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Abstract

Neural synchrony in the y-band is considered a fundamental process in cortical computation and
communication and it has also been proposed as a crucial correlate of consciousness. However, the latter
claim remains inconclusive, mainly due to methodological limitations, such as the spectral constraints of
scalp-level electroencephalographic recordings or volume-conduction confounds. Here, we circumvented
these caveats by comparing y-band connectivity between two global states of consciousness via intracranial
electroencephalography (iEEG), which provides the most reliable measurements of high-frequency activity
in the human brain. Non-REM Seep recordings were compared to passive-wakefulness recordings of the
same duration in three subjects with surgically implanted electrodes. Sgnals were analyzed through the
weighted Phase Lag Index connectivity measure and relevant graph theory metrics. We found that
connectivity in the high-y range (90-120 Hz), as well as relevant graph theory properties, were higher
during wakefulness than during sleep and discriminated between conditions better than any other
canonical frequency band. Our results constitute the first report of iEEG differences between wakefulness
and sleep in the high-y range at both local and distant sites, highlighting the utility of this technique in the

search for the neural correlates of global states of consciousness.

Highlights

IEEG recordings overcome the methodological linotasd of other techniques

IEEG highy connectivity is higher during wakefulness thaninigisleep

It distinguishes between states better than argratdnonical frequency band

» Connectivity differences are present at both lacal distant sites

1. Introduction

Mainstream theories of consciousness converge asidering information integration
across brain regions as a fundamental explanatongiple (Dehaene and Naccache,
2001; Tononi et al., 2016). However, no consensustson the putative mechanisms
coordinating distributed neural activity. One pbsicandidate is neural synchrony
(Uhlhaas et al., 2009). Indeed, temporal relatigpgssbetween oscillatory processes are

considered to be fundamental for both local andbalocoordinated brain activity



(Buzséki, 2006). Moreover, phase relationships betwactivity in task-relevant areas
prove critical for learning and memory, multisensotegration, selective attention, and
working memory, among other domains (Wang, 201®)pdrticular,y (30-90 Hz) and
high-y (> 90 Hz, ore-band) synchronization seems critical for corticaimputation
(Buzsaki and Schomburg, 2015; Buzsaki and Wang2;2Bties, 2009), with temporal
binding in they-range emerging as a potentially crucial markercohsciousness
(Dehaene and Changeux, 2011; Engel and Singer).2001

However, the role of-synchronization in consciousness and cognitiamisfree
of controversies. Studies typically compare heallmake states with pathological or
non-pathological loss of consciousness (e.g., canth non-REM sleep, respectively;
Bayne et al., 2016; Hohwy, 2009; Overgaard and @aend, 2010), or consciously vs.
unconsciously perceived stimuli (Dehaene and Chang@011). Propofol-induced
(Murphy et al.,, 2011) and seizure-related (Pockatid Holmes, 2009) loss of
consciousness have been shown to correlate witle@ses, persistence, and increases of
low-y connectivity (Koch et al., 2016). Also, induceédand responses correlate with
consciously perceived stimuli in multiple taskst lxtant results are confounded by
several factors, such as artifacts from miniatumecades (Fries et al., 2008; Yuval-
Greenberg et al., 2008).

Methodological limitations also pervade the fielthe most common technique to
studyy-band oscillations in humans is electroencephafgrdEEG). EEG signals in the
y-range can be contaminated by external noise anscutar artifacts, leading many
researchers to adopt an upper-limit of ~30 Hz ieirthanalyses (Cohen, 2014).
Magnetoencephalography features similar caveatsthidkumaraswamy, 2013), and
hemodynamic methods, such as functional magnetsonence imaging, lack the
temporal resolution to tap this frequency band (iliest al., 2014). To date, the only
technique enabling reliable measurements of higgdency activity in the human brain

is intracranial EEG (iIEEG; Lachaux et al., 2003;tMikumaraswamy, 2013). In some
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cases of pharmacoresistant epilepsies, surgicaivention planning requires monitoring
brain activity via implanted electrodes (Engellet2005; Engel, 2005) to locate epileptic
foci for future resection. This provides inestimebiformation about brain functions, as
electrodes record direct brain activity in bothlgptic and non-epileptic sites, with the
best spatial and temporal resolution availabledda@nd Kahana, 2010).

Despite the proposed prominent roleyesynchrony in consciousness, and even
thoughy-oscillations are present during both wakefulnesksleep (Le Van Quyen et al.,
2010; Valderrama et al., 2012), only two iIEEG stsdnave assessed synchronization of
y-oscillations above 40 Hz considering those twoddttons. Bullock et al. (1995) found
no differences between conditions, but they oniypoted connectivity among adjacent
electrodes. Cantero et al. (2004) reported higheoherence during wakefulness, but
their analysis was restricted to the Igwange (35-58 Hz). A major caveat in both cases
is the use of the “coherence” measure, whose stilsitéyp to volume conduction and
common reference problems calls for cautious im&tghon of results (Bastos and
Schoffelen, 2015). Moreover, until now, no humardas have investigated connectivity
differences between wakefulness and sleep in fregyuleands above 100 Hz.

Here, for the first time, we profit from IEEG toxamine local and distributed
high-y connectivity during wakefulness and sleep. We ssexk three patients with
intracranial electrodes and compared phase synidatmn between states via weighted
Phase Lag Index (wPLI), a connectivity measure tha@umvents volume conduction
and common pick-up problems (Vinck et al., 2011} Wund that connectivity in the
high-y band was higher during wakefulness and discrirathdietween states better than

any other canonical frequency band.

2. Materialsand Methods
2.1 Subjects. Three patients from an ongoing protocol (Candldsson et al., 2015;

Chennu et al., 2013; Hesse et al.,, 2016) with phaatogically resistant epilepsy
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participated in the study after signing informea®ent. Subject 1 (S1) was a 19-year old
right-handed female (13 years of education); Subj¢S2) was a 57-year-old left-
handed male (16 years of education); Subject 3 (&® an 18-year-old right-handed
male (12 years of education). Subjects were undeggotracranial monitoring for which
they had been implanted with depth electrodes (E2@€5) in loci entirely determined
by clinical criteria (see Supplementary Tables $3 5T6 for further details). The study
was conducted in accordance with the DeclaratioHed$inki and approved by the local
ethics committee.

2.2 Data acquisition. Direct recordings of local field potentials (LFRsere obtained
from semi-rigid, multi-lead electrodes (DIXI Medldastruments), which contained 5 to
15 contact leads (0.8 mm diameter, 2 mm wide, Inb apart). Simultaneous IEEG and
video were recorded using a standard video-IEEGitmamg system (Micromed S.p.A)
with a 512 Hz sampling rate and common reference.

Whole-brain post-implant computerized tomograph¥;(Emotion 16, Siemens)
and structural magnetic resonance images (MRIpEeliL.5T, Marconi Medical Systems
Inc.) were obtained from each subject as part eir tblinical procedure (El-Baz et al.,
2011).

2.3 Experimental Design. Video-recordings and iEEG were visually inspedtedearch

of night-sleep periods where subjects appeared vimially asleep (immobile, in
recumbent position, with eyes closed; Goupil andimsehtein, 2012) and iEEG
recordings were artifact-free. Fifteen to 25 misubé recording were selected from each
subject (S1: 20 m; S2: 15 m; S3: 25 m). For congparpurposes, recordings of the same
duration were obtained from each subject while tiveye passively awake (S1: 20 m;
S2: 15 m; S3: 25 m). As the clinical set-up preelilithe possibility of scalp-EEG sleep-
scoring, we confirmed the distinction between wakedfss and sleep using the
Dimension of Activation (DA) measure (see belowhieth has been validated against

other conventional scoring methods and has beecessitilly used in previous IEEG
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research (Magnin et al.,, 2010). All recordings weesformed in a quiet room and
environmental conditions were held constant betweenditions (same room and
apparatus, lights turned off and no interferences).
2.4 Data processing and Statistical Analysis. Electrode location was determined by co-
registering the patient’s post-implant CT and MRé&rss (Tao et al., 2009), on the 3D
Slicer software (Fedorov et al., 2012). Furtherlyses were restricted to contacts that
were located in non-dysplastic grey matter (Kabat Krol, 2012) and proved free of
clear epileptic activity (as identified by a newgist specialized in epilepsy: MCG),
namely, 51/68, 40/65, and 77/127 from S1, S2, @)de&spectively. To further assess the
presence of artifacts and epileptic activity, wewerd that signal values did not exceed
five times the channel mean and no consecutive lesmgxceeded five SDs from the
gradient mean (Chen et al., 2013; Fell et al., 2088ts of electrode locations were
created using the BrainNet Viewer toolbox (Xialet2013).

Data was low-pass filtered at 240 Hz and notdiergd at 50, 100, 150, and 200
Hz using EEGLAB (Delorme and Makeig, 2004) on Matl@athworks Inc.). The
ensuing signals were then segmented into 16-seepachs (Magnin et al., 2010), with
an automatic epoch rejection threshold of 180peak-to-peak amplitude. To validate
our distinction between wake and sleep recorditigs, DA was calculated for each
channel and epoch using a bipolar reference sclamhex temporal separation between
samples of ~16 ms, following standard parameteragfivh et al., 2010). The DA is a
non-linear measure, based on the dimensional codtylepproach (Achermann et al.,
1994; Shen et al., 2003), which provides an indtet tan be used for identifying non-
REM sleep periods (and sleep onset) from EEG aBfsiHata (Rey et al., 2007). This
measure is widely used in sleep research and kaseakn validated against conventional
spectral measures (Acharya et al., 2005; Fell ¢t18196; Pereda et al., 1999). We
employed it to validate our distinction betweeregland wake data by taking the average

across channels, low-pass filtering it (Savitzky&ofilter, window length = 15,

6



polynomial order = 3), and using a cut-off scorebdsee Magnin et al., 2010). We also
tested their difference by comparing their disttibiis using non-parametric permutation
Welch t-tests (Cohen, 2014; Maris and Oostenveld, 200 W& permutations, and
estimated-values p,) based on the proportion of suprathreshold tests a

p=B+l
T M+1

(1)

where B corresponds to the number of random petioogin which a statistic greater or
equal than the observed is obtained, and M repiegde total number of random
permutations sampled. We employed this approackdtimating p-values as it provides
appropriate control of type-I and family-wise errates (Phipson and Smyth, 2010).
Subsequent iIEEG analyses were performed using thE Molbox (Gramfort et
al., 2013; Gramfort et al., 2014) and custom ssriptPython. Data was segmented into
8-second epochs (to allow for at least 7 cyclesheflowest estimated frequency, see
below) and re-referenced to the average of all-gnatter contacts. Weighted Phase Lag
Index (wPLI) was calculated for each pair of eledas on each condition (Vinck et al.,
2011) for the three frequency bands of interest-yq30-60 Hz), mediumy-(60-90 Hz),
and highy (90-120 Hz). Spectral densities were estimatedguie multitaper method
provided by the MNE toolbox. The wPLI is a bivaeatphase-based functional

connectivity measure that is computed as followis¢k et al., 2011):

p = B} [sgnt{ XD} |

wP
E{[1{X}}

@)

where E{.} is the expected value operatgix} denotes the imaginary part of the cross-
spectrum between channels, &gd the sign function.
WPLI was chosen as the connectivity measure bedabhas several advantages

over other indexes. It measures the consistencyhén phase difference between



channels, weighting the estimate by how far théetghce is from 0° or 180° in the
polar plane (see Vinck et al., 2011). Thereforeés tobust against volume conduction,
which is instantaneous within iIEEG measurement luiéipas (0° or 180° Cohen,
2014). Moreover, it affords a clear neurophysiatagjinterpretation, unlike other types
of measures as those derived from information théGohen, 2014). Also, it proves
robust against uncorrelated noise and inter-sulbgtation in sample size (Vinck et al.,
2011). In addition, previous scalp EEG studies hauecessfully relied on it to
distinguish between control subjects, patients imimmally conscious state and patients
in vegetative state (Chennu et al., 2014), and é&twresponsive and unresponsive
subjects during propofol-induced transitions ofsmausness (Chennu et al., 2016).

As v-oscillations typically arise locally (Buzsaki afang, 2012) and co-
detection probability of-oscillations decays with increasing distance dyslow wave
sleep (Valderrama et al., 2012), we computed therdea correlation coefficient of
wPLI values and the Euclidean distance betweenactsfor each frequency band to
verify that our results were not driven by locateractions. If connectivity values
decreased with increasing distance (negative atioal), they could be assumed to
depend on the distance between contacts.

We compared the connectivity results between stategy two complementary
strategies: from a network perspective and fronelantrode perspective. In the former,
we characterized the networks calculating eachredlanDegree, a graph-theory metric
which corresponds to the number of connectionshef dhannel after binarizing the
connectivity matrix by a certain threshold (Rubirend Sporns, 2010). This approach
reduces the dimensionality of the data and provadgaantification of relevant network
properties. In particular, the Degree distributisna measure of the density of the
connections in the network (Rubinov and Sporns020t was chosen because it is the
most fundamental network measure, it has been widekd for comparing brain

networks (Bullmore and Sporns, 2009), and it diyegquantifies the property
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concerning our hypothesis of a difference in cotinacdensity between wakefulness
and sleep. The graph-theory analysis was perforosdg the NetworkX toolbox
(Hagberg et al., 2008). As subjects had differamhibers of electrodes, Degrees were
normalized by the subject’s total number nodes. vmpared the network’s degree
distribution at 100 ascending thresholds (0 to 0id1 steps) using non-parametric
permutation Welcht-tests with 16 permutations and correcting for multiple
comparisons using pixel-based statistics (Cohet4R0Nithin this first strategy, we
only performed between-conditions within-subjectalgges because subjects had
different electrode placement and it is not possiti compare networks that use
different parcellation schemes (Honey et al., 200f#ang et al., 2009). The non-
parametric permutation approach was preferred paesmetric tests because it is the
recommended framework for comparing graph-theosetlameasures, as it does not
rely on specific data distributions (Cohen, 2014).

In order to test the specificity of the effect, wapeated the aforementioned
procedure with other frequency bandq1-4 Hz),0 (4-7 Hz), lowe (7-10 Hz), highe
(10-13 Hz), and3 (13-30 Hz). Then band was subdivided to control for the effect of
sleep spindles, whose frequency band approximatelyesponds to high- (De
Gennaro and Ferrara, 2003). We also tested wheth@nectivity differences were
associated with differences in power by running pansons between conditions using
the multitaper method, non-parametrical permutatidvelch t-tests with 16
permutationsp-values p,) based on the proportion of suprathreshold testieacribed
by Equation 1, and Holm-Bonferroni multiple comgans correction (Cohen, 2014;
Holm, 1979; Maris and Oostenveld, 2007; Phipson&mgth, 2010).

The second analysis strategy had three objectivdsst the difference between
conditions at the group level, to compare the digaation performance of the studied
frequency bands, and to account for possible subfferences in epileptic activity

between wakefulness and sleep. Interictal epileptifdischarges have been shown to
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vary between wakefulness and sleep (Clemens e2@)3; Sammaritano et al., 1991)
and epileptic activity has been show to be relédateuronal networks dynamics (Pittau
et al., 2014, Stefan and Lopes da Silva, 2013) s€guently, even though contacts with
clear epileptiform activity were discarded from #realysis, it was still possible that our
results were driven by subtle differences in epiepctivity between conditions. We
therefore used an automatic detection algorithne, 8hort Line Length detector
(Gardner et al., 2007), from the RIPPLELAB toolb@avarrete et al., 2016), to find
and classify interictal spikes and ripples (Jacebsl., 2012). Then, we conducted a
Generalized Estimating Equations (GEE) analysis dach frequency band, which
included Condition (wake/sleep) as dependent vijathannel mean-wPLI, channel
spikes, and channel ripples as predictors; andestgps independent clusters. Robust
estimation and independent working correlationcitne were used in these analyses.
Spikes and ripples were normalized by the totafjtlerof the recording to account for
the difference in recording durations between stibjeThe GEE method was chosen
because of the dependent nature of within-subjbsemvations (Aarts et al., 2014,
Sainani, 2010). Collinearity was assessed via Yiadalnflation Factor (VIF) with a
threshold of 3 (O'brien, 2007) and goodness-obfithe models via quasi-likelihood
under the independence model criterion (QIC), whschn extension of the Akaike’s
Information Criterion (AIC) for GEEs (Pan, 2001)h&d mean-wPLI of individual
contacts were plotted in the MNI152 common spacezbtta et al., 1995), using the
Nilearn toolbox (Abraham et al., 2014). Finally, werformedpost hoc tests between
conditions at each anatomical region, to furtheseas the topographical profile of the
differences. To this end, we employed GEEs witlydtaregions as clusters, robust
estimation and independent working correlationcitme. The GEE method was again
chosen because of the dependent nature of witlijesuobservations (Aarts et al.,
2014). Results were corrected for multiple commanss using the Holm-Bonferroni

method (Holm, 1979). Mapping of coordinates to amatal regions was performed
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automatically using théabeldMRI' R package, following the Automated Anatomical

Labeling naming-convention (Tzourio-Mazoyer et 2002).

All statistical analyses were performed on R sofer@® Core Team, 2015) and

Python.

3. Results

The behavioral distinction of wakefulness and slesgordings was validated by DA

results (Figure 1). Wake data was consistently altbe cut-off score of 5 and sleep

data was consistently below it for the 3 subjebtadnin et al., 2010). Their difference

was significant in all cases (S1: t(154.33) = 2683 .001; S2: t(84.48) = 73.86, <

.001; S3: 1(180.22) = 61.6f, < .001).
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Figure 1. Validation of the behavioral distinction between wakefulness and sleep data. A)

Low-pass filtered (dark lines) Dimension of Actiivat (DA) scores averaged across channels (light

lines) were consistently above the cut-off scoré oh wake condition and consistently below it on

sleep condition. B) Histogram of the non-paramepécmutation test t-values and t-value of the

original comparison (dotted vertical line). No peited comparison yielded a statistic above the one

obtained in the original comparison. C) DistributaffDA values for each condition.
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Visual inspection of wPLI distributions (Figure 2Ahd matrix representations
(Figure 2B) suggests that the wake condition haghdmn connectivity in the three
frequency bands of interest for the three subjextsept for the medium- and loyv-
bands in S2 (see also Supplementary Figure SFlofber frequency bands).
Interestingly, high connectivity values in the higlhange seem to be distributed across
all intra- and inter-lobular electrode pairs witletexception of temporo-temporal and
parieto-parietal pairs in S1. In addition, relalyvdigh values do not appear to be
circumscribed to neighboring pairs, as would bewshdy clustering of high values
along the matrices’ top-left to bottom-right diaghnRemarkably, some pairs showed
relatively high values during the sleep conditibat these were restricted to adjacent or

within-lobe contacts (e.g. temporal lobe sites1na8id occipital lobe sites in S3).
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Figure 2. Connectivity analysis results for each subject, condition and frequency band.
A) Violin plot of wPLI distributions. Vertical do#id lines indicate extremes and median.
Vertical axes correspond to frequency bands anddmnl axes to wPLI values. B)eft:
channel-by-channel matrix representation of wPLlues. Vertical and horizontal axes
represent electrodes, ordered and color-coded bg. I€olormap indicates wPLI values.
Within-subject top panels indicate wake condition &ottom panels indicate sleep condition.

Right: Electrode location by subject, color-coded by loBBLI: weighted Phase Lag Index.

Pearson’s correlation coefficients of wPLI valuesd aEuclidean distance
between contacts (Figure 3) showed that wPLI eséisnavere not driven by local

interactions {xr = 0.01,c r = 0.05, minr = -0.07, maxr = 0.12; across all subjects,

conditions and frequency bands; see also Supplemefitgure SF2).

wake sleep

S1 S2 S3 S1 52 S3

Subject

wPLI vs.
Distance
Pearson r

0.2
0.1

o

Frequency

—-0.1

—-0.2

Figure 3. Connectivity vs. distance correlation matrix. Pearson’s correlation coefficient between

connectivity values and Euclidean distance for eadiject, condition and frequency band.

Results of the network-based analysis are sumnuanzEigure 4. Within the-
range, the high-band was the only one to show differences betweeditions on the
three subjects (Figure 4A). The consistently inseglaconnectivity during wakefulness
that we found in the high-band did not occur in other frequency bands, thus
confirming the specificity of the effect (Figure A&e also Supplementary Figure SF1).

Interestingly, the highe band showed increased connectivity during sleepsacthe

three subjects.
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Figure 4. Network-based analysis. Upper panels. Normalized mean degree (lines) and standard tievia
(shades) as a function of thresholding valuewer panels. Welch t-value as a function of threshold.
Shaded area represepts .05 after correction for multiple comparison®ld@ represents condition with
higher meanWithin-subject panels correspond to frequency band®_I: weighted Phase Lag Index. A)

Results for thg-range. B) Results for the remaining canonical fregyéands.

In order to test if connectivity differences wergsaciated with differences in
power we compared it between conditions for eaeguency band of interest (Figure

5). Power was significantly higher during wakefidsdhan during sleep in the three
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sub-bands of the-range for S1 (lowp, < .001; mediump, <.001; highp, <.001) and
S2 (low: p, < .001; mediump, < .001; high:p, < .001). Interestingly, in S3, it was
higher during sleep in the lowband f, < .001) and the difference was not significant

in the medium and high-bands (mediunp, = 0.360; highp, = 0.058).

wake @ sleep
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10_ T T T T T T T T T
I i S1
;q-‘) l
z 1070} i l ¥
o
¥
0™
0 p,< -001 p,<.001 p,< -001
10° - - - - . . T -
E S2
;q-‘) {
= 10} ! ! {
5 £+
ol
0™ :
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Figure 5. Power analysis. Violin plots of the power estimates for each sobjend frequency band.
Horizontal lines represent extremes and mean ofdteibutions.p,: p-value based on the number of

suprathreshold permutation tests, corrected fotiptellcomparisons using the Holm-Bonferroni method.

The electrode-based analysis showed that the mmitlelhigh-y obtained the
best goodness-of-fit score (QIC, lower values iathicbetter fit) and that its only

significant predictor was high- mean-wPLI (Table 1). In other words, high-

16



connectivity discriminated between states bettantaAny other canonical frequency
band and none of the epileptic activity indexes, their interactions with high; were
statistically significant. Distributions and logcstcurve for the high- predictor are
illustrated in Figure 6. VIFs showed that collingamwas not an issue for the model

(high+y: 1.22, ripples: 1.01, spikes: 1.23).

@ Band QIC

Estimate Std. Err. Wald p

intercept -13.15 3.44  14.59 0.0001%** 1 high-y 92.6
high-y 51.42 14.12 13.20  0.0002%** 2 medium-y 218.4
ripples 14.31 10.55 1.84 o0.7 3 high-« 240.3
spikes -7.24 11.40 0.40 0.52 4 © 248.5
high-vy : ripples -43.52 59.53 0.53 0.46 5 O 260.1
high-vy : spikes 65.95 83.16 0.62 042 6 B 315.2
ripples : spikes -20.19 45.73 0.19  0.65 7  low-ox 344.6
high-y : ripples : spikes -24.97 323.63 0.006 0.93 8 low-y 483.4

Table 1. Generalized Estimating Equations analysis. A) Estimates and significance tests of each
predictor and their interactions for the model witgh-y connectivity. B) Ranking of goodness-of-fit of the
models for each frequency band (lower values indidaetter fit). QIC: quasi-likelihood under the

independence model criterion. *f< .001
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Figure 6. Logistic curve of the high-y predictor of the Generalized Estimating Equations model.
Histograms represent distribution of mean wPLI ealdor each condition. wPLI: weighted Phase Lag

Index.
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The highy band showed the larger and more consistent efierctss subjects
and analyses. Consequently, region-bamistihoc statistical analyses were restricted to
this specific frequency band. Both the spatialrdigtion of mean-wPLI values and the
region-based analyses indicate that connectivityg leaver during sleep in almost all
sampled areas (Figures 7 to 9; see also Supplemdrtgures SF3 and SF4 for the
spatial profile of the lower frequency bands). tagtingly, during wakefulness, subjects
showed different spatial profiles. S1 exhibitedhag values in electrodes located in

frontal areas, S2 in temporal regions, and S3 ptedea more homogeneous pattern.
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inferior frontal gyrus pars opercularis; Supp Motsea: supplementary motor area; Frontal Mid:
middle frontal gyrus; Frontal Sup Medial: superfoontal gyrus medial part; Supra-marginal:
supramarginal gyrus; Rolandic Oper: rolandic opentiiTemporal Mid: middle temporal gyrus;
Frontal Sup: superior frontal gyrus; Temporal Ssyperior temporal gyrus; Temporal Pole Sup:
superior temporal pole; Temporal Inf: inferior temngl gyrus; Fusiform: fusiform gyrus; Parietal
Inf: inferior parietal lobule; Cingulum Mid: middleingulate gyrus; Occipital Mid: middle
occipital gyrus; Calcarine: calcarine sulcus; Odeaipbup: superior occipital gyrus; Parietal Sup:
superior parietal lobule; Para-hippocampal: pafaddpmpal gyrus; Occipital Inf: inferior
occipital gyrus; Angular: angular gyrus; Cingulum sBoposterior cingulate gyrus; wPLlI:

weighted Phase Lag Index; n.s.: non-significamgiatlevel: 0.05); < .01; *p < .001

4. Discussion
Our study was the first to test mediyni60-90 Hz) and high-(> 90 Hz) connectivity
differences between wakefulness and sleep at lmmhl land distant areas. Results
showed that connectivity in the highband (ore-band) was higher in the wake state
and consistently differentiated between conditionsall the analyses performed.
Moreover, our results showed that these connegtulifferences were not driven by
local interactions, nor by differences in epileptih activity between states.
Furthermore, connectivity differences existed ewshen highy power was not
significantly different between conditions (S3).

Contemporary accounts of consciousness, suaftegrdted Information Theory
(IIT; Tononi and Massimini, 2008) and Global NeusblVVorkspace Theory (GNWT,;
Dehaene and Changeux, 2005; Dehaene and Chang&lk), Zonsider information
integration across brain regions as a fundamemtadegs. Our results are, in principle,
in line with both of them as they show that intgromal highy synchrony, one of the
putative mechanisms of brain communication (Buzsahkil Schomburg, 2015), is
higher during wakefulness than during sleep. Howewferent theories ascribe
dissimilar importance to the role of specific braiagions in the emergence of

consciousness. The main anatomical postulates &VGHre that long-distance cortical
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networks are fundamental for conscious processiniy crucial contributions of the
prefrontal, parieto-temporal and cingulate cortifi@shaene and Changeux, 2011). The
importance given to the parietal and prefrontaltices is also congruent with other
theories of consciousness, as Dynamic Core andaCBesisity theories (Bor and Seth,
2012). IIT, on the other hand, does not assignparticular role to the aforementioned
areas. Instead, it defines the physical substfatertsciousness in terms of cause-effect
power (Tononi et al., 2016). Interestingly, ourules indicate the frontal, cingulate and
parietal cortices were among the mostly connectedsa but they also show that in one
subject the temporal cortex was the most connegtbn, even though frontal and
parietal areas were also sampled. Whichever the oasy be, the small number of
subjects in our study, combined with the partiakifmrcoverage of intracranial
recordings, undermines any conclusion regardingrdte of specific regions. Future
studies combining a large number of subjects valrdquired to delve into the matter.

Neural synchrony in the-range, by itself, has been proposed as beingatruci
for consciousness (Cavinato et al., 2015; Engel&inder, 2001; Melloni et al., 2007;
Varela et al., 2001). Our results showed that tigh-h band differentiated between
states better than any other canonical frequenoy bad that it was the only sub-band
of they-range that consistently showed differences inraalllyses across all subjects.
Interestingly, however, some pairs of adjacent ibhin-lobe contacts showed relatively
high connectivity values in theg-range during sleep, suggesting some degree of
preserved local-synchrony.

A growing body of literature indicates that LFP-ree@ed highy activity
constitutes a reliable index of multiunit activitipat is, an index of spiking activity in
the vicinity of the electrode (Crone et al., 20&Hwards et al., 2009; Jenison et al.,
2015; Miller et al., 2014; Ray et al., 2008; Rayl aaunsell, 2011; Steinschneider et
al., 2008; Tang et al., 2017). Consequently, thexifigity of the highy band observed

our study could be attributed to synchrony diffeesnbetween wakefulness and sleep at
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the aforementioned hierarchical level of physiotadi activity. However, a
comprehensive analysis of spiking activity (Rasthlg 2008) is beyond the scope and
methodological capability of our study, and it shkibtherefore be pursued in future
investigations.

Importantly, the difference between wakefulness sleep is not circumscribed
to the conscious global state but also includeterdihces in other domains, such as
attention (Koch et al., 2016). Synchronizationhe {-range has been shown to play a
role in memory (Fell et al., 2001; Sederberg et2007), attention (Fries et al., 2001),
and sensory integration (Ghazanfar et al., 2008gMat al., 2004), among many other
domains (for a review see, Wang, 2010). Therefeven though our results are in line
with the hypothesis of the role gftsynchrony in consciousness, other confounding
factors cannot be ruled out. However, the relaign®etween consciousness and the
mentioned domains is far from being clear (Dehaatrad., 2006; Graziano and Kastner,
2011; Koch and Tsuchiya, 2007). The entanglememiokciousness with other brain
processes is an intrinsic limitation of studiesestgating levels of consciousness.
Converging evidence from multiple experimental desiwill be required to overcome
this limitation and decide on the role that phasationships play in the emergence of
consciousness on the brain.

We also found increased connectivity during sleephie highe band. This
result could have been caused by sleep spindldsl{&aou et al.,, 2016). However,
synchrony and propagation of sleep spindles dieagstiatter of debate (Andrillon et al.,
2011; Frauscher et al.,, 2015; Souza et al., 20Mreover, the role ofa-
synchronization in brain dynamics is also a maitatiscussion, as it has been shown to
be associated with both suppression of communitatmd active information
processing (Palva and Palva, 2007, 2011). An irthdescussion of this finding is
beyond the scope of the present article. Futur@ietuwill be required to replicate this

finding, test its relationship with sleep spindée®l discuss its theoretical significance.
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Brain signals in the higher range of th&and can only be reliably measured in
humans via intracranial recordings; this restrictcan explain the controversies found
using other techniques that lack the spectral sxterof iEEG. For example, increased
EEG y-synchrony during propofol-induced loss of conssimess (Murphy et al., 2011)
could be possibly explained by confounding factofsthe technique, as miniature
saccades (Fries et al., 2008; Yuval-Greenberg et 28l08) and muscle artifacts
(Muthukumaraswamy, 2013; Walder et al., 2002). lirenhore, EEG and MEG signals
are prone to distortions because of the skull atetmediate tissue between sources and
sensors (Buzsaki et al., 2012). In our study, arpstantial influence of these possible
confounds was unlikely because we used a non-zeseplag measure of connectivity,
which is robust against muscular and ocular atsfaand IEEG, which records direct
brain activity.

Previous studies that compared synchrony inythenge between wakefulness
and sleep used “coherence” as the connectivity uneg8ullock et al., 1995; Cantero
et al., 2004). This approach, besides measuringdhsistency of the phase difference
between oscillations from different sources, iss#ere to volume conduction, common
pick-up, and common references (Bastos and Sckaffé015; Cohen, 2014). These
three problems, which are instantaneous within esurrmeasurement capabilities,
produce spurious connectivity at 0 or 180° phasterdnces. Even though volume
conduction is less problematic in iEEG than in gcBEG, it cannot be considered
irrelevant (Herreras, 2016). Besides, when meaguiiG y-connectivity, an often-
neglected artifactual source of synchrony is volkaoeducted head and neck muscular
activity, which also produces spurious connectivdyy 0 or 180° (Buzsaki and
Schomburg, 2015; Kovach et al., 2011). Therefoomnectivity measures that do not
take into account 0 and 180° phase differencesigeawore reliable estimates. In our
case we used the wPLI (Vinck et al., 2011), whighveighted by the distance from O

and 180° and therefore overcomes the limitationgre¥ious studies (see Equation 2).
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Bullock et al. (1995) found no differences betweeskefulness and sleep, but their
analysis was restricted to adjacent electrodes faodsed on the fluctuation of
coherence values. They also found that results wesstively correlated between
frequency bands. Our results showed that the highd highe bands differentiated
between conditions and that highwas higher during wakefulness whilst highwas
higher during sleep. Cantero et al. (2004) showadl within- and between-regiong
coherence (35-58 Hz) was higher during wakefuln€ss. results showed that in two
out of three subjects the lowband (30-60 Hz) differentiated between conditicary]
the highy band (90-120 Hz) in all subjects. In addition, eesults exhibited that high
connectivity values were present both within antiveen regions. Consequently, our
results are in line with the findings of Canteroaét (2004) and contrast with those
obtained by Bullock et al. (1995).

Power in the ranges of 50-90 and 90-150 Hz aregitoto be generated by
different physiological mechanisms (Belluscio et aD12; Buzsaki and Wang, 2012).
Our results showed that connectivity differenceswbken conditions were not
homogeneous within sub-bands of theange. Consequently, future studies should
consider discriminating this frequency bands ing&arch for neural correlates of global
conscious states.

In sum, our results constitute the first demomnistnaof highy connectivity
differences between wakefulness and sleep at locti hnd distant sites. They are in
line with the most influential contemporary thearigf consciousness, as they showed
that interregional communication is higher duringkeful consciousness than during
sleep, and that this effect was restricted to yrange. Finally, they also provide

insights about the cerebral dynamics of the sleakevcycle.

5. Limitations and further research
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Our study i1s not without limitations. First, we d¢dunot score sleep stages as the
experiment’'s clinical set-up precluded hypnogramcordings. However, we
discriminated between wakefulness and sleep ubegdbust DA measure, which has
been validated against other conventional scorimghods and successfully used in
previous IEEG research (Magnin et al., 2010). Fastudies could use simultaneous
IEEG-EEG-EOG-EMG to establish more precise distims of sleep stages and
investigate connectivity differences among thenco®d, use of the IEEG technique
offered only limited spatial coverage of the pap@mts’ brains. However, results
proved consistent across subjects even thoughpteakdistribution of the electrodes
varied among them. Collaborative efforts from npléilaboratories will be required to
gather enough information in order to achieve atnetly large between-subject spatial
coverage. Finally, present results include a cawesthey are derived from epileptic
patients and may not accurately represent a healbpylation. To account for it we
controlled for relevant factors. Intracranial retiags typically include both
pathological and non-pathological brain regionsg@ret al., 2005). We addressed this
issue by: (i) excluding channels in epileptic foegions, (ii) using stringent inclusion
criteria for the remaining channels (see Matergalglethods), (iii) carefully inspecting
MRI scans to rule out structural abnormalities, &mjl testing the difference between
conditions including subtler epileptic activity, lrycorporating automatically detected
ripples and spikes in the analyses (GEE modelds #gain a trade-off of the IEEG
techniqgue which counterweights its limitations by\pding the best spatiotemporal
resolution currently available in humans. For acdésion of the last two mentioned

limitations see (Lachaux et al., 2003).

6. Conclusion
The role ofy-synchrony in consciousness and cognition conestat matter or ardent

debate. Our study showed, for the first time, thakefulness and sleep are selectively
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differentiated by highr connectivity at both short and long distancess s achieved
via a state-of-the-art connectivity measure thaercomes limitations of previous
works. Previous studies lacking the spectral régoiuof IEEG should be interpreted
cautiously in their claims about the roleye$ynchrony in consciousness. Our study also
showed that results were not homogeneous acrosvasds of they-range and
therefore, in line with physiologically groundecdcoenmendations (Buzsaki and Wang,
2012), future investigations should consider sdpagathem. Our findings provide
evidence in line with contemporary theories of @dmssness and also contribute to

understanding the cerebral dynamics of the sledewgcle.
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Figure Legends

Figure 1. Validation of the behavioral distinction between wakefulness and deep data. A)

Low-pass filtered (dark lines) Dimension of Actiiat (DA) scores averaged across channels
(light lines) were consistently above the cut-afbi® of 5 on wake condition and consistently
below it on sleep condition. B) Histogram of the fmarametric permutation test t-values and t-
value of the original comparison (dotted vertigak). No permuted comparison yielded a statistic

above the obtained in the original comparison. G}ribiution of DA values for each condition.

Figure 2. Connectivity analysis results for each subject, condition and frequency band. A)
Violin plot of wPLI distributions. Vertical dottetines indicate extremes and median. Vertical
axes correspond to frequency bands and horizored ® wPLI values. B)eft: channel-by-
channel matrix representation of wPLI values. \éaftiand horizontal axes represent electrodes,
ordered and color-coded by lobe. Colormap indicatBP&l values. Within-subject top panels
indicate wake condition and bottom panels indici¢ep conditionRight: Electrode location by

subject, color-coded by lobe. wPLI: weighted PHzesg Index.

Figure 3. Connectivity vs. distance correlation matrix. Pearson’s correlation coefficient between

connectivity values and Euclidean distance for eadifject, condition and frequency band.

Figure 4. Network-based analysis. Upper panels. Normalized mean degree (lines) and standard tievia
(shades) as a function of thresholding valuewer panels. Welch t-value as a function of threshold.
Shaded area represepts .05 after correction for multiple comparison®ld@ represents condition with
higher meanWithin-subject panels correspond to frequency band® |: weighted Phase Lag Index. A)

Results for thg-range. B) Results for the remaining canonical fregyéands.

Figure 5. Power analysis. Violin plots of the power estimates for each sobjend frequency band.
Horizontal lines represent extremes and mean ofdteibutions.p,: p-value based on the number of

suprathreshold permutation tests, corrected fotiptellcomparisons using the Holm-Bonferroni method.

Table 1. Generalized Estimating Equations analysis. A) Estimates and significance tests of each

predictor and their interactions for the model witgh-y connectivity. B) Ranking of goodness-of-fit of the
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models for each frequency band (lower values indidaetter fit). QIC: quasi-likelihood under the

independence model criterion. *pF< .001

Figure 6. Logistic curve of the high-y predictor of the Generalized Estimating Equations model.
Histograms represent distribution of mean wPLI ealdor each condition. wPLI: weighted Phase Lag

Index.

Figure 7. Electrode location and mean high-y wPLI for each subject. Within-subjecttop and

bottom panels correspond to wake and sleep conditiopectisely. Color represents mean wPLI

values and symbols denote subjects. wPLI: weigRtease Lag Index.

Figure 8. Combined electrode location and mean high-y wPLI. Top and bottom panels

correspond to wake and sleep conditions respegti@dlor represents mean wPLI values and

symbols denote subjects. wPLI: weighted Phase hdgx.

Figure 9. High-y wPLI by anatomical region for each subject. Circles represent mean-wPLI

value and lines represent Inter Quartile Range (I@Rgas are shown in descending order of
mean wPLI in thewake condition. Squares’ colours represent correspandirain lobes of
anatomical regions. Asterisks denote statistigatificance (corrected for multiple comparisons).
Region names follow the Automated Anatomical Lakgliraming-convention. Frontal Inf Tri:
inferior frontal gyrus pars triangularis; CingulunmtAanterior cingulate gyrus; Frontal Inf Oper:
inferior frontal gyrus pars opercularis; Supp Motsea: supplementary motor area; Frontal Mid:
middle frontal gyrus; Frontal Sup Medial: superfoontal gyrus medial part; Supra-marginal:
supramarginal gyrus; Rolandic Oper: rolandic opentiiTemporal Mid: middle temporal gyrus;
Frontal Sup: superior frontal gyrus; Temporal Ssyperior temporal gyrus; Temporal Pole Sup:
superior temporal pole; Temporal Inf: inferior teon@l gyrus; Fusiform: fusiform gyrus; Parietal
Inf: inferior parietal lobule; Cingulum Mid: middleingulate gyrus; Occipital Mid: middle
occipital gyrus; Calcarine: calcarine sulcus; OdalpSup: superior occipital gyrus; Parietal Sup:
superior parietal lobule; Para-hippocampal: panaddampal gyrus; Occipital Inf: inferior
occipital gyrus; Angular: angular gyrus; Cingulum sBoposterior cingulate gyrus; wPLlI:

weighted Phase Lag Index; n.s.: non-significarghatlevel: 0.05); p < .01; *p <.001
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