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A B S T R A C T

To better understand the impact of aging, along with other demographic and brain health variables, on the neural networks that support different aspects of cognitive
performance, we applied a brute-force search technique based on Principal Components Analysis to derive 4 corresponding spatial covariance patterns (termed
Reference Ability Neural Networks –RANNs) from a large sample of participants across the age range. 255 clinically healthy, community-dwelling adults, aged 20–77,
underwent fMRI while performing 12 tasks, 3 tasks for each of the following cognitive reference abilities: Episodic Memory, Reasoning, Perceptual Speed, and Vo-
cabulary. The derived RANNs (1) showed selective activation to their specific cognitive domain and (2) correlated with behavioral performance. Quasi out-of-sample
replication with Monte-Carlo 5-fold cross validation was built into our approach, and all patterns indicated their corresponding reference ability and predicted
performance in held-out data to a degree significantly greater than chance level. RANN-pattern expression for Episodic Memory, Reasoning and Vocabulary were
associated selectively with age, while the pattern for Perceptual Speed showed no such age-related influences. For each participant we also looked at residual activity
unaccounted for by the RANN-pattern derived for the cognitive reference ability. Higher residual activity was associated with poorer brain-structural health and older
age, but –apart from Vocabulary-not with cognitive performance, indicating that older participants with worse brain-structural health might recruit alternative neural
resources to maintain performance levels.
Introduction

Cognitive aging can be described parsimoniously by a set of four
reference abilities – Episodic Memory, Reasoning, Perceptual Speed, and
Vocabulary – that serve as the “primitive types” of cognition in general
(Salthouse and Ferrer-Caja, 2003). Our group has recently extended this
line of research (Habeck et al., 2016; Stern et al., 2014) by collecting
functional imaging data on a battery of tasks that tap each of the four
reference abilities across the adult life span, in order to determine their
neural correlates, i.e. Reference Ability Neural Networks (RANNs). Using
a multivariate technique that married Principal Components Analysis
(PCA) and Linear-Indicator Regression (Hastie et al., 2009), we previ-
ously derived spatial activation patterns that accurately classified the
reference ability underlying each activation task. Indeed, even when
these patterns were derived only in people below age 30, out-of-sample
task classification performance of the four RANNs in people older than
30 was high, and did not decline with age, suggesting that these RANNs
are age-invariant.

In this previous specification of the RANNs to their underlying
reference ability, one crucial aspect that was not accounted for was
behavioral performance: ideally, RANNs should not only be specific to
the reference ability of the underlying cognitive process, but also account
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for behavioral performance. To reconcile this issue, we extended our
previous findings, analyzing the data from 255 20–77 year old adults
who underwent fMRI while performing three tasks for each of the four
cognitive reference abilities, i.e. 12 tasks in total. In the current report,
we combined PCA with a brute-force search that sought to maximize both
the brain-behavioral correlation of the derived RANNs and cognitive
specificity to the reference domain in question. Statistical inference was
performed by resampling, and testing the prediction of cognitive process
and behavioral performance in held-out data. This approach allowed us
to investigate how well the RANNs could account for performance and
cognitive specificity, and to understand how changes in performance
concomitant with aging are reflected in these RANNs.

We stress that the current report is not methodological in focus: the
approach we chose is conceptually simple, but algorithmically somewhat
involved, lengthy and inelegant. We are not bringing a prime-time ready
technique to the field that should be widely disseminated; rather, our
focus here is on the results of our approach, i.e. the derived networks,
their association with behavioral performance, demographics and brain
structure across the adult life span.
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Methods

Participant sample and demographics

Analyses included data from 255 strongly right-handed, native En-
glish speaking healthy adults. Participants were recruited via random-
market-mailing, and screened for MRI contraindications and hearing or
visual impairment that would impede testing. Older adult participants
were additionally screened for dementia and mild cognitive impairment
prior to participating in the study, and participants who met criteria for
either were excluded. Apart from these obvious cognitive exclusion
criteria, we had a host of other health-related exclusion criteria
including: myocardial infarction, congestive heart failure or any other
heart disease, brain disorder such as stroke, tumor, infection, epilepsy,
multiple sclerosis, degenerative diseases, head injury (loss of con-
sciousness> 5mins), mental retardation, seizure, Parkinson's disease,
Huntington's disease, normal pressure hydrocephalus, essential/familial
tremor, Down Syndrome, HIV Infection or AIDS diagnosis, learning
disability/dyslexia, ADHD or ADD, uncontrolled hypertension, uncon-
trolled diabetes mellitus, uncontrolled thyroid or other endocrine dis-
ease, uncorrectable vision, color blindness, uncorrectable hearing and
implant, pregnancy, lactating, any medication targeting central nervous
system, cancer within last five years, Renal insufficiency, untreated
neurosyphilis, any alcohol and drug abuse within last 12 months, recent
non-skin neoplastic disease or melanoma, active hepatic disease, insulin
dependent diabetes, any history of psychosis or ECT, recent (past five
years) major depressive, bipolar, or anxiety disorder, objective cognitive
impairment (dementia rating scale of <130), and subjective functional
impairment (BFAS> 1). The prevalence of medication for hypertension,
diabetes, and high cholesterol is as follows, respectively: 18%, 14%, and
7%. This compares favorably with CDC statistics for the adult US popu-
lation at large (33.5%, 12.6%, and 12.1%, from www.cdc.gov/nchs/
fastats). A complete description of the participants in terms of de-
mographics and cortical thickness can be found in Table 1.

Procedure

FMRI data was acquired as participants performed 12 cognitive tasks,
pertaining to the four reference abilities (Stern et al., 2014). In the
remainder of the manuscript, we occasionally use the following
short-hand notation for the reference abilities: episodic memory—MEM
or just “Memory”, reasoning — REASON, perceptual speed — SPEED or
just “Speed”, and vocabulary — VOCAB. We will refer to the Reference
Ability Neural Networks (RANNs) as activation patterns, for brevity.
Further, “cognitive reference ability” and “cognitive reference domain”
will be used interchangeably.

Tasks were administered over the course of two 2-h scanning sessions,
with six tasks administered in each scanning-session. One session pre-
sented three VOCAB tasks and three SPEED tasks interspersed in a fixed
order: Synonyms, Digit-Symbol, Antonyms, Letter Comparison, Picture
Naming, and Pattern Comparison; and the other session presented three
MEM tasks and three REASON tasks, also interspersed in a fixed order:
Logical Memory, Paper Folding, Word Order Recognition, Matrix
Reasoning, Paired Associates, and Letter Sets. The order of tasks within
session was not varied, but the order of the two sessions was counter-
balanced across participants. Prior to each scan session, computerized
Table 1
Participant sample and demographics. Cortical thickness has strong negative linear age trends,

<30 30–39 40

N 35 44 38
NART-IQ 113� 9 112� 9 11
Education 15.3� 2.3 16.4� 2.5 15
Sex 23 F, 12M 27 F, 17M 17
DRS 140.4� 2.7 139.8� 2.3 13
Mean Cortical thickness 2.69� 0.11 2.66� 0.09 2.
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training was administered for the six tasks to be administered during that
session. At the completion of training for each task, participants had the
option of repeating the training. For all tasks except Picture Naming,
responses were differential button presses. During training, responses
were on the computer keyboard. During scans, they were made on the
LUMItouch response system (Photon Control Company).

Stimulus presentation
Task stimuli were back-projected onto a screen located at the foot of

the MRI bed using an LCD projector. Participants viewed the screen via a
mirror system located in the head coil and, if needed, had vision cor-
rected to normal using MR compatible glasses (manufactured by Safe-
Vision, LLC. Webster Groves, MO). Task administration and collection of
reaction time (RT) and accuracy data were controlled by EPrime running
on a PC computer. Task onset was electronically synchronized with the
MRI acquisition computer.

Reference ability tasks

VOCAB tasks. The primary dependent variable for all VOCAB tasks was
the proportion of correct responses.

Synonyms (Salthouse, 1993): Participants were instructed to match a
given probe word to its synonym or to the word most similar in meaning.
The probe word was presented in all capital letters at the top of the
screen, and four numbered choices were presented below. Participants
indicated which choice was correct.

Antonyms (Salthouse, 1993): Participants matched a given word to
its antonym, or to the word most different in meaning. The probe word
was presented in all capital letters at the top of the screen, and four
numbered choices were presented below. Participants indicated which
choice was correct.

Picture Naming: Participants verbally named pictures, adapted from
the picture naming task of the WJ-R Psycho-Educational battery (Salt-
house, 1998; Woodcock et al., 1989).

SPEED tasks. As accuracy for all three SPEED tasks was high, the primary
dependent variable was reaction time (RT). For all tasks, participants
were instructed to respond as quickly and accurately as possible.

Digit Symbol: A code table was presented on the top of the screen,
consisting of nine number (ranging in value from 1 to 9)-symbol pairs.
Below the code table, an individual number/symbol pair was presented.
Participants indicated whether the individual pair was the same as that in
the code table.

Letter Comparison (Salthouse and Babcock, 1991): Two strings of
letters, each consisting of three to five letters, were presented alongside
one another. Participants indicated whether the letter-strings were the
same or different.

Pattern Comparison (Salthouse and Babcock, 1991): Two figures,
consisting of varying numbers of lines connecting at different angles,
were presented alongside one another. Participants indicated whether
the figures were the same or different.

REASON tasks. The primary dependent variable for the REASON tasks
was proportion of correct trials.

Paper Folding (Ekstrom et al., 1976): Participants selected which of
p< .0001.

–49 50–59 60–69 >70

40 62 36
4� 9 115� 8 118� 9 120� 10
.9� 2.6 15.5� 2.3 16.0� 2.5 17.3� 2.5
F, 21M 20 F, 20M 32 F, 30M 18 F, 18M
9.1� 2.9 140.1� 3.3 139.7� 3.1 139.7� 3.0
65� 0.09 2.59� 0.08 2.55� 0.11 2.51� 0.12
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six options best represented the pattern of holes that would result from a
sequence of folds in a piece of paper through which a hole was punched.
The sequence was given on the top of the screen, and the six options were
given across two rows (three options in each row) below. Response
consisted of pressing one of six buttons corresponding to the chosen
solution.

Matrix Reasoning (adapted from Raven (1962)): Participants were
given a matrix that was divided into nine cells, in which the figure in the
bottom right cell was missing. Participants were instructed to evaluate
which of eight figure choices, presented below the matrix, would best
complete the missing cell.

Letter Sets (Ekstrom et al., 1976): Participants were presented with
five sets of letters, where four out of the five sets had a common rule (i.e.
they have no vowels), with one of the sets not following this rule. Par-
ticipants identified the unique set.

MEM tasks. The primary dependent variable for the MEM tasks was the
proportion of correctly answered questions.

Logical Memory: Participants were asked to answer detailed
multiple-choice questions about a story presented on the computer
screen, with four possible answer choices.

Word Order Recognition: Participants were presented with 12
words sequentially, and were instructed to remember the order in which
the words were presented. Following the word list, they were given a
probe word at the top of the screen, and four additional word choices
below. They were instructed to choose out of the four options the word
that immediately followed the word given above in the word list.

Paired Associates: Participants were instructed to remember pairs of
words presented sequentially on the screen. Following presentation of
the pairs, participants were given a probe word at the top of the screen
and four additional word choices below. Participants were asked to
choose the word that was originally paired with the probe word.

Behavioral performance variables
Behavioral performance was recorded while participants executed

each task in the scanner. When proportion of correct trials was calcu-
lated, trials where the participant did not respond (i.e. timed out) were
not considered in the calculation. For the SPEED tasks, reaction time was
reversed in sign, such that an increasing value of the behavioral score
implied better performance.

Image acquisition procedures
All MR images were acquired on a 3.0 Tesla Philips Achieva Magnet.

There were two, 2-h MR imaging sessions to accommodate the 12 fMRI
activation tasks as well as the additional imaging modalities, described
below. At each session, a scout, T1-weighted image was acquired to
determine participant position. Participants underwent a T1-weighted
MPRAGE scan to determine brain structure, with a TE/TR of 3/6.5ms
and Flip Angle of 8�, in-plane resolution of 256� 256, field of view of
25.4� 25.4 cm, and 165–180 slices in axial direction with slice-
thickness/gap of 1/0mm. All scans used a 240mm field of view. For
the EPI acquisition, the parameters were: TE/TR (ms) 20/2000; Flip
Angle 72�; In-plane resolution (voxels) 112� 112; Slice thickness/gap
(mm) 3/0; Slices 41. In addition, MPRAGE, FLAIR, DTI, ASL, and a 7-min
resting BOLD scan were acquired. A neuroradiologist reviewed each
participant's scans. Any significant findings were conveyed to the par-
ticipant's primary care physician.

Image-processing procedures
Structural Imaging - Two structural indices were included in our

calculations: (1) gray matter volume and (2) thickness by region of in-
terest (ROI).

Each participant's structural T1 scans were reconstructed using
FreeSurfer v5.1 (http://surfer.nmr.mgh.harvard.edu/). The accuracy of
FreeSurfer's subcortical segmentation and cortical parcellation (Fischl et
53
al., 2002, 2004) has been reported to be comparable to manual labeling.
Each participant's white and gray matter boundaries, as well as gray
matter and cerebral-spinal-fluid boundaries, were visually inspected slice
by slice, and manual control points were added in the case of any visible
discrepancy. Boundary reconstruction was repeated until we reached
satisfactory results for every participant. The subcortical structure bor-
ders were plotted by freeview visualization tools and compared against
the actual brain regions. In the case of discrepancy, they were corrected
manually. Finally, we computed mean values for 68 cortical ROIs for
cortical thickness and cortical volume for each participant to be used in
group-level analyses.

Functional neuroimaging - Each participant's 12 task-activation
fMRI scans were pre-processed in FSL (Smith et al., 2004) using the
following steps: (1) within-participant histogram computation for each
participant volume to identify noise (FEAT); (2) participant-motion
correction (MCFLIRT); (3) slice-timing correction; (4) brain-mask crea-
tion from first volume in participant's fMRI data; (5) high-pass filtering
(T¼ 128 s); (6) pre-whitening; (7) General-Linear-Model (GLM) estima-
tion with equally temporally filtered regressors and double-gamma he-
modynamic response functions; and (8) registration of functional and
structural images with subsequent normalization into MNI space
(FNIRT).

General linear models (GLM) for each participant and each task
consisted of block-based time-series analysis for SPEED and VOCAB
tasks, and event-related modeling for REASON andMEM tasks. For MEM,
only the recognition phase of the trial was analyzed. Contrary to usual
voxel-wise FSL practice, we obtained standardized contrast images of
task> fixation for every participant and task to perform group-level
multivariate analysis (described in the next section). Other than for
MEM, there was no separation of stimulus presentation or behavioral
response in our task design. For all fitted neural responses, whether
event-related or block-designed, incorrect and correct responses were not
separated, but analyzed indiscriminately, in the GLM-fitting process.

Brute-force search pattern derivation with optimization of indicator and
behavioral correlation

We repeat that the main focus of our paper was not methodological.
This means that the techniques we used to derive activation patterns
were not optimized for elegance or computational speed, neither were
they intended to be disseminated for widespread use; rather, they were
conceptually simple and with repeated executions to deal with inherent
stochastic variability. To explore and maximize the relationship between
RANN pattern scores and behavioral performance, a simple brute-force
computational approach was adopted. This approach is slower and less
elegant than alternative parametric approaches, like regularized least
squares, but it pays equal attention to both cognitive specificity and
brain-behavioral correlation, rather than maximizing one aspect while
treating the other merely as a boundary condition. Conceptually, our
approach is very simple. Fig. 1 below gives a schematic birds-eye view of
our approach.

Fig. 1 illustrates the goals of our multivariate technique for deriving
an activation pattern that is both specific to one particular reference
domain (in the figure the example is shown for memory), and correlates
with performance within that reference domain. Such an activation
pattern is only derived from the task-maps pertaining to the reference
domain of interest; however, for validating the specificity of the pattern
to this reference domain, the pattern has to be prospectively applied to
the task-maps from all other domains too. Pattern scores in the task-maps
of these other reference domains should be significantly lower than for
the reference domain of interest. We will refer to the fulfillment of this
requirement as “indicator correlation” for the remainder of the
manuscript.

We give the full algorithmic recipe below, and occasionally list the
linear algebra involved in Matlab notation. The parameters listed below
were chosen to ensure that (1) resampling non-parametric tests for the

http://surfer.nmr.mgh.harvard.edu/


Fig. 1. Main illustration of the goals of our analytic technique with mock data. The top equation restates the generic form for any multivariate decomposition of a
data array Y(s,x) which captures all subject and task information (s) in the pattern score w(s), while the group-invariant pattern v(x) contains all spatial infor-
mation with regard to voxel location x, while irrelevant information is discarded into the residual error term ε(s,x). For the pattern score w(s) the reader can now
appreciate the purpose of the optimization: simultaneous maximization of the brain-behavioral correlation in the reference domain of interest (left lower panel),
and the indicator correlation across all task maps (right lower panel). The example shown in this schematic is for the Memory domain. Our technique imposes no
prior spatial constraints on the pattern v(x).
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point-estimate computation could be performed in reasonable execution
times, and (2) there would be sufficient reproducibility of the derived
topographic images for the point estimate. Because the method we used
has inherent stochastic variability even when executed on identical data,
we demanded that spatial correlations of covariance patterns derived
from identical data should exceed R¼ 0.95 for repeated execution of the
search routine. We give a listing of pseudo-code that demonstrate the
algorithm for the Memory domain. For the other domains, it would be
executed similarly.

1. Collect all Memory task maps, N¼ number of maps;
(N¼ 3� 200¼ 600 for our purposes since the derivation is only
executed in a training sample of 200 of the participants)

2. Perform PCA on these N maps;
3. Retain all PCs with an Eigen value that is bigger than 1/600 of the

sum of all Eigen values, i.e. 0.17% of the total variance; number of
retained PCs ¼ P;

4. Compute pattern scores (cf. section Pattern expression and residual
activation) of these P PCs in ALL task maps, even the ones not
belonging to the MEMORY domain;

5. Execute “inner loop” with 1000 iterations;
Inner loop:
a. Assign a “best estimate pattern” of zeros as voxel loadings, and

with brain-behavioral and indicator-correlation values of zero; this
is just a placeholder for initialization and will be overwritten in the
course of the inner loop;

b. Generate P random coefficients for P retained PCs;
c. Compute the linear-combination pattern with these P coefficients

by using them as weights in a weighted sum; the computation is
executed according to pattern¼ v(:,1:P) *b, where pattern and v
have as many rows as voxels, and b is the column vector of the P
random coefficients;
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d. Compute the pattern score of the linear-combination pattern in all
task maps (see section Pattern expression and residual activation.
for an explanation of pattern score computation), not only the
Memory task maps since all task maps are needed for the indicator
correlation;

e. Compute the brain-behavioral correlation of the pattern score and
performance variable for the Memory task maps;

f. Compute the indicator correlation of the pattern score across all
maps, i.e. correlate the pattern score in all maps with an indicator
variable that assigns values of 1 to all Memorymaps, but zero to all
non-Memory maps;

g. Check if both indicator and behavioral correlations are higher than
the values of best current estimate; if so, retain the current pattern
as the best current estimate with its correlation values, and discard
the previously stored values;

h. Repeat steps b.-g. with 200 repetitions;
i. Outcome of inner loop: one activation pattern with a corre-

sponding correlation strength, which is the average of the associ-
ated indicator and brain-behavioral correlations;
➔Outcome of the execution of 1000 inner loops: 1000 activation
patterns with corresponding correlation strengths

6. Compute a weighted average of the 1000 patterns, where the corre-
lation strengths serve as weights;
➔End result: one single activation pattern for the Memory domain

Fig. 2 shows a mock display of data resulting from the execution for
the inner loop, where 100 PCs were retained at the start.

The figure displays the 100 random PC weights for each of the 200
iterations, the behavioral and indicator correlation. In the example, it-
erations 4, 46, 73, and 164 resulted in updates of the best-estimate
pattern. For this run of the inner loop, the final pattern retained would
be the pattern obtained in iteration 164.



Fig. 2. Illustration of the ‘inner loop’ in the
pattern derivation process with mock data.
Execution of the inner loop supposes that
PCA was performed on the data and 100 PCs
have been retained according to the ‘Eigen
value> 1’ criterion. Now 200 random co-
efficients for the PCs are generated and the
corresponding linear-combination pattern is
computed. Next we compute the indicator
correlation, i.e. selectivity of the pattern
scores to the reference ability in question,
and the brain-behavioral correlation of the
pattern scores. If both values exceed the
values of the previous best estimate, we
accept the pattern as the current best esti-
mate. In the figure below, the indicator
correlation is plotted in the top pane, and
the brain-behavioral correlation in the
middle pane, while the corresponding
randomly generated 100-component weight
vectors are plotted in the bottom pane.
Simultaneous best estimates are found
sequentially at iterations 4, 46, 73, and 164,
marked with vertical lines and red dots in
the correlation values. The estimate at iter-
ation 164 is taken as the final best estimate
for this inner-loop execution.
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Pattern expression and residual activation

Once a covariance pattern has been derived, it can be projected onto
any data set, for computation of the pattern-expression scores. Such
scores can then be used to validate brain-behavioral correlations in quasi
replication samples (see section Split sample simulations and statistical
inference on pattern loadings). If we assume pattern v is a column vector
Fig. 3. Illustration of pattern w and residual activation ress for a mock example o
dimensional space. The two maps could denote the same subjects, but different t
performing the inner (or ‘dot’) product between the brain maps and the pattern v. G
pattern score is the same for both brain map 1 and 2, but the residual activation i
larger parts unaccounted for by the covariance pattern v than for map 2.
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with as many rows as voxels, andmatrix Y is a data set with as many rows
as voxels and as many columns as observations, the pattern score can be
computed

w¼Y0 v

where the prime symbol ‘ indicates matrix transposition, and the pattern
f 2-dimensional brain maps. Each map can be represented by a point in a two
asks, or different tasks and subjects. Computing the pattern score mounts to
eometrically, this is a simple orthogonal projection. In the example shown, the
s different. Map 1 has larger residual activation, i.e. both voxel 1 and 2 have
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score vector w is a column vector with as many rows as observations.
In addition to quantifying with a pattern score to what degree a brain

map expresses pattern v, we can also quantify the residual activation in
any brain map not accounted for by v. The residual activation with
respect to any covariance pattern v can be computed according to

R¼Y (1 - v v0)

where 1 denotes the voxel-by-voxel unit matrix, and R accordingly has
the same data format as Y. We squared the residual matrix and average
within map across observations to obtain a mean Residual-Sum-Of-
Squares (RESS) vector. In Matlab notation, this would be written as

ress¼mean(R.̂2,1)’;

Ress has the same format as w, i.e. it is a column vector with as many
rows as observations, which are tasks and subjects in this case, i.e. not
voxels. In our regression analyses, the three ress values for a single
participant in each reference ability were averaged across the three tasks
for that reference ability to produce one scalar value per reference ability
per participant.

Fig. 3 illustrates pattern score and residual activation for a sample
case of two voxels. However, the computation readily generalizes to any
higher dimension.

In addition to illustrating how pattern and residual activation scores
are derived, Fig. 3 further shows that a priori there is no relationship that
is forced upon these two quantities. Across participants, they can be
found to be negatively correlated, positively correlated, or uncorrelated.
In particular, a higher pattern score for any RANN-pattern in an indi-
vidual does not necessitate a lower residual activation score; such a
negative relationship would imply that the total amount of activation in
any task map is conserved across participants, which is not true in the
absence of particular normalizations.

Split sample simulations and statistical inference on pattern loadings

To ensure inferential robustness of the RANNs, we applied our search
technique repeatedly to resampled data for all four reference abilities,
using a Monte-Carlo 5-fold cross-validation in which 80% of the data is
used as a training set and 20% of the data is used as the test set. Under
this procedure, training and test sets are non-overlapping within each
iteration (but are overlapping between different iterations). Specifically,
we randomly split our data repeatedly (¼1000 times) into a derivation
sample of 200 participants and a replication sample of 55 participants.
Within each iteration, all task images for the 200 participants in the
training sample (12� 200¼ 2400 in total) were used to derive the four
RANNs, and all task maps for the 55 participants in the replication sample
(55� 12¼ 660 in total) were used to test the out-of-sample generaliza-
tion. Age was not used as covariate for the pattern derivation. Brute-force
optimization (see section Brute-force search pattern derivation) was
performed in the 200-participant derivation sample, and four RANNs
were derived, leading to 1000 estimates for all four reference abilities.
The expressions of the derived patterns in the replication sample were
then correlated (1) with the particular indicator variable for the corre-
sponding reference ability and (2) with behavioral performance. These
out-of-sample correlations were computed for descriptive purposes and
to test whether our pattern-derivation technique yielded not only reliable
pattern estimates, but also reliable brain-behavioral correlations. Out-of-
sample correlation was quantified with the lodP value according to

lodP ¼ -sign(R) * log10(P)

where R is the correlation, either with the behavioral variable in the tasks
pertaining to the reference abilities in question, or with the indicator
variable for that reference ability across all tasks, and P is the p-value
associated with this correlation. Both lodP(behavior) as well as lodP(in-
dicator) were computed. LodP was used because it enables better visu-
alization than the p-level alone, and it incorporates the sign of the
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correlation. (Low p-levels with the wrong sign of the association would
not qualify as a satisfactory out-of-sample prediction; the lodP statistic
therefore distinguishes the sign of the correlation and provides the level
of significance in one statistic.) We stress that our split-sample simula-
tions, technically described as Monte-Carlo 5-fold cross validation,
cannot be regarded as true replications since our derivation and repli-
cation samples have overlap between iterations, and each derived pattern
and out-of-sample prediction does not originate from truly independent
data samples. Our simulations are thus probably under-estimating the
true out-of-sample prediction error; however, for relative statements and
comparing the reference domains, our methods are still suitable. The
term “replication” for the remainder of the manuscript should be un-
derstood with this caveat in mind.

To compute the robustness of pattern loadings, the mean and stan-
dard deviation of the loadings across all 1000 estimates for each RANN
were computed. From this, a Z-value was computed as the inverse coef-
ficient of variation for every voxel loading:

Z (loading)¼mean value (loading) / STD (loading)

Bootstrap loadings in all four activation patterns were thresholded
according to jZj>4.75, which under a standard-normal assumption cor-
responds to a two-tailed p-level of 0.05, where the p-level has been
Bonferroni corrected for the number of voxels in the analysis (¼24,596).
Local maxima that were more than three voxels (¼9mm) apart and a
cluster-size threshold of 100 were computed. For visualization, we
adopted a more lenient threshold of jZj>3 and cluster-size >50. The
Automated Anatomical Labeling (AAL) template provided by the soft-
ware package MRIcron (www.mricron.com by Chris Rorden, Version 11)
was used to locate and annotate local maxima.
Relation of pattern scores, residual-activity scores, demographics and brain
structure

After the derivation of the four RANN-patterns, we sought to derive
full bivariate correlations and partial correlations of several quantities,
separately for each reference ability. The quantities were: (1) behavioral
performance, (2) RANN-pattern score, (3) residual activity, (4) age, (5)
education, (6) NART-IQ, (7) mean cortical thickness, and (8) mean
cortical volume.

Results

Topographic composition and replication of the reference-ability neural
networks

Topographic composition of the four RANNs, derived according to the
steps described in the Methods section, is shown in Fig. 4.

The quasi-replication performance regarding both brain-behavioral
and indicator correlations out of sample is shown in Fig. 5. In total we
ran 1000 iterations of our routine. The indicator correlation was signif-
icant for every iteration; the brain-behavioral correlation, on the other
hand, was significant at p< .01: 100% of the time for MEM, 99% of the
time for REASON, 43% of time for SPEED, and 75% of the time for
VOCAB. Despite these variations, it is important to note that all of these
values are highly significant: Chance replication at p< .01 would be
expected only 1% of the time. Thus, even for the worst performing RANN
(SPEED), chance performance is exceeded more than 40-fold.

By design, all of the RANN patterns correlated positively with
behavioral performance, such that as performance increases (¼gets bet-
ter), regions with positive loadings increase in activation and regions
with negative loadings decrease in activation.

All RANN patterns showed regions with both positive and negative
loadings. The MEM pattern consisted of positive loadings in the right
supplementary motor area, and a widespread bilateral pattern of frontal,
occipital and parietal areas; negative loadings were lateralized to the
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Fig. 4. Topographic composition of 4 derived RANNs. Red corresponds to activation, blue to de-activation. The statistical threshold jZj was chosen as 3, with a
minimum cluster size of 50. These settings were more liberal than in Tables 2–5, to allow a more complete visual appreciation.

Fig. 5. Replication performance for behavioral correlation out of sample. The
RANNs that were derived in the derivation sample of 200 study participants
by optimizing both behavioral and indicator correlation were subsequently
tested for behavioral and indicator correlation in the left-out data for 55 study
participants. Top panel: prediction of behavioral performance out of sample.
The black line indicates the lodP¼ 2, i.e. p< .01. The number of iterations
(out of 1000) yielding replications with lodP>2 are 1000 for MEM, 999 for
REASON, 426 for SPEED, and 750 for VOCAB. Bottom panel: quasi replica-
tion performance for indicator correlation; all replications were significant
at p< .01.
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right hemisphere and found in right temporal and inferior frontal areas.
For the REASON pattern, positive loadings consisted mainly of bilateral
parietal and occipital with only scant frontal involvement; negative
loadings were found in bilateral lingual gyri, caudate, putamen, and the
57
supplementary motor area with a prominent focus of de-activation in the
anterior cingulate. For SPEED, regions with positive loading included
mainly basal ganglia and occipital areas, while negative loadings were
found mainly in bilateral frontal and parietal areas. The VOCAB-pattern
was highly left-lateralized, as expected: positive areas included left-
fronto-temporal areas, while negative loadings included the right parie-
tal and occipital areas.

Detailed listings of the super-threshold areas with anatomical labels
can be found in Tables 2–5. We also checked forward-inference maps
from Neurosynth for Memory, Reason and Speed to convey to the reader
how many of our activation loci have been covered in previous papers
with the search terms “Episodic Memory”, “Reasoning” and “Speed”,
respectively, and how many loci appear as novel.
Relation of RANN patterns to age, education, verbal intelligence, and brain
structure

For each participant, we obtained the pattern score of each RANN in
the three constituent task-activationmaps and averaged the scores within
participant across all three tasks. Pattern scores and mean-squared re-
sidual activations were then considered together with age, education,
NART-IQ, mean cortical thickness, and mean cortical volume. We
computed both bivariate as well as partial correlations, for each reference
ability. Below we display the full bivariate and partial correlations, and
briefly comment on the results for cognitive performance and network
scores for all reference abilities.

Memory
We direct our attention towards row 1 in Table 6, to glean the unique

associations that remain with Memory performance after partialling out
all other influences. Pattern expression of the Memory-RANN, education
and NART-IQ remain uniquely associated with Memory performance.
The unique variance contributed to Memory performance by the RANN
pattern was 19.4%, with a total joint variance contribution by all mea-
sures of 37.4%. In the lower triangular matrix, the first column in Table 6
indicates that all measures apart from residual activation show bivariate



Table 2
Most prominent loadings for the Memory RANN. Shown are local maxima that fulfilled
jZj>4.75, CS> 100, and were at least 3 voxels (¼9mm) apart. Apart from the AAL label, we
also show the Z-value obtained from a forward-inference (¼P (Activation j Function)) from
the meta-analytic website http://www.neurosynth.org/, where “episodic memory” was
input and 270 studies were obtained.

MNI-
X

MNI-
Y

MNI-
Z

CS Z AAL_label “Episodic
memory”

Positive loadings
39 �21 48 356 11.9253 Postcentral_R 0
42 �15 57 356 11.5455 Precentral_R 0
33 �9 63 356 10.7692 Precentral_R 0
0 0 54 225 10.7326 Supp_Motor_Area_L 0
45 �30 48 356 10.3542 Postcentral_R 0
�54 �21 33 988 10.0158 Postcentral_L 0
�39 �39 48 988 9.9248 Parietal_Inf_L 0
51 �21 42 356 9.9025 Postcentral_R 0
51 �24 54 356 9.8786 Postcentral_R 0
36 �36 54 356 9.8197 Postcentral_R 0
�51 9 30 281 9.6498 Frontal_Inf_Oper_L 3.7202
�12 �69 27 988 9.5252 Cuneus_L 0
0 �66 33 988 9.5086 Precuneus_L 0
3 6 48 225 9.2556 Supp_Motor_Area_R 0
�42 6 27 281 8.7155 Frontal_Inf_Oper_L 7.8370
�45 �30 39 988 8.6612 Parietal_Inf_L 0
�54 3 39 281 8.6584 Precentral_L 0
�51 �30 48 988 8.3301 Parietal_Inf_L 0
�42 18 27 281 8.3246 Frontal_Inf_Tri_L 8.2944
15 �63 12 988 8.2741 Calcarine_R 0
�30 �57 48 988 7.9746 Parietal_Inf_L 7.8370
0 �57 27 988 7.6562 Precuneus_L 6.0073
6 �18 48 225 7.6444 Cingulum_Mid_R 0
15 �60 21 988 7.5801 Cuneus_R 0
�24 �72 51 988 7.5179 Parietal_Sup_L 0
�21 �66 57 988 7.487 Parietal_Sup_L 0
�27 �78 33 988 7.2738 Occipital_Mid_L 0
�36 �54 57 988 7.2029 Parietal_Inf_L 0
�36 �48 48 988 7.1261 Parietal_Inf_L 5.5499
�54 6 15 281 6.983 Rolandic_Oper_L 0
51 �18 18 356 6.8531 Rolandic_Oper_R 0
3 �66 21 988 6.6697 Cuneus_R 0
�9 �69 15 988 6.5713 Calcarine_L 0
�3 �54 39 988 6.5515 Precuneus_L 0
�51 30 18 281 6.516 Frontal_Inf_Tri_L 6.9221
63 �18 27 356 6.4028 SupraMarginal_R 0
�24 �66 39 988 6.3517 Occipital_Mid_L 7.8370
�3 �39 24 988 6.299 Cingulum_Post_L 0
�3 �30 27 988 6.2677 No label 0
�3 �42 33 988 6.0313 Cingulum_Post_L 0
�12 �66 6 988 5.9293 Calcarine_L 0
�12 �69 51 988 5.8469 Precuneus_L 0
39 �48 57 356 5.7896 Parietal_Sup_R 0
6 �45 18 988 5.4151 Precuneus_R 0
�3 21 45 225 5.2257 Supp_Motor_Area_L 6.9221
�9 12 39 225 5.0226 Cingulum_Mid_L 3.7202
Negative loadings
54 �48 42 372 �9.3197 Parietal_Inf_R 0
57 �42 48 372 �7.9422 Parietal_Inf_R 0
48 27 3 118 �7.7577 Frontal_Inf_Tri_R 0
57 �54 3 372 �7.5337 Temporal_Mid_R 0
57 �45 30 372 �7.3346 SupraMarginal_R 0
9 �72 �3 103 �7.266 Lingual_R 0
45 33 �3 118 �7.1925 Frontal_Inf_Orb_R 0
54 15 �9 118 �7.0586 Temporal_Pole_Sup_R 0
12 �78 3 103 �6.8006 Calcarine_R 0
63 �39 9 372 �6.7591 Temporal_Mid_R 0
63 �39 27 372 �6.7543 SupraMarginal_R 0
63 �33 0 372 �6.6477 Temporal_Mid_R 0
63 �48 9 372 �6.5084 Temporal_Mid_R 0
51 �42 15 372 �6.3491 Temporal_Sup_R 0
15 �63 �9 103 �6.3189 Lingual_R 0
57 15 6 118 �6.2341 Frontal_Inf_Oper_R 0
66 �36 36 372 �6.0834 SupraMarginal_R 0
12 �87 6 103 �6.0626 Calcarine_R 0
48 �54 30 372 �5.9234 Angular_R 0
60 �57 18 372 �5.7677 Temporal_Mid_R 0
12 �57 �21 103 �5.6877 Cerebellum_6_R 0
45 �60 45 372 �5.1836 Angular_R 0
51 �42 3 372 �5.1714 Temporal_Mid_R 0

Table 2 (continued )

MNI-
X

MNI-
Y

MNI-
Z

CS Z AAL_label “Episodic
memory”

51 �66 39 372 �5.0247 Angular_R 0
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relationships with performance in the expected directions. Unique as-
sociations with pattern expression (row 2 in Table 6) were only shown by
age and the residual activation with negative and positive directionality,
respectively. (We repeat that apriori the residual activation cannot be
expected to show any particular relationship to the pattern score across
participants. Empirically, all manifestations – negative correlation, no
correlation, positive correlation – are possible.) Bivariate correlations
with the pattern score in the expected directions were obtained for most
measures apart from NART-IQ: more intact brain structure, lower age and
higher education were all associated with higher levels of pattern
expression.

Reasoning
Reasoning performance was uniquely associated with pattern

expression, age, education and NART-IQ in the expected directions. The
unique variance contributed to Reasoning performance by the RANN
pattern was 16.8%, with a total joint variance contribution by all mea-
sures of 42.0%. The full bivariate correlations showed associations of
performance with all measures in the expected direction: positive asso-
ciations with brain structure, NART-IQ and education, negative associ-
ations with age and residual activation. In full bivariate correlations,
pattern expression was associated positively with education, and nega-
tively with residual activation; under partial correlations, the residual
activation retained its negative relationship to pattern expression, and
age was associated positively with the pattern score (see Table 7).

Speed
Speed performance (¼negative reaction time) showed unique asso-

ciations with the pattern score, age and NART-IQ in partial correlations
with expected directionality. The unique variance contributed to Speed
performance by the RANN pattern was only 4.8%, with a total joint
variance contribution by all measures of 35.9%. In full bivariate corre-
lations, additional associates were shown by residual activation and
brain structure with expected directionality. No unique associations with
pattern score were found in partial correlations apart from a positive
association with residual activation; however, in bivariate correlations
additional negative and positive associations with age and brain struc-
ture, respectively, appeared (see Table 8).

Vocabulary
Of all reference abilities, Vocabulary presents the most number of

associations with performance in partial correlations. Further, these
partial correlations show a positive association of performance with age.
Beyond age, residual activation was associated negatively with perfor-
mance, while pattern expression, education and NART-IQ was associated
positively with performance. Pattern expression showed partial correla-
tions with residual activation, age and mean cortical volume. The unique
variance contributed to Vocabulary performance by the RANN pattern
was 7.8%, with a total joint variance contribution by all measures of
53.7%. For the full bivariate correlations, residual activation was asso-
ciated negatively with performance, while age, education and NART-IQ
showed positive associations (see Table 9).

Collinearity of behavioral performance and pattern scores
Our analysis paid no heed to possible collinearities of our pattern

scores between the reference domains. Ideally, the pattern score per-
taining to the reference domains should be independent of one another.
However, even behavioral performance in the four domains was
collinear. For behavioral performances, the only pairing that was not
significant was R (SPEED, VOCAB)¼ 0.11, p¼ .07. All other pairings are
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Table 3
Most prominent loadings for the Reasoning RANN. Shown are local maxima that fulfilled jZj>4.75, CS> 100, and were at least 3 voxels (¼9mm) apart. Apart from the AAL label, we also
show the Z-value obtained from a forward-inference (¼P (Activation j Function)) from the meta-analytic website http://www.neurosynth.org/, where “reasoning”was input and 147 studies
were obtained.

MNI-X MNI-Y MNI-Z CS Z AAL_label “Reasoning”

Positive loadings
51 �63 39 505 10.9877 Angular_R 0
45 �60 33 505 10.8976 Angular_R 0
9 �54 27 887 10.0959 Precuneus_R 0
0 �45 �24 887 10.0552 No label 0
51 �51 36 505 9.5218 Angular_R 0
48 �51 45 505 9.52 Parietal_Inf_R 3.8672
57 �60 24 505 9.3614 Angular_R 0
�45 �63 30 218 8.9327 Angular_L 4.5394
48 �57 21 505 8.9022 Temporal_Mid_R 0
45 �72 39 505 8.8835 Angular_R 0
12 �60 �6 887 8.7543 Lingual_R 0
6 �69 36 887 8.6382 Precuneus_R 0
�6 �63 30 887 8.6188 Precuneus_L 0
60 �51 33 505 8.2465 Angular_R 4.5394
12 �63 18 887 7.9755 Calcarine_R 0
3 �48 �15 887 7.8744 Vermis_4_5 0
�6 �66 18 887 7.5784 Calcarine_L 0
3 �78 45 887 7.499 No label 0
�6 �57 21 887 7.3586 Precuneus_L 0
�6 �81 30 887 7.281 Cuneus_L 0
�54 �54 36 218 7.155 Angular_L 0
12 �42 36 887 6.8965 Cingulum_Mid_R 0
�15 �66 15 887 6.7833 Calcarine_L 0
�9 �63 39 887 6.6493 Precuneus_L 0
�45 �57 51 218 6.3247 Parietal_Inf_L 0
�12 �75 21 887 6.2848 Cuneus_L 0
�18 �66 0 887 6.1497 Lingual_L 0
9 �48 3 887 5.9608 Lingual_R 0
54 �48 18 505 5.7993 Temporal_Sup_R 3.8672
�36 �78 42 218 5.7083 Parietal_Inf_L 0
�63 �42 33 218 5.6282 SupraMarginal_L 0
3 �54 �3 887 5.5999 Vermis_4_5 0
18 �63 �21 887 5.5868 Cerebellum_6_R 0
3 �69 �9 887 5.541 Vermis_6 0
�12 �42 �15 887 5.2856 Cerebellum_4_5_L 0
12 �48 �21 887 5.1616 Cerebellum_4_5_R 0
Negative loadings
15 �84 �12 1220 �12.8391 Lingual_R 0
�27 �81 21 1220 �12.2673 Occipital_Mid_L 0
33 �87 6 1220 �11.9318 Occipital_Mid_R 0
�21 �84 �12 1220 �11.557 Lingual_L 0
�27 �93 6 1220 �11.0113 Occipital_Mid_L 0
�6 �90 3 1220 �10.445 Calcarine_L 4.5394
15 �90 0 1220 �10.4129 Calcarine_R 0
�27 �75 30 1220 �10.3594 Occipital_Mid_L 0
�12 �84 �9 1220 �10.1431 Lingual_L 3.8672
30 �78 24 1220 �10.1321 Occipital_Mid_R 0
36 �81 12 1220 �10.007 Occipital_Mid_R 0
21 6 �9 419 �9.893 No label 0
27 �90 18 1220 �9.6788 Occipital_Mid_R 0
�33 �54 �15 1220 �9.417 Fusiform_L 0
�18 12 0 419 �9.3854 Putamen_L 0
�6 9 3 419 �9.0603 Caudate_L 0
21 18 �6 419 �8.9707 Putamen_R 0
9 9 0 419 �8.9481 No label 0
33 �54 �15 1220 �8.7846 Fusiform_R 0
�33 �78 �15 1220 �8.6847 Fusiform_L 0
6 3 48 266 �8.4921 Supp_Motor_Area_R 0
�6 3 48 266 �8.4297 Supp_Motor_Area_L 4.5394
�21 �75 39 1220 �8.2544 Occipital_Sup_L 0
�18 3 �9 419 �8.2343 No label 0
�39 �78 �6 1220 �7.9954 Occipital_Inf_L 0
�6 0 60 266 �7.9589 Supp_Motor_Area_L 0
42 �63 �12 1220 �7.9157 Occipital_Inf_R 0
�21 0 3 419 �7.8126 Pallidum_L 0
�27 �93 �9 1220 �7.7419 Occipital_Inf_L 0
�42 �69 �6 1220 �7.6888 Occipital_Inf_L 0
�33 �63 �15 1220 �7.6843 Fusiform_L 0
6 6 57 266 �7.6087 Supp_Motor_Area_R 0
39 �72 �12 1220 �7.3593 Occipital_Inf_R 0
30 �63 �12 1220 �7.2268 Fusiform_R 0
6 3 39 266 �7.1928 Cingulum_Mid_R 0

(continued on next page)
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Table 3 (continued )

MNI-X MNI-Y MNI-Z CS Z AAL_label “Reasoning”

6 12 39 266 �7.1104 Cingulum_Mid_R 4.5394
�18 �6 �9 419 �7.0838 No label 0
30 �75 33 1220 �6.7055 Occipital_Mid_R 0
15 �93 18 1220 �6.5997 Occipital_Sup_R 0
�9 21 �3 419 �6.5434 Caudate_L 0
42 �78 �3 1220 �6.4869 Occipital_Inf_R 0
�6 9 36 266 �6.008 Cingulum_Mid_L 0
�27 0 �12 419 �5.9485 Amygdala_L 0
27 �90 �9 1220 �5.8054 Occipital_Inf_R 3.8672
12 6 12 419 �5.8013 Caudate_R 0
�24 �66 48 1220 �5.4537 Parietal_Sup_L 6.5561
24 15 �18 419 �5.3344 Insula_R 0
�33 �3 �6 419 �5.0504 No label 0
24 3 �21 419 �5.0347 Amygdala_R 0

Table 4
Most prominent loadings for the Speed RANN. Shown are local maxima that fulfilled
jZj>4.75, CS> 100, and were at least 3 voxels (¼9mm) apart. Apart from the AAL label, we
also show the Z-value obtained from a forward-inference map from the meta-analytic
website Neurosynth, where “speed” was input and 162 studies were obtained.

MNI-X MNI-Y MNI-Z CS Z AAL_label “Speed”

Positive loadings
9 �84 0 471 10.2884 Calcarine_R 0
0 �78 3 471 9.6483 Lingual_L 0
�21 �78 �9 471 8.8408 Lingual_L 0
27 �78 �9 471 8.7919 Fusiform_R 0
18 �78 �9 471 8.616 Lingual_R 0
18 18 0 207 7.2603 Putamen_R 0
�6 �15 �3 207 7.2594 No label 4.1714
3 �9 �6 207 7.2138 No label 0
�27 9 �9 145 7.0775 No label 0
�33 �3 �15 145 7.0474 No label 0
27 �57 �12 471 7.0394 Fusiform_R 0
21 12 �12 207 6.9869 No label 0
36 �57 �12 471 6.9696 Fusiform_R 0
�24 18 �6 145 6.9228 Putamen_L 0
�18 �78 �18 471 6.9205 Cerebellum_6_L 0
�27 0 �21 145 6.5311 Amygdala_L 0
9 �93 9 471 6.2369 Calcarine_R 0
15 3 �3 207 6.2097 Pallidum_R 0
33 9 �6 207 6.0466 No label 0
�12 �78 6 471 5.9167 Calcarine_L 0
�15 9 �3 145 5.9102 Pallidum_L 0
30 21 6 207 5.5987 No label 6.2769
27 �66 �6 471 5.4255 Fusiform_R 0
30 18 �3 207 5.1694 No label 0
Negative loadings
3 �15 48 227 �8.6955 Cingulum_Mid_R 0
51 �12 15 104 �8.254 Rolandic_Oper_R 0
�51 39 0 166 �7.7443 Frontal_Inf_Tri_L 0
�42 48 0 166 �7.559 Frontal_Mid_Orb_L 0
�27 57 3 166 �7.5183 Frontal_Sup_L 0
3 �6 48 227 �7.3561 Cingulum_Mid_R 0
60 �15 15 104 �7.1207 Rolandic_Oper_R 0
�39 48 9 166 �6.8602 Frontal_Mid_L 0
0 �30 48 227 �6.8448 Cingulum_Mid_L 0
6 �45 63 227 �6.6972 Precuneus_R 0
�48 33 18 166 �6.6617 Frontal_Inf_Tri_L 0
�3 3 63 227 �6.2572 Supp_Motor_Area_L 0
6 �36 51 227 �6.2428 Cingulum_Mid_R 0
�54 21 21 166 �6.2293 Frontal_Inf_Tri_L 0
�42 33 27 166 �6.1212 Frontal_Inf_Tri_L 4.1714
9 6 45 227 �6.0324 Cingulum_Mid_R 0
3 �3 60 227 �5.8752 Supp_Motor_Area_R 0
66 �12 9 104 �5.8694 Temporal_Sup_R 0
�6 �3 48 227 �5.7517 Cingulum_Mid_L 4.8733
�54 24 9 166 �5.749 Frontal_Inf_Tri_L 0
3 9 39 227 �5.5305 Cingulum_Mid_R 0
�9 3 39 227 �4.9079 Cingulum_Mid_L 0
3 �48 54 227 �4.8875 Precuneus_R 0

Table 5
Most prominent loadings for the Vocabulary RANN. Shown are local maxima that fulfilled
jZj>4.75, CS> 100, and were at least 3 voxels (¼9mm) apart. No suitable meta-analytic
maps could be obtained from Neurosynth for comparison.

MNI-X MNI-Y MNI-Z CS Z AAL_label

Positive loadings
0 �90 �9 714 9.3887 Calcarine_L
24 �54 �27 714 9.007 Cerebellum_6_R
�18 �78 �18 714 8.4283 Cerebellum_6_L
3 �60 �24 714 8.1938 Vermis_6
�9 �81 �15 714 7.7469 Cerebellum_6_L
21 �69 �24 714 7.5566 Cerebellum_6_R
18 �63 �18 714 7.4147 Cerebellum_6_R
9 �69 �21 714 7.1698 Cerebellum_6_R
�48 27 �9 102 7.1204 Frontal_Inf_Orb_L
�48 12 21 102 7.0958 Frontal_Inf_Oper_L
12 �87 �15 714 6.9094 No label label
9 �81 �21 714 6.8237 Cerebellum_Crus1_R
6 �54 �6 714 6.6599 Vermis_4_5
�54 12 �3 102 6.6148 Temporal_Pole_Sup_L
�24 �51 �27 714 6.563 Cerebellum_6_L
�54 18 9 102 6.5326 Frontal_Inf_Tri_L
�36 �45 �18 714 6.5202 Fusiform_L
�15 �63 �21 714 6.1343 Cerebellum_6_L
�6 �72 �15 714 6.0599 Cerebellum_6_L
�42 �54 �21 714 5.9555 Fusiform_L
�36 �75 �18 714 5.8894 Cerebellum_Crus1_L
36 �63 �27 714 5.3858 Cerebellum_Crus1_R
�9 �57 �27 714 5.2374 No label label
�45 �69 �15 714 5.1494 Occipital_Inf_L
�12 �96 0 714 5.0924 Calcarine_L
Negative loadings
�12 �72 39 495 �8.2775 Precuneus_L
18 �72 39 495 �8.1227 Cuneus_R
9 �66 36 495 �7.4914 Precuneus_R
�18 �60 15 495 �7.4507 No label label
21 �63 24 495 �7.2701 Precuneus_R
18 �78 48 495 �7.2486 Cuneus_R
9 �84 24 495 �7.059 Cuneus_R
18 �54 9 495 �6.5976 Calcarine_R
9 �84 15 495 �6.5446 Calcarine_R
�12 �51 9 495 �6.3994 Calcarine_L
�9 �69 24 495 �6.1759 Calcarine_L
27 �66 39 495 �5.8724 Occipital_Sup_R
�15 �81 42 495 �5.8237 Occipital_Sup_L
6 �78 39 495 �5.7069 Cuneus_R
6 �54 42 495 �5.6951 Precuneus_R
�9 �60 9 495 �5.5549 Calcarine_L
18 �75 30 495 �5.1257 Cuneus_R
9 �63 51 495 �4.9296 Precuneus_R
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Table 6
Results for the Memory Domain. *p< .05, **p< .01, ***p< .001, ****p< .0001. Upper triangular part: partial correlations; lower triangular part: full bivariate correlations. Of particular
interest is the first row, which shows unique contributions to Memory performance. The unique part of the Memory pattern accounts for (0.44)2¼ 19.4% of the variance in Memory
performance. The total amount of variance accounted for jointly by all independent variables in Memory performance is 37.4%. Listed in bold face are correlations that have a p-value smaller
than 0.05.

MEM-perf MEM-pattern RES AGE EDU NART-IQ mean-THX mean-VOL

MEM-perf 0.44**** �0.08 �0.13 0.18** 0.15* 0.02 0.06
MEM-pattern 0.54**** 0.20** ¡0.21** 0.02 0.00 0.05 0.00
RES �0.03 0.13* �0.02 �0.02 0.00 �0.09 �0.05
AGE ¡0.27**** ¡0.38**** �0.02 0.10 0.33**** ¡0.36**** ¡0.32****
EDU 0.30*** 0.13* �0.05 0.14* 0.41**** �0.01 0.06
NART-IQ 0.23*** 0.04 �0.03 0.28**** 0.52**** 0.06 0.17**
mean-THX 0.21** 0.25*** �0.05 ¡0.53**** 0.00 �0.02 0.26****
mean-VOL 0.30**** 0.26**** �0.06 ¡0.46**** 0.13* 0.11 0.43****

Table 7
Results for Reasoning, *p < .05, **p < .01, ***p < .001, ****p < .0001. Upper triangular part: partial correlations; lower triangular part: full bivariate correlations. The first row shows
unique contributions to Fluid-Reasoning performance. The unique part of the REASON pattern accounts for (0.41)2¼ 16.8% of the variance in performance. The total amount of variance
accounted for jointly by all independent variables in Reasoning performance is 42.0%. Listed in bold face are correlations that have a p-value smaller than 0.05.

REASON-perf REASON-pattern RES AGE EDU NART-IQ mean-THX mean-VOL

REASON-perf 0.41**** 0.05 ¡0.28**** 0.18** 0.24*** 0.12 0.11
REASON-pattern 0.41**** ¡0.34**** 0.18** 0.02 �0.11 �0.08 0.07
RES ¡0.13* ¡0.34**** 0.09 �0.04 �0.05 �0.06 0.10
AGE ¡0.30**** 0.04 0.04 0.09 0.36**** ¡0.34**** ¡0.31****
EDU 0.31**** 0.15* �0.10 0.14* 0.39**** �0.01 0.05
NART-IQ 0.28*** 0.10 �0.06 0.28**** 0.52**** 0.04 0.15*
mean-THX 0.28**** �0.02 �0.06 ¡0.53**** 0.00 �0.02 0.26***
mean-VOL 0.39**** 0.11 �0.01 ¡0.46**** 0.13* 0.11 0.43****

Table 8
Results for Speed, *p < .05, **p < .01, ***p < .001, ****p < .0001. Upper triangular part: partial correlations; lower triangular part: full bivariate correlations. The first row shows unique
contributions to Speed performance. The unique part of the SPEED-pattern accounts for (0.22)2¼ 4.8% of the variance in Speed performance. The total amount of variance accounted for
jointly by all independent variables in performance is 35.9%. Speed performance was defined as negative reaction time such that higher values imply better performance. Listed in bold face
are correlations that have a p-value smaller than 0.05.

SPEED-perf SPEED-pattern RES AGE EDU NART-IQ mean-THX mean-VOL

SPEED-perf 0.22*** �0.05 ¡0.46**** �0.13 0.28**** �0.11 �0.01
SPEED-pattern 0.27**** 0.27**** 0.01 �0.03 0.02 0.08 0.15
RES ¡0.22*** 0.20** 0.30**** 0.03 �0.08 �0.03 0.00
AGE ¡0.51**** ¡0.13* 0.42**** �0.04 0.41**** ¡0.38**** ¡0.29****
EDU �0.01 0.00 0.04 0.14* 0.48**** �0.01 0.08
NART-IQ 0.09 0.06 0.06 0.28**** 0.52**** 0.10 0.17*
mean-THX 0.23*** 0.16* ¡0.23*** ¡0.53**** 0.00 �0.02 0.25***
mean-VOL 0.31**** 0.23*** ¡0.17** ¡0.46**** 0.13* 0.11 0.43****

Table 9
Results for Vocabulary, *p < .05, **p < .01, ***p < .001, ****p < .0001. Upper triangular part: partial correlations; lower triangular part: full bivariate correlations. The first row shows
unique contributions to Vocabulary performance. The unique part of the VOCAB-pattern accounts for (0.28)2¼ 7.8% of the variance in VOCAB performance. The total amount of variance
accounted for jointly by all independent variables in performance is 57.3%. Listed in bold face are correlations that have a p-value smaller than 0.05.

VOCAB-perf VOCAB-pattern RES AGE EDU NART-IQ mean-THX mean-VOL

VOCAB-perf 0.28*** ¡0.20** 0.17* 0.16* 0.55**** 0.07 �0.01
VOCAB-pattern 0.36**** 0.22*** 0.24*** �0.11 �0.07 0.11 0.19**
RES ¡0.16* 0.12 0.03 0.06 0.00 ¡0.17** 0.01
AGE 0.32**** 0.25*** 0.10 0.03 0.13 ¡0.41**** ¡0.38****
EDU 0.45**** 0.09 �0.07 0.14 0.29**** 0.01 0.09
NART-IQ 0.70**** 0.21** ¡0.11 0.28**** 0.52**** �0.01 0.14*
mean-THX �0.03 �0.01 ¡0.20** ¡0.53**** 0.00 �0.02 0.24***
mean-VOL 0.08 0.13* �0.09 ¡0.46**** 0.13* 0.11 0.43****
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significantly positively correlated at p< .0001.
The derived activation patterns were less collinear. We found three

(of six) correlations between pattern scores that are significant: R (MEM,
SPEED)¼ 0.29, p< .0001; R (MEM, VOCAB)¼ 0.22, p¼ .0004; and R
(SPEED, VOCAB)¼ 0.56, p< .0001.

Discussion

In this paper, we derived four reference ability neural network
61
(RANN) activation patterns, representing the cognitive domains of
Memory, Reasoning, Speed, and Vocabulary in a large sample of adults
across the age-range. Our approach, which combined Principal Compo-
nents Analysis with a subsequent brute-force search, optimized not only
brain-behavioral correlations, but also cognitive specificity of the
RANNs. Our approach achieved quasi out-of-sample indicator and brain-
behavioral correlations that far exceeded chance. Indeed, replication
success produced significant correlations (p< .01) with reference ability-
specific indicator variables for all 1000 iterations of a Monte-Carlo 5-fold



C. Habeck et al. NeuroImage 172 (2018) 51–63
cross-validation procedure, while brain-behavioral correlations showed
some variability and gave significant correlations with behavior for
Memory in 100% of the 1000 iterations, 99% for Reasoning, 43% for
Speed, and 75% for Vocabulary.

Success of quasi out-of-sample replication tracked the amount of
unique variance accounted for in behavioral performance by the derived
RANN patterns, and confirmed the following descending order: Memory,
Reasoning, Vocabulary, and Speed. This ranking speaks to the success of
achieving a unifying neural account of both domain specificity and
behavioral performance. Memory and Reasoning allow such an account.
In fact, for these two reference abilities adopting approaches that focus
exclusively on cognitive domain specificity (without explicit consider-
ation of brain-behavioral correlations) achieves passable brain-
behavioral correlation already by itself (data not shown). For Speed
and Vocabulary this is not possible, however. Brain-behavioral correla-
tion needed to be addressed explicitly, and out-of-sample replication was
still worse than for Memory and Reasoning. Our data revealed that the
neural implementation underlying task performance is not as distinct
from other cognitive processes for Speed and Vocabulary as for Memory
and Reasoning.

It bears mentioning here that our guiding assumptions for this report,
i.e. simultaneous indicator and brain-behavioral correlation of the
derived activation patterns, are very strong. While they are suitable
starting points for an investigation, considerations other than the extent
of empirical cross-sectional validation in the current report might come
into play in the future, and modify or constrain these assumptions,
leading to possibly different analytic strategies on longitudinal data to
produce RANNs with better biological plausibility or better predictive
utility. More data would also allow sub-setting by age with a focus on the
possible topographic re-organization of these networks across the adult
life span.

Few variables showed independent influences on RANN pattern utilization,
and several influences on behavioral performance remain beyond pattern
utilization

For all four reference abilities, we examined possible drivers that
influence RANN pattern scores and cognitive performance in partial
correlations. Demographic variables including age, education and NART-
IQ, as well as brain-health variables including mean cortical thickness
and mean cortical volume, were probed for their associations with RANN
pattern scores and behavioral performance in full bivariate and partial
correlations. We confined our remarks in the following to the more
rigorous partial-correlation results only. The picture that emerged was
quite consistent, and only varied minimally by reference ability. All
RANN pattern scores showed associations with residual activation, albeit
with varying signs: positive for Memory, Speed, and Vocabulary, nega-
tive for Reasoning. We stress again that such across-participant associa-
tions do not follow a priori from the manner in which residual activation
is computed on a single-participant basis. Residual activation had few
other influences: for Memory and Reasoning there were none, for Speed
residual activation was correlated positively with age, and for Vocabu-
lary, it was negatively correlated with mean cortical thickness. Residual
activation thus was selectively correlated with negative health in-
dicators, i.e. higher age or lower cortical thickness. Only for Vocabulary
was residual activation also independently associated with worse per-
formance, otherwise it appeared as neutral. Notably absent in the partial
correlations were independent influences on performance by the
included brain structure measures. Otherwise performance was influ-
enced by age, IQ and education, with slight variations across reference
abilities. For Vocabulary, age was positively correlated with performance,
which fits well with prior cross-sectional and longitudinal findings of a
positive influence of age on VOCAB performance (Albert et al., 1988;
Botwinick and Siegler, 1980). .
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Connection to wider literature

The results of the current report shed new light on the neural basis of
cognition, and the influence of demographics including age, IQ and level
of education, and brain structure on this neural basis. For each of the four
reference abilities we derived a unique pattern. It is notable that
compared to our previous analysis which did not account for behavioral
performance (Habeck et al., 2016), the new activation patterns presented
in this report showed much more topographically extensive activation,
with much bigger robustness as measured in our bootstrap Z-loadings.
This was to be expected: despite the additional brain-behavioral
constraint used in the pattern derivation which ordinarily should
reduce activation, our earlier work focused only on participants in the
age range 20–30, whereas the current report utilized more extensive data
from the whole adult life span of ages 20–80. In both the MEM and
REASON reference abilities, better behavioral performance was related
to greater activation in the left lateralized rostral and caudal loci of the
inferior parietal lobule (IPL), highly interconnected areas implicated in
multiple cognitive abilities including complex mental arithmetic (Cho-
chon et al., 1999) as well as bottom-up recollection processes involved in
the “spontaneous retrieval of episodic details (Cabeza et al., 2008). The
MEM ability also loaded positively on the left precuneus, an area shown
in non-human primate studies to be highly connected to both cortical and
subcortical structures (Leichnetz, 2001), the left superior parietal area,
implicated in cognitive control processes that allow for goal-directed,
top-down episodic memory retrievals (Cabeza et al., 2008, p. 618), as
well a sub-region of the Ventral Lateral Prefrontal cortex –the pars tri-
angularis, which has been consistently implicated in episodic memory
retrieval (Badre and Wagner, 2007).

Likewise, the SPEED and VOCAB RANNs also include several notable
brain areas. Several components of the limbic system, including the
amygdala, orbital frontal cortex and thalamus, have positive loadings in
the SPEED RANN. The limbic system has been typically associated with
emotional processing, motivation and fear conditioning. For example,
Ono and colleagues (Ono et al., 2000) suggested the limbic system
motivated eating behaviors, operationalized as neuronal single-cell re-
cordings in monkeys during a food-nonfood discrimination task: “the
amygdala might be important in ongoing recognition of the affective
significance of complex stimuli”. Given the positive relationship found
between activity in this set of brain areas, and decreased latencies to
respond correctly on the SPEED tasks, a motivational account may fit
with the data presented here, such that faster responses are subserved by
the same systems implicated in motivated, often times unconscious, re-
sponses to external stimuli. The VOCAB-RANN, on the other hand, was
associated with activity in the superior temporal lobe, including Brod-
mann areas 21 and 22 (Wernicke's area). These areas are key for speech
and language generation (Friedman et al., 1998), the processing of
speech and text (Giraud et al., 2004), and the semantic meaning of words
(Chou et al., 2006; McDermott et al., 2003). Indeed, dysfunction in the
left STG has been implicated in language processing deficits that are a
marked symptom of autism (Bigler et al., 2007). Additionally, behavioral
performance across the three VOCAB tasks was also associated with
increased activation in the cerebellum, an area now recognized to be
involved in linguistic processing (Smet et al., 2013).

Summary

Future research might revise our derived networks with longitudinal
data, advanced analytic techniques, age-stratification and other re-
quirements beyond brain-behavioral and indicator correlations across
the adult life span. However, for now, we have derived activation pattern
for four different cognitive reference abilities that could predict the
appropriate reference-domain label and cognitive performance out of
sample, far exceeding chance level. Participant expression of these pat-
terns displayed associations with age, education and IQ with consistent
directionality: older, less educated and less intelligent participants with
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poorer brain-structural health manifested these patterns to a lesser de-
gree. Residual activation orthogonal to the patterns also increased with
age and poorer brain-structural health, and for Vocabulary was associ-
ated with worse performance as well. While the RANN patterns were
derived to give significant accounts of cognitive performance and were
revealed to be influenced by age, education, IQ, these variables mostly
retained significant associations with performance beyond the influence
of the patterns.
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