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Abstract

Adolescence is a period of heightened sensitivity to incentives and relatively weak cognitive 

control, which may contribute to risky behaviors. Studies of brain activity have generally 

identified greater activation of the ventral striatum to rewards and less activation of prefrontal 

regions during control tasks in adolescents compared to adults. Little is known, however, about 

age-related changes in the functional brain networks underlying incentive processing and cognitive 

control. This cross-sectional study characterized the effects of incentives on inhibitory control 

during an oculomotor task using whole-brain functional connectivity analyses. During an fMRI 

scan, one hundred forty typically developing individuals completed an incentivized antisaccade 

task consisting of incentive cue, preparation, and response phases. We found that task modulation 

of control networks increased gradually from childhood to adulthood, whereas a network 

including ventral striatum and ventromedial prefrontal cortex displayed an adolescent-specific 

peak in response to the receipt of outcomes, consistent with dual-systems models. Notably, 

however, greater modulation of salience and motor networks during the preparation phase 

mediated age-related improvements in antisaccade accuracy, whereas adolescent enhancement of 

value-related circuitry did not. Relative to neutral cues, both reward and loss cues enhanced task-

related connectivity of the salience network when preparing to inhibit a saccade. Altogether, our 

findings suggest that incentives facilitate inhibitory control by enhancing the salience of one’s 

responses and that over development, the recruitment of functional networks involved in saliency 

and motor preparation supports better performance.

Introduction

Although adolescents are often portrayed in popular media as impulsive and lacking 

forethought, contemporary developmental theories emphasize that cognitive control, 

including inhibitory control, performance monitoring, and working memory, increases 

gradually from childhood to adulthood (Casey, 2015; Luna, Marek, Larsen, Tervo-
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Clemmens, & Chahal, 2015). The prevalence of many risky behaviors, however, such as 

physical fights (Swahn, Bossarte, Palmier, Yao, & Dulmen, 2013), illicit substance use, and 

non-suicidal self-injury (Muehlenkamp, Claes, Havertape, & Plener, 2012), peaks in 

adolescence, undermining survival (Molcho, Walsh, Donnelly, Matos, & Pickett, 2015). 

Adolescents often exhibit heightened behavioral and neural sensitivity to rewards (Richards, 

Plate, & Ernst, 2013; van Duijvenvoorde, Peters, Braams, & Crone, 2016); are especially 

influenced by social stimuli, including peers (Telzer, Fuligni, Lieberman, Miernicki, & 

Galván, 2015); and are more reactive to emotional stimuli such as threat cues (Pfeifer et al., 

2011). To resolve the potential dissonance between adolescent-specific peaks in risk-taking 

and gradual developmental increases in cognitive control, recent accounts have extended 

classic dual-systems (aka two-mode) theories that posit a separation between a deliberative, 

self-regulatory system and a more reflexive, emotional system (Epstein, 1994; Kahneman, 

2003). More specifically, dual-systems models of adolescent behavior posit that brain 

changes that accompany puberty rapidly enhance the effective strength of the reflexive 

system in decision-making relative to a weak deliberative system that develops gradually, 

leading to risky decisions in affective contexts (Shulman et al., 2016).

Developmental fMRI studies increasingly find evidence for both adolescent immaturities in 

cognitive control and hyper-reactivity to affective stimuli. For example, activity in the dorsal 

anterior cingulate cortex (dACC) increases across development during tasks requiring 

performance monitoring in parallel to behavioral improvements in learning from errors 

(Velanova, Wheeler, & Luna, 2009). Likewise, developmental improvements in working 

memory capacity are mediated by gradual increases in executive control regions such as the 

dorsolateral prefrontal cortex (DLPFC) and decreased activity in the default mode network 

(Satterthwaite et al., 2013; Thomason et al., 2009). There is also evidence that the 

refinement of inhibitory control over development depends on top-down signals from 

executive prefrontal regions (e.g., the anterior insula) to other regions involved in cognitive 

tasks (Hwang, Velanova, & Luna, 2010; Supekar & Menon, 2012).

A substantial body of human and rodent research supports the notion that adolescents are 

more reactive to the receipt of rewards, but that they may less sensitive to reward-predictive 

cues (reviewed in Richards et al., 2013; Spear, 2011). Consistent with the dual-systems 

perspective, functional neuroimaging studies in humans have typically found adolescent-

specific elevated activity in the ventral striatum, a key region in incentive motivation and 

learning from prediction errors, during reward anticipation (Geier, Terwilliger, Teslovich, 

Velanova, & Luna, 2010) and receipt (Galvan et al., 2006; Silverman, Jedd, & Luciana, 

2015; van Duijvenvoorde, Peters, et al., 2016; Van Leijenhorst et al., 2010). These findings 

are mirrored by animal electrophysiology studies demonstrating adolescent hyper-

responsiveness to reward receipt in the striatum and orbitofrontal cortex (Sturman & 

Moghaddam, 2012).

Although the idea of an imbalance between more impulsive and self-regulatory systems is 

central to the dual-systems perspective, few developmental studies have adopted a functional 

network perspective (Casey, 2015). This is a crucial gap in the literature because the 

reflexive and self-regulatory systems are more likely to reflect the coordination of functional 

networks than to be captured by differential activations in single regions (Pfeifer & Allen, 
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2012). Indeed, research over the past decade has shifted toward understanding cognition in 

terms of the coordination of brain regions in the context large-scale brain networks that exert 

more complex and robust influence over behavior (Bressler & Menon, 2010). Two recent 

studies have employed connectivity analyses to describe developmental differences in 

functional networks underlying cognitive control and incentive processing. First, using an 

emotional go/no-go task, Somerville and colleagues (2011) found that relative to children 

and adults, teens had greater difficulty withholding responses to happy faces, an appetitive 

cue (cf. Hare et al., 2008). The ability to suppress a response was linked with functional 

connectivity between the dorsal striatum and the right inferior frontal gyrus (a key region in 

inhibitory control). Second, van Duijvenvoorde and colleagues (2016) used seed 

correlational analyses of resting-state fMRI data to demonstrate that developmental 

improvements on a learning task were largely mediated by the enhancement of DLPFC 

connectivity with the thalamus, whereas age-related increases in self-reported pleasure 

during a reward task were mediated by enhanced connectivity between the ventral striatum 

and ventromedial prefrontal cortex.

The present study sought to characterize the development of functional brain networks 

supporting reward processing and inhibitory control in a large cross-sectional cohort 

spanning the ages of 10 to 25. Building on previous work in this area (Geier et al., 2010; 

Hardin & Ernst, 2009; Jazbec et al., 2006; Paulsen, Hallquist, Geier, & Luna, 2015), 

participants completed an adaptation of the antisaccade task in which they could win or lose 

points based on the ability to suppress a prepotent motor response, allowing us to examine 

both the stages of reward processing (Haber & Knutson, 2010) and the interface between 

incentive motivation and self-regulation. There were three primary aims of the study. First, 

we sought to characterize age-related changes in the recruitment of control- and incentive-

related networks as a function of distinct phases of incentive processing: cue, preparation, 

and outcome. Second, we were interested in testing whether task-related modulation of these 

networks mediated age-related improvements in inhibitory control. Third, we sought to 

describe changes in the within- and between-network connectivity of control and incentive 

networks from childhood to young adulthood. To test the dual-systems model, for each aim, 

we were also interested in understanding whether age-related changes were adolescent 

nonspecific (i.e., linear), emergent (i.e., asymptotic, here operationalized by an inverse 

function of age), or specific (i.e., quadratic; Casey, 2015). We adopted an information-

theoretic approach to adjudicate among potential forms of age-related change in both 

behavioral and neural data (Burnham & Anderson, 2002).

In a previous report of this task, we found age-related increases in activation of 

frontoparietal regions and the frontal eye fields (Paulsen et al., 2015). Additional region of 

interest analyses of these data revealed that reward reactivity of the ventral striatum was 

differentially associated with sensation seeking in younger versus older individuals (Hawes 

et al., 2017). Here, we describe results from the same fMRI task in a larger cohort that 

partially overlaps the previous reports, but with a specific focus on network modulation. 

Whereas our initial reports aggregated activity across different phases of incentive 

processing (cue, anticipation, and receipt), the present study separated task-related 

connectivity by phase, which are differentially implicated in adolescent development 

(Richards et al., 2013; Spear, 2011). This study focuses on whole-brain functional 
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connectivity, providing a more comprehensive account of networks involved in incentive 

processing and inhibitory control, whereas we previously addressed activation differences in 

regions selected a priori.

To date, there have been several regional activation studies of developmental differences in 

reward processing using paradigms that separate cue, anticipation, and receipt phases (for 

reviews, see Richards et al., 2013; van Duijvenvoorde, Peters, et al., 2016). Importantly, 

however, little is known about how incentive processing and inhibitory control in each phase 

reflect the coordination of functionally connected networks. For example, the ventral 

striatum is involved in computing reward prediction errors (Glimcher, 2011), whereas the 

subjective values of alternative outcomes are likely represented in a separate system that 

includes the ventromedial prefrontal cortex and cingulate cortex (Bartra, McGuire, & Kable, 

2013; Cai & Padoa-Schioppa, 2012; Padoa-Schioppa, 2011). Updating subjective value 

based on prediction errors requires functional coordination of fronto-striatal circuits during 

different processing phases to guide both valuation and choice (Kable & Glimcher, 2009). 

Furthermore, the enhancement of inhibitory control by incentives may reflect functional 

integration of reward and control networks. Although a regional co-activation approach 

might identify frontal and striatal regions in a reward-by-cognition analysis, it cannot 

disambiguate whether the activity pattern reflects 1) a transient activation pattern specific to 

task demands, 2) task-related modulation of a single functionally connected network that 

includes all regions recruited by the task, or 3) modulation of multiple specialized functional 

networks that coordinate to handle the task demands. We believe that the enhancement of 

inhibitory control by incentives likely reflects the coordination of canonical functional 

networks, not transient task-specific region co-activation, a question that necessitates a 

whole-brain functional connectivity approach.

To characterize whole-brain task-related connectivity, we employed independent 

components analysis (ICA), a data-driven technique that decomposes voxelwise fMRI time 

series into spatially distinct and temporally coherent latent sources (Calhoun, Liu, & Adali, 

2009). Although ICA has largely been used to identify resting-state networks (Damoiseaux 

et al., 2006), it is equally useful for understanding functional connectivity during cognitive 

tasks (Greicius & Menon, 2004; Kim et al., 2009). We had four hypotheses. First, consistent 

with prior regional activation literature (Geier et al., 2010), we predicted that task-related 

modulation of control networks, especially the dorsal attention and salience/cingulo-

opercular networks, would increase linearly with age. Second, we predicted that a network 

including the ventral striatum would be most involved in reward consummation and more 

strongly recruited among adolescents. Third, we predicted that age-related improvements in 

inhibitory control would be mediated by greater task-related connectivity in control 

networks during the preparation phase. Fourth, we hypothesized that over development, 

there would be greater integration of incentive-related and control networks, potentially 

reflecting the enhancement of self-regulation. Finally, in exploratory analyses, we tested 

how the composition of each task-related network changed with development.
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Methods

Participants

Participants were 140 typically developing youth and young adults, ranging in age from 10 

to 25 (M = 16.52, SD = 3.76). Sixty-six participants (49.3%) were female (see Supplemental 

Figure 1). Prior to the scan, participants completed an intelligence screening test (Wechsler 

Abbreviated Scale of Intelligence; Wechsler, 1999) to verify that they had an IQ above 80 

(M = 111.04, SD = 11.58). Individuals who reported lifetime diagnoses of neurological 

disorder, brain injury, pervasive developmental disorder, or psychiatric disorder (in self or 

first-degree relatives) were ineligible to participate. In addition, participants completed the 

Youth Self-Report or Adult Self-Report (Achenbach, 2009) and were excluded from the 

MRI study if they scored in the clinical range (T ≥ 70) on any symptom or substance use 

scale. All participants had corrected far visual acuity of at least 20/40. Participants and/or 

their legal guardians provided informed consent or assent prior to participation in this study. 

Experimental procedures for this study complied with Code of Ethics of the World Medical 

Association (1964 Declaration of Helsinki) and the Institutional Review Board at the 

University of Pittsburgh. Participants were compensated $75, plus up to an additional $25 

based on task performance. As described above, parts of these data appeared in two previous 

reports using different analyses and with different scientific goals (122 overlapping 

participants in Hawes et al., 2017; 82 overlapping participants in Paulsen et al., 2015).

Procedure

Within one week prior to the fMRI scan, participants were tested in our laboratory to 

confirm that they understood and were able to perform the antisaccade task described below. 

In the MR scanning environment, eye movements were measured with a long-range optics 

eye-tracking system (Model 504LRO; Applied Science Laboratories, Bedford, MA) that 

recorded eye position by pupil-corneal reflection obtained by a mirror mounted on the head 

coil with a resolution of 0.5° of visual angle. At the beginning of the experimental session 

and between runs when necessary, a 9-point eye calibration procedure was performed. Using 

E-Prime software (Psychology Software Tools, Inc., Pittsburgh, PA), stimuli were projected 

onto a flat screen positioned behind the magnet and were viewed by participants via a mirror 

mounted on the head coil.

Participants completed four runs of an incentivized antisaccade task (based on Geier & 

Luna, 2012) in which each trial consisted of an incentive cue (reward, loss, neutral), 

response preparation period, and a response period that included auditory performance 

feedback. The cue phase of each trial lasted 1.5s and indicated whether participants could 

win five points for correct antisaccade, lose five points for antisaccade failure, or not gain or 

lose points based on performance (Figure 1). The cue phase was immediately followed by a 

1.5s preparatory period consisting of a fixation cross on the screen. Finally, during the 1.5s 

response phase, a small yellow dot appeared at one of six pseudorandomly selected 

peripheral location and participants were instructed to look opposite to the dot that appeared 

on the screen. Correct antisaccades were followed immediately by a cash register sound, 

whereas participants heard a buzzer sound for incorrect responses. Eye data were scored off-

line using ILAB software (Gitelman, 2002) and an in-house scoring suite written in 
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MATLAB (MathWorks, Inc.; details about eye scoring procedures provided in the 

Supplemental Methods).

Inter-trial intervals varied from 1.5s to 19.5s, following an exponential distribution. Each run 

included 14 complete trials for reward, loss, and neutral conditions. To better separate 

hemodynamic responses to each event type, each run also included 18 partial trials: nine 

with only cue events and nine with cue and preparation events (Ollinger, Shulman, & 

Corbetta, 2001).

Prior to the scan, participants selected among several potential gift cards (e.g., prepaid Visa, 

iTunes, or McDonald’s) and were informed that points earned during the task would 

contribute toward the total value added to the gift card (for details, see Geier & Luna, 2012). 

Participants were remunerated based on the proportion of points earned out of 280 using the 

following scale: 0–70 points (US $10), 71–140 (US $15), 141–210 (US $20), 211–280 (US 

$25.00 or the chosen gift card). Points were tallied at the end of the experiment to determine 

bonus compensation and participants knew the total points possible, but not the details of the 

payment schedule. This feature of the design was intended to mitigate concerns about the 

subjective value of money and to achieve similar levels of motivation across ages.

Of 560 potential runs of fMRI data to be analyzed, 18 were excluded. Eye tracking data for 

four runs were corrupted and not recoverable. Five fMRI run acquisitions failed due to 

scanner and experiment problems. We excluded four runs for having poor spatial coverage 

due to between-run head movement. Finally, we excluded five runs for excessive head 

movement, as defined by any single movement greater than 5mm root mean squared (RMS) 

deviation or more than 15% of volumes within a run having greater than 0.3mm relative 

RMS deviation. The mean framewise displacement (FD) in the dataset was 0.13mm (SD = .

04mm). As with other developmental neuroimaging studies, we found a moderate negative 

correlation between average head movement and age, r(138) = -.29, p < .001. Thus, where 

possible, motion parameters were included as regressors of no interest.

fMRI Acquisition and Preprocessing

Imaging data were collected using a 3.0 T Siemens Trio scanner at the Magnetic Resonance 

Research Center, University of Pittsburgh. A single-shot echo-planar imaging sequence 

sensitive to BOLD contrast was performed. The acquisition parameters were TR = 1.5 s; TE 

= 25 ms; flip angle = 70°; in-plane resolution of 3.125 mm. Twenty-nine 4-mm thick axial 

slices with no gap were collected, aligned to the anterior and posterior commissure and 

covering the entire cortex and part of the cerebellum. A 3D volume magnetization prepared 

rapid acquisition gradient-echo (MP-RAGE) pulse sequence with 192 slices (1mm slice 

thickness) was used to acquire structural images in the sagittal plane.

Anatomical scans were registered to the MNI152 template (Fonov, Evans, McKinstry, Almli, 

& Collins, 2009) using both affine (FSL FLIRT) and nonlinear (FSL FNIRT) 

transformations. Functional images were preprocessed using tools from NiPy (Millman & 

Brett, 2007), AFNI (Cox, 1996), and the FMRIB software library (FSL; S. M. Smith et al., 

2004). First, large transient spikes in voxel time series were interpolated downward using the 

AFNI 3dDespike program. Second, slice timing and motion correction were performed 
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simultaneously using a four-dimensional registration algorithm implemented in NiPy 

(Roche, 2011). Non-brain voxels were removed from functional images by masking voxels 

with low intensity and by a brain extraction algorithm implemented in FSL BET. The 

alignment of subjects’ functional images to their anatomical scan was computed using the 

white matter segmentation of each image and a boundary-based registration algorithm 

(Greve & Fischl, 2009). Functional scans were then resampled into 3mm isocubic voxels 

and warped into MNI152 template space using the concatenation of the functional-structural 

and structural-MNI152 transforms. Images were spatially smoothed using a 5-mm full-width 

at half maximum kernel (FSL SUSAN). A .008Hz temporal high-pass filter was applied to 

remove slow-frequency signal changes.

Independent Component Analysis

Because we were explicitly interested in understanding functionally connected brain 

networks, we used a probabilistic atlas for the MNI152 template (Fonov et al., 2009) to 

exclude voxels that had a gray matter probability of 0.2 or less, a relatively liberal threshold 

that largely eliminated voxels in deep cerebral white matter and the ventricles. We also 

excluded voxels that were not fully sampled across subjects due to coverage differences, 

which primarily affected inferior cerebellar regions.

Spatial ICA was conducted using the GIFT 3.0a ICA Toolbox for fMRI data (Calhoun et al., 

2011). Spatial ICA maximizes the spatial separability of components, while allowing for 

between-subjects variability in the estimated time courses. To reduce the dimensionality of 

data and promote ICA convergence, two stages of principal components analysis were 

performed (Erhardt et al., 2011). First, each task run was reduced to 60 principal 

components, resulting in a 43189 × 60 matrix per run. Next, principal component matrices 

for all runs were concatenated and a group PCA reduction to 30 shared components was 

performed. Finally, we derived 30 independent components from this matrix using the 

extended infomax ICA algorithm, which has previously been demonstrated to be sensitive to 

spatiotemporal patterns in fMRI data (Correa, Adali, & Calhoun, 2007). For details about 

the decision to estimate 30 independent components, see the Supplemental Methods.

Although we estimated 30 ICs, we only interpreted seven as task-relevant based on the 

following criteria (additional details in Supplemental Methods). First, we excluded one IC 

with clustering quality Iq < 0.8, indicative of an unreliable component. Second, we excluded 

eight components whose spatial maps were indicative of artifacts, such as physiological 

noise or spurious activity at the rim of the brain due to head motion. Third, we excluded two 

components whose time courses and spectrograms indicated considerable high-frequency 

power that did not follow the expected 1/f distribution of neural signals. Fourth, we excluded 

10 ICs that were not reliably associated with task-related neural activity (see Table S1). 

Fifth, we excluded two ICs that fractionated at different ICA model orders, suggesting a 

spatiotemporal component that was vulnerable to the total number of components estimated.

In group ICA, each component consists of a single time course that describes the temporal 

dynamics of a functional network and a spatial map that quantifies the strength of within-

network coupling (more specifically, the temporal similarity of each voxel with the network 

time course; for details, see Calhoun et al., 2009). In this way, brain regions that are strongly 
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functionally coupled tend to load onto the same component (i.e., they are assigned to the 

same network). ICA decomposes fMRI data into a set of latent spatiotemporal sources such 

that BOLD activity in a voxel is represented as a weighted sum of these sources. However, 

because spatial ICA extracts components with minimal spatial overlap, the majority of 

BOLD activity in a voxel tends to be captured by a single component. By reversing the 

dimensionality reduction procedures described above using back-reconstruction, we derived 

run-specific network time courses and voxel-level spatial maps (Erhardt et al., 2011). 

Previous simulation studies have demonstrated these to be sensitive to between-subject 

differences in both spatial and temporal features of functional networks (Allen, Erhardt, Wei, 

Eichele, & Calhoun, 2012). The resulting spatial maps and network time courses were the 

basis of analyses of task-related functional coupling, as well as within- and between-network 

connectivity.

Analyses of Age-related Changes in Functional Networks

Unlike GLM fMRI analyses, where known stimulus timing provides a forward model of 

expected BOLD activity, spatiotemporal components derived from ICA are based solely on 

higher-order statistics of the data without assuming a particular temporal model (McKeown 

et al., 1998). Thus, in the context of task-related fMRI, some components may reflect 

networks instrumental in the performance of the task, whereas others may reflect unrelated 

intrinsically connected networks or spatiotemporal sources of noise (e.g., cardiovascular 

artifacts).

To quantify task-related modulation (TRiM), we regressed run-level network time courses 

on task design matrices (effects convolved with the canonical double gamma hemodynamic 

response function; see Supplemental Methods for details). Like conventional voxelwise 

general linear model (GLM) analyses, the resulting regression coefficients represent the 

partial effect of the stimulus (e.g., reward cue) on BOLD activity controlling for other effects 

in the design matrix (Kim et al., 2009). The crucial difference from single voxel analyses, 

however, is that ICA network time courses represent temporally coherent activity in a set of 

functionally coupled regions. Thus, the partial association of IC time courses with task 

effects (i.e., TRiM) reflects both the magnitude of task-related network activity and the 

temporal correspondence of the network time course with stimulus presentation (similar to 

regression coefficients in voxelwise GLMs). To characterize TRiM at the group level, we 

regressed run-level TRiM estimates on age, phase, and incentive in multilevel models (lme4 
package in R 3.2.0) with subject as a random effect (i.e., runs were nested within subject). 

Positive TRiM reflects the tendency for functionally coupled regions comprising a network 

to increase their activity in response to an experimental stimulus. Conversely, negative TRiM 

reflects task-induced reductions in network activity.

For TRiM analyses, we controlled familywise error by computing a single general linear 

hypothesis test for each network using the multivariate distribution of the coefficients of 

interest (Hothorn, Bretz, & Westfall, 2008). Adjusted p-values are reported such that the 

Type I familywise error rate is less than .05 per network (i.e., tests of valence, phase, and age 

were jointly controlled). To reduce the influence of outlier observations on estimates of task-

related IC activity, we iteratively re-estimated models excluding the participant with the 
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largest Cook’s distance until the maximum value was less than .029 (Van der Meer, Te 

Grotenhuis, & Pelzer, 2010). This led to the exclusion of between 1 and 11 participants per 

model (median = 2).

Analyses of network integration (between-network connectivity)

To examine whether task-related functional networks became more integrated (i.e., 

functionally connected) over development, we computed correlations among the network 

time courses. These represent the pairwise functional connectivity of networks across the 

entire task, similar to what would typically be described in resting-state network analyses 

(Jafri, Pearlson, Stevens, & Calhoun, 2008). Prior to calculating correlations, subject head 

motion parameters were regressed out and timecourses were detrended and despiked (Allen 

et al., 2011). We then tested for changes among the seven task-related networks by 

regressing pairwise connectivity estimates on age.

Identifying the functional form of age-related change

In order to test for adolescent nonspecific, specific, and emergent patterns of age-related 

change in behavior and network modulation, we fit linear, quadratic, and inverse functions of 

age, respectively. Quadratic models included a linear age term as well. To adjudicate among 

these variants, we selected the model with the lowest corrected Akaike Information Criterion 

(AICC; Sugiura, 1978). In addition, for tests of age-related changes in within-network 

connectivity, which involved voxelwise regressions, we retained clusters that were both 

significant for a given function of age (correcting for multiple comparisons) and had the 

highest cluster-wise median Akaike weight (Burnham & Anderson, 2002), a measure of 

relative evidence for one model compared to others in the set of comparisons. This approach 

was chosen instead of average within-cluster AICC because there are arbitrary scaling 

differences in the regression log-likelihood function across voxels that render scaling of the 

AICC incomparable, whereas Akaike weights are scale invariant.

Results

Age-related Improvements in Antisaccade Performance

The average accuracy on the antisaccade task was 91.8% (SD = 8.1%). We fit a binary 

logistic multilevel model to trial-wise data to characterize developmental changes in 

accuracy. Consistent with previous developmental literature using the antisaccade task 

(Luna, Garver, Urban, Lazar, & Sweeney, 2004; Paulsen et al., 2015), an inverse function of 

age provided the best fit to performance data, with accuracy increasing asymptotically from 

an average of approximately 83% at age 10 to 97% at age 25, z = 7.24, p < .0001. We also 

found a significant main effect of trial incentive on accuracy such that performance was 

significantly higher for rewarded trials than loss and neutral trials, adj. ps < .01. We did not 

observe a significant Age x Incentive interaction, however, p > .10.

Task-Modulated Functional Networks

We identified seven ICs that were significantly related to at least one aspect of the 

incentivized antisaccade task (adj. ps < .0001); these were named according to their 

constituent regions and putative function: Visual, Dorsal Attention (DAN), Motor, Salience 
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(SN), Default Mode (DMN), Valuation, and Auditory (see Figure 2, Table S2). During the 

cue phase, we found positive task-related modulation (TRiM) in the Visual, Dorsal 

Attention, and Motor networks, whereas TRiM was negative in the Salience, Default Mode, 

Valuation, and Auditory networks. Visual network modulation was greater for reward cues 

than neutral and loss cues (adj. ps < .03 and .001, respectively). Conversely, Auditory 

network modulation was more negative during the cue phase for reward and loss trials 

compared to neutral trials (adj. ps < .001).

During the preparation phase, TRiM was positive in the Dorsal Attention, Motor, Salience, 

and Auditory networks, and negative in the Visual, Default Mode, and Valuation networks. 

Consistent with a role in motor planning, TRiM of the Motor network increased from the 

cue phase to the preparation phase (adj. p < .0001). Modulation of the SN during the 

preparation phase was greater for reward and loss trials compared to neutral trials (adj. ps = .

002 and .003, respectively). Negative TRiM of the DMN was weaker for reward trials than 

neutral trials during the preparation phase (adj. p = .004). Finally, during the preparation 

phase, we observed greater TRiM of the Auditory network for reward and loss trials than 

neutral trials (pairwise comparisons significant at adj. p < .0001).

During the response phase, we found positive TRiM in the Visual, Dorsal Attention, Default 

Mode, Valuation, and Auditory networks, and negative TRiM in the Motor network. 

Negative TRiM of the Motor network in the response phase was larger for loss trials than 

reward trials, adj. p = .03.

Developmental Differences in the Modulation of Task-Related Networks

To characterize developmental differences in the recruitment of task-related networks, we 

examined the association of TRiM estimates and age (results depicted in Figure 3). Fit 

statistics and tests of model effects are provided in Table 1, and results are described for the 

best-fitting function of age. During the cue phase, TRiM of the DAN increased linearly with 

age irrespective of incentive (r = .50; adj. p < .001). Cue-related activity of the SN decreased 

asymptotically with age, transitioning from no task-related coupling in younger individuals 

to negative coupling in adults (r = -.18; adj. p = .005). Finally, for the Auditory network, 

cue-related TRiM became increasingly negative in older individuals (r = -.23; adj. p < .001).

During the preparation phase, negative modulation of the Visual network weakened 

asymptotically with development (r = 0.30; adj. p < .001). In the Motor network, 

preparation-related activity was greatest around age 20 and weaker for younger individuals 

(age-related multiple R = 0.44; adj. p = .005). Similarly, recruitment of the Salience and 

Auditory networks increased asymptotically with development, transitioning from little task 

activity at age 10 to positive activity in adulthood (rs = .33 and .26, respectively; adj. ps < .

001). For the Auditory network, age-related increases in TRiM were somewhat greater for 

Reward and Loss trials (rs = .21 and .27, respectively) than Neutral trials (r = .08; incentive - 

neutral contrast adj. p = .056). Modulation of the Default Mode and Valuation networks 

during the preparation phase followed a quadratic pattern, with little task involvement in 

childhood and adulthood, and negative coupling in late adolescence (multiple Rs = .21; adj. 
ps < .03).
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During the response phase, TRiM of the Motor network was positive in children, negative in 

late adolescence, and essentially unrelated to the task in adulthood (age-related multiple R = 

0.52; adj. p < .0001). Similarly, response-related SN activity decreased with age, 

transitioning from positive modulation in childhood to essentially no task involvement in 

adulthood (r = -.24; adj. p < .0001). Response-related activity of the Default Mode and 

Valuation networks tended to increase between ages 10 and 17, then declined toward zero in 

adulthood (multiple Rs = .27 and .24, respectively; adj. ps < .01).

Relationship of Task Networks to Antisaccade Performance

Although functional networks were identified on the basis of task-related modulation, this 

does not necessarily imply a link to performance on the task. For task-modulated networks 

whose activity was associated with antisaccade accuracy, an important question is whether 

age-related improvements in performance are mediated by changes in network modulation. 

We also tested whether age → network → performance effects were moderated by 

incentive by testing the difference in mediation parameter estimates for Neutral, Reward, 

and Loss trials, but none of the tests was significant, ps > .20.

Greater TRiM of the Auditory network during the cue phase was associated with poorer 

performance, β = -.44, p < .001. Such modulation became increasingly negative with 

development and partially mediated the association between age and performance, β = .16, p 
= .002, 95% highest posterior density interval (HPDI) = .04 – .42, ΔR2 = .18. Although 

activity of the DAN during the cue phase increased significantly with age, it was not 

significantly associated with overall accuracy, p = .14.

Negative modulation of the Visual network during the preparation phase diminished 

significantly with age, which in turn predicted better performance: age → preparation 

activity → performance β = .22, p < .0001, 95% HPDI = .10 – .40, ΔR2 = .27. For the 

Motor network, greater modulation during the preparation phase predicted significantly 

better performance, β = .46, p < .0001. Moreover, the improvement of performance with age 

was partially mediated by developmental increases in Motor network modulation, β = .19, p 
< .0001, 95% HPDI = .07 – .37, ΔR2 = .17. Likewise, greater activity of the SN during the 

preparation phase was associated with significantly better performance, β = .53, p < .0001, 

and SN activity partially mediated the age-performance relationship, β = .25, p < .0001, 95% 

HPDI = .09 – .52, ΔR2 = .23.

During the response phase, greater TRiM of the Motor network was associated with poorer 

performance, β = -.41, p < .0001. With development, this task modulation diminished, in 

turn supporting better performance: age → response phase activity → performance β = .18, 

p < .0001, 95% HPDI = .07 – .36, ΔR2 = .14. Activity of the DMN and Valuation network 

was not significantly related to performance during any trial phase after correcting for 

multiple comparisons, nor did DMN or Valuation activity mediate the age-performance 

relationship.

Age-related Changes in Between-Network Connectivity

We found two significant age-related changes in between-network connectivity that survived 

the Holm (1979) correction for familywise error rate. Although we tested inverse and 
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quadratic functions of age as above, only linear associations were significant and were 

consistently preferred by AICC. First, connectivity between the DAN and the Auditory 

network increased significantly with age, from r = .07 at age 10 to r = .22 at age 25 (Figure 

4). Second, coupling of the DAN and SN increased significantly from r = .25 at age 10 to r 
= .38 at age 25. We also observed a number of correlations among networks that were stable 

with age, such as a moderate-to-large correlation between the DMN and Valuation networks 

(Figure 4). Contrary to our hypothesis, we did not observe age-related increases in the 

integration of control networks with the Valuation network.

Age-related Changes in Within-Network Connectivity and Composition

In additional exploratory analyses, we characterized age-related changes in network 

composition and within-network connectivity strength. These analyses inform an 

understanding of which regions couple or decouple with specific networks over 

development. Here, we provide a summary of key findings; details for each network are 

presented in the Supplemental Results and Table S3. In voxelwise analyses of within-

network connectivity, the prevailing pattern was that selected regions decoupled from 

functional networks with age, suggesting network refinement. These changes tended to 

follow an asymptotic pattern such that within-network connectivity weakened more quickly 

in younger individuals. This was especially evident for the SN, where within-network 

connectivity of several regions, including dorsomedial prefrontal cortex, rostrolateral 

prefrontal cortex, midcingulate, precuneus, and precentral gyrus weakened with age. 

However, regions considered core to this network such as the anterior insula and dorsal 

anterior prefrontal cortex were developmentally stable.

Also noteworthy was that sensorimotor regions decoupled from the Visual, DAN, Motor, 

SN, and Auditory networks with age. For example, in the Motor preparation network, we 

found that negative coupling of the network with bilateral postcentral gyrus diminished with 

age, suggesting increasing independence of motor circuitry from somatosensory cortex. We 

also observed age-related strengthening of key regions within a few networks, such as 

increasing connectivity strength of bilateral putamen with the Motor network.

Discussion

This is one of the first studies to characterize age-related changes in the composition and 

coordination of functional brain networks underlying cognitive control and incentive 

motivation. Using functional connectivity analyses of an incentivized antisaccade task, we 

found that age-related improvements in inhibitory control were mediated by greater 

recruitment of networks involved in salience processing and motor preparation. Consistent 

with our hypotheses, we found that the task-related modulation (TRiM) of control-related 

networks (Corbetta & Shulman, 2002; Dosenbach et al., 2007), especially the salience and 

dorsal attention networks, increased gradually with age (Luna et al., 2015). We also 

identified a network comprising ventral striatum, medial PFC, and ventromedial PFC, which 

we labeled the Valuation network (Bartra et al., 2013). Recruitment of the Valuation network 

during the feedback phase was greater in late adolescence than in childhood or adulthood. 

Contrary to our hypothesis, we did not observe stronger functional coupling of valuation- 
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and control-related networks with development. Altogether, these findings inform and 

extend the dual-systems model of adolescent neurocognitive development (Shulman et al., 

2016) by demonstrating how the relative balance of neurobehavioral systems in adolescents 

differs at the functional brain network level.

We identified seven task-related networks that largely align with the broader literature on 

canonical functional brain networks described across a range of resting-state fMRI studies 

(Cole, Smith, & Beckmann, 2010; Damoiseaux et al., 2006; Dosenbach et al., 2010; Power 

et al., 2011; S. M. Smith et al., 2009; Yeo et al., 2011). In particular, the composition of 

Visual, Dorsal Attention, Default Mode, and Salience networks were highly convergent with 

prior reports on resting-state networks in adults. Although the Auditory network is not 

commonly discussed in the resting-state literature, its recruitment during the response phase 

in our study was sensible because auditory feedback was provided to participants to denote 

accurate or inaccurate responses (see Supplemental Discussion for additional details).

A novel part of this study was to describe how the configuration of functional networks 

supports information processing at different stages of reward processing, specifically 

incentive cues, response preparation, and antisaccade execution. During incentive cues, 

TRiM was positive in the Visual, DAN, and Motor networks (Figure 2), and these networks 

were functionally coupled (Figure 4). Although our findings do not speak to the direction of 

connectivity, the joint modulation of Visual and Dorsal Attention networks during the cue 

phase aligns with evidence that the DAN biases the visual system toward relevant cues.

During the preparation phase, we observed a different configuration of networks: TRiM of 

the Motor network increased relative to the cue phase, and the Salience and Auditory 

networks were recruited. Consistent with the role of the salience network (SN) in enhancing 

attention to behaviorally relevant cues and modulating tonic attention to support accurate 

responses (Menon & Uddin, 2010; Sadaghiani & D’Esposito, 2014; Seeley et al., 2007), we 

found that TRiM of the SN was greater during the preparation phase for reward and loss 

cues than neutral cues. This pattern was mirrored in the Motor network, suggesting that the 

SN may enhance inhibitory control after incentivized cues via its effect on motor planning 

circuits. TRiM of the DMN was negative during the cue and preparation phases, consistent 

with task-related suppression of DMN activity during a cognitively challenging task (Grady 

et al., 2010).

Finally, the response phase was associated with positive modulation of the Visual, DAN, 

DMN, Valuation, and Auditory networks. Positive TRiM of the Valuation network during 

the response phase, but not the cue or preparation phases, is consistent with the role of the 

ventral striatum and vmPFC in processing the hedonic value of rewarding outcomes (Haber 

& Knutson, 2010; see Supplemental Discussion for additional details). Interestingly, TRiM 

was negative in the Valuation network during the cue and preparation phases, indicating 

functionally coupled increases in the anterior insula and thalamus, but reduced activity in the 

striatum and vmPFC (Figure 2).
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The Mediating Role of Brain Networks in the Development of Inhibitory Control

Corroborating our hypotheses, we found that age-related increases in the modulation of the 

SN and Motor networks during response preparation mediated the association between age 

and antisaccade performance. A previous developmental study of incentive effects on 

sustained attention also observed linear age-related increases in the anterior insula/inferior 

frontal gyrus, a key node in the SN (Uddin, 2015), irrespective of incentives (A. B. Smith, 

Halari, Giampetro, Brammer, & Rubia, 2011). Notably, an asymptotic relationship best 

characterized the association of age with performance and network modulation, suggesting 

that the developmental refinement of inhibitory control network function matures more 

slowly as individuals move from adolescence into adulthood. Moreover, whereas on average, 

the SN was not recruited by children during response preparation, this network was 

increasingly involved over development (Figure 3). Although we did not find that 

performance was related to modulation of the DAN, functional connectivity between the 

DAN and SN increased with age (Figure 4) and the DAN and Auditory networks became 

coupled. This also aligns with recent resting-state fMRI research indicating that greater 

functional integration of the SN with other networks supports age-related improvements in 

inhibitory control (Marek, Hwang, Foran, Hallquist, & Luna, 2015), as well as evidence that 

changes in SN connectivity are most predictive of brain network maturity (Dosenbach et al., 

2010).

Modulation of the DMN and Valuation networks during the response phase (when reward or 

loss outcomes were delivered) peaked in late adolescence, potentially reflecting an 

adolescent enhancement of approach-related systems (Ernst, 2014). Although age-related 

changes in the Valuation network inform our understanding of adolescent-specific 

enhancement of reward circuitry, modulation of this network was not significantly associated 

with performance during any phase of the task. Moreover, we did not find evidence that 

inhibitory control during the antisaccade task depended on the coordination of reward 

circuitry with control networks (Figure 4). Nor did coupling of the Valuation network with 

control networks change with age. Altogether, this suggests the possibility that heightened 

ventral striatal responses to the receipt of rewards in adolescents may reflect hedonic 

valuation that is largely independent of motivational salience. This interpretation aligns with 

behavioral and neurobiological research demonstrating a distinction between ‘wanting’ (i.e., 

incentive motivation) and ‘liking’ (i.e., hedonic value) aspects of rewarding stimuli 

(Berridge & Robinson, 1998). Consuming hedonic rewards is associated with activity in the 

ventral striatum and ventral pallidum via opioid neurotransmission (Berridge, Robinson, & 

Aldridge, 2009). Another possibility is that our incentivized antisaccade task failed to recruit 

a coordinated response of control- and reward-related networks; the pattern of activity 

observed in reward paradigms depends substantially on the experimental design (for a 

review, see Richards et al., 2013).

Conversely, the SN was differentially sensitive to incentives (both reward and loss cues), and 

greater modulation during response preparation mediated age-related improvements in 

antisaccade accuracy. These findings support the interpretation that the enhancement of 

inhibitory control by incentives may be underpinned by greater recruitment of the SN, a 

crucial network in tonic attention to motivationally relevant stimuli (Sadaghiani & 
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D’Esposito, 2014), rather than paralimbic circuitry. This is consistent with greater 

enhancement of ‘wanting’ responses to rewards (i.e., incentive motivation, as measured by 

attention to cues that predict rewards) in adults compared to adolescents (Doremus-Fitzwater 

& Spear, 2011).

Age-related Refinements of Network Composition

In addition to identifying age-related changes in task-related network activity, we also 

observed substantial change in the composition of networks between ages 10 and 25. In 

exploratory analyses, the overall pattern was that canonical regions of each network were 

developmentally stable in their within-network connectivity strength, whereas potentially 

ancillary regions tended to decouple with age (Table S3). For example, in younger people, 

bilateral anterior insula was negatively coupled with the Valuation network, but insular 

activity became increasing unrelated to this network with age (rs = .57 and .61 for left and 

right insula, respectively). More generally, our findings suggest that control- and reward-

related networks mature in part by sharpening the sensitivity of regional activity to particular 

cognitive demands (Johnson, 2011). Age-related decreases in within-network connectivity 

observed in our task-based study also align with similar reductions observed in resting-state 

research (Betzel et al., 2014; Marek et al., 2015).

Finally, we observed a novel pattern of network integration between the Valuation and 

Default Mode networks with development. More specifically, we found that a) connectivity 

of the ventral striatum with the DMN increased with age, b) DMN and Valuation network 

activity was elevated among adolescents during the response phase, and c) there was 

moderate connectivity between the Default Mode and Valuation networks that was stable 

over development. One possibility is that the DMN, which often extends into ventral aspects 

of the medial prefrontal cortex (e.g., Greicius, Srivastava, Reiss, & Menon, 2004), overlaps 

with a key network involved in subjective valuation (Bartra et al., 2013). Another possibility 

is that the self-relevance of rewards may change developmentally, as reflected by functional 

connectivity between ventral striatum and default mode regions (Andrews-Hanna, Reidler, 

Sepulcre, Poulin, & Buckner, 2010). Future research is needed to understand how DMN 

activity is modulated by the receipt of rewards.

Strengths and Limitations

One strength of our study is that the sample included a relatively large number of 

participants encompassing late childhood to early adulthood. Relative to some reports that 

have relied on group comparisons (e.g., adolescents versus adults), the range of ages 

sampled allowed us to characterize the form of age-related changes, separating adolescent-

nonspecific, adolescent-specific, and adolescent-emergent patterns (Casey, 2015). This 

innovation is important to test specific predictions of the dual-systems theory of adolescent 

neurocognitive development, such as the gradual maturation of control systems and 

adolescent peaks in striatal responsiveness to rewards. Our findings build on an emerging 

body of evidence that has provided initial support for the dual-systems theory using task-

based activation analyses (Van Leijenhorst et al., 2010), as well as resting-state functional 

connectivity (van Duijvenvoorde, Achterberg, et al., 2016). By parsing task-related activity 

into functionally connected networks using ICA, our study identified canonical networks 
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involved in inhibitory control and incentive processing. Furthermore, our detailed analyses 

of phase- and valence-specific network modulation provided a useful perspective on how 

inhibitory control reflects the coordinated activity of several distinct functional modules.

Certain limitations of our study constrain its implications. First, although our findings 

inform an understanding of average neurodevelopmental changes in typically developing 

populations, our cross-sectional sample does not provide insight into the pattern of 

behavioral and neurocognitive changes within an individual over time (cf. Paulsen et al., 

2015). For example, in a longitudinal study, Sherman and colleagues (2014) found evidence 

of increasing functional segregation of the posterior cingulate cortex from control-related 

regions between ages 10 and 13, whereas in our cross-sectional study, we did not observe 

age-related changes between control and default mode networks. Furthermore, although our 

age → network → performance mediation analyses followed from theoretical models of 

neurocognitive development, our cross-sectional design could not test whether age predicts 

within-person improvements in performance at a follow-up assessment (i.e., prospective 

mediation).

Second, although applications of spatial ICA to fMRI data are reasonably sensitive to 

individual variation in spatial and temporal patterns (Allen et al., 2012), the algorithm 

nevertheless gives preference to spatial separability defining networks. Recent applications 

of temporal ICA made possible in part by rapid temporal sampling and long fMRI 

acquisitions are beginning to inform an understanding of how spatially overlapping networks 

may contribute to different aspects of cognition (S. M. Smith et al., 2012). Thus, our results 

may provide only limited information about how the participation of functional regions in 

multiple task-related networks develops between childhood and adulthood (e.g., Marek et 

al., 2015). In addition, network labels were chosen based on the modulation profile during 

the antisaccade task, as well as the composition of each network vis-à-vis previous literature 

(Yeo et al., 2011). Although our network labels are convergent with extant research, the task-

related modulation and network composition observed in our study may not generalize to 

other tasks with different cognitive demands.

Third, although we found linear increases in DAN modulation from ages 10 to 25 during the 

cue phase, this was not significantly related to average performance on the antisaccade task. 

This is inconsistent with previous literature on the role of transient DAN activation to filter 

out irrelevant stimuli and support top-down control of behavior (e.g., Wen, Yao, Liu, & 

Ding, 2012). Our failure to corroborate this work may reflect a relative insensitivity of our 

analytic approach insofar as our measures of network modulation during cues varied at the 

run level (i.e., the overall association of network time courses with predicted BOLD 

responses to cue events), not trial level. Thus, to the extent that transient trial-level 

fluctuations in DAN activity were associated with accuracy, or that the DAN contributed 

more to latency variations than accuracy, we may have failed to detect a developmental 

effect.

Fourth, the magnitude of age-related changes in network modulation (Figure 3) varied from 

small to large according to a common effect size rule of thumb (Cohen, 1988); most effects 

were moderate in size (see Supplemental Discussion for additional details). Finally, 
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substance use problems were identified based on self-report, not formal drug testing (e.g., 

urinalysis), which may have failed to eliminate individuals with substance use disorders 

from our study.

Conclusions

Our study provides new insight into the development of task-related brain networks involved 

in inhibitory control in the context of incentives. Extending previous work in this area (e.g., 

Van Leijenhorst et al., 2010), we found that task-related modulation of control networks, 

especially the dorsal attention and salience networks, increased gradually from childhood to 

adulthood and that control networks tended to integrate with each other over development. 

Relative to neutral cues, both reward and loss cues led to greater salience network 

modulation when preparing to inhibit a saccade. Furthermore, modulation of the salience 

network during response preparation increased from childhood to adulthood and was linked 

with better inhibitory control. Conversely, the recruitment of task-irrelevant circuitry (e.g., 

auditory regions during the visual part of the task) was associated with poorer performance, 

and this declined into adulthood, potentially reflecting developmental improvements in 

network switching in response to task demands (Menon & Uddin, 2010).

Consistent with a dual-systems perspective, we found greater recruitment of valuation-

related circuits (especially mPFC and ventral striatum; Bartra et al., 2013) during 

adolescence in response to the receipt of reward and loss outcomes. However, modulation of 

the Valuation network was not linked with antisaccade accuracy, which may suggest that 

heightened striatal reactivity to reward receipt does not detract from adolescents’ inhibitory 

control, whereas striatal reactivity to reward cues may be linked with risky behaviors (Bjork, 

Smith, Chen, & Hommer, 2011). Importantly, our results speak primarily to how incentives 

influence performance on inhibitory control tasks and may not generalize to developmental 

differences in decision-making such as affective versus deliberative contexts (Figner, 

Mackinlay, Wilkening, & Weber, 2009) or the influence of peers on risky decisions (Chein, 

Albert, O’Brien, Uckert, & Steinberg, 2011). Altogether, our findings support the 

interpretation that incentives facilitate greater inhibitory control over development by 

enhancing functional networks involved in salience processing and motor preparation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental design of the incentivized antisaccade task. The task consisted of three phases: 

incentive cue, response preparation, and saccade response, each lasting 1.5 s. Incentive cues 

were represented rewards (green bars), losses (red bars), or neutral (no bars), and reflected 

the number of points that could be earned or lost based on antisaccade response accuracy. 

Participants received immediate auditory feedback during the saccade response phase 

(“kching” for accurate and “buzz” for inaccurate responses). To improve the separation of 

the three task phases in data analyses, catch trials that omitted the response phase or the 

preparation and response phases were included.
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Figure 2. 
Spatial patterns of task-related functional networks and task-related network activity (details 

provided in Table S2). Spatial maps were thresholded at |t| > 10 (min. 20 contiguous voxels) 

for display and represent the strength of temporal correspondence between a region and the 

time course of the overall network. The bottom panel of each network represents task-related 

modulation (TRiM) of the network as a function of trial phase and incentive cue. Positive 

values indicate increases in network activity during the task event (e.g., reward cue), 

whereas negative TRiM values reflect reductions in network activity. The panels are 

organized from left to right with respect to task phase, with more cue-related components 

appearing on the left and more response-related components appearing on the right.

The Visual network included large clusters in bilateral cuneus and lingual gyrus, as well as 

the lateral geniculate nucleus. The dorsal attention network (DAN) included the frontal eye 

fields (intersection of precentral sulcus and superior frontal gyrus), intraparietal sulcus, and 

precuneus. TRiM of the DAN was positive during the cue, preparation, and response phases, 

but was highest in the response phase (when a voluntary antisaccade is made), moderate 

during cue, and weakest during preparation (pairwise comparisons significant at adj. p < .

001). The Motor network included clusters in bilateral thalamus, dorsal striatum, 

supplementary motor area, and premotor cortex. The Salience network (SN; also known as 

the cingulo-opercular network; Dosenbach et al., 2007) was defined by large clusters in the 

anterior insula/frontal operculum, dorsal cingulate gyrus, middle frontal gyrus, and 

dorsomedial thalamus. The default mode network (DMN) included the posterior cingulate, 

precuneus, medial prefrontal cortex, and inferior parietal cortex. The Valuation network 

included the ventral striatum (VS), medial and ventromedial prefrontal cortex (vmPFC), and 

lateral orbitofrontal cortex, canonical regions in reward processing (Knutson, Fong, Bennett, 

Adams, & Hommer, 2003). In addition, the amygdala and thalamus displayed negative 

coupling with the Valuation network such that activity increases in the vmPFC and VS were 

accompanied by decreases in amygdala and thalamus. Finally, the Auditory network was 
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composed of bilateral superior temporal gyrus, primary auditory cortex, supplementary 

motor area, midcingulate cortex, postcentral gyrus, and medial geniculum body.
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Figure 3. 
Age-related changes in task-related network modulation as a function of trial phase. Plots 

represent the strength of the association between network modulation and each phase of the 

task between ages 10 and 25. The zero point on the vertical axis represents no coupling, on 

average, of the network with that phase of the task. A regression line representing the best-

fitting function of age is overlaid on each panel: linear (DAN), asymptotic (Visual, SN, 

Auditory), or quadratic (Motor, DMN, Reward). Significant associations are denoted by an 

asterisk in the subpanel header (see text for a detailed description of these effects).
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Figure 4. 
Average correlations among network time courses. Connection labels between two regions 

reflect the average Pearson correlation between time courses across participants. Only 

connections that were significant after Holm familywise error correction are displayed. 

Arrows represent between-network connections that changed with age, with corresponding 

scatterplots depicting the strength of the association. The dotted arrow between the DAN 

and Auditory network indicates that the correlation was non-significant the overall sample, 

but increased with development.
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