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Abstract

The dynamics of the brain’s intrinsic networks have been recently studied using co-activation 

pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based 

measurements provide quantitative information of network temporal dynamics. One limitation of 

existing CAP-related methods is that the computed CAPs share considerable spatial overlap that 

may or may not be functionally distinct relative to specific network dynamics. To more accurately 

describe network dynamics with spatially distinct CAPs, and to compare network dynamics 

between different populations, a novel data-driven CAP group analysis method is proposed in this 

study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from 

multiple clustering runs for each group with the constraint of low spatial similarities among d-

CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall 

network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each 

d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for 

each group and used to compare network dynamics between groups.

The spatial dissimilarities among d-CAPs computed with the proposed method were first 

demonstrated using simulated data. High consistency between simulated ground-truth and 

computed d-CAPs was achieved, and detailed comparisons between the proposed method and 

existing CAP-based methods were conducted using simulated data. In an effort to physiologically 

validate the proposed technique and investigate network dynamics in a relevant brain network 

disorder, the proposed method was then applied to data from the Parkinson’s Progression Markers 

Initiative (PPMI) database to compare the network dynamics in Parkinson’s disease (PD) and 

normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, 
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and reduced switching probabilities among final d-CAPs were found in most networks in the PD 

group, as compared to the NC group. Furthermore, an overall negative association between 

switching probability among d-CAPs and disease severity was observed in most networks in the 

PD group as well. These results expand upon previous findings from in vivo electrophysiological 

recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network 

dynamics can be measured using resting-state fMRI data from subjects with early stage PD.

Keywords

co-activation pattern analysis; resting-state network temporal dynamics; d-CAP; switching 
probability; Parkinson’s disease

1. Introduction

In the past two decades, brain functional connectivity has been widely studied using resting-

state functional magnetic resonance imaging (fMRI). Functional connectivity is most 

commonly assessed using the Pearson correlation coefficient between fMRI signals from 

different regions in the brain (Biswal et al., 1995). Several functional connectivity studies 

have identified sets of spatial patterns that consist of temporally correlated brain regions 

(Biswal et al., 1995; De Luca et al., 2005; Greicius et al., 2003). These spatial patterns are 

called resting-state networks. Among the most commonly studied resting-state networks are 

the default mode network, sensorimotor network, visual network, auditory network and 

executive control network (Beckmann et al., 2005; Damoiseaux et al., 2006; Smith et al., 

2009). Investigating resting-state networks has provided fundamental insight into basic 

neural function (Fox et al., 2005; Smith et al., 2009). Recent studies have shown, however, 

that the spatial patterns of resting-state networks may change periodically during the epoch 

of an fMRI scan (Preti et al., 2017). Dynamic functional connectivity analysis has been 

proposed to identify and investigate these changes in functional connectivity over time 

(Allen et al., 2014; Hutchison et al., 2013; Preti et al., 2017). Importantly, altered dynamic 

functional connectivity has recently been reported in neurological disorders such as 

schizophrenia (Damaraju et al., 2014; Yu et al., 2015), major depression disorder 

(Holtzheimer and Mayberg, 2011), autism (Price et al., 2014) and Alzheimer’s disease 

(Jones et al., 2012), suggesting that such network changes have pathophysiologic relevance 

across brain diseases. Investigating dynamic functional connectivity in diseased populations 

can thus provide vital insight related to poorly understood dynamic brain function in these 

conditions, and lead to better understanding of disease phenotype, response to therapy, and 

progression.

Many methods have been proposed for dynamic functional connectivity analysis, such as the 

sliding-window method (Chang and Glover, 2010), temporal independent component 

analysis (ICA) (Smith et al., 2012), quasi-periodic pattern method (Majeed et al., 2011; 

Thompson et al., 2014), and co-activation pattern analysis (Liu and Duyn, 2013). The 

sliding-window method captures the dynamics of functional connectivity by gathering 

pairwise linear correlations among brain regions in subsequent temporal windows (Jones et 

al., 2012; Kucyi and Davis, 2014). Due to its relative simplicity, the sliding-window method 
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is the most widely applied technique in dynamic functional connectivity analysis. One 

technical challenge of this method, however, is the choice of the window size. Ideally, the 

window size should be small enough to capture any transients but also large enough to 

produce stable and statistically powerful results (Hutchison et al., 2013). Temporal ICA 

decomposes the entire fMRI time series into temporally independent components. Each 

component is then defined as a distinct temporal functional mode and used to represent the 

temporal dynamics of functional connectivity (Calhoun et al., 2001; Smith et al., 2012). 

Temporal ICA is, however, limited by the lack of sample points in conventional resting-state 

fMRI setting, where approximately 200 time points are typically collected in a 6–10 minute 

acquisition. The Quasi-periodic pattern method identifies a repeated spatiotemporal template 

within an fMRI scan (Majeed et al., 2011; Thompson et al., 2014). This template is a set of 

consecutive brain volumes represented throughout the entire scan. Dynamic functional 

connectivity is then represented by spatiotemporal patterns within this template. This 

method requires that the spatiotemporal pattern occurs several times during the course of 

data acquisition, implying that the quasi-periodic pattern method will only capture 

reproducible dynamic functional connectivity but will miss isolated (yet still potentially 

important) patterns of dynamic connectivity.

More recently, co-activation pattern (CAP) analysis has been proposed by Liu and Duyn 

(2013) to track variations of functional connectivity within each individual time frame. 

Instead of capturing dynamics of whole-brain functional connectivity, the CAP analysis 

focuses on the temporal dynamics of a specific resting-state network. The basis of CAP 

analysis is that relevant information of a given resting-state network is expressed by discrete 

time points where the fMRI signal is large (Chialvo, 2012; Tagliazucchi et al., 2011). Thus 

in CAP analysis, whole brain fMRI volumes at time points with large fMRI signals are 

temporally clustered using k-means into a predefined number of CAPs to reflect the 

dynamic behavior of a particular resting-state network.

One advantage of this method is that CAP analysis focuses on individual time frames and 

therefore does not require a large number of input time points as compared to the analysis 

methods mentioned above. Furthermore, the CAP method captures a more direct 

relationship between voxels as compared to the correlation-based sliding window method 

(Liu and Duyn, 2013). Importantly, the CAP analysis can be extended to whole brain 

analysis with the entire fMRI volume being input into temporal clustering (Liu et al., 2013). 

In addition to analysis of basic network dynamics in healthy controls, CAP analysis has also 

been used to investigate resting-state network dynamics related to cognition. Amico et al. 

(2014) found different CAPs associated with the default mode network across varying states 

of consciousness in healthy controls. Of particular importance, the CAP method can also be 

used to quantify brain dynamics relative to a behavior of interest. For example, 

measurements such as percentage of temporal occurrence of each CAP and the frequency of 

switches between all CAPs during an entire scan have been calculated in Chen et al. (2015). 

They reported a skewed distribution of CAP temporal occurrence and a higher switching 

frequency among different CAPs as evidence of reduced dynamics of the default mode 

network during task performance when compared to rest.
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Despite these analytic advantages for the investigation of network dynamics, there is an 

important technical limitation of this method related to the dependence of CAP number on 

the choice of predefined numbers of clusters. Since any predefined number of CAPs can be 

computed using k-means, the functional distinction of each individual CAP cannot be 

guaranteed and some of the CAPs may share considerable spatial overlap. Furthermore, 

there is no current group analysis method to compare CAPs and study differences or 

similarities in brain dynamics between different populations.

In this study, we propose a novel CAP group analysis method that determines functionally 

distinct CAPs without a predefined temporal clustering number. In our proposed method, the 

final CAP set is synthesized across k-means results with multiple clustering numbers and 

with the important constraint of low spatial similarity between each final CAP. Furthermore, 

the proposed method also includes novel quantitative comparisons of network dynamics 

between different populations. In particular, subject-specific switching probability among 

the final CAPs is defined for this comparison. Using simulated data, we demonstrate that the 

proposed method accurately identifies functionally distinct CAPs for different groups.

A potential application of the proposed CAP group analysis is to enable development of 

imaging biomarkers that can characterize the temporal dynamics of resting-state brain 

networks in diseased populations. Parkinson’s disease (PD) is a common neurodegenerative 

disorder with motor dysfunction as a major symptom, and with known brain network 

dysfunction associated with the disorder, including neurophysiological changes within the 

basal ganglia-thalamo-cortical circuits (Alexander, 1986; Brown et al., 2001; Holtbernd and 

Eidelberg, 2012; Litvak et al., 2011). Functional MRI techniques have provided further 

insights into corresponding functional connectivity changes in the PD population. Altered 

functional connectivity has been reported between the basal ganglia (mostly striatum) and 

the thalamus, midbrain, pons, cerebellum, mesolimbic pathway and the motor cortex using 

resting-state fMRI in different stages of PD (Baudrexel et al., 2011; Brittain et al., 2014; 

Esposito et al., 2013; Hacker et al., 2012; Helmich et al., 2012; Kwak et al., 2010; Luo et al., 

2014; Palmer et al., 2010; Prodoehl et al., 2014; Sharman et al., 2013; Tessitore et al., 2012; 

Wu et al., 2012; Yu et al., 2015). Most recently, altered whole-brain dynamic functional 

connectivity has been reported in PD using the sliding-window method (Díez-Cirarda et al., 

2017; Kim et al., 2017). Despite electrophysiologic data suggesting altered network 

dynamics associated with PD, however, network-focused temporal dynamic changes 

utilizing fMRI, have not yet been explored. In this study we explored the dynamics of 

resting-state networks in PD patients with the proposed CAP group analysis method. 

Previous intraoperative electrophysiological data have shown that the occurrence of motor 

symptoms in PD is associated with abnormally increased functional connectivity between 

the sub-thalamic and cortical regions, primarily in the α and β frequency bands (8–20 Hz) 

(Brittain et al., 2014; Brown, 2007; Chen et al., 2007; Eusebio et al., 2011; Oswal et al., 

2013; Stein and Bar-Gad, 2013; Weiss et al., 2015). This altered synchronization within and 

between brain regions directly correlates with how long the nuclei from two regions (e.g. 

subthalamic nucleus and globus pallidus) remain functionally coupled (Cagnan et al., 2015; 

de Hemptinne et al., 2015; Escobar et al., 2017; Yanagisawa et al., 2012). Thus, due at least 

in part to the pathologically prolonged period of such aberrant synchronization, the overall 

dynamic range of network circuits appears to be limited in PD and importantly this 
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correlates with the degree of motor dysfunction observed in PD patients (Beck et al., 2016; 

Cagnan et al., 2015). Thus, we hypothesized that there would be reduced dynamics in sub-

cortical and motor related resting-state networks in PD subjects compared to healthy 

subjects. We hypothesized that such reduced dynamics in PD subjects could be quantified by 

the novel proposed CAP-based measurements. Specifically, we hypothesized that the 

subject-specific CAP switching probability would be associated with motor symptom 

severity in each PD subject and therefore serve as a possible imaging biomarker to 

characterize pathologic temporal dynamics of resting-state networks in PD.

2. Methods

2.1 Group CAP analysis routine

2.1.1 Overview of previously published CAP methods—In the original CAP 

analysis proposed by Liu and Duyn (2013), a seed region is first selected and the fMRI 

signal is averaged within this region of interest (ROI). Subsequently, only time points with 

seed signal intensities larger than a chosen threshold are retained. Whole brain fMRI 

volumes at these specific time-points are then temporally clustered with a predefined cluster 

number k using k-means. CAPs are defined as the temporal-average spatial map of each 

cluster (Liu and Duyn, 2013). The occurrence percentage of each cluster is defined as the 

temporal fraction of the corresponding CAP. Spatial correlation is then computed between 

the average spatial map of each cluster (CAP) and the spatial map corresponding to each 

fMRI time frame that is a member of the cluster. Spatial consistency of each CAP is then 

defined as the average spatial correlation within the cluster (Liu et al., 2013; Liu and Duyn, 

2013).

Chen et al. (2015) introduce the concept of an ‘overall dominant-CAP set’, which is a set of 

CAPs synthesized across results from k-means runs with multiple predefined cluster 

numbers k. An overall dominant CAP set represents key dynamic structures inherent in the 

network pattern and is computed in two steps. First, for each k of the k-means run, a 

dominant CAP (d-CAP) set is determined to select CAPs that make large contributions (as 

measured by the spatial similarities of selected CAPs and the overall time frame average) to 

the network pattern. The overall d-CAP set is then computed to be the most reproducible 

patterns among d-CAP sets from different cluster runs with different ks. Both the number of 

overall d-CAPs and the spatial correlation among each overall d-CAP are calculated to 

measure brain network dynamics (Chen et al., 2015). Furthermore, Chen et al. (2015) also 

calculate the switching frequency of CAPs. Since this measurement depends on the number 

of CAPs, an estimated cluster number is required. Chen et al. (2015) select the most 

representative cluster number k = 2 based on the silhouette score criteria. Temporal fraction 

and switching frequency of two CAPs are then calculated to specify brain network 

dynamics.

Our proposed novel CAP group analysis method is shown in Fig. 1. In short, the proposed 

method determines a dominant CAP (d-CAP) set for each subject group and computes four 

d-CAP related measurements to quantitatively compare network-related dynamics between 

groups. Specifically, the proposed method synthesizes CAPs across different clustering runs 

with the constraint of spatial dissimilarity among final d-CAPs incorporated, such that d-
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CAP-based measurements more accurately represent network dynamics. Furthermore, the 

proposed method emphasizes the correspondence of the first few d-CAPs in the compared 

groups, therefore a more direct network comparison between different groups can be made. 

In the following sections, we explain each step of the proposed group CAP analysis routine 

in detail.

2.1.2 Determine dominant-CAP set for each group

Determine fMRI signals at network-associated time points: Conventional CAP analysis 

uses a single seed ROI to determine fMRI volumes that are associated with a specific 

resting-state network. Since multiple brain regions are involved in a given network, fMRI 

time frames associated with a particular network can be different based on different selected 

seed regions. To avoid this confound and obtain an overall network time signature, multiple 

seed ROIs are selected for a given resting-state network in the proposed method. 

Furthermore, seed ROIs are selected for each group separately to preserve group-related 

network changes. fMRI signals from multiple seed locations are then averaged to create one 

time course for each subject. Time points where averaged seed signal intensities pass a 

chosen threshold (such as top 20%) are defined as network-associated time points. Whole 

brain fMRI signals at network-associated time points are then determined from each subject 

in both groups and concatenated in time.

Determine CAP set: Temporal clustering is performed on concatenated time frames from 
both groups to guarantee the correspondence of CAPs from two groups. Time frames are 

clustered based on their spatial similarities, and clustering is done using k-means with 

multiple cluster numbers k (k = 1,2,3, …). Note that when k = 1, all network-associated time 

frames are clustered into one group. For each cluster number k, a group-specific CAP set is 

determined. Specifically, group-specific CAP sets S1
ki and S2

ki (the superscript ki denotes the 

ith cluster of a total of k clusters, i = 1,2, …, k, and the subscripts 1 or 2 represent group 

assignment) are computed by averaging spatial maps corresponding to time frames assigned 

to the cluster from group 1 and group 2, respectively.

Determine dominant-CAP set of each group: In the proposed method, we compute one d-

CAP set for each group individually with every CAP from different k-means runs as equal 

candidates to avoid undue influence from any single k-means run on CAP determination. 

The final d-CAP set synthesizes the clustering results from multiple k-means runs and 

captures dynamic structures inherent in the network-associated time frames. In the following 

we explain how the d-CAP set is determined for group 1 and the same process is repeated 

for group 2.

First, for each cluster run k, the CAPs ( S1
ki, i = 1,2, …, k) are re-ranked based on their 

temporal occurrences in descending order. The re-ordered CAPs from all cluster runs (k = 

1,2,3,…) are combined to form the d-CAP candidate set, which is 

d‐CAPcandidate = S1
11, S1

21, S1
22, S1

31, …, S1
ki i = 1, 2, …, k; k = 1, 2, 3… . Since the average spatial 
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pattern of all network-associated time frames ( S1
11) reproduces the spatial profile of the 

corresponding resting-state network (Chialvo, 2012; Liu and Duyn, 2013), S1
11 carries the 

major network spatial information and is initialized as the first element of the d-CAP set (d-

CAP1) for the group. Next, for every d-CAP candidate corresponding to the k-means run 

with k = 2 (S1
2i, i = 1, 2), we calculate the spatial similarity rjki (i = 1,2; k = 2; j = 1, which is 

the number of current d-CAPs) between S1
2i (i = 1, 2) and d-CAP1:

r jki
= corr (d‐CAP j, S1

2i), where i = 1, 2; k = 2; and j = 1.

A threshold threjki is also calculated for each d- CAP1 and S1
2i (i = 1, 2) pair. Let us first 

consider i = 1. The null hypothesis is that S1
21 is spatially similar to the d-CAP1 and can be 

represented by the d-CAP1. To reject the null hypothesis, we generate the null distribution of 

r121 non-parametrically by permutation. We first convert the spatial map S1
21 into a vector 

S1vec

21 . Next, the vector S1vec

21  is randomly permuted and converted back to a spatial map S
∼

1
21. 

The spatial map S
∼

1
21 is then smoothed using an 8mm 3D Gaussian filter (the same 

smoothness as in S1
21). Finally, we calculate the correlation between d-CAP1 and smoothed 

S
∼

1
21. This permutation process is repeated multiple times to create a stable null distribution 

of r121. Thre121 is then set to 5th percentile of the left tail of the null distribution (equivalent 

to 95th percentile of the right tail of the null distribution of one minus correlation value). If 

r121 < thre121, and both r121 and the absolute difference between r121 and thre121 are greater 

than 0.001, S1
21 is added to the d-CAP set and the updated d-CAP set now has two elements 

d‐CAP1 = S1
11 and d‐CAP2 = S1

21. The latter criterion is included to avoid candidates with 

noisy spatial patterns being added to the d-CAP set. Subsequently, for the next d-CAP 

candidate S1
22 we calculate spatial similarities (rj22; j = 1, 2) between S1

22 and all elements of 

the d-CAP set (d-CAP1 and d-CAP2). As detailed earlier, a set of thresholds threj22 (j = 1, 2) 

is also calculated. Importantly, only when rj22is less than threj22 for both j = 1,2 is S1
22

included in the d-CAP set. In this way, spatial dissimilarities among final d-CAPs are 

maintained. The above steps are repeated for all remaining d-CAP candidates S1
ki (i = 1,2, …, 

k and k = 3, 4, ….) and a final d-CAP set is then determined for group 1. The same process 

is repeated for group 2. Figure 2 illustrates the process to compute the d-CAP set.
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2.1.3 Measurements of CAP-based network dynamics—After the final d-CAP set 

is determined for each group, fMRI signals at network-associated time points are then 

assigned to different clusters based on their spatial similarities to final d-CAPs. Spatial 

correlations between each network-associated time frame and every d-CAP are calculated 

and used to specify the spatial similarity. Measurements of network dynamics are then 

calculated based on the new cluster assignment.

Number of d-CAPs: Since the entire process of computing the d-CAP set of each group is 

data-driven, the number of d-CAPs automatically represents network-associated dynamics in 

each group. Thus, fewer d-CAPs indicate a less dynamic network.

Temporal fraction: The temporal fraction (TF) is used to quantify how long a given 

network stays in one d-CAP during an entire scan, and is defined for each d-CAP as 

following: (similar to Liu and Duyn (2013)):

TF j = number of time frames assigned to dCAP j

number of network associated time frames , j = 1, 2, …, number of d‐CAPs.

Thus, a skewed distribution of temporal occurrences indicates that one group spends more 

time in one or more d-CAPs and demonstrates decreased network dynamics.

Spatial consistency: For each d-CAP cluster, the correlation between an individual 

network-associated time frame and the corresponding d-CAP map is also calculated and 

averaged to determine the spatial consistency. A more stable spatial consistency together 

with a higher temporal fraction represents a less dynamic resting-state network.

Switching probability: For each subject, we calculate the switching probability of d-CAPs 

associated with every resting-state network as a subject-specific measurement for network- 

associated dynamics. Network-associated time frames are reassigned to each d-CAP as 

mentioned above. For every subject, if two consecutively selected time frames belong to two 

different d-CAPs, a d-CAP switch is said to have occurred. The switching probability (SP) is 

then defined for that subject by

SPs = Number of dCAP switches
Number of network associated time frames for subject s , s = 1, 2, …, number of subjects.

A two sample t-test is then performed to test whether the switching probability is 

significantly different between two groups. A reduced switching probability reflects a less 

dynamic network.

2.2 Simulation

The simulation aimed both at examining whether the proposed CAP group analysis method 

could correctly determine the d-CAP set in different populations and at elucidating 

differences between the proposed method and traditional CAP analysis methods (Chen et al., 
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2015; Liu and Duyn, 2013). To this end, two simulations were created from real fMRI time 

series (fMRI data acquisition detailed in section 2.3.1).

2.2.1 Simulation with two d-CAPs—In the first simulation, two groups of synthetic data 

were created from real fMRI time series. In each group, two spatially distinct d-CAPs were 

simulated to represent network temporal dynamics. Furthermore, the 1st d-CAP (d-CAP1) 

was simulated to share common spatial patterns between two groups and the 2nd d-CAP (d-

CAP2) was simulated to contain different spatial patterns between two groups.

Simulate spatial patterns of d-CAPs: Spatial patterns of simulated d-CAPs were from real 

fMRI data. Time frames associated with the sensori-motor network in both groups were first 

selected and clustered into two clusters using k-means and CAPs were determined for each 

group (i.e. S1
21, S1

22 for group 1 and S2
21, S2

22 for group 2). Next, we calculated between-group 

spatial correlations for every axial slice in d-CAP1 and d-CAP2, and within-group spatial 

correlations for every axial slice between d-CAP1 and d-CAP2. The first slice which showed 

a high between-group spatial similarity (correlation value greater than 0.6) in d-CAP1, a 

distinct spatial pattern (correlation value less than 0.4) in d-CAP2 between two groups, and 

distinct spatial patterns between d-CAP1 and d-CAP2 in each group was identified as the 

ground-truth slice (slicet). Spatial patterns of the ground-truth slice were then used as spatial 

patterns of d-CAP1 (slicet of S1
21 and S2

21) and d-CAP2 (slicet of S1
22 and S2

22) in the 

simulation (Fig. 3-1(A)). In this case, the spatial correlations between two groups were 0.95 

and 0.14 for simulated d-CAP1 and d-CAP2, respectively. The spatial correlation between d-

CAP1 and d-CAP2 was −0.57 for group 1 and −0.37 for group 2.

Simulate fMRI time series: Next, we generated fMRI time series associated with simulated 

d-CAPs for both groups. First, real fMRI time series of voxels within the ground-truth slice 

in group 1 were selected. Spatial correlations (r) between fMRI signals at every time point 

and the simulated d-CAP pair were calculated. fMRI time points at which the spatial pattern 

was highly correlated to either of the simulated d-CAPs (r ≥ 0.6) were kept. In this way, we 

kept 414 time points with spatial patterns similar to the d-CAPs in group 1. These time 

points were further assigned to d-CAP1 or d-CAP2 clusters based on their spatial similarities 

with a particular d-CAP. Based on these criteria, 281 and 133 time points were assigned to 

d-CAP1 and d-CAP2 in group 1, respectively. Within each d-CAP cluster, the spatial 

covariance structure of the d-CAP was also calculated. The same procedure was repeated for 

group 2 with a total of 438 time points. Among these time points, 310 were assigned to d-

CAP1 and 128 were assigned to d-CAP2.

The same number of time points associated with real-case d-CAP1 was then simulated in 

each group. For group 1, we created 281 time points associated with d-CAP1 and 133 time 

points associated with d-CAP2. Noiseless spatial patterns of time points associated with d-

CAP1 and d-CAP2 were generated by assigning spatial patterns of simulated d-CAP1 and d-

CAP2 to the corresponding time points, respectively. Similarly, spatial patterns of d-CAP1 

and d-CAP2 were assigned to the 310 and 128 time points associated with simulated d-CAP1 

and d-CAP2 in group 2. Gaussian distributed noise with zero means and the same covariance 
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structure as in each real d-CAP cluster were then added to noiseless fMRI signals at 

corresponding time points in both groups. Finally, we generated fMRI signals that were 

associated with simulated d-CAPs and which contained the same noise structure as in real 

fMRI data.

2.2.2 Simulation with three d-CAPs—In this simulation, three d-CAPs were generated 

for each group to represent more complex network-dynamics. Specifically, in both groups, 

the 1st and 3rd d-CAPs (d-CAP1 and d-CAP3) were simulated to share spatial overlaps in 

group 1 and the 2nd d-CAP was simulated to be spatially distinct from d-CAP1 and d-CAP3 

in both groups. More importantly, all three d-CAPs were simulated to have correspondences 

between two groups to better represent experimental observations.

Simulate d-CAPs: Spatial patterns of simulated d-CAPs were generated in the same way as 

in section 2.2.1. Time frames associated with the sensorimotor network in both groups were 

selected and clustered into three clusters using k-means. Spatial maps of CAPs were 

determined for each group separately. Next, we calculated the within-group spatial 

correlations of every axial slice between each d-CAP pair in group 1 and 2, respectively. The 

first slice which showed a spatial overlap between d-CAP1 and d-CAP3 in group 1 and a 

distinct spatial pattern of d-CAP2 in both groups was identified as the ground-truth slice 

(slicet). Spatial patterns of the ground-truth slice were then used as spatial patterns of d-

CAP1 (slicet of S1
31 and S2

31), d-CAP2 (slicet of S1
32 and S2

32), and d-CAP3 (slicet of S1
33 and 

S2
33) in this simulation (Fig. 4-1(A)). In this case, the spatial correlations between d-CAP1 

and d-CAP3 were 0.25 and 0.13 for group 1 and group 2, respectively. The spatial 

correlation between d-CAP1 and d-CAP2 was −0.06 for group 1 and −0.02 for group 2, 

respectively.

Simulated fMRI time series: Real fMRI time series of voxels within the ground-truth slice 

were selected, and only time points at which the spatial pattern was similar to one of the 

simulated d-CAPs were kept. In this way, we kept 471 time points with spatial patterns 

similar to d-CAPs in group 1. These time points were further assigned to each d-CAP cluster 

based on their spatial similarities with the particular d-CAP. Based on these criteria, 177, 

148 and 146 time points were assigned to d-CAP1, d-CAP2 and d-CAP3 in group 1, 

respectively. Within each d-CAP cluster, the spatial covariance structure of the d-CAP was 

then calculated. The same procedure was repeated for group 2. A total of 445 time points 

were retained and among these time points, 192, 135 and 118 were assigned to d-CAP1, d-

CAP2 and d-CAP3 separately. The simulated time series is then generated the same way as 

described in section 2.2.1.

2.2.3 Analysis of simulated data—Simulated fMRI data generated in section 2.2.1 and 

2.2.2 were considered as network-associated time frames and input into both the original 

CAP analysis (Chen et al., 2015; Liu and Duyn, 2013) and the proposed CAP group 

analysis.

Zhuang et al. Page 10

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Original CAP analysis: CAPs with selected k: CAPs were computed by following Liu and 

Duyn (2013). Specifically, the temporal clustering was performed using k-means. Distance 

measurement in k-means was 1 – cc, where is the spatial correlation coefficient. The number 

of clusters (k) was determined by the silhouette score, which is a measurement of how well a 

member fits in a cluster (Chen et al., 2015; Rousseeuw, 1987). The CAPs with selected were 

then compared with the simulated ground truth.

Original CAP analysis: Overall dominant CAP set: The overall dominant CAP set for 

each group was computed as described in Chen et al. (2015). Briefly, temporal clustering 

was performed using k-means with cluster number k = 2,3, …,16 on concatenated time 

series from both groups. For each k-means run, CAPs were computed for each group 

separately and selected CAPs that made large contributions to the network pattern were 

determined to be the dominant CAP set for that k. The overall dominant CAP set was then 

selected as the most reproducible patterns among dominant CAP sets from different cluster 

runs with different ks and compared with the simulated ground truth.

The proposed CAP group analysis: Temporal clustering was performed using k-means 
with cluster number k = 2,3, …,20 on concatenated time series from both groups. For each 

cluster run, k-means was repeated multiple times to account for the instability of a single 

trial run. d-CAP sets for each group were then synthesized across results from multiple 

cluster runs. The number of d-CAPs was determined for each group and compared with the 

ground truth. The spatial correlation between each d-CAP and ground-truth d-CAP map pair 

was also calculated and used to evaluate the performance of the proposed method.

2.3 Exploring resting-state network dynamics in Parkinson’s disease with the group CAP 
analysis method

2.3.1 Subjects and Experiments

Subjects: The data used in this study were obtained from the publicly available anonymized 

Parkinson’s Progression Markers Initiative (PPMI) database [Marek et al., 2011]. For up-to-

date information, please visit http://www.ppmi-info.org. The PPMI is a landmark, large-

scale, comprehensive, observational, international, multi-center study that recruits de novo 

(early-untreated) PD patients and age-matched healthy normal subjects (NCs) to identify PD 

progression biomarkers.

We included 18 NCs (14 Male (M); age: 64.25±9.50 years (mean ± SD)) and 20 newly 

diagnosed, early-stage, and never medicated PD subjects (11 M; age: 58.03±11.54 years; 

disease duration: 1.01±1.07 years) from the PPMI database in our analysis. Both advancing 

disease and medication in PD subjects produce confounding effects on the functional 

integration and organization of intrinsic brain networks (Luo et al., 2014), therefore we only 

included PD subjects who were at an early stage of disease and never-medicated. PD 

subjects were assessed for symptom severity around the MRI scanning time using the motor 

portion (Part III) of the Unified Parkinson’s Disease Rating Scale (UPDRS). Each PD 

subject was further rated on a subscale for tremor defined by both tremor at rest and action 

or postural tremor of the hands (Mure et al., 2011; Vo et al., 2017). Symptoms for PD were 

considered to be tremor-dominant if the summed limb UPDRS-III tremor score was ≥ 4 with 
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at least one limb scoring ≥ 2 (Isaias et al., 2010; Mure et al., 2011; Vo et al., 2017). Tremor-

dominant PD subjects may have different pathophysiology compared to other PD subjects 

(Helmich et al., 2012), and therefore to maintain a relatively homogenous group PD subjects 

kept in our analysis were non-tremor dominant (UPDRS-III motor score: 15.05±7.43; tremor 

score: 1.25±1.04). This criterion also avoids the potential confound of tremor on image 

acquisition as well. A Chi-square test was performed to check statistical significance for 

gender difference between two groups and Wilcoxon rank sum test was performed to check 

for differences of age and year of education. Information about subject demographics, 

UPDRS motor and tremor scores are listed in Table 1.

MRI acquisition: All subjects underwent resting-state fMRI scans on 3T Siemens scanners. 

The resting-state fMRI involved an 8 minutes and 24 seconds acquisition with 210 time 

frames, TR = 2400ms, TE = 25ms, FOV = 22.4 cm, flip angle = 80deg, resolution = 3.3 × 

3.3 × 3.3 mm3, 40 axial slices. In addition, a T1-weighted structural image was also acquired 

for each subject with TR = 2300ms, TE = 2.98ms, flip angle = 9deg, and voxel size = 1 × 1 

× 1 mm3.

fMRI preprocessing: The first 5 time frames (12sec) were removed to allow the MR signal 

to achieve T1 equilibrium. Time frames were slice-timing corrected and realigned to the 

mean echo-planar image in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), further co-registered 

to the subject T1 space, and then normalized to the standard MNI-152 2mm-template using 

ANTs software (http://stnava.github.io/ANTs/). Six head motion parameters, signals 

extracted from subject white matter and cerebrospinal fluid (3-mm cubes centered at MNI 

(26,−12, 35) and (19,−33, 18)), were regressed out from each dataset. fMRI data were 

further spatially smoothed using an 8mm 3D-Gaussian filter. All voxel time courses were 

band pass filtered (0.008Hz<f<0.1Hz) to emphasize low-frequency correlations in the 

resting-state, and variance normalized.

2.3.2 CAP group analysis—Preprocessed resting-state fMRI data from both groups were 

concatenated in time and input to a spatial independent component analysis (ICA) to 

compute major accepted resting-state networks. In our analysis, voxels within the skull-

stripped MNI-152 2mm template and having non-zero signal intensities in all subjects were 

included in the brain mask. The ICA decomposition was carried out with the fast-ICA 

algorithm [Hyvärinen et al., 2001] using an in-house MATLAB program. The number of 

components was set to 20. Seven resting-state networks were chosen that were consistent 

with previous reports (Beckmann et al., 2005; Smith et al., 2009). In particular, we chose the 

default mode network (DMN), left and right frontal-parietal network (FPN), sub-cortical 

network, sensorimotor network (SMN), executive control network (ECN), visual network 

(VN, including both primary and lateral visual networks) and auditory network (AUD). 

Another ICA component including the middle temporal gyrus and the superior temporal 

gyrus was also found with our data and defined as the medial temporal network (MTN). 

Since dysfunction in PD subjects is known to involve sub-cortical and cortical functional 

loops (Hacker et al., 2012), we focused our CAP group analysis on relevant ICA-based 

cortical networks (DMN, FPN, SMN, ECN and MTN) and two seed-based sub-cortical 
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networks (sub-thalamic seeded network (STh) and striatum seeded network (STR)). Spatial 

maps of these seven resting-state networks are shown in Fig. 5.

Seeds for each resting-state network were selected for two groups individually. For ICA 

networks, group specific maps for PD and NC were computed using dual regression 

(Beckmann et al., 2009). Peak location of each cluster in the network spatial map was then 

determined. 3mm cubes centered at each peak location were then selected as seed ROIs for 

the resting-state network. Seeds for sub-cortical networks (STh and STR) were obtained 

from an anatomical probabilistic atlas of the basal ganglia (ATAG-template; (Keuken et al., 

2013)). Specifically, seeds for the STh network involved two 3mm cubes centered at left and 

right sub-thalamus, and seeds for the STR network involved four 3mm cubes centered at left 

and right putamen and caudate. Table 2 lists seed coordinates for the seven networks chosen 

in this study.

A static group network comparison was first carried out using seed-based correlation maps 

from every subject for the DMN, FPN, SMN, ECN, MTN, STh, and STR networks 

separately. fMRI signals from multiple seed locations of one resting-state network (Table 2) 

were averaged to create a single seed time course of the network. For every subject, a seed-

based network map was computed by calculating the Pearson correlation between the time 

course of each brain voxel and the reference seed time course. A two-sample t-test was 

performed to detect between-group differences in each network. Significant differences were 

detected using “Threshold-Free Cluster Enhancement” as implemented in FSL (Smith and 

Nichols, 2009), with p<0.05 family-wise error corrected and spatially masked with the 

thresholded group average correlation map.

Next, time frames with seed signal intensity in the top 20% (41 time frames) of each subject 

were selected as network-associated time frames. The average spatial map of network-

associated time frames was compared with the seed-based network pattern to verify whether 

selected time frames were truly associated with the network. The percentage threshold 

(20%) was determined by following the method of Liu and Dyun (2013). We varied the 

percentage threshold from 0% to 100% in steps of 10% and plotted the spatial correlation 

value between the average spatial map of selected time frames and the seed-based 

correlation map as a function of percentage thresholds. We found that when the top 20% of 

time frames were selected, the curve reached a plateau and the spatial correlation surpassed 

0.95 validating this method.

Network associated time frames from both groups were then concatenated in time and 

decomposed into different CAPs based on their spatial similarities using k-means. The 

number of clusters (k) in k-means was varied from 2 to 20. For each k, we repeated the 

clustering process 120 times to account for the instability of single-trial k-means results and 

selected the best clustering result with the smallest within-cluster sum of point-to-centroid 

distances. After clustering, a d-CAP candidate set was determined for each group and a final 

d-CAP set was then computed from the candidate set as described in section 2.1.2. 

Specifically, in adding each d-CAP candidate into the final d-CAP set, we repeated the 

voxel-wise permutations multiple times and calculated the cumulative null distribution of the 

spatial similarity for every 10 permutations. The 5th percentile of each cumulative null 
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distribution was then computed and plotted against the number of permutations involved. 

Once the change of the 5th percentile value between the current and previous cumulative null 

distribution was less than 5%, we stopped the permutation step. The 5th percentile of the 

current cumulative null distribution was then set as the threshold (thre). Finally, the spatial 

pattern of each d-CAP was then converted to a z-score map.

For each resting-state network, the number of d-CAPs was determined to enable the 

description of temporal dynamics in each group. Temporal fraction and spatial consistency 

were then calculated for each d-CAP and used to compare the network dynamics between 

PD and NC groups. For networks with the same number of d-CAPs in both groups, the 

temporal fraction for the 1st d-CAP was also calculated for each subject. Two sample t-test 

was performed to test between-group differences of the occurrence of the 1st d-CAP in these 

networks. Furthermore, a null distribution of the spatial consistency for each d-CAP was 

also generated to test the reliability of the final d-CAPs. To generate the null distribution of 

spatial consistency, network-associated time points were first randomly assigned to each d-

CAP cluster with the same temporal fraction as the corresponding d-CAP. The spatial profile 

of the corresponding d-CAP was then updated with the average spatial map within each 

cluster. The average correlation between an individual time frame and the updated d-CAP 

map was finally calculated for every cluster and considered as one entry of the null 

distribution. The above process was repeated multiple times until a stable null distribution 

was generated. The real spatial consistency of each d-CAP was then compared with the 95th 

percentile of the null distribution to test the reliability of each final d-CAP cluster at the 

significance level of p=0.05.

For each resting-state network, the switching probabilities among all final d-CAPs were then 

calculated for each subject. A two sample t-test was performed on switching probabilities 

with age, gender, years of education, handedness, and scanner sites as covariates between 

two groups to compare the network temporal dynamics in PD and NC. Significance level 

was established at p<0.05, family-wise corrected for seven comparisons (seven resting-state 

networks, Bonferroni corrected). T-statistic, corrected p-value, and effect size for every 

comparison were reported.

We further investigated the association between network dynamic changes and symptom 

severity in PD subjects. For each resting-state network, a multiple linear regression analysis 

was performed between the switching probability (SP) and the UPDRS-III motor score with 

age, gender, year of education, handedness, and scanner sites as covariates (of no interest) in 

the PD group:

SP = β0 + Xmotorβmotor + Xcovariatesβcovariates + ε,

where Xmotor was subject UPDRS-III motor score, Xcovariates was a metric including subject 

age, gender, year of education, handedness, or scanner site, and ε was the residual error 

term. Statistical significance level for βmotor was established at p<0.05 (Bonferroni corrected 

for seven comparisons). Effect size for βmotor of each network was reported.
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3. Results

3.1 Simulation

Simulation with two d-CAPs: The spatial patterns of simulated ground truth are shown in 

Fig. 3-1(A). The results computed from the previous method in Liu and Duyn (2013) are 

shown in Fig. 3-2. k = 2 gives the highest silhouette score in the k-means clustering (Fig. 

3-2(A)) and the corresponding two CAPs (Liu and Duyn 2013) are shown in Fig. 3-2(B). 

The spatial similarity between the simulated ground truth (Fig. 3-1(A)) and the CAPs with 

selected k (Fig. 3-1(B)) is shown in Fig. 3-2(C) by the spatial correlation matrices. The 

overall dominant CAPs (Chen et al., 2015) are shown in Fig. 3-3(A) and the spatial 

similarity to the ground truth (Fig. 3-1(A)) is reflected by the correlation matrix in Fig 

3-3(B). The final d-CAP set of each group computed by the proposed CAP method is shown 

in Fig. 3-1(B). The similarity between the simulated ground-truth (Fig. 3-1(A)) and d-CAPs 

(Fig. 3-1(B)) is shown in Fig. 3-1(C).

As shown in Fig. 3, all three CAP methods were able to compute sets of CAPs, overall 

dominant CAPs or d-CAPs to represent temporal dynamics. Both k CAPs selected by the 

silhouette score and d-CAPs computed from the proposed method were able to precisely 

recover the simulated ground truth in each group. The average spatial correlation values 

were 0.91± 0.09 (mean± standard deviation) between d-CAPs and simulated ground truth 

(Fig. 3-1(C)) and 0.85±0.03 between k CAPs and the ground truth (Fig 3-2 (C)). The overall 

dominant CAP set (Fig. 3-2(B)) also captured the temporal variation, as four overall 

dominant CAPs were computed for group 1 and three were computed for group 2. Since 

there was no spatial constraint in computing the overall dominant CAP set, the 2nd and 3rd 

overall dominant CAPs in group 1 showed a high spatial similarity and both of them 

represent the d-CAP1 in the ground truth. Similarly, both the 1st and 4th overall dominant 

CAPs in group 1 recovered the d-CAP2 in the simulated ground truth. In addition, d-CAPs 

calculated from the proposed method incorporated constraints on spatial correlation values 

between the final d-CAP pairs, and therefore distinct spatial maps were precisely recovered 

(Fig 3-1(C)). Furthermore, and as expected, with the proposed method excellent 

correspondence (r > 0.9) was observed between the spatial patterns of 1st d-CAPs from two 

groups.

Simulation with three d-CAPs: As shown in Fig. 4-2 (A), k = 2 gives the highest silhouette 

score in the k-means clustering and the corresponding two CAPs (Liu and Duyn 2013) are 

shown in Fig. 4-2(B). The spatial similarity between the simulated ground truth (Fig. 

4-1(A)) and the CAPs with selected k is reflected by the correlation matrices and shown in 

Fig. 4-2(C). The overall dominant CAPs (Chen et al., 2015) are shown in Fig. 4-3(A) and the 

spatial similarity to the ground truth (Fig. 4-1(A)) is shown in Fig 4-3(B). The final d-CAP 

set of each group computed by the proposed CAP method is shown in Fig. 4-1(B). The 

similarity between the simulated ground-truth (Fig. 4-1(A)) and d-CAPs (Fig. 4-1(B)) is 

shown in Fig. 4-1(C).

As shown in Fig. 4-2, for simulation with more than two d-CAPs, CAPs selected by 

silhouette criteria combined the 1st and 2nd simulated d-CAPs and therefore missed an 
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important contribution to the temporal dynamics (Fig. 4-2). The overall dominant CAP set 

(Chen et al., 2015) in this simulation recovered three d-CAPs in group 1, which 

demonstrates the ability of this method to accurately identify dynamic states. However, since 

spatial constraint is still not incorporated in computing overall dominant CAP sets, the 3rd 

and 4th overall dominant CAPs represent the same simulated d-CAP3 in group 2 (Fig. 4-3). 

Using our proposed method, high consistency (r>0.8) is achieved between d-CAPs and the 

simulated ground truth.

Overall, the simulation results demonstrate that the proposed group CAP analysis can 

accurately determine the d-CAP set in different populations, which is not the case for the 

previously suggested methods.

3.2 Comparison of network dynamics between PD and NC groups

3.2.1 Demographics—Table 1 lists the demographics of both PD and NC subjects used in 

this study. Age (p=0.10), gender (p=0.13) and years of education (p=0.78) were not 

significantly different between the two groups. Motor performance, as measured by UPDRS 

III motor score, was significantly different between the two groups (p<0.001, Table. 1). 

Furthermore, PD subjects with summed limb UPDRS III scores was ≤ 4 and with at least 

one limb scoring ≤ 2 were included in this study. As for NC subjects, the summed limb 

UPDRS III scores were all 0, except for one subject (with a score of 1). For motion 

calculation, rotational displacements were converted to translational displacements by 

projection to a surface of a 50mm radius sphere and root-mean-square (RMS) head motion 

was computed for every subject (Power et al., 2014). All subjects had less than one voxel 

size (0.51mm on average) RMS head motion and RMS head motion was not significantly 

different between the PD and NC groups (p = 0.38, Table. 1).

3.2.2 Static network comparison—Significant between-group differences in static 

network spatial patterns were only observed in the MTN and ECN. Increased left medial 

temporal connections were observed in the MTN, and stronger middle frontal connections 

were observed in the MTN in the NC group.

3.2.3 Null distribution of spatial similarity between two maps—On average, 100 

times voxel-wise permutations were repeated to obtain a stable null distribution in 

determining every d-CAP in each network separately. Two examples with either a positive or 

a negative spatial correlation between the existing d-CAP and the current d-CAP candidate 

are shown in Fig. 6. Fig. 6-1(A) and Fig. 6-2(A) list spatial maps of the existing d-CAP (top 

part) and the current d-CAP candidate (bottom part), with a spatial correlation value of 0.09 

between maps in Fig. 6-1(A) and −0.21 in Fig. 6-2(A). The threshold (thre) to determine 

whether two maps are spatially similar is plotted in Fig. 6-1(B) and Fig. 6-2(B) as a function 

of number of permutations being performed. As can be seen from Fig. 6-1 (B) and Fig. 

6-2(B), the change of the threshold when including 100 permutations is less than 5%. Fig. 

6-1(C) and Fig. 6-2(C) further show the histogram of null correlation values of 1000 

permutations and the 5th percentile of the left tail (thre, red dashed line). The change of thre 
computed by 100 and 1000 permutations is less than 1% in both cases.
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3.2.4 Dominant CAP (d-CAP) sets of the PD and NC groups—Using the proposed 

CAP group analysis method, we computed a set of d-CAPs for every resting-state network in 

the PD and NC groups separately. The total number of d-CAPs associated with each resting-

state network is listed in Table 3. Spatial patterns of the blood oxygen level-dependent 

(BOLD) signal for the final d-CAP sets are shown in Fig. 7-1. Spatial maps of every d-CAP 

are converted to effect size (Cohen’s d) maps, thresholded at d ≥ 0.8 (large effect), and 

shown in Fig. 7-2. Between-group differences in Cohen’s d maps for each d-CAP are 

summarized in Table 4. Spatial similarities between d-CAPs are represented by correlation 

matrices and shown in each box in Fig. 7-3. The between group d-CAP spatial similarities 

are shown in the bottom left plot in each box, and within group similarities for the NC and 

PD groups are shown in the top left and bottom right in each box respectively.

Distinct spatial patterns were observed between d-CAPs from the same group in all seven 

resting-state networks (Fig. 7-1). The average correlation values between within-group d-

CAPs were 0.14 ± 0.14 (mean ± standard deviation) for the PD group and 0.12 ± 0.15 for 

the NC group.

As listed in Table 3-1, the same number of d-CAPs were computed for the DMN, FPN, 

SMN, and STR networks in both study groups. Good correspondence was observed in d-

CAPs associated with these four networks between the PD and NC groups (Fig. 7-1), with 

an average spatial correlation value between the corresponding d-CAPs of 0.84±0.08. Closer 

examination of voxels with a large effect size in each network revealed differences in co-

activation patterns between d-CAPs of the two groups (red arrows in Fig. 7-2 and 

summarized in Table 4). Increased co-activation (indicated by large effect size) between sub-

cortical and motor areas (2nd d-CAP of SMN and 3rd d-CAP of STR), as well as between the 

striatum and frontal areas (1st d-CAP of the STR) were observed in the NC group (Fig. 7-2 

and Table 4(A)). On the other hand, larger activity was observed in the superior temporal 

lobe, middle frontal regions (2nd d-CAP of the DMN), and the inferior parietal lobe (2nd d-

CAP of the FPN) in the PD group (Fig. 7-2 and Table 4(B)).

For the ECN, MTN, and STh networks, an additional d-CAP was determined for the NC 

group (Table 3), indicating that these networks were more dynamic in NC subjects when 

compared to PD subjects. The additional d-CAP (4th d-CAP) of the ECN in the NC group 

showed a distinct pattern of co-activations in the anterior and posterior cingulate cortex and 

precuneus regions. The extra d-CAPs of the MTN, ECN, and STh networks showed sub-

cortical connections with the medial temporal area and the anterior cingulate cortex (Fig. 7-2 

and Table 4). In the remaining d-CAPs for these three networks, we observed a high spatial 

similarity of corresponding d-CAPs between NC and PD groups with an average correlation 

value of 0.83±0.08 (Fig. 7-3). Despite the high spatial similarity, different patterns of co-

activation were observed in the corresponding d-CAPs in both groups. Distinct co-activation 

pattern of sub-cortical regions and motor areas were observed in the 2nd d-CAP of the STh 

network in the NC group. In addition, an increase of sub-cortical connections with the 

medial temporal lobe and the frontal lobe is also shown in the 2nd d-CAP of the MTN and 

ECN in the NC group.
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3.2.5 Temporal fraction and spatial consistency of each d-CAP—Table 5(A) lists 

the temporal fraction of the d-CAPs associated with each resting-state network. The average 

temporal fraction of the 1st d-CAP associated with all seven resting-state networks was 

61.17% ±10.29% for the NC group and 68.00% ± 8.65% for the PD group. Furthermore, for 

networks with the same number of d-CAPs in the two groups (DMN, FPN, SMN, and STR), 

Table 5(B) lists the mean and standard deviation of the temporal fraction of the 1st d-CAPs 

in each group and the result from a group comparison. While no significant differences 

(p<0.05, Bonferroni corrected) were found for any network, higher temporal fractions of the 

1st d-CAP of the DMN, SMN, and STR networks were observed in the PD group with a 

moderate effect size (Cohen’s d=0.58, 0.57 and 0.49 respectively). In contrast, a higher 

temporal fraction in the 1st d-CAP was also observed in the FPN in the NC group with very 

small effect size (d = 0.09).

The spatial consistency of each d-CAP associated with the seven resting-state networks is 

listed in Table 6. The 95th percentile of the null distribution of each consistency is also listed 

in brackets in Table 6. The average spatial consistency of all d-CAPs was 0.34 ± 0.02 in the 

NC group and 0.30 ± 0.02 in the PD group, which is similar to the value reported by Liu and 

Duyn (2013). In addition, the spatial consistency of every d-CAP was greater than the 95th 

percentile of the null distribution, indicating that the spatial consistency of all d-CAPs was 

significant (p<0.05, non-parametric).

3.2.6 Switching probability of each resting-state network—The switching 

probability was computed for every subject in the PD and NC groups. Box plots of d-CAP 

switching probability associated with the seven resting-state networks are shown in Fig. 8. 

Significant (p<0.05, Bonferroni corrected) decreases in switching probabilities were 

observed in the ECN (p=0.05, effect size d =1.04), MTN (p=1.9 ×10−4, d=1.77) and STh 

(p=2.7×10−5, d=2.01) networks in the PD group when compared to NC group (Fig. 8 and 

Table 7). There were no significant differences found in the other networks. The DMN, 

SMN, and STR networks did exhibit expected decreasing trends in switching probability in 

PD compared to controls, however, with an effect size (d) of 0.79 for the DMN, 0.62 for the 

SMN, and 0.89 for the STR (Table 6). Furthermore, a relatively higher median of switching 

probability in the FPN was observed in the PD group (Fig. 8) but with a very small effect 

size (d=0.05, Table 7). Overall, reduced switching probabilities in the PD group compared to 

the NC group reflects overall reduced dynamics in PD networks as hypothesized.

3.2.7 Correlation of PD symptoms with network temporal dynamics—Fig. 9 

shows the relationship between network dynamic changes (switching probability) and 

clinical symptoms (UPDRS-III motor score) in the PD group. The fitted line (solid red) and 

the 95% confidence interval of the estimation (dashed green) are shown in Fig. 9. A 

significant negative relationship was observed between the switching probability of the SMN 

d-CAPs and the UPDRS-III motor score of each PD subject (p = 0.04, d = 0.88, Table 8). 

There were no statistically significant relationships between the switching probability and 

the UPDRS-III motor score of the other six networks. A negative trend between the 

switching probability and the UPDRS-III motor score was observed, however, in the ECN (d 

= 0.25, Table 8), MTN (d = 0.22, Table 8), STh (d = 0.12, Table 8), and STR (d = 0.18, 
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Table 8). On the other hand, a positive trend was observed for the DMN (d = 0.15) and FPN 

(d = 0.22).

4. Discussion

In this study, we proposed a novel group CAP analysis method to analyze temporal 

dynamics of specific resting-state networks for different populations. We introduced a new 

method to synthesize CAPs across different clustering runs with spatial distinction among 

final d-CAPs. Four d-CAP based measurements were calculated to compare network 

dynamics between different populations. Using simulation, we demonstrated that our 

method was able to determine spatially distinct d-CAPs without a predefined clustering 

number. We further used the proposed method to perform a novel investigation of network 

dynamics in PD and NC groups without a priori assumption. We observed altered network 

co-activated patterns and temporal dynamics in the PD group that reflect and expand upon 

prior understanding of PD network pathophysiology, including in relation to symptom 

severity.

4.1 Methodological perspectives

4.1.1. Major innovations

Spatial constraints in determining d-CAPs: In CAP-based analysis, two concepts have 

been proposed to represent the variation of network spatial patterns over time: the CAP set 

in Liu and Duyn (2013) and the overall dominant CAP set in Chen et al. (2015). Since 

spatial independence is not a requirement in either method, however, the CAPs or overall d-

CAPs can share considerable spatial overlap and may or may not have functionally distinct 

significance. Using simulation, we have demonstrated that two overall dominant CAPs that 

share small spatial variations may possibly be the result of one overall dominant CAP being 

split into two simply due to noise in the clustering step (See Fig. 3-3 and Fig. 4-3). As a 

result, the switching between these two CAPs (or overall d-CAPs) might not be real and 

could confound understanding of the overall network dynamics.

One major innovation of the proposed method is that the constraint of low spatial similarities 

among final d-CAPs is incorporated in synthesizing over clustering results with different s. 

In our analysis the spatial similarity is reflected by the spatial correlation value, where a 

higher spatial correlation indicates a larger overlap in activated areas within the network 

spatial pattern. Furthermore, if there are multiple spatially distinct CAPs accounting for 

temporal variations of network-associated time frames, k-means clustering will identify 

these patterns and the proposed method will treat them equally as d-CAP candidates. Even 

though the final d-CAPs in our analysis cannot be said to be fully spatially independent, they 

are spatially statistically different at the significance level of p<0.05. Furthermore, 

alternating d-CAPs with less overlapping spatial patterns can make important contributions 

to overall network dynamics. This key property of the proposed method is demonstrated 

using simulated data. We simulated d-CAPs with spatial correlation values varied from 

−0.57 to 0.25 and our method was able to recover them with high accuracy (Fig. 3-1 and Fig. 

4-1). Furthermore, the correlation matrices for each d-CAP pair utilizing the real fMRI data 

show low correlation values (r) along the off-diagonal line in Fig. 7-3. This observation 
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suggests that the final d-CAPs are not spatially overlapping, which demonstrates that our 

method computes spatially distinct d-CAPs.

Group analysis: In the current CAP analysis method the group comparison is done by 

comparing the CAP (or overall d-CAP) sets (a) computed for different groups separately 

(Chen et al., 2015) or (b) computed by using a benchmark CAP set determined from healthy 

subjects as a reference (Amico et al., 2014). As shown by simulation (Fig. 3-3 and 4-3), the 

first method does not maintain the correspondence of CAPs (or overall d-CAPs) from 

different populations and therefore does not enable direct comparisons. The reference CAP 

set in the second method is not data-driven and therefore may not accurately represent 

network dynamics in diseased populations where such dynamics are difficult to predict. To 

make a fair comparison between different groups while retaining group-specific network 

dynamics, we perform the temporal clustering on concatenated network-associated time 

frames from both groups together. Group-specific CAP sets ( S1
ki and S2

ki) are then 

determined separately and treated as d-CAP candidates for each group (2nd and 3rd boxes in 

Fig. 1). In this case, final d-CAP sets for both groups are computed from the same clustering 

results and therefore the variation of clustering will not affect the between-group 

comparisons of d-CAP based measurements. As shown in both simulation (Fig. 3-1 and Fig. 

4-1) and real fMRI data (Fig. 7), excellent correspondence is observed in most d-CAPs 

between the two groups in our analysis.

4.1.2. Information embedded in d-CAP based measurements—The CAP analysis 

focuses on the temporal dynamics of each resting-state network, and therefore provides a 

new dimension in characterizing network behaviors (Liu and Duyn, 2013). Chen et al. 

(2015) introduced four CAP-based quantifiable metrics to reveal brain dynamics, including: 

the quantity of overall-dominant CAPs, the spatial consistency across different CAPs, the 

temporal fractions of CAPs, and the frequency of state alternation in CAPs.

In the proposed method, the d-CAP set reflects the embedded network-associated dynamics. 

Since the process in determining d-CAPs in our novel analysis is purely data-driven and 

spatial similarities among d-CAPs are constrained with non-parametrical statistics, the 

number of d-CAPs directly and more faithfully describes and accommodates network 

temporal diversity (Table 3 and Fig. 7). Furthermore, the d-CAP set serves as the basis of all 

the quantifiable measurements calculated subsequently.

The spatial consistency across different CAPs is calculated in Chen et al. (2015) to quantify 

the uniformity of brain dynamics. In our method, however, due to the incorporated constraint 

of low spatial similarities among final d-CAPs the spatial consistency across different CAPs 

is not computed. Rather, spatial consistency of each d-CAP provides information about the 

stability of d-CAPs. As listed in Table 5, spatial consistency values of every d-CAP surpass 

the 95th percentile of the null distribution and therefore confirm the reliability of d-CAPs 

calculated from the proposed method.

In Chen et al. (2015), both the temporal fractions and frequency of alternating CAP states 

depend heavily on the predefined CAP number. An additional criterion using silhouette 
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score is applied to determine the most representative cluster number. As shown by the 

simulation, CAPs selected by silhouette score may incorrectly combine several distinct 

CAPs into a single CAP due to clustering with a fixed cluster number k (Fig. 4-2). In our 

analysis, alternating network spatial patterns are tracked at each individual time frame level. 

The temporal fraction is then calculated for each final d-CAP which provides information 

regarding how long the network stays in each d-CAP. As listed in Table 4, the temporal 

fraction of the 1st d-CAP is the largest for every network suggesting that the 1st d-CAP is the 

most common state for all networks. The 1st d-CAP is the spatial average of all network-

associated time frames, and therefore represents the overall network spatial profile (Liu and 

Duyn, 2013; Tagliazucchi et al., 2011). The frequency of alternating states is defined as 

switching probability in our analysis and used to quantify the frequency of d-CAP 

alternations throughout the entire fMRI scan.

Each of the above four measurements (number of d-CAPs, temporal fraction, spatial 
consistency of each d-CAP, and the switching probability among all d-CAPs) provides a 

different perspective in quantifying network-associated dynamics and can be used for group 

comparisons. It is important to note, however, that these four metrics are not independent. In 

our analysis, all four measurements are based on the final d-CAP set. For example, a smaller 

number of d-CAPs will result in a longer time spent in one or all d-CAPs in one population 

and therefore automatically lead to a smaller switching probability among network-

associated time frames. At the same time, a smaller number of d-CAPs already demonstrates 

dynamic changes from one state to another. In this regard, the number of d-CAPs, temporal 

fraction of each d-CAP, and the switching probability among all d-CAPs share common 

information in group comparisons and should be properly interpreted. Spatial consistency, in 

addition to the other three measures, provides complementary information about the stability 

of each d-CAP.

4.1.3 Parameter selection

Threshold to determine network-associated time frames: The CAP analysis is based on 

the concept that the resting-state network is driven primarily by activities at a few discrete 

events (Liu and Duyn, 2013; Tagliazucchi et al., 2011). These discrete time points share a 

common feature that the signal intensity at the core regions of the resting-state network is 

relatively large. We define these as network-associated time frames.

The threshold to determine network-associated time frames remains unclear. Liu and Duyn 

(2013) compared the average of time frames whose signal at the seed region surpassed a 

predefined threshold to the seed-based correlation map computed using all time frames. 

They found that similarity between the two maps increases rapidly when lowering the 

threshold and approaches a plateau after including 15% of all time frames. We have repeated 

the same method and found that when the top 20% time frames were included with our 

dataset, the similarity between two maps reaches a plateau. The variation in the threshold is 

mainly due to the smaller sample size used in our study (38), compared to Liu and Duyn 

(2013) (247). In this case, more time frames per subject are needed to account for subject 

variability. In addition, this threshold is set to be the top 30% in Chen et al. (2015) where 

even fewer subjects were included (21). Furthermore, in our analysis, time series at each 
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voxel are converted to z-score and therefore follow a standard normal distribution. When the 

top 20% time frames are selected, the lowest signal intensity is approximately z = 0.7 and at 

about 70% of the standard normal distribution.

Features used in k-means clustering: In the proposed method, features used in the k-
means clustering are signal intensities at each voxel and a skull-stripped brain mask is 

applied in our analysis. There are two reasons to do a voxel-wise CAP analysis instead of 

ROI-wise CAP analysis as in Chen et al. (2015). First, all network-associated time frames 

are related to a specific resting-state network. The proposed method is mainly used to 

analyze the variation of each network-spatial pattern and, therefore, the change among CAPs 

can be voxel-wise structures instead of large ROIs. Second, averaging signals within each 

ROI may affect the constraint in determining final d-CAPs.

4.2 Altered resting-state network dynamics in the PD group

In our analysis, examining the spatial patterns of d-CAPs for each group provides 

information regarding alternating networks whereas comparing the d-CAP based 

measurements between two groups provides characterization of altered network temporal 

dynamics.

4.2.1 Functional disturbances in the spatial domain of the PD group—Static 

network comparisons between the PD and NC groups have shown enhanced functional 

connectivity in the left medial temporal lobe in the MTN and the medial frontal area in the 

ECN in the NC group. These stronger connections were also observed in the 3rd and 4th d-

CAPs in the NC groups (Fig. 7-2). All other observed differences in d-CAPs were not 

observed with conventional methods due to the temporal stationarity assumption.

Previous studies using resting-state fMRI have uncovered inconsistent changes in functional 

connectivity of PD subjects at various disease stages (Badea et al., 2017; Prodoehl et al., 

2014; Tahmasian et al., 2017, 2015). Specifically, in the early stage of the disease PD 

subjects exhibit reduced functional connectivity in cortico-striatal loops before they start 

medication (Esposito et al., 2013; Luo et al., 2014). As the disease progresses and 

medication starts having an effect, increased functional connectivity between the sub-

thalamic nuclei and the motor cortex has been reported (Baudrexel et al., 2011; Kwak et al., 

2010). When the disease reaches its advanced stages, the striatal connections with the 

thalamus, midbrain, pons and cerebellum, and the DMN connection are again found to be 

decreasing (Hacker et al., 2012; Tessitore et al., 2012). In the two subcortical networks 

focused on in our analysis, weaker connections are observed between the sub-thalamus and 

the motor area (2nd d-CAP of the STh), between the striatum and the motor area (3rd d-CAP 

of the STR), and between the striatum and the frontal area (1st d-CAP of the STR) in the PD 

group, which is consistent with the above reports. Furthermore, in cortical networks, 

stronger subcortical connections with the frontal area, the medial temporal lobe, and the 

motor area are revealed in the 2nd d-CAP of the ECN, MTN, and SMN in the NC group 

separately, which further confirms the finding of reduced sub-cortical and cortical 

connections in PD subjects (Esposito et al., 2013; Luo et al., 2014). Overall, functional 

differences between the sub-cortical area (thalamus and striatum) and the cortical area 
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(frontal lobe, medial temporal lobe, and motor area) among PD and NC subjects are 

reflected in our d-CAP spatial patterns.

4.2.2 Altered dynamic functional connectivity in the PD group—The dynamics of 

basal ganglia-cortical circuits in PD subjects have been widely studied and reported using 

electrophysiological data, but correlations of these findings in imaging-based data are 

unclear. Specifically, un-medicated PD subjects exhibit aberrant coherent activity patterns 

and excessive synchronization of neuronal activities in the basal ganglia-cortical loop 

(Brown, 2007; Brown and Williams, 2005; Chen et al., 2007; Eusebio et al., 2011; Fries, 

2005; Oswal et al., 2013; Stein and Bar-Gad, 2013). Exaggerated oscillations in the beta 

frequency band (~20Hz) are found to be correlated with the increased frequency and 

duration of locked phase alignments between the subthalamic nucleus and the globus 

pallidus (Brittain et al., 2014; Cagnan et al., 2015; Escobar et al., 2017; Weiss et al., 2015; 

Yanagisawa et al., 2012). Thus, basal-ganglia cortical circuits shift from a more dynamic 

phase-alignment to a prolonged locked phase-synchronization in PD subjects, which will in 

turn affect the neuronal circuits’ dynamics (Cagnan et al., 2015; Weiss et al., 2015). 

Furthermore, the phase of this beta-oscillation in PD subjects is found to be excessively 

coupled with the amplitude of the broad band (50–200 Hz) activity in the primary motor 

cortex at rest (de Hemptinne et al., 2015). Importantly, the activity of the broad band is 

known to be linearly correlated with the BOLD signal measured by fMRI data (Canolty et 

al., 2006; Mukamel, 2005). Thus, we hypothesized that dynamics of neuronal circuits 

affected by the excessive phase synchronization in PD should also be reflected in reduced 

dynamics of resting-state networks in fMRI BOLD analysis.

Based on the above, we explored network dynamics in PD using resting-state fMRI BOLD 

data. We observed less dynamic sub-cortical (STh) and cortical networks (MTN and ECN) 

in the PD group, as reflected both by the decreased number of d-CAPs and the significantly 

reduced d-CAP switching probabilities (Table 3, Fig. 8) when compared to the NC group. 

These results corroborate and expand upon electrophysiologic findings of the shifted basal-

ganglia cortical circuits in PD subjects (Cagnan et al., 2015; de Hemptinne et al., 2015; 

Weiss et al., 2015; Yanagisawa et al., 2012), and represent a novel investigation of network 

dynamics in PD using fMRI. In addition, the same number of d-CAPs was obtained in both 

groups for the DMN, FPN, SMN, and STR and a higher contribution of the 1st d-CAP was 

observed in the DMN, SMN, and STR (Table 5) in the PD group. Higher fractions of the 

first one or few d-CAPs indicates a skewed distribution of the temporal fraction, which in 

turn suggests less dynamic networks (Chen et al., 2015) as hypothesized. Reduced switching 

probabilities were also observed for these three networks with moderate effect size in the PD 

group (Table 7), which further demonstrates the limited dynamic range of brain networks in 

PD (de Hemptinne et al., 2015; Yanagisawa et al., 2012). In contrast, a higher temporal 

fraction of the 1st d-CAP and an increasing trend of the switching probability were observed 

for the FPN in the PD group. As shown in Fig. 7-2, both d-CAPs of the FPN in PD exhibit 

higher activities in the bilateral inferior parietal lobe. The functional increase in this area has 

previously been reported by a meta-analysis on 28 PD fMRI studies (Tahmasian et al., 

2017). Tahmasian et al. (2017) conclude that the deficiency in the basal ganglia cortical loop 

at early PD stage is countered by the increased connectivity in other brain regions, which is 
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explained by a presumed compensatory mechanism. The same compensation process may 

also explain the altered dynamics of the FPN in our results, but since only small effect sizes 

were observed for the between group comparisons on temporal fraction (d=0.09) and 

switching probability (d=0.05) of the FPN, further investigations are required before any 

conclusions can be drawn in this regard.

Previous correlative evidence from electrophysiological data has suggested that excessive 

synchronization in the basal ganglia is associated with impairment of movement in PD 

(Brown and Williams, 2005; Chen et al., 2007; Kühn et al., 2009), and that the increased 

frequency and duration of locked phase-alignment is also correlated with the deteriorated 

motor function in PD subjects (Beck et al., 2016; Cagnan et al., 2015). We also observed a 

significant negative association (p<0.001) between the switching probability in the SMN and 

the UPDRS-III motor score in the PD group (3rd subplot in Fig. 9 and Table 8), indicating 

that reduced network dynamics are associated with severity of PD clinical motor symptoms. 

Similarly negative trends between network dynamics and PD clinical symptoms are also 

observed in the FPN, ECN, MTN, STh, and STR. The SMN connects the major motor areas, 

sub-cortical areas, and cerebellum and therefore could be more sensitive to PD progression 

and thus reflected in our data with these early stage patients.

As shown in Fig. 9, significant reductions in switching probability in the ECN, MTN and 

STh networks are found in the PD group while decreasing associations with the UPDRS-III 

motor score are only evident at the trend level in these three networks. The significantly 

reduced switching probabilities of these networks demonstrate overall changes in dynamic 

network engagements from the normal state to the diseased state that were observed using 

the proposed method despite making no a priori assumptions. As for the SMN, even though 

the between-group difference in the switching probability is not statistically significant 

(p=0.09, uncorrected), the effect size of this comparison is moderate (Cohen’s d =0.65, see 

Table. 6). Inclusion of more subjects would thus likely reach statistical significance in this 

case. The negative association of the SMN with the motor score likely indicates that the 

switching probability of the SMN is correlated with the decrease in motor performance in 

the PD group, perhaps as a result of impaired motor planning as well as execution. In 

addition, we also observed an increasing trend of switching probability as a function of 

UPDRS-III motor score in the PD group in the FPN and DMN although small effect size and 

larger variation limits interpretation.

Overall, we found altered, mostly reduced, network temporal dynamics in the PD group 

when compared to the NC group which corroborates and expands upon previous 

electrophysiological studies. Furthermore, to our knowledge this is the first imaging study to 

demonstrate such aberrant network-focused dynamics in PD, and demonstrates that such 

reduced network dynamics can be studied using resting-state fMRI data in PD. This proof of 

principle will be important in resting-state fMRI studies that are underway to improve 

diagnosis, understand response to treatment, and predict symptom development in PD, and 

may provide the foundation for an urgently-needed imaging-based biomarker for this disease 

(Walsh, 2016).
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4.3 Limitations and future studies

In the proposed CAP group analysis, the temporal clustering on concatenated time frames is 

performed by k-means clustering with the spatial correlation as a similarity measure. This 

clustering method only captures pair-wise linear relationships between two time frames. The 

spatial similarity between different time frames in fMRI data may not be linear, however. In 

such a case, clustering methods that consider non-linear relationships between different 

observations, such as the kernel k-means method, could be applied to replace k-means 
clustering in determining CAPs. Substituting k-means-related methods with hierarchical 

clustering could also improve the clustering accuracy and efficiency.

In addition, in the proposed method group comparisons are done with the d-CAP based 

measurements. Direct comparisons between d-CAPs cannot be performed primarily because 

the d-CAP sets from the proposed analysis represent group-specific network dynamics. The 

correspondence of all d-CAPs (except d-CAP1) between groups cannot be maintained. In 

this case, the between group comparisons cannot be performed directly using a specific d-

CAP other than d-CAP1.

As discussed above, the interdependence between the number of d-CAPs, the temporal 

fraction of each d-CAP, and the switching probability among all d-CAPs is inherently 

embedded in the proposed method. All three measurements are based on the d-CAP set in 

each group. In this case, results of the between group network dynamics comparisons using 

temporal fractions or switching probabilities should be properly interpreted. Furthermore, a 

possible means to obviate this interdependence is to compare temporal fractions or 

switching probabilities between two groups only when the two groups share the same 

number of d-CAPs.

5. Conclusions

In this study, we have proposed a novel group CAP analysis method to investigate temporal 

dynamics of specific resting-state networks. Our data-driven method computes less spatially 

overlapping d-CAPs for each group. Four d-CAP based measurements have been introduced 

to compare network dynamics between different populations. Using the proposed method, 

we have compared the dynamics of seven major resting-state networks between NC and PD 

groups. We have found reduced numbers of d-CAPs, skewed distribution of temporal 

fractions of d-CAPs, and reduced switching probabilities among final d-CAPs of most 

networks in the PD group, which represent novel imaging-based findings in this field. 

Furthermore, we have shown that switching probability is negatively correlated with the 

UPDRS-III motor score in PD subjects suggesting that aberrant network dynamics are 

related to disease symptomatology. Our analysis demonstrates that network dynamics can be 

studied using resting-state fMRI data.
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Figure 1. 
Group CAP analysis routine.
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Figure 2. 
Algorithm for determining the final d-CAP set. This process is repeated for two groups (g = 

1,2) separately and a final d-CAP set is computed for each group individually.
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Figure 3. Simulation with two d-CAPs
Figure 3-1. Simulation with two d-CAPs in each group. (A). Spatial patterns (average BOLD 

signal) of simulated d-CAPs (ground-truth slice) in two groups. (B). Spatial patterns 

(average signal) of d-CAP set computed from the proposed CAP group analysis. (C). Spatial 

similarities (spatial correlation coefficient) between simulated ground truth and analysis 

results.

Figure 3-2. CAP set at selected k for simulation with two d-CAPs (Chen et al., 2015; Liu 

and Duyn, 2013). (A). Silhouette scores as a function of cluster numbers. Number of clusters 

is selected at the highest silhouette score, which gives k = 2. (B). Spatial patterns of 

corresponding two CAPs. (C). Spatial similarities between simulated ground truth and 

analysis results.
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Figure 3-3. Overall d-CAP set (Chen et al., 2015) for simulation with two d-CAPs. (A). 

Spatial patterns of overall d-CAP set of each group. (B). Spatial similarities between 

simulated ground truth and analysis results.
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Figure 4. Simulation with three d-CAPs
Figure 4-1. Simulation with three d-CAPs in each group. (A). Spatial patterns (average 

BOLD signal) of simulated d-CAPs (ground-truth slice) in two groups. (B). Spatial patterns 

(average signal) of d-CAP set computed from CAP group analysis. (C). Spatial similarities 

(spatial correlation coefficient) between simulated ground truth and analysis results.

Figure 4-2. CAP set at selected k for simulation with three d-CAPs (Chen et al., 2015; Liu 

and Duyn, 2013). (A). Silhouette scores as a function of cluster numbers. Number of clusters 

is selected at the highest silhouette score, which gives k = 2. (B). Spatial patterns of 

corresponding two CAPs. (C). Spatial similarities between simulated ground truth and 

analysis results.

Figure 4-3. Overall d-CAP set for simulation with three d-CAPs (Chen et al., 2015). (A). 

Spatial patterns of overall d-CAP set of each group. (B). Spatial similarities between 

simulated ground truth and analysis results.
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Figure 5. 
Spatial maps of seven major networks focused in CAP group analysis: (A) Five ICA 

component spatial maps and (B) two seed-based correlation maps. Network spatial maps are 

converted to z-score maps, thresholded at |z|>2 and overlaid on MNI-152 template. 

Abbreviations: DMN: default mode network; FPN: frontal-parietal network; SMN: sensori-

motor network; ECN: executive-control network; MTN: medial temporal network; STh: sub-

thalamic seeded network; STR: striatum seeded network.
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Figure 6. 
Examples of null distribution of spatial similarity between two maps.

Figure 6-1. (A) Spatial map of the existing d-CAP (top) and the d-CAP candidate (bottom) 

with a positive spatial correlation (0.09). (B). Statistical threshold (thre) in determining the 

spatial similarity between the two maps as a function of number of permutations being 

performed. Both thre (blue) and the variation (percent change) of thre (orange) are plotted 

against the number of permutations. (C). Null distribution of the spatial correlation value 

between two maps (blue) and the computed thre (dashed red) with 1000 permutations.

Figure 6-2. (A) Spatial map of an existing d-CAP (top) and a d-CAP candidate (bottom) 

with a negative spatial correlation (-0.21). (B). Statistical threshold (thre) in determining the 

spatial similarity between the two maps as a function of number of permutations being 

performed. Both thre (blue) and the variation (percent change) of thre (orange) are plotted 

against the number of permutations. (C). Null distribution of the spatial correlation value 

between two maps (blue) and the computed thre (dashed red) with 1000 permutations.
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Figure 7. D-CAP set in the Parkinson’s disease (PD) and normal control (NC) group for different 
resting-state networks
Figure 7-1. Spatial patterns of d-CAP sets in Parkinson’s disease (PD) and normal control 

(NC) group for different resting-state networks.

Figure 7-2. Effect size (Cohen’s d) map of every d-CAP in each group. Maps are 

thresholded at d>0.8. Red arrows indicate increased co-activations (larger effect size) in one 

group as compared to the other.

Figure 7-3. Spatial correlation matrices between d-CAPs from the same NC (top left plot in 

each box) and PD (bottom right plot in each box) group. Spatial correlation matrices d-CAPs 

from NC and PD groups (bottom right plot in each box). * indicates spatial similarity r>0.7; 

** indicates r>0.8 and *** indicates r>0.9.
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Figure 8. 
Box plot of switching probabilities of d-CAPs associated with seven networks in the PD and 

NC groups. Upper and lower bound of the box represents 75% and 25% of the data, and + 

indicates outliers. A t-test was performed with age and gender as covariates to test 

differences in the switching probability of each network for PD and NC groups. * indicates 

p<0.05 (uncorrected) and ** indicates p<0.05 (Bonferroni corrected).
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Figure 9. 
Switching probability as a function of the UPDRS part-III motor score of PD subjects for 

different resting-state networks. Age and gender were treated as covariates in the analysis. 

** indicates p<0.05 after correction for seven comparisons.
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Table 1

Demographics of subject cohort. N/A: Not available; RMS: root mean square.

NC PD Statistical

Age 64.25±9.50 (years) 58.03±11.54 (years) p = 0.10

Gender 14M/4F 11M/9F p = 0.13

Years of education 16.72±2.67 (years) 16.95±2.86 (years) p = 0.78

PD disease duration N/A 1.01±1.07 (years) N/A

UPDRS III motor score 0.44±1.01 15.05±7.43 p<0.001

UPDRS III tremor score N/A 1.25±1.04 N/A

RMS Motion 0.58±0.72 (mm) 0.43±0.21 (mm) p = 0.38
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Table 3

Number of d-CAPs in PD and NC groups for resting-state networks used in the CAP group analysis.

Network NC PD

DMN 2 2

FPN 2 2

SMN 2 2

ECN 4 3

MTN 3 2

STh 3 2

STR 3 3
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Table 4

Between group differences in the thresholded effect size map (Cohen’s d>0.8) of each d-CAP. (A) Increased 

activities in NC group. (B) Increased activities in the PD group.

A.

Network d-CAPs Increased activities (larger effect size) in 
the NC group

Network with the same number of d-CAPs

SMN 2nd d-CAP Sub-cortical areas

STR 3rd d-CAP Motor areas

STR 1st d-CAP Frontal areas

Networks with one more d-CAPs in the NC group

MTN 2nd d-CAP Frontal areas

STh 2nd d-CAP Motor areas

ECN 2nd d-CAP Sub-cortical areas

STh

The additional d-CAPs in NC

Frontal areas

MTN Sub-cortical areas

ECN Anterior cingulate cortex

B.

Network d-CAPs Increased activities (larger effect size) in the PD group

Network with the same number of d-CAPs
DMN 2nd d-CAP Superior temporal lobe, middle frontal areas

FPN 3rd d-CAP Inferior parietal lobe

Neuroimage. Author manuscript; available in PMC 2019 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 46

Ta
b

le
 5

(A
) 

Te
m

po
ra

l f
ra

ct
io

n 
of

 e
ac

h 
d-

C
A

P 
as

so
ci

at
ed

 w
ith

 s
ev

en
 n

et
w

or
ks

 in
 P

D
 a

nd
 N

C
 g

ro
up

s.
 (

B
) 

St
at

is
tic

al
 c

om
pa

ri
so

ns
 o

f 
th

e 
te

m
po

ra
l f

ra
ct

io
n 

of
 th

e 
1st

 

d-
C

A
P 

as
so

ci
at

ed
 w

ith
 n

et
w

or
ks

 th
at

 s
ha

re
 th

e 
sa

m
e 

nu
m

be
r 

of
 d

-C
A

Ps
 in

 th
e 

PD
 a

nd
 N

C
 g

ro
up

s.
 M

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n 
(s

td
) 

of
 s

ub
je

ct
 te

m
po

ra
l 

fr
ac

tio
ns

 a
re

 s
ho

w
n 

in
 th

e 
fi

rs
t t

w
o 

ro
w

s.
 N

et
w

or
k-

sp
ec

if
ic

 t-
va

lu
es

, f
am

ily
-w

is
e 

co
rr

ec
te

d 
p-

va
lu

es
 (

B
on

fe
rr

on
i c

or
re

ct
ed

) 
an

d 
ef

fe
ct

 s
iz

e 
(C

oh
en

’s
 d

) 
of

 

th
e 

te
m

po
ra

l f
ra

ct
io

n 
of

 th
e 

1s
t d

-C
A

Ps
 f

or
 th

e 
co

nt
ra

st
 N

C
 >

 P
D

.

A
.

N
C

P
D

d-
C

A
P

1
d-

C
A

P
2

d-
C

A
P

3
d-

C
A

P
4

d-
C

A
P

1
d-

C
A

P
2

d-
C

A
P

3

D
M

N
67

.2
1%

32
.7

9%
75

.8
5%

24
.1

5%

FP
N

74
.6

6%
25

.3
4%

72
.9

3%
27

.0
7%

SM
N

75
.0

7%
24

.9
3%

78
.5

4%
21

.4
6%

E
C

N
48

.2
4%

22
.0

9%
19

.5
1%

10
.1

6%
55

.9
8%

28
.4

1%
15

.6
1%

M
T

N
55

.5
6%

24
.3

9%
20

.0
5%

68
.1

7%
31

.8
3%

ST
h

56
.9

1%
26

.2
9%

16
.8

0%
69

.8
8%

30
.1

2%

ST
R

50
.5

4%
27

.3
7%

22
.0

9%
54

.6
3%

22
.5

6%
22

.8
0%

B
.

N
et

w
or

k
M

ea
n 

an
d 

st
d 

of
 t

he
 t

em
po

ra
l f

ra
ct

io
n

T-
va

lu
e

F
am

ily
-w

is
e 

co
rr

ec
te

d 
p-

va
lu

e
E

ff
ec

t 
si

ze
N

C
P

D

D
M

N
67

.2
1%

±
10

.0
6%

75
.8

5%
±

15
.9

4%
−

1.
58

0.
50

0.
58

FP
N

74
.6

6%
±

11
.2

4%
72

.9
3%

±
10

.5
7%

0.
25

1.
00

0.
09

SM
N

75
.0

7%
±

14
.0

5%
78

.5
4%

±
9.

65
%

−
1.

56
0.

52
0.

57

ST
R

50
.5

4%
±

11
.8

6%
54

.6
3%

±
13

.0
3%

−
1.

34
0.

76
0.

49

Neuroimage. Author manuscript; available in PMC 2019 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 47

Ta
b

le
 6

Sp
at

ia
l c

on
si

st
en

cy
 a

nd
 th

e 
95

th
 p

er
ce

nt
ile

 o
f 

its
 n

ul
l d

is
tr

ib
ut

io
n 

(i
n 

pa
re

nt
he

si
s)

 o
f 

ea
ch

 d
-C

A
P 

as
so

ci
at

ed
 w

ith
 s

ev
en

 n
et

w
or

ks
 f

or
 th

e 
PD

 a
nd

 N
C

 

gr
ou

ps
.

N
C

P
D

d-
C

A
P

1
d-

C
A

P
2

d-
C

A
P

3
d-

C
A

P
4

d-
C

A
P

1
d-

C
A

P
2

d-
C

A
P

3

D
M

N
0.

29
 (

0.
21

)
0.

32
 (

0.
22

)
0.

28
 (

0.
23

)
0.

30
 (

0.
24

)

FP
N

0.
28

 (
0.

21
)

0.
32

 (
0.

23
)

0.
30

 (
0.

23
)

0.
28

 (
0.

24
)

SM
N

0.
35

 (
0.

28
)

0.
34

 (
0.

30
)

0.
32

 (
0.

27
)

0.
31

 (
0.

29
)

E
C

N
0.

36
 (

0.
22

)
0.

35
 (

0.
23

)
0.

36
 (

0.
24

)
0.

34
 (

0.
25

)
0.

33
 (

0.
21

)
0.

30
 (

0.
22

)
0.

29
 (

0.
24

)

M
T

N
0.

32
 (

0.
21

)
0.

37
 (

0.
23

)
0.

34
 (

0.
23

)
0.

26
 (

0.
18

)
0.

28
 (

0.
19

)

ST
h

0.
35

 (
0.

23
)

0.
35

 (
0.

25
)

0.
38

 (
0.

25
)

0.
27

 (
0.

20
)

0.
31

 (
0.

22
)

ST
R

0.
32

 (
0.

21
)

0.
32

 (
0.

22
)

0.
36

 (
0.

23
)

0.
29

 (
0.

20
)

0.
32

 (
0.

21
)

0.
35

 (
0.

21
)

Neuroimage. Author manuscript; available in PMC 2019 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 48

Ta
b

le
 7

St
at

is
tic

al
 c

om
pa

ri
so

ns
 o

f 
sw

itc
hi

ng
 p

ro
ba

bi
lit

y 
in

 th
e 

N
C

 a
nd

 P
D

 g
ro

up
s.

 M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

(s
td

) 
of

 s
w

itc
hi

ng
 p

ro
ba

bi
lit

y 
in

 e
ac

h 
ne

tw
or

k 
ar

e 

lis
te

d 
se

pa
ra

te
ly

 f
or

 tw
o 

gr
ou

ps
. N

et
w

or
k-

sp
ec

if
ic

 t-
va

lu
es

, f
am

ily
-w

is
e 

co
rr

ec
te

d 
p-

va
lu

es
 (

B
on

fe
rr

on
i c

or
re

ct
ed

) 
an

d 
ef

fe
ct

 s
iz

e 
(C

oh
en

’s
 d

) 
of

 th
e 

sw
itc

hi
ng

 p
ro

ba
bi

lit
y 

fo
r 

th
e 

co
nt

ra
st

 N
C

 >
 P

D
 a

re
 a

ls
o 

lis
te

d.

N
et

w
or

k
M

ea
n 

an
d 

st
d 

of
 t

he
 s

w
it

ch
in

g 
pr

ob
ab

ili
ty

T-
va

lu
e

F
am

ily
-w

is
e 

co
rr

ec
te

d 
p-

va
lu

e
E

ff
ec

t 
si

ze
N

C
P

D

D
M

N
0.

40
 ±

 0
.1

1
0.

30
 ±

 0
.1

4
2.

20
0.

25
0.

79

FP
N

0.
36

 ±
 0

.1
3

0.
38

 ±
 0

.1
1

0.
14

1.
00

0.
05

SM
N

0.
35

 ±
 0

.1
2

0.
30

 ±
 0

.1
2

1.
73

0.
65

0.
62

E
C

N
0.

64
 ±

 0
.1

2
0.

53
 ±

 0
.0

9
2.

89
0.

05
1.

04

M
T

N
0.

56
 ±

 0
.0

6
0.

40
 ±

 0
.1

0
4.

91
1.

9×
10

−
4

1.
77

ST
h

0.
55

 ±
 0

.0
8

0.
35

 ±
 0

.1
1

5.
59

2.
7×

10
−

5
2.

01

ST
R

0.
59

 ±
 0

.0
9

0.
53

 ±
 0

.1
2

2.
47

0.
13

0.
89

Neuroimage. Author manuscript; available in PMC 2019 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 49

Table 8

Network-specific t-values, family-wise corrected p-values (Bonferroni corrected) and effect size (Cohen’s d) 

for the switching probability as a linear function of the UPDRS-III motor score in PD.

Network T-value Family-wise corrected p-value Effect size

DMN 0.58 1.00 0.16

FPN 0.84 1.00 0.22

SMN −3.31 0.04 0.88

ECN −0.95 1.00 0.25

MTN −0.81 1.00 0.22

STh −0.85 1.00 0.23

STR 0.66 1.00 0.18
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