vector of coefficients
associated with X for feature v. We assume that the residual terms εijv
have mean 0. The parameters δiv describe the multiplicative site effect of
the j-th site on voxel v. Consistent with the ComBat model notation used
in Fortin et al., (2017), we rewrite ZT

ij θv as γiv:

yijv ¼ αv þ XT
ijβv þ γiv þ δivεijv; (4)
Fig. 1. Visualization of sites effects in the EMBARC study. Plots are colored by imaging site:
Hospital (MG) and University of Michigan (UM). (a) Boxplots of the cortical thickness sorted by
Boxplots of the median cortical thickness, grouped by site. The MG site has lower median cortica
but sorted by age. Age intervals are included in brackets to help interpretation. (d) Relationship
components (PCs) from principal component analysis (PCA), colored by site. The second PC is
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The procedure for the estimation of the site parameters γiv and δiv uses
Empirical Bayes, and is described in Johnson et al. (2007) and Fortin
et al. (2017). The final ComBat-harmonized cortical thickness measure-
ments are defined as

yComBat
ijv ¼ yijv � bαv � Xij

bβv � γ�iv
δ�iv

þ bαv þ Xij
bβv

Methods evaluation framework

To investigate and correct site effects using ComBat, we performed a
set of analysis tasks of increasing complexity on the cortical thickness
data. We first performed an exploratory analysis to confirm the existence
of site effects in the data. Next, we performed various univariate tests of
Columbia University (CU), University of Texas Southwestern (TX), Massachusetts General
site. Each boxplot represents the distribution of the 98 cortical regions for one subject. (b)
l thickness on average, while the TX and UM sites have higher variability. (c) Same as (a),
between median cortical thickness and age, colored by site. (e) Plots of the first 3 principal
highly associated with site.
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significance to understand the relationships between individual features
in the data and individual target variables. Finally, we applied various
multivariate predictive models to understand how cortical thickness re-
lates to target variables. Our analyses were aimed at both identifying and
correcting site effects at multiple levels of complexity, along with un-
derstanding the specific effects of ComBat on downstream analysis.

Results

We present several visualization tools for investigating scanner effects
in multi-site studies, as well as several metrics to quantify such scanner
effects. We use the cortical thickness measurements from both the
EMBARC and VDLC studies to illustrate the different methodologies. We
next evaluate different harmonization procedures for the correction of
site effects. Last, we combine and harmonize the EMBARC and VDLC
studies, which have different age range, and show that it is possible to
improve multi-site cross-sectional analyses of life-span trajectories by
using ComBat harmonization.
Visualization and quantification of site effects

EMBARC study
In Fig. 1, we present diagnostic plots for the EMBARC study. For each

subject, we summarize the cortical thickness measurements into a box-
plot (Fig. 1a). We observe a global downwards shift in the cortical
thickness measurements from the MG site, as well as increased variability
in the measurements from the TX and UM sites relative to the two other
sites. The four boxplots presented in Fig. 1b summarize the distribution
of the median cortical thicknesses at each site, and facilitate the visual-
ization of the site-specific additive and scaling effects. Using ANOVA, the
median cortical thickness was significantly different across the four sites
(p ¼ 1:1� 10�10). More specifically, we found the median cortical
thickness for the MG site was significantly different from those of the
three remaining sites, adjusting for multiple comparisons using the
Dunnett-Tukey-Kramer (DTK) test (Dunnett, 1980). The latter is an
extension of Tukey's method (Tukey, 1949) that takes into consideration
unequal variances as well as unequal sample sizes. To assess the
normality assumption of the t-tests, we first performed the Shapiro-Wilk
test for each of the scanners, and the p-values were not significant for any
of the groups in the EMBARC study (CU: p ¼ 0:17; MG: p ¼ 0:74; TX:
p ¼ 0:18; UM: p ¼ 0:23). A p-value is significant when the data do not
appear to be normally distributed.

Next, because the scale of the measurements can also be affected by
Fig. 2. Distribution of covariates in the EMBARC study. Distributions of age, gender, HAM
proportional to the number of subjects scanned at each site. The full and shaded bars in the gend
Scale; QIDS: Quick Inventory for Depression Symptomatology. p-values indicate the significan
between sites.
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scanner, we also compared the variances of the median cortical thickness
measurement across sites. To do so, we performed the Bartlett's sphe-
ricity test (Bartlett, 1937), which assesses whether or not the variances
are homogeneous across sites. To avoid confounding of site with age and
gender, we first regressed out the variation explained by age and gender;
the test was significant (p ¼ 1:8� 10�7). We subsequently compared the
pairwise site variances using the usual F-tests for variances ratio, and four
of the pairs were significant after adjusting for multiple comparisons
using Bonferroni correction: TX vs. CU, TX vs. MG, UM vs. CU, and UM
vs. MG differed in variance of median cortical thickness.

We also tested each ROI individually for site effects by calculating an
ANOVA F-test. We obtained 53 ROIs significantly associated with site,
using Bonferroni correction to adjust for multiple comparisons (adjusted
p< 0:05). Because Bonferroni correction is a conservative approach to
control for the family-wise error rate (FWER), we alternatively corrected
for multiple comparisons using the permutation-based one-step maxT
procedure (Westfall and Young, 1993; Dudoit et al., 2003), and obtained
60 ROIs significantly associated with site (adjusted p<0:05, B ¼ 10;000
permutations). We present in Figure A.1a the observed R2 from ANOVA
and the distribution of the maximum R2 obtained from each permutation.
To test for scanner-specific scaling effects, we also tested each feature
individually for homogeneity of variances across sites using Bartlett's
test. We obtained 41 ROIs with variances significantly associated with
site (adjusted p<0:05, B ¼ 10;000 permutations). The significant re-
gions are reported in Supplementary Table 2.

In Fig. 1, we observe a global decrease of the cortical thickness
measurements with age, and note that combining measurements from
multiple sites adds variability to the trend (blue boxplots are shifted
downwards). We also observe that the imaging sites are not distributed
equally across the age span, with more younger subjects from theMG and
CU sites (more blue and grey boxplots to the left) and older subjects
coming from the TX site (more light red boxplots to the right). This in-
dicates some confounding between imaging site and age. In Fig. 1d, we
present the median cortical thickness measurements as a function of age
to visually inspect the global image-age relationship. In Fig. 1e, we pre-
sent bivariate scatter plots of the first 3 principal components (PCs) from
a principal component analysis (PCA) performed on the cortical thickness
values. We note that the second PC is highly associated with site, con-
firming that a large proportion of the variation in the data is explained
by site.

Finally, we present in Fig. 2 the distribution of age, gender, HAMD
score and QIDS score across imaging sites. This allows a visual inspection
of potential confounding level between the different covariates and
D score and QIDS scores across sites for the EMBARC study. The width of the boxplots is
er barplots represent males and females respectively. HAMD: Hamilton Depression Rating

t differences in means between the centers. Gender ratios were not significantly different



Fig. 3. Visualization of sites effects in the VDLC study. Plots are colored by scanner. The green shades represent the 1.5T scanners, while the brown shades represent the 3T scanners.
(a) Boxplots of the cortical thickness sorted by site. Each boxplot represents the distribution of the 98 cortical regions for one subject. (b) Boxplots of the median cortical thickness, grouped
by scanner. The measurements derived from 1.5T scanners are substantially lower than measurements from 3T scanners. (c) Same as (a), but sorted by age. Age intervals are included in
brackets to help interpretation. (d) Relationship between median cortical thickness and age, colored by scanner. (e) Plots of the first 3 principal components (PCs) from principal
component analysis (PCA), colored by scanner. The second PC is highly associated with scanner.
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imaging site. The width of the boxplots represents the sample size at each
site. We note that age is highly imbalanced across sites, with older sub-
jects at the TX site. We also note that gender is imbalanced within each
site with a greater number of females. The QIDS score appears to be also
109
imbalanced with respect to imaging site and anti-correlated with age.

VDLC study
In Fig. 3b, we present diagnostic plots for the VDLC study. We note in



Fig. 4. Distribution of covariates in the VDLC study. Distributions of age, gender, and disease group for the VDLC study. The width of the boxplots is proportional to the number of
subjects scanned at each site. For the age boxplots, the p-values indicate the significant differences in means between sites. The full and shaded bars in the gender barplots represent males
and females respectively; the gender ratio was significantly different for the W_Sonata_B scanner. The full and shaded bars in the disease group barplots represent control and depressed
subjects respectively. The proportions of subjects with depression were significantly across the 4 scanners.
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the VDLC study that there is a clear positive shift in the cortical thickness
measurements for images acquired on 3T scanners in comparison to
images acquired on 1.5T scanners (Fig. 3a). Using ANOVA, the median
cortical thickness was significantly different across the seven scanners
(p ¼ 2:2� 10�16). Not surprisingly, the median cortical thicknesses from
each of the 3T scanners were significantly different from those of each of
the 1.5T scanner, adjusting for multiple comparisons using the DLK test.
To assess the normality assumption of the t-tests, we first performed the
Shapiro-Wilk test for each of the scanners, and the p-values were not
significant for most groups in the VDLC study (W_TIMTrio_A: p ¼ 0:07;
W_TIMTrio_B: p ¼ 0:42; D_TIMTrio_A: p ¼ 0:004; W_Sonata_A: p ¼ 0:90;
W_Sonata_B: p ¼ 0:63; D_TIMTrio_B: p ¼ 0:39; D_SIGNA: p ¼ 0:88). A p-
value is significant when the data do not appear to be normal. Only the
D_TIMTrio_A scanner appeared to have a non-normal distribution.

We also compared the variances of the median cortical thickness
measurement across scanners. To do so, we performed the Bartlett's
sphericity test, which estimates whether or not the variances are ho-
mogeneous across scanners. To avoid confounding of scanner with age
and gender, we first regressed out the variation explained by age and
gender; the test was significant (p ¼ 0.0013).

We also tested each ROI individually for site effects by calculating an
ANOVA F-test. We obtained 86 ROIs significantly associated with site,
using Bonferroni correction to adjust for multiple comparisons (adjusted
p<0:05), and 87 ROIs using the permutation-based one step maxT pro-
cedure (adjusted p<0:05, B ¼ 10;000 permutations). We present in
Figure A.1b the observed R2 from ANOVA and the distribution of the
maximum R2 obtained from each permutation. To test for scanner-
specific scaling effects, we also tested each feature individually for ho-
mogeneity of variances across sites using Bartlett's test. We obtained 4
ROIs with variances significantly associated with site (adjusted p<0:05,
B ¼ 10;000 permutations). The significant regions are reported in Sup-
plementary Table 2.

Finally, we present in Fig. 4 the distribution of age, gender, and dis-
ease group across scanners. This allows a visual inspection of potential
confounding level between the different covariates and imaging site. The
width of the boxplots represents the sample size at each site. We note that
the average age is significantly different for the D_SIGNA scanner. We
also note that the gender ratio is significantly different for the W_Sona-
ta_B scanner, with a significantly larger number of females imaged using
this scanner. In the third panel, one can observe that proportions of
depressed versus healthy subjects vary greatly across scanners.
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Removal of site effects with harmonization

To remove site effects in both the EMBARC and VDLC datasets, we
applied three different harmonization techniques: (1) Residuals: removal
of site effects estimated from linear regression; (2) Adjusted Residuals:
removal of site effects estimated from linear regression, adjusting for
biological covariates; and (3) ComBat. We now present the results for
both studies separately.

EMBARC study
In Fig. 5, we show the empirical distributions of the site effects for the

EMBARC study, for both the location and scale parameters (dotted lines),
together with the prior distributions estimated by ComBat (solid lines).
We remind the reader that both the location and scale site effects are
deviations from the grand mean. Consistent with the description of the
site effects in the previous section, we note that the additive site effects
(γ) are greater in magnitude for the MG site (Fig. 5a), and the multipli-
cative site effects (δ) are greater than 1 on average for the TX and UM
sites and lower than 1 for the two remaining sites (Fig. 5b). We note that
the prior distributions fit the empirical distributions well for both the
location and scale parameters; the ComBat procedure therefore appears
appropriate for capturing these effects.

To visualize whether or not most of the variation in the data was still
associated with imaging site after harmonization, we first performed an
unsupervised dimension reduction of the harmonized cortical thickness
measurement using PCA. The data projected into the first two PCs are
presented in the first column of Fig. 6. We note that for all three
harmonization methods, the data points appear to be distributed equally
across sites. We also performed a linear discriminant analysis (LDA), a
popular supervised dimension reduction that maximizes the projection
coordinates to predict the data classes. Here, we use the imaging sites as
the data classes to be predicted. We present the projected data in the
second column of Fig. 6. One can see that for the raw data, the data points
cluster almost perfectly by imaging site. This is not surprising; all features
are highly associatedwith site effects when not harmonized. We also note
that despite harmonization of the acquisition sequences (for more details
on study design, see Trivedi et al., (2016)), the EMBARC study still ex-
hibits inter-site effects before harmonization. Furthermore, note that
images acquired on scanners from the same manufacturer tend to cluster
together in the LDA plots. After harmonization, site clusters are sub-
stantially attenuated.



Fig. 5. Prior distributions of the site effect parameters estimated by ComBat in the EMBARC study. Location and scale site-specific parameters estimated by ComBat, for the EMBARC
study. (a) The ComBat-estimated prior distributions for the site-specific location parameters γ are shown in solid lines, and the empirical distributions of the site-specific location pa-
rameters are shown in dashed lines. (b) The ComBat-estimated prior distributions for the site-specific scale parameters δ are shown in solid lines, and the empirical distributions of the site-
specific scale parameters are shown in dashed lines. The prior distributions fit well the empirical distributions for both the location and scale parameters.
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To formally test whether or not site effects remain after harmoniza-
tion, we again used the different tests described in Section 3.1. Using
ANOVA F-tests, all methods corrected for mean site differences in the
median cortical thickness: p ¼ 0:997 for Residuals, p ¼ 0:0498 for
Adjusted Residuals and p ¼ 0:0473 for ComBat. We also tested for site-
specific scaling effect in the measurements using Bartlett's sphericity
test. We found that only ComBat was able to remove the scaling effects
associated with site (p ¼ 0:42). The site-specific variances remained
largely uncorrected for both the Residuals (p ¼ 2:53� 10�8) and
Adjusted Residuals (p ¼ 3:08� 10�8) methods. This is not surprising;
only the ComBat harmonization method is able to model scaling factors
associated with site. We also tested each ROI individually for remaining
site effects. For all harmonization methods, none of the ROIs was
significantly associated with site, using either the Bonferroni or themaxT
adjustment.

Finally, to further investigate if site effects were entirely removed for
each of the harmonization method, we attempted to predict imaging site
from the harmonized cortical thickness features. More specifically, we
used the support vector machine (SVM) (Cortes and Vapnik, 1995)
classification algorithm, with radial basis kernel, to predict site from the
imaging features. The SVM is largely used in the imaging community in
the context of multivariate pattern analysis (MPVA) for understanding
and discovering patterns associated with a disease outcome, for instance.
A harmonization method that is successful in removing site effects will
result in a lower SVM accuracy when attempting to predict site. Using
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B ¼ 10;000 repetitions of a 10-fold cross-validation, we estimated an
average accuracy for each method. For the raw values, the SVM predic-
tion achieved an average of 76.6% classification accuracy. For the re-
siduals and adjusted residuals methods, the average accuracies were
40.5% and 38.7% respectively. The ComBat method resulted in the lower
average accuracy (36.3%). Using a permutation-based approach to
generate a null distribution (B ¼ 10; 000), a SVM classification by chance
attained on average 36.9% accuracy. This indicates the Adjusted Re-
siduals and ComBat were best for the removal of site effects in the cortical
thickness measurements. In comparison to the adjusted residuals, we
note that the ComBat method additionally removes site-specific scaling
effects. This could explain the better performance in the SVM, in which
the covariance structure is implicitly used for predicting the class labels.

VDLC study
In Fig. 7, we show the empirical distributions of the site effects for the

VDLC study, for both the location and scale parameters (dotted lines),
together with the prior distributions estimated by ComBat (solid lines).
Consistent with the description of the site effects in the previous section,
we note that the additive scanner effects (γ) are greater in magnitude for
the 3T scanners. The multiplicative scanner effects (δ) are shown in
Fig. 7b. We note that the prior distributions fit the empirical distributions
well for both the location and scale parameters; the ComBat procedure
therefore appears appropriate for capturing these effects.

To visualize whether or not most of the variation in the data was still



Fig. 6. Supervised and unsupervised dimension reductions before and after harmonization for the EMBARC dataset. For each harmonization method, we first used principal
component analysis (PCA) to reduce the dimension of the cortical thickness measurements in an unsupervised manner (agnostic of imaging sites). We present in the first column the
projection of the data into the first two principal components (PCs) that explain most of the variation in the data. We also performed a supervised dimension reduction technique using
linear discriminant analysis (LDA) using imaging site as a target variable. We present in the second column the projection of the data into the first two LDA coordinates. In both PCA and
LCA, the first two coordinates are highly associated with site, while all harmonization methods removed most variation associated with site.
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associated with scanner after harmonization, we first performed an un-
supervised dimension reduction of the harmonized cortical thickness
measurement using PCA. The data projected into the first two PCs are
presented in the first column of Fig. 8. We note that for all three
harmonization methods, the data points appear to be distributed equally
across scanners. We also performed LDA using scanners as the data
classes. We present the projected data in the second column of Fig. 8. One
can see that for the raw data, there is a clear separation between the
different types of scanners. Interestingly, the data from the D_SIGNA
scanner appear to cluster separately; we note that this is the only GE
scanner in the VDLC study. After harmonization, clusters associated with
scanner are substantially attenuated.

Using ANOVA F-tests, all methods corrected for mean scanner
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differences in the median cortical thickness: p ¼ 0:99 for Residuals, p ¼
0:94 for Adjusted Residuals and p ¼ 0:94 for ComBat. We also tested for
scanner-specific scaling effects in the measurements using Bartlett's
sphericity test. We found that only ComBat was able to remove the
scaling effects associated with scanner (p ¼ 0:46). Scanner-specific var-
iances remained present in both the Residuals (p ¼ 0:03) and Adjusted
Residuals (p ¼ 0:01) methods. Finally, we tested each ROI individually
for remaining scanner effects. For all harmonization methods, none of the
ROIs was significantly associated with scanner, using either the Bonfer-
roni or the maxT adjustment.

As conducted in the EMBARC study, we used the SVM with radial
basis kernel to assess prediction of scanner from the imaging features.
Again, a harmonization method that is successful in removing scanner



Fig. 7. Prior distributions of the site effect parameters estimated by ComBat in the VDLC study. Location and scale site-specific parameters estimated by ComBat, for the VDLC study.
(a) The ComBat-estimated prior distributions for the site-specific location parameters γ are shown in solid lines, and the empirical distributions of the site-specific location parameters are
shown in dashed lines. (b) The ComBat-estimated prior distributions for the site-specific scale parameters δ are shown in solid lines, and the empirical distributions of the site-specific scale
parameters are shown in dashed lines. The prior distributions fit well the empirical distributions for both the location and scale parameters.
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effects will result in a lower SVM accuracy when attempting to predict
scanner. Using B ¼ 10;000 repetitions of a 10-fold cross-validation, we
estimated an average accuracy for each method. For the raw values, the
SVM prediction achieved an average of 67.7% classification accuracy.
For the residuals and adjusted residuals methods, the average accuracies
were 43.4% and 44.4% respectively. The ComBat method resulted in the
lowest average accuracy (41.0%).
Associations with age

While it is important to show that a harmonization method success-
fully removes site effects, it is equally important to show that the method
preserves the biological variability in the data; a method that removes
both site effects and biological effects has no scientific use. To investigate
whether or not the different harmonizations presented in this paper
perform well at preserving biological variability, we use age as a variable
of interest.

We assessed the proportion of variation explained by age before and
after harmonization. Without harmonization, the percentage of variation
in the average cortical thickness explained by age was 23%. This was
calculated using the usual coefficient of variation R2 from linear
regression with median cortical thickness as the outcome. For the un-
adjusted Residuals method, this percentage was increased to 26%, and
for both the Adjusted Residuals and ComBat, the percentage was
increased to 33%. The fact that the Unadjusted Residuals did not
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substantially increase the association with age is not surprising; we
observed that age was confounded with imaging site, and therefore
removing site effects without adjusting for age will also remove variation
in the imaging features associated with age. On the other hand, both the
Adjusted Residuals and ComBat strengthened the expected inverse rela-
tionship between age and cortical thickness by removing site effects, but
also by preserving biological variability in the data.

We also evaluated the effects of harmonization on the prediction of
age using the harmonized cortical thickness measurements. For predic-
tion, we used two different algorithms: linear regression, and the popular
support vector regression (SVR) algorithm, also commonly called ε-SVM
regression, using two different kernels: a linear kernel and a radial basis
function. The ε-SVM regression paradigm is similar to the regular clas-
sification SVM, but for a continuous outcome. For each algorithm, we
used the cortical thickness measurements of the 98 cortical regions as
imaging features inputs to predict age (98 values per participant). For
each harmonization method, we randomly partitioned the subjects into k
folds, and trained the prediction algorithm on k� 1 folds. We then pre-
dicted the age of the remaining subjects (testing dataset) and calculated
the root-mean-square error (RMSE). We repeated the random sampling
B ¼ 1000 times, for k 2 f3; 5;10g, to obtain a distribution of the RMSE
for each method at each k. For each random sampling, we selected the
hyperparameters that led to the best cross-validated performance by
performing a grid search with the following grid values: C 2
f0:001;0:1;1;10;100;1000g and ε 2 f0:01;0:1;0:5; 1g.



Fig. 8. Supervised and unsupervised dimension reductions before and after harmonization for the VDLC dataset. For each harmonization method, we first used principal
component analysis (PCA) to reduce the dimension of the cortical thickness measurements in an unsupervised manner (agnostic of imaging sites). We present in the first column the
projection of the data into the first two principal components (PCs) that explain most of the variation in the data. We also performed a supervised dimension reduction technique using
linear discriminant analysis (LDA) using imaging site as a target variable. We present in the second column the projection of the data into the first two LDA coordinates. In both PCA and
LCA, the first two coordinates are highly associated with site, while all harmonization methods removed most variation associated with site.
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In Fig. 9, we present the results from linear regression. For the three
values of k, we observe that the data harmonized with the unadjusted
Residuals do not perform well (substantial increase of RMSE). On the
other hand, both the Adjusted Residuals and ComBat significantly
improve the average prediction accuracy compared with the raw data
(p<0:05 for all k). In Fig. 10, we present the results from ε-SVM
regression using a linear kernel. For the three values of k, the Adjusted
residuals improve the age prediction compared to the raw data; Combat
performs either equally (k ¼ 3;10), or improves the performance (k ¼ 5).
As it is the case for Fig. 9, the unadjusted Residuals worsens the age
prediction. In Fig. 11, we present the results from ε-SVM regression using
a radial basis function kernel. While the Adjusted Residuals and ComBat
perform similarly to the raw data for the three values of k (no significant
difference in the RMSE), the unadjusted Residuals substantially increases
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the RMSE.
Overall, the removal of unwanted site effects with both ComBat and

the Adjusted Residuals did not decrease our ability to predict age, either
using linear regression or SVMs. This confirms that both methods pre-
served biological variability associated with age, a crucial requirement
for adequatemulti-site harmonization. On the other hand, the unadjusted
Residuals substantially decreased the predictive performance. This shows
that failing to account for age when removing site effects in an unbal-
anced sample leads to removal of age-related signal, as described in Rao
et al., (2017).
Life-span study by harmonizing the EMBARC and VDLC datasets

While the two studies present in this paper have a different age range



Fig. 9. Root-mean-square error (RMSE) for age prediction using linear regression Using k-fold validation for k 2 f3;5;10g for B ¼ 1000 random samplings, we calculated the RMSE
on a testing dataset for the predicted age using linear regression. For the different harmonization methods, we used the harmonized cortical thickness measurements as input image features
to train the algorithm. The p-values represent significant reductions of RMSE with respect to the raw data.

Fig. 10. Root-mean-square error (RMSE) for age prediction using ε-SVM (linear kernel). Using k-fold validation for k 2 f3;5; 10g for B ¼ 1000 random samplings, we calculated the
RMSE on a testing dataset for the predicted age using ε-SVM with a linear kernel. For the different harmonization methods, we used the harmonized cortical thickness measurements as
input image features to train the algorithm.
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([18,65] y.o. for the EMBARC study; [58,95] y.o. for the VDLC study),
there is some overlap between the two age ranges (see Fig. 12, first
panel). For the study of life-span trajectories, it is sometimes necessary to
combine data from multiple studies, with each individual study often
targeting participants from a specific age range. We show here that even
though different scanners and slightly different cortical thickness ROI
extraction methods were used across the studies, it is possible to combine
and harmonize the data, to remove the scanner effects, and thereby
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improve the correlation between the imaging outcome and biological
factors of interest, namely age.

We present the relationship between median cortical thickness and
age, before and after harmonization in Fig. 12 with data points colored by
study (red for EMBARC and green for VDLC). One can observe an overlap
in the age span between the two studies, and that inter-subject variation
seems to be higher in the EMBARC subjects in the raw data. This can be
explained by the large variation between the four scanners in the



Fig. 11. Root-mean-square error (RMSE) for age prediction using ε-SVM (radial basis function kernel). Using k-fold validation for k 2 f3;5;10g for B ¼ 1000 random samplings, we
calculated the RMSE on a testing dataset for the predicted age using ε-SVM with a radial basis function kernel. For the different harmonization methods, we used the harmonized cortical
thickness measurements as input image features to train the algorithm.
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EMBARC, as discussed previously in the Results section. For each
method, we calculated the correlation between the median cortical
thickness and age. For the unharmonized data, we obtained a correlation
of �0:70. For the unadjusted Residuals, we obtained a correlation of
�0:26. Such a weaker correlation is not surprising; both studies have a
vastly different age range, and therefore blindly harmonizing the data for
site without adjusting by age will diminish the age effect across the life
span. For the Adjusted Residuals, we obtained a correlation of�0:77, and
we obtained a correlation of �0:79 for ComBat. Both adjusted residual-
ization and ComBat were effective at decreasing the inter-subject vari-
ability by removing scanner effects, while preserving the trend associated
with age across the life-span.
Associations with gender

We also investigated the impact of harmonizing the EMBARC and
VDLC studies together on the associations between cortical thickness
measurements and gender. Before harmonization (raw data), 30 cortical
regions were significantly associated with gender, after adjusting for
multiple comparisons using the Benjamini-Hochberg procedure
(p<0:05). Interestingly, after harmonizing the data using either the
unadjusted Residuals, the Adjusted Residuals, or the ComBat approach,
we found that none of the features were associated with gender.

To investigate whether or not the results from the raw data consisted
of false positives as a consequence of gender ratios that are imbalanced
across sites (see Fig. 4), we devised the following subsampling strategy:
to obtain unconfounded assessments of the associations of gender with
cortical thickness measurements, we sampled an equal number of fe-
males and males from each scanner at random, resulting in a total of n ¼
306 subjects; we repeated the random subsampling B ¼ 1000 times.
While the resulting total sample size of the matched datasets is smaller,
the gender associations in the matched datasets should not be
confounded by unwanted scanner variation, and therefore lead to results
that are more reflective of the truth. For each of the B ¼ 1000 matched
datasets, we calculated the number of features associated with gender,
again adjusting for multiple comparisons using the Benjamini-Hochberg
procedure. We obtained that more than 98% of the time (981 datasets),
there were 0 features associated with gender, confirming that the 30
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features associated with gender in the original raw data are most likely
false positives.

In light of these results, it appears that the three harmonization
techniques are effective at reducing the number of false positives. Such
false positives are most likely features that are artificially associated with
a biological covariate of interest, as a result of the biological covariate
being unbalanced across scanners or sites.

Discussion

With the increasing complexity of study design in multi-site neuro-
imaging studies, the neuroscience community needs robust, validated,
and computationally feasible methods for addressing the critical impact
of non-biological sources of data variation. We use the term “harmoni-
zation” to refer to the process of combining data from multiple sites and
removing the unwanted variability associated with scanner.

In this paper, we proposed to use the ComBat algorithm, previously
developed to deal with batch effects in the study of gene expression data,
as a reliable harmonization method for combining cortical thickness
measurements across sites. This was motivated by its previously docu-
mented excellent performance for harmonizing voxel-wise fractional
anisotropy (FA) and mean diffusivity (MD) measurements (Fortin et al.,
2017), two common DTI scalar maps. Using two large multi-site studies,
EMBARC and VDLC, we presented a general approach for identifying
unwanted sources of variance in neuroimaging data. We then showed
that ComBat is effective at removing nuisance variability associated with
scanners, while preserving the age effects in the cortical thickness across
participants. We also showed that ComBat can be used to combine those
two large studies, with a vastly different age range, to study cortical
thickness across the life span. Indeed, while the extraction of thickness in
the ROIs was slightly different for the two studies, we nonetheless found
ComBat to effectively mitigate scanner effects. We expect future studies
of ComBat for addressing minor differences in image processing across
studies to evaluate the feasibility of distributed analyses in which only
post-processed data are available.

While our analyses of harmonized data did not yield any differences
between males and females in cortical thickness measures, there is a
significant literature documenting these differences (Luders et al., 2006;



Fig. 12. Median age trajectory before and after harmonization. The EMBARC and VDLC studies were combined using different harmonizations. The red dots represent the median
cortical thickness for the EMBARC study participants, and the greens dots represent the median cortical thickness for the VDLC study participants. The curves represent the lowess fitted
values for each study separately.
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Sowell et al., 2006; Gennatas et al., 2017). These studies used different
analytic pipelines to calculate cortical thickness, although we would
expect our ANTsCT pipeline to provide similar results. However, previ-
ously reported results were based were conducted in healthy individuals,
and several were specifically designed to study sex differences, in
contrast to the VLDC and EMBARC studies which included large numbers
of depressed subjects and were heterogeneous in their demographics
across sexes. We expect that future analyses of sex effects from multi-
center studies of normal subjects using ComBat to replicate the well-
117
established differences in thickness measures.
We note that ComBat performs well for removing systematic biases

associated with scanner in studies independently of whether acquisition
protocols were carefully harmonized. In the EMBARC study, for example,
inter-site effects were present despite such harmonization; similar dif-
ferences have recently been reported in volumetric measurements from
another multi-center study which used a traveling subject design (Shi-
nohara et al., 2017; https://www.ncbi.nlm.nih.gov/pubmed/29106329,
https://www.ncbi.nlm.nih.gov/pubmed/28617996 ). As we found that

https://www.ncbi.nlm.nih.gov/pubmed/29106329
https://www.ncbi.nlm.nih.gov/pubmed/28617996
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ComBat was effective in removing effects associated with differences in
acquisition protocol and scanner as in the VDLC study, as well as residual
site effects from images acquired using the harmonized protocol in
the EMBARC.

We compared the ComBat harmonization algorithm to two
commonly-used scanner effect correction methods: residualization and
adjusted residualization. The latter method adjusts for covariates of in-
terest (for instance age) in the removal of site effects. ComBat is similar to
the adjusted method, except that it additionally models scanner-specific
scaling effects. ComBat also uses a Bayesian framework to improve the
stability of the estimated parameters in small sample sizes. ComBat is
easy to apply and has minimal computational overhead. Equally impor-
tantly, we have developed open-source, easy-to-use code for applying
this algorithm in R, Matlab, and Python. This ensures that the ComBat
algorithm can be seamlessly integrated into any existing process-
ing pipelines.

Another advantage of ComBat is its ability to scale up for large neu-
roimaging studies. Indeed, the ComBat algorithm scales linearly with the
number of imaging features, which makes the procedure suitable to
image analyses performed at the voxel level, where the number of voxels
can often be in the millions. We note that for brainwide analyses per-
formed at the voxel level, the assumptions of the ComBat methodology
that scanner effects are shared across all voxels might not be valid. In
previous work, our group and others have found that scanner effects on
image intensities can be dependent on tissue class, and thus adjustments
for site effects may necessitate tissue class-specific modeling. One
possible solution is to apply ComBat on each tissue separately. An
alternative would be to extend the ComBat model to allow for a mixture
of empirical distributions for the scanner effects.

We note that several other harmonization techniques have been
previously proposed in the context of other imaging modalities. For
instance, for conventional MRI studies, intensity normalization tech-
niques have been developed to make the image intensities comparable
across studies, including histogram matching (Nyúl et al., 2000),
WhiteStripe (Shinohara et al., 2014) and RAVEL (Fortin et al., 2016).
Another method, called source-based morphometry, uses independent
component analysis (ICA) to remove variability associated with certain
scanner parameters in structural MRI (Chen et al., 2014). For diffusion
tensor imaging (DTI) studies, it has been proposed to use spherical har-
monics to harmonize data across studies, using a reference site to create
pairwise site transformations (Mirzaalian et al., 2016). It has also been
proposed to use functional normalization, originally developed in (Fortin
et al., 2014), for harmonizing DTI scalar maps.

The aforementioned harmonization techniques cannot be readily
applied to cortical thickness. For instance, for WhiteStripe and RAVEL,
control features in the WM and in the CSF are required, which do not
make sense in the context of cortical thickness measurements in the GM.
Furthermore, the histogram matching method attempts to estimate the
histogram peaks for each of the GM, WM and CSF tissues, and then aligns
these peaks across images to make the intensities comparable. Again, this
technique is not applicable to cortical thickness measurements in the GM.
On the other hand, ComBat does not make such specific assumptions on
the nature of the imaging measurements, making it a potential and ver-
satile tool for the harmonization of multi-site imaging studies for other
modalities.

In the future, we plan to develop a time-dependent ComBat algorithm
for understanding scenarios where subjects were scanned over multiple
time points, and for which scans were acquired on different scanners, or
on the same scanners but with different scanning parameters. We are also
planning on improving the performance of ComBat in the presence of
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confounding by implementing an inverse probability weighting (IPW)
scheme into the algorithm. IPW has been shown to improve prediction
when the outcome of interest is confounded with another covariate (Linn
et al., 2016). This has the potential to improve the performance of
ComBat for age prediction using the SVM regression framework, as well
as for other prediction methods.

Software

All postprocessing analysis was performed in the R statistical software
(version 3.2.0). For ComBat, the reference implementations from the sva
package was used. All figures were generated in R with customized and
reproducible scripts. We have adapted and implemented the ComBat
methodology to imaging data, and the software is available in R and
Matlab (https://github.com/Jfortin1/ComBatHarmonization) and in
Python (https://github.com/ncullen93/neuroCombat).
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Appendix A

Fig. A.1. Variance explained by imaging site (R2). For each feature, we calculated the coefficient of determination R2 between cortical thickness and imaging site. We present the
densities of R2 (red lines) for the (a) EMBARC study and the (b) VDLC study. To obtain a measure of significance and to correct for multiple comparisons, we performed a one-step max R2

procedure. Briefly, we permuted the site labels B ¼ 10;000 times, recalculated the R2 values and retained the maximum R2 value at each permeation. The grey densities represent the
distribution of the maximum R2

’s. The vertical dashed line indicates the 95% quantile of the maximum R2 distribution. The features above that threshold are significant at the α ¼ 0:05
level (shaded red area). Most features remained significant after adjustment.
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