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Abstract

Current neurobiological models assign a central role to predictive processes
calibrated to environmental statistics. Neuroimaging studies examining the
encoding of stimulus uncertainty have relied almost exclusively on manip-
ulations in which stimuli were presented in a single sensory modality, and
further assumed that neural responses vary monotonically with uncertainty.
This has left a gap in theoretical development with respect to two core is-
sues: i) are there cross-modal brain systems that encode input uncertainty
in way that generalizes across sensory modalities, and ii) are there brain
systems that track input uncertainty in a non-monotonic fashion? We used
multivariate pattern analysis to address these two issues using auditory, vi-
sual and audiovisual inputs. We found signatures of cross-modal encoding
in frontoparietal, orbitofrontal, and association cortices using a searchlight
cross-classification analysis where classifiers trained to discriminate levels of
uncertainty in one modality were tested in another modality. Additionally,
we found widespread systems encoding uncertainty non-monotonically using
classifiers trained to discriminate intermediate levels of uncertainty from both
the highest and lowest uncertainty levels. These findings comprise the first
comprehensive report of cross-modal and non-monotonic neural sensitivity
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to statistical regularities in the environment, and suggest that conventional
paradigms testing for monotonic responses to uncertainty in a single sensory
modality may have limited generalizability.
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1. Introduction1

Currently, one of the dominant frameworks for understanding brain func-2

tion couches perception in terms of learning-based predictive processes, which3

operate by integrating information over multiple temporal scales (e.g., Born-4

stein & Daw, 2012; Clark, 2013; Friston, 2010). This is a foundational5

premise in computational and cognitive approaches to economic decision-6

making, language processing, statistical learning, and low-level sensory pro-7

cessing. These theoretical developments have been accompanied by a rich8

body of experimental data addressing the neurobiological basis of predictive9

processing, and in particular, brain systems that encode temporally-unfolding10

statistical structure in the environment (see Hasson, 2017, for recent review).11

There are, however, two substantial limitations to our understanding of12

the neurobiological systems encoding environmental statistics. First, almost13

all empirical studies probing the neural systems supporting predictive pro-14

cessing assume that these systems track statistical regularities monotonically;15

i.e., that the relevant neural systems are ones in which activity increases or16

decreases monotonically with statistical regularity, predictability, or uncer-17

tainty. This assumption is deceptively intuitive and is sufficiently ingrained18

in neurobiological experiments that it is rarely stated explicitly. Examples19

include neuroimaging studies that test for linear relations between statistical20

regularities in stimulus series and response magnitudes (e.g., Bischoff-Grethe,21

Proper, Mao, Daniels, & Berns, 2000; Harrison, Duggins, & Friston, 2006;22

Huettel, Mack, & McCarthy, 2002; Strange, Duggins, Penny, Dolan, & Fris-23

ton, 2005), or studies that contrast structured and random inputs sequences24

(e.g., Cunillera et al., 2009; McNealy, Mazziotta, & Dapretto, 2006).25

That said, there are a few recent exceptions to this assumption. Kidd26

et al. (2012) found that infants, when presented with sequences of events27

varying in their predictability (surprisal), were less likely to look away from28

intermediately surprising events than when events were too predictable or29

too surprising. This suggests that stimuli of intermediate predictability may30

receive privileged neural processing with respect to random or highly struc-31
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tured inputs. Along these lines, Nastase et al. (2015) found that whole-brain32

connectivity between the anterior cingulate cortex and several brain regions33

tracked statistical regularities in auditory stimuli non-monotonically (i.e.,34

via a quadratic trend). Non-monotonic responses to regularity are compat-35

ible with several types of operations (Hasson et al., 2017; Nastase et al.,36

2015). For example, neural systems modeling the environmental generators37

of sensory inputs may be maximally engaged by moderately structured in-38

puts where model complexity is highest; additionally, systems supporting39

exploratory behavior or encoding particular information-theoretic metrics,40

such as predictive information rate (Abdallah & Plumbley, 2009), may be41

maximally engaged by inputs of intermediate regularity, while not differenti-42

ating highly random and highly structured inputs. Identifying brain systems43

that respond non-monotonically to uncertainty, particularly ones that do so44

in a supra-modal manner, would expose a novel but unappreciated aspect45

of neural coding of input statistics, which cannot be explained by low-level46

mechanisms such as the construction of prediction, generation of prediction47

errors, or any other computational account in which responses scale with48

uncertainty.49

A second, related limitation is that very few studies have directly in-50

vestigated whether there exist neural systems that are sensitive to input51

statistics in more than one modality. This is one of the core questions in52

functional theories of statistical learning (for review, see, e.g., Frost, Arm-53

strong, Siegelman, & Christiansen, 2015) but has seldom been addressed from54

a neurobiological perspective. Our prior work examining this issue (Nastase55

et al., 2014) failed to identify areas sensitive to regularity in both auditory56

and visual inputs (and was agnostic to the issue of linear or non-monotonic57

trends). Other work in which participants were instructed to predict the58

final elements of series varying in predictability reported adjacent (Schubotz59

& von Cramon, 2002) or overlapping responses (Schubotz & von Cramon,60

2004) in left ventral premotor cortex for different modalities. More recent61

work (Meyniel and Dehaene, 2017) has implicated a more widespread net-62

work including precentral, intraparietal, and superior temporal cortices in63

tracking transition probabilities in auditory and visual series (though no for-64

mal conjunction test was performed). Nonetheless, overlapping activations65

(i.e., conjunction maps) provide limited evidence for cross-modal representa-66

tion of uncertainty, because the finer-grained organization of neural activity67

may differ across modalities.68

The current study was designed to address these limitations by (a) sys-69
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tematically probing for both monotonic and non-monotonic neural responses70

to statistical regularities in auditory, visual, and audiovisual stimuli, and (b)71

determining to what extent these responses are modality-independent. Par-72

ticipants were presented with brief ∼10 s auditory, visual, and audiovisual73

series varying across four levels of entropy (i.e., uncertainty, inversely related74

to regularity) while performing an orthogonal cover task. The same statisti-75

cal constraints were used to generate auditory series consisting of pure tones,76

visual series consisting of simple colored shapes, or audiovisual series where77

each token was a unique tone/shape combination (thus the uncertainty and78

structure of the audiovisual series was identical to that of the auditory-only79

and visual-only series). We used multivariate pattern analysis to localize re-80

sponse patterns that differentiated series with varying uncertainty in either a81

monotonic or quadratic (i.e., non-monotonic) fashion for auditory, visual, and82

audiovisual series. We also used multivariate cross-classification to identify83

neural systems encoding uncertainty in a modality-general fashion by training84

a classifier to discriminate levels of uncertainty in one modality (e.g., visual85

series) and then testing it on another modality (e.g., auditory series). This86

procedure explicitly tests for systems coding for statistical regularities in the87

environment at a level of abstraction that supersedes the sensory features of88

the stimuli.89

In general, we expected different brain systems to track uncertainty within90

auditory and visual streams, consistent with emerging views that different91

neural systems encode sequential structure or environmental regularities in92

different modalities (for recent reviews; see Armstrong, Siegelman, & Chris-93

tiansen, 2015; Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015; Frost et94

al., 2015; Hasson, 2017; Milne, Wilson, & Christiansen, 2018). We further95

expected that the systems implicated in tracking the level of uncertainty in96

audiovisual stimuli would diverge from those tracking uncertainty for unisen-97

sory stimuli, as our recent work (Andric, Davis, & Hasson, 2017) indicates98

that audiovisual inputs trigger unique computations related to uncertainty.99

2. Methods100

2.1. Participants101

Twenty-five right-handed adults (Mean Age = 26.1 ±4.74 SD; 11 female)102

participated in the study, which was conducted at the University of Trento,103

Italy. They were recruited from the local student population, provided in-104

formed consent, and were reimbursed at a rate of 10 Euro per hour. Partic-105
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ipants reported no history of psychiatric illness, history of substance abuse,106

or hearing impairments, and underwent an interview with a board-certified107

medical doctor prior to scanning to evaluate other exclusion criteria. Data108

from one participant who had completed the study were not included due109

to excessive movement during the scanning session. The human research110

ethics committee of the University of Trento approved the study. The data111

collected here have not been reported in any other study112

2.2. Design, materials, and procedure113

Stimulus events consisted of brief auditory (A), visual (V), or audiovisual114

(AV) series. Each series consisted of 32 items presented within 9.6 s at a rate115

of 3.3 Hz. These 32 items consisted of a repeated sampling of four tokens116

whose presentation order was determined by a first-order Markov process.117

For all modalities, each token was presented for 250 ms, followed by a 50 ms118

pause. For the auditory series, these tokens were four pure tones (262, 294,119

330, 349 Hz; corresponding to middle C, D, E, and F in the Western major120

scale). Volume was manually adjusted for each participant until auditory121

stimuli were comfortably heard over scanner noise. For the visual series, the122

four tokens were four visual stimuli each identified by a unique combination123

of shape (circle, square, star, triangle), color (blue, green, red, yellow), and124

location (left, right, above, or below the fixation cross; e.g., ‘1’ = blue triangle125

presented above the fixation cross). Visual stimuli were presented at 2◦ visual126

angle from the fixation cross so that they could be observed without eye127

movement. The AV series consisted of yoked auditory and visual stimuli128

(fixed pairs) that were completely mutually informative such that within129

each AV series, any given tone was presented with only one visual stimulus.130

For each of the AV series, this produced an “alphabet” of only 4 possible131

states, analogous to the formal information content within the unisensory132

(A or V) series. The complete mutual information between auditory and133

visual streams in the AV condition reflected a single generating process, and134

consequently, tracking one stream provided complete information about the135

other. The specific instantiation of the one-to-one matching between a tone136

and a visual stimulus changed across the different AV series.137

Series in the four conditions were generated using a first-order Markov138

process applied to four transition matrices with different levels of Markov139

entropy (Markov entropy = 0.81, 1.35, 1.56, 2.0; see Figure 1). We manip-140

ulated only these transition probabilities between tokens, while fixing the141

marginal frequencies across conditions at 25% per token; i.e., only Markov142
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entropy was manipulated whereas Shannon entropy was fixed at 2 bits (a143

uniform distribution where each token is equally likely). We created the ex-144

perimental series by repeatedly generating series from the Markov processes,145

evaluating those for transition constraints and marginal frequencies, and se-146

lecting only those series that exactly fit the generating process in terms of147

transition and marginal frequencies. Levels of the Markov entropy factor are148

referred to as levels 1, 2, 3, and 4 and indicate an increase in randomness;149

note that a positive linear relationship with entropy or uncertainty can also150

be described as a negative linear relationship with regularity, structure, or151

predictability.152

Figure 1: Transition graphs determining the uncertainty of stimulus series. In
the auditory condition, each token corresponded to a tone. In the visual condition, each
token corresponded to a shape of a particular color at one of four locations surrounding
the central fixation cross. In the audiovisual condition, each token corresponded to a fixed
tone–shape pair that remained unchanged within a series, but differed across series. The
transition graphs correspond to entropy labels 1 (top left), 2 (top right), 3 (bottom left),
and 4 (bottom right) in the text and figures.

There were 12 conditions in the factorial design corresponding to the fully153

crossed 4 entropy levels and 3 sensory modalities (A, V, AV). We used 12154
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different series for each of these 12 conditions (i.e., 144 experimental series in155

total). These stimuli were presented over four experimental runs, with each156

run containing three series from each of the 12 conditions. Participants per-157

formed an orthogonal cover task in which they were instructed to monitor the158

fixation cross at the center of the display, and press a response key whenever159

the fixation cross began to rotate and alternate in color. These events served160

as catch trials, occurring six times during each run, and were unrelated to the161

entropy and modality manipulations. During each of the four experimental162

runs, performance was monitored online and not analyzed further; responses163

to catch trials were tracked by the experimenter and participants were pro-164

vided feedback at the end of each run if a response was missed to encourage165

improved performance. In contrast to studies that encourage or require ex-166

plicit prediction (e.g., Schubotz & von Cramon, 2002, 2004), we used a cover167

task to measure passive sensitivity to sensory regularities. Existing work168

suggests that explicit and implicit statistical learning tasks engage distinct,169

but partially overlapping neural systems (e.g., Aizenstein et al., 2004). The170

trial timing for each run was based on a rapid event-related fMRI protocol171

with jittered inter-stimulus intervals and an implicit baseline consisting of172

observation of the fixation cross. The presentation sequence was determined173

by the optseq utility (Dale, 1999), which generates a trial set optimized for174

this type of experimental design. Each run began with an 18.7 s rest interval175

to allow for signal stabilization.176

2.3. fMRI acquisition177

Images were acquired with a 4T MRI scanner (Bruker Medical, Ettlin-178

gen, Germany) using a birdcage-transmit, 8-channel receiver head coil (USA179

Instruments, Inc., OH, USA). Two T1-weighted 3D MPRAGE structural im-180

ages were acquired (1 mm3 isotropic voxels, GRAPPA iPAT = 2, 5:36 min181

each). One was optimized for optimal contrast (MPRAGE CNR) between182

gray and white matter tissue (TE/TR/TI/flip angle = 4.18 ms/2700 ms/1020183

ms/7◦) and the other was optimized for signal to noise ratio (MPRAGE SNR)184

in gray and white matter tissue (TE/TR/TI/flip angle = 3.37 ms/2500185

ms/1200 ms/12◦; Papinutto & Jovicich, 2008). For functional MRI, single-186

shot EPI BOLD functional images were acquired using the point-spread-187

function distortion correction method (Zaitsev, Hennig, & Speck, 2004). Two188

hundred and eighty-five EPI volumes lasting 627 s in total were acquired dur-189

ing each of the four functional runs for 1,140 total volumes and 2,508 s total190

acquisition time (TR/TE = 2.2 s/33 ms, matrix 64 x 64, with 37 interleaved191
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slices parallel to AC/PC, 3 mm3 isotropic voxels, slice skip factor = 15%,192

flip angle = 75.0◦). Cardiac and respiratory measurements were not collected193

during fMRI acquisition.194

2.4. Preprocessing195

Preprocessing of fMRI data was carried out using FEAT (FMRI Expert196

Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library; Jenk-197

inson, Beckmann, Behrens, Woolrich, & Smith, 2012). The first six volumes198

of every fMRI run were discarded prior to analysis. The following preprocess-199

ing steps were then applied: motion correction using MCFLIRT (Jenkinson,200

Bannister, Brady, & Smith, 2002); slice-timing correction using Fourier-space201

time-series phase-shifting; non-brain removal using BET (Smith, 2002); spa-202

tial smoothing using a 5 mm FWHM Gaussian kernel; grand-mean intensity203

normalization of the entire 4D dataset by a single multiplicative factor; and204

high-pass temporal filtering (Gaussian-weighted least-squares straight line205

fitting, with sigma = 50.0 s).206

In order to control for motion, confound matrixes were created using the207

dvars metric (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) using208

the fsl motion outliers tool. The dvars metric quantifies intensity differences209

between adjacent volumes after realignment (motion correction). Volumes210

that exceeded a boxplot cutoff threshold of 1.5 times the interquartile range211

were included in a confound matrix to be excluded in the first-level regression212

model by treating them as a regressor of no interest. This method is similar213

to excluding outlier time points from the regression model, but does not214

adversely affect temporal filtering or the autocorrelation structure.215

2.5. Regression model216

Single-participant analyses were conducted using FSLs FEAT (Jenkinson217

et al., 2012). A general linear model was constructed using FILM with local218

autocorrelation correction (Woolrich, Ripley, Brady, & Smith, 2001). The219

regression model included 12 regressors of interest: 4 (entropy levels) × 3220

(sensory modality), where each 9.6 s event was modeled as a boxcar function221

convolved with a single-gamma hemodynamic response function. Note that222

we did not model or analyze the individual tokens (occurring at 3.3 Hz) com-223

prising each event. Regressors of no interest included the catch trials eliciting224

button presses as well as a set of standard and extended motion parameters:225

6 standard motion regressors, as well as their squares, temporal derivatives,226

squared derivatives, and the motion confound matrix determined using the227
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dvars metric. We did not include a global signal covariate as stimulus series228

were brief (corresponding to approximately four functional volumes) and pre-229

sented in pseudorandom order with jittered onsets, and because global signal230

regression may alter the inter-voxel correlation structure to which multivari-231

ate analysis are sensitive (Caballero-Gaudes & Reynolds, 2016).232

2.6. Normalization233

The structural images optimized for contrast-to-noise ratio (CNR) were234

preprocessed using the fsl anat tool according to the following steps: reorien-235

tation to MNI conventions (fslreorient2std); automatic cropping (robustfov);236

bias field correction (FAST); nonlinear normalization to a whole-brain MNI237

template (FNIRT); brain extraction based on the alignment to the MNI tem-238

plate, and segmentation according to tissue type and subcortical structures.239

After estimating the first-level regression model, we aligned the statistical240

maps to MNI space in a single step by concatenating three transformation241

matrices resulting from the following three alignment stages. In a first step,242

each structural image was aligned to the first EPI volume in each run (i.e.,243

the first of the six discarded volumes; the image with the strongest anatom-244

ical contrast) using a 3 degrees-of-freedom (translation-only) linear FLIRT245

alignment. In a second step, boundary-based registration (Greve & Fischl,246

2009) was used to co-register the first EPI volume to the bias corrected,247

skull-stripped, and segmented structural image. In a third step the struc-248

tural image was nonlinearly aligned to the MNI template using an initial 12249

degrees-of-freedom linear registration step followed by nonlinear registration250

with a warp resolution of 10 mm.251

2.7. Multivariate pattern analysis252

2.7.1. General approach and preparation for MVPA253

We used multivariate pattern analysis to classify entropy conditions from254

distributed neural response patterns, with a focus on the issue of cross-modal255

classification (Kaplan, Man, & Greening, 2015; Kriegeskorte, 2011; Nastase,256

Halchenko, Davis, & Hasson, 2016). To localize brain areas that contained257

information about entropy, classification was performed using spherical volu-258

metric searchlights (e.g., Kriegeskorte, Goebel, & Bandettini, 2006; Pereira,259

Mitchell, & Botvinick, 2009). Each searchlight had a 3-voxel radius (6 mm),260

and on average included 107 voxels (SD = 21 voxels).261

We performed two types of classification where the classification targets262

were assigned so as to capture the two types of dissociations that were of263

9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/243550doi: bioRxiv preprint 

https://doi.org/10.1101/243550
http://creativecommons.org/licenses/by-nc/4.0/


theoretical interest: (i) classification of high versus low entropy conditions264

(approximating a “linear profile”); and (ii) classification of the two extreme265

(high, low) versus the two intermediate levels of entropy (“quadratic pro-266

file”). In this latter classification analysis, we assigned the label “extreme”267

to entropy levels 1 and 4, and the label “intermediate” to the entropy levels268

2 and 3, and then proceeded with standard two-class classification. For the269

classifier to perform at 100% accuracy, it must, in left-out test data, classify270

both levels 1 and 4 as “extreme”, and levels 2 and 3 as “intermediate”.271

First, we applied standard within-modality pattern classification to iden-272

tify brain regions that discriminated levels of uncertainty in a linear or273

quadratic fashion. In this procedure, classifiers were trained and tested on274

response patterns within the same sensory modality (A, V, AV).275

Second, to evaluate cross-modal sensitivity to entropy (i.e., information276

about entropy condition that generalizes across sensory modality), classifiers277

were trained on stimuli in the auditory modality and tested on stimuli in278

the visual modality (and vice versa) and the results averaged (as in, e.g.,279

Man, Kaplan, Damasio, & Meyer, 2012; Oosterhof, Tipper, & Downing,280

2012). Note that the audiovisual condition was not examined in the cross-281

classification scheme.282

2.7.2. Implementation of MVPA283

We extracted regression coefficients from the first-level univariate general284

linear model, for each of the 12 conditions, and propagated those to a gray285

matter mask comprising the union of individual gray masks across partici-286

pants (50% gray matter probability from FSL’s FAST) in MNI space. This287

gray matter mask contained 196,634 2 mm3 voxels after removing any voxels288

invariant across all samples and participants. Regression coefficients were289

averaged across the four runs within each participant prior to classification290

analysis to create a single map per condition, and then normalized (Z-scored)291

across features (voxels) within each searchlight (Misaki, Kim, Bandettini, &292

Kriegeskorte, 2010; Nastase et al., 2016). This normalization scheme ensures293

that the classifier cannot capitalize on regional-average differences in response294

magnitude (i.e., within a searchlight) between the different conditions.295

Classification was performed using linear support vector machines (SVMs;296

Boser, Guyon, & Vapnik, 1992) with the soft-margin parameter C automat-297

ically scaled to the norm of the data. All classification analyses were per-298

formed using leave-one-participant-out cross-validation (e.g., Clithero, Smith,299

Carter, & Huettel, 2011; Mourao-Miranda, Bokde, Born, Hampel, & Stet-300
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ter, 2005). That is, for each cross-validation fold, the decision boundary was301

constructed based on samples from 24 of the 25 participants, and tested on302

the left-out participant. This procedure was repeated until each participant303

served as the test participant, and the classification accuracies were aver-304

aged across cross-validation folds. It has been shown (e.g., Allefeld, Gorgen,305

& Haynes, 2016) that a leave-one-participant-out procedure more rigorously306

ensures that classification generalizes across participants than applying stan-307

dard second-level statistical tests to classification accuracies that are based308

on leave-one-run-out cross-validation within participants.309

In the cross-modal classification analysis, for each cross-validation fold310

the decision boundary was constructed based on samples from one sensory311

modality (e.g., auditory) in 24 participants, then tested on samples from the312

other sensory modality (e.g., visual) in the left-out participant. All multivari-313

ate analyses were performed using the PyMVPA software package (Hanke et314

al., 2009).315

To determine the statistical significance of searchlight classification ac-316

curacies we used nonparametric randomization tests shuffling the entropy317

condition assignments (e.g., Etzel, 2015, 2017; Nastase et al., 2016). That is,318

for each permutation, the condition labels were randomly reassigned for all319

participants and the entire searchlight classification analysis (cross-validated320

across participants) was recomputed. For each searchlight analysis, 1,000321

permutations were computed per searchlight, resulting in a distribution of322

searchlight maps under the null hypothesis of no systematic relationships323

among the condition labels. The actual searchlight classification accuracy324

was then compared against this null distribution to determine a p-value per325

searchlight. The permutation test respected the stratification of the data326

such that entropy labels were permuted within each participant, and for327

cross-classification permuted within each modality (nested within partici-328

pants). When classifying highly-regular and random series (entropy levels 1329

and 4), only labels 1 and 4 were permuted. When classifying extreme ver-330

sus intermediate levels of entropy (quadratic profile), labels were permuted331

to ensure that the two extreme entropy levels were assigned the same label332

(“extreme” or “intermediate”) and that the intermediate levels were both333

assigned the other label.334

We performed nonparametric cluster-level inference using a Monte Carlo335

procedure simulating clusters of random Gaussian noise (Forman et al.,336

1995). To constrain the spatial smoothness of the noise simulation, we com-337

puted residual searchlight accuracy maps by subtracting the average accu-338
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racy (across participants) from each participant’s accuracy (as in Linden,339

Oosterhof, Klein, & Downing, 2012, p. 630). The mean smoothness along340

the x -, y-, and z -axes of these residual accuracy maps was calculated us-341

ing AFNI’s 3dFWHMx and supplied to AFNI’s 3dClustSim to estimate the342

extent of significant searchlight clusters occurring by chance. For the cross-343

modal searchlight classification procedure, we report clusters that survived a344

voxel-level cluster-forming threshold of p < .05 (assessed using permutation345

tests) and a cluster-level threshold of p < .05, controlling for the family-346

wise error rate. For the within-modality searchlight classification, we use a347

slightly more conservative single-voxel cluster-forming threshold (p < .01;348

cluster-level correction, p < .05).349

To relate the current study to prior reports of hippocampal sensitivity to350

statistical regularities (e.g., Bornstein & Daw, 2012; Covington et al., 2018;351

Schapiro et al., 2014; Turk-Browne et al., 2009), and because the search-352

light approach is not particularly well-suited to subcortical structures, we353

additionally performed classification analyses within an anatomically defined354

hippocampal region of interest (ROI). For each participant, left and right hip-355

pocampal volumes were automatically segmented using FSL’s FIRST (Pate-356

naude, Smith, Kennedy, & Jenkinson, 2011) and then normalized to MNI357

space following the same procedure described above for the whole brain.358

Voxels in MNI space assigned to hippocampus in 50% or more participants359

were included in the final hippocampal ROI. We then performed the clas-360

sification analyses described above (i.e., cross-modal and within-modality,361

as well as linear and quadratic classification) within the hippocampus ROIs362

using leave-one-participant-out cross-validation. We analyzed the right and363

left hippocampal volumes separately. Significant classification within the364

hippocampus was assessed using the randomization test described above.365

3. Results366

3.1. Sensitivity to uncertainty in auditory, visual and audiovisual series367

Using a multivariate searchlight analysis, we first evaluated two questions:368

i) whether local neural response patterns discriminate between high- and369

low-uncertainty conditions (approximating a linear trend), and ii) whether370

response patterns discriminate the two intermediate levels of regularity from371

both the most- and least-regular conditions (approximating a quadratic trend).372

Responses discriminating high and low entropy are consistent with predictive373

processing, while responses discriminating intermediate and extreme levels374
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of entropy may reflect processes modeling the complexity of the system gen-375

erating the stimuli.376

For the auditory modality, we identified two regions discriminating high377

and low entropy: left precentral gyrus (PCG) and right insula, with peak378

searchlight classification accuracies of 77–79%, cross-validated across partic-379

ipants (theoretical chance = 50% here and for all subsequent classification380

results). We found a much more extensive set of regions that discriminated381

the intermediate levels of auditory regularity from both high and low levels382

(a quadratic discrimination with respect to entropy levels; Figure 2). These383

included bilateral superior and middle temporal gyri (STG, MTG), right384

transverse temporal gyrus (TTG), occipital regions bilaterally, and the cere-385

bellum, with peak two-way classification accuracies of 67–70% (see Table 1386

for all significant cluster locations).387

[Table 1 around here]388

For the visual modality we identified four clusters discriminating high and389

low entropy series: left post-central gyrus (PoCG), right STG, right cuneus,390

and left rectal gyrus, with peak classification accuracies of 75–79%. We also391

identified several clusters discriminating intermediate levels of regularity from392

both the highest and lowest levels. The largest of the clusters was located393

in the right caudate, with additional clusters in the left fusiform gyrus, right394

inferior temporal gyrus, and right superior medial frontal gyrus. Peak clas-395

sification accuracies in these significant clusters of searchlights ranged from396

67% to 70%.397

For the audiovisual stimuli, we identified three clusters that discriminated398

high and low entropy conditions: right PoCG, left superior occipital gyrus,399

and the left middle cingulate gyrus, with peak classification accuracies of400

71–77%. Additionally, in several regions the classifier discriminated the in-401

termediate and extreme entropy levels, including the left STG, right TTG,402

left PoCG, left cerebellum, and right supplementary motor area (SMA), with403

peak classification accuracies of 64–70%.404

3.2. Cross-modal sensitivity to uncertainty405

We used cross-modal searchlight classification to identify brain areas406

where response patterns discriminating levels of uncertainty generalized (i.e.,407

were similar) across the auditory and visual modalities. Classifiers were408

trained to discriminate between levels of regularity in one sensory modality409
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Figure 2: Neural sensitivity to uncertainty in the auditory, visual, and audiovi-
sual series. Significant clusters of searchlights where response patterns reliably discrim-
inated highly regular and random series are indicated in red. Significant clusters where
response patterns discriminated the two intermediate levels of regularity from the two
extreme levels (a quadratic discrimination) are plotted in cyan (cluster-level p < .05, cor-
rected for multiple comparisons). Classifiers were tested using leave-one-participant-out
cross-validation and statistically evaluated using permutation tests.

and then tested on input from the other modality using leave-one-participant-410

out cross-validation. Cross-modal classification of high and low entropy se-411

ries revealed significant clusters of searchlights in left orbitofrontal cortex412

(OFC), left MTG, and right cerebellum (see Figure 3, red clusters; cluster-413

level p < .05, corrected for multiple comparisons). These significant clusters414

had peak classification accuracies of 66–70% cross-validated across partici-415

pants (theoretical chance = 50%). Interestingly, cross-modal classification416

discriminating intermediate and extreme levels of entropy (analogous to a417

U-shaped discrimination) was extensive (Figure 3, cyan clusters), implicat-418

ing the right inferior frontal gyrus, SMA and SMG bilaterally, left PCG and419

MFG, left cerebellum, left superior parietal lobule, left inferior occipital and420

fusiform gyri, and the right insula (cluster-level p < .05, corrected for mul-421

tiple comparisons; see Table 2 for all significant clusters and Supplementary422

Movie for 3D rendering). These areas exhibited peak two-way classification423

accuracies of 61–64%.424

[Table 2 around here]425
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Figure 3: Cross-modal searchlight classification of input uncertainty. The search-
light analysis identified brain regions where classifiers trained to discriminate levels of
regularity in one modality (e.g., auditory inputs) could successfully classify levels of reg-
ularity in the other modality (e.g., visual inputs, and vice versa). Significant clusters of
searchlights where response patterns for highly regular and random series could be reliably
classified across the auditory and visual modalities are indicated in red. Significant clusters
of searchlights with reliable cross-modal classification of intermediate and extreme levels
of regularity are plotted in cyan. Classifiers were tested on the left-out modality using
leave-one-participant-out cross-validation, and statistically evaluated using permutation
tests. Searchlight results are statistically significant at cluster-level p < .05, corrected for
multiple comparisons.

3.3. Hippocampal analysis426

Given prior studies implicating the hippocampus in associative learning,427

statistical learning, and sensitivity to uncertainty more generally (Strange428

et al., 2005; Harrison et al., 2006; Turk-Browne et al., 2009; Reddy et al.,429

2015), we conducted multivariate analyses analogous to those reported for430

searchlights above within anatomically-defined left and right hippocampus431

ROIs. Given their potentially differential roles in contextual integration (see432

Hartzell, Tobia, Davis, Cashdollar, & Hasson, 2015), we separately analyzed433

response patterns in the left and right hippocampus. As in the previous anal-434

yses, we tested for responses discriminating both high and low entropy levels,435

and intermediate and extreme entropy levels for auditory, visual, and audio-436

visual stimuli (thus six tests per left and right hippocampus, 12 total). In437

addition, we evaluated cross-modal linear and quadratic classification anal-438

yses (two tests per left and right hippocampus, four total). Due to the439

exploratory nature of the analysis we did not control for family-wise error440

over the 16 tests.441

The analysis yielded two suggestive findings. For the right hippocampus,442

response patterns discriminated highly regular and random audiovisual series443

with 71% accuracy (theoretical chance = 50%, p = .003, permutation test,444
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uncorrected). In the left hippocampus, cross-modal classification of highly445

regular and random series reached 62% accuracy (p = .004, permutation446

test, uncorrected). Apart from these two instances, all other tests yielded447

accuracies very close to or below chance level.448

4. Discussion449

Our main aims were to determine whether it is possible to identify mono-450

tonic and non-monotonic neural sensitivity to uncertainty, and whether these451

neural signatures generalize across sensory modalities. Our main findings are452

as follows. First, multivariate pattern classification analysis proved highly453

sensitive, suggesting that neural response patterns contain information dif-454

ferentiating levels of uncertainty in short input series. Response patterns not455

only discriminated between highly regular and random series, which is to be456

expected from the existing literature (e.g., Cunillera et al., 2009; McNealy et457

al., 2006), but in some areas also discriminated the two intermediate levels of458

uncertainty from the two extremes. This latter finding is consistent with the459

view (e.g., Nastase et al., 2014; Kidd et al., 2012; Hasson, 2017) that sensitiv-460

ity to input statistics may comprise computations for which neural activity461

does not scale monotonically with uncertainty. The resulting network of brain462

regions includes perisylvian areas implicated in prior work (e.g., Tobia et al.,463

2012) and overlaps with areas characterized by intermediate-scale temporal464

receptive windows (Hasson et al., 2008; Lerner, Honey, Silbert, & Hasson,465

2011). Uncertainty in audiovisual stimuli engaged some systems recruited466

in the auditory condition (e.g., superior temporal cortex), but also recruited467

prefrontal systems.468

Equally important, when probing for supra-modal sensitivity to uncer-469

tainty, we identified a number of regions where it was possible to decode the470

level of uncertainty in one modality using a classifier trained discriminate lev-471

els of uncertainty in the other modality. Interestingly, cross-modal responses472

differentiating intermediate from extreme levels of entropy comprised a fairly473

widespread network, whereas relatively few areas differentiated high and low474

levels of uncertainty in a cross-modal fashion.475

4.1. Cross-modal and non-monotonic sensitivity to uncertainty476

Few studies have directly examined whether there are neurobiological477

systems that track the level of regularity in sensory inputs in a supra-modal478

fashion; that is, independently of sensory modality. Two studies by Schubotz479
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et al. compared processing of regularity in either auditory and visual se-480

ries (Schubotz & von Cramon, 2002) or abstract series and motor actions481

(Schubotz & von Cramon, 2004), reporting adjacent and overlapping activ-482

ity patterns in premotor cortex. However, both studies required participants483

to deliberately predict future events, which makes it unclear whether the484

results are a result of endogenous processing or explicit executive demands.485

In our own prior work (Nastase et al., 2014), we identified areas sensitive to486

regularity for either auditory or visual inputs, but found no area that was487

generally sensitive in both modalities. As noted in the Introduction, conjunc-488

tions of unisensory response maps provide only weak evidence for abstract,489

supra-modal computations (e.g., Peelen & Downing, 2006). Rather, in the490

current study we used cross-modal classification, which provides a more ro-491

bust test of representational content shared across modalities (Man et al.,492

2012; Kaplan et al., 2015).493

The cross-modal searchlight classification analysis identified an extensive494

supra-modal network of regions, some discriminating highly regular from ran-495

dom inputs (the typical contrast in univariate studies of uncertainty), and496

others differentiating the intermediate and extreme conditions in a quadratic497

fashion. Cross-modal regions discriminating the most regular from random498

inputs were limited to the left posterior middle temporal gyrus, the left pre-499

motor cortex/middle frontal gyrus, and left orbitofrontal cortex. The pos-500

terior lateral temporal cortex is multisensory, receiving input from both au-501

ditory and visual association cortices (Barnes & Pandya, 1992; Beauchamp,502

Argall, Bodurka, Duyn, & Martin, 2004). It may be that multi-modal tem-503

poral areas sensitive to regularity in the environment are recruited similarly504

across modalities, and prior work has shown that this area tracks regular-505

ity in visual series (Bischoff-Grethe, Proper, Mao, Daniels, & Berns, 2000).506

Cross-modal sensitivity to uncertainty in premotor cortex is consistent with507

prior findings (Schubotz & von Cramon, 2002) documenting its sensitivity508

to the complexity of auditory and visual series, though in non-overlapping509

areas. Meyniel and Dehaene (2017) have also linked this region to tracking510

confidence and uncertainty in simple auditory and visual series.511

Cross-modal sensitivity to uncertainty observed in orbitofrontal cortex is512

consistent with recent theories implicating this region, and limbic cortices513

more generally, as a source of predictive feedback signals conveyed to lower-514

level perceptual areas (Chanes & Barrett, 2016; Trapp & Bar, 2015). As the515

highly regular and random series differ in the extent to which they license pre-516

dictions, observed differences in the response topographies in these areas may517
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reflect the operation of predictive processes. Finally, in a post-hoc analysis,518

we discovered that response patterns in the right hippocampus differentiate519

highly structured and random audiovisual series, while the left hippocampus520

differentiates structured and random series across modalities. These sug-521

gestive results support previous work pointing to associative learning in the522

hippocampus in the context of implicit learning (Turk-Browne et al., 2009,523

Reddy et al., 2015). In future work, cross-modal classification may prove524

useful in testing whether the hippocampus encodes statistical regularities in525

a supra-modal fashion.526

Cross-modal responses discriminating the intermediate and extreme levels527

of regularity were surprisingly prevalent (seen in the spatial extent of cyan528

clusters in Figure 3). On the left, these were found in the middle frontal529

gyrus, temporal pole, lateral occipital cortex, intraparietal sulcus, and au-530

ditory association cortex. On the right, significant clusters were identified531

in the supramarginal gyrus and inferior frontal gyrus. Immediately rostral532

to the premotor cluster that discriminated high and low entropy conditions533

cross-modally, we identified another cross-modal cluster that discriminated534

intermediate from extreme entropy levels. Schubotz et al. (2002) had sug-535

gested that different areas in premotor cortex are involved in prediction of536

auditory and visual stimuli, such that prediction of auditory sequences uti-537

lizes premotor areas involved in verbal articulation, and prediction of visual538

sequences utilizes areas involved in hand movement. Expanding on this idea,539

our findings suggest a finer-grained, common substrate for the representa-540

tion of uncertainty across modalities in premotor cortex. Quadratic entropy541

discrimination was also found in the dorsomedial prefrontal cortex bilater-542

ally. We have previously documented an analogous type of non-monotonic,543

U-shaped response profile to regularity in auditory series when considering544

short (10 s) epochs (Tobia, Iacovella, Davis, & Hasson, 2012), as well as545

U-shaped whole-brain connectivity profiles for the anterior cingulate cortex546

during long periods of auditory stimulation (Nastase et al., 2015).547

These quadratic, non-monotonic response profiles are compatible with548

several types of computational accounts, as we have previously discussed in549

detail (Nastase et al., 2015; Hasson, 2017). In brief, they may be indicative550

of systems that do not explicitly code for statistical predictability or regu-551

larity per se, but instead are involved in modeling the system generating the552

sensory input. This modeling process may be outwardly reflected in an ap-553

parent U-shaped response profile because such model descriptions are simpler554

to construct for environmental systems that generate highly regular or ran-555
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dom inputs than for systems that generate inputs with intermediate levels of556

regularity. Another possibility is that these brain areas subserve prediction of557

multiple future transitions (e.g., two stimuli into the future, t+ 1, t+ 2), and558

are sensitive to predictive information rate (PIR): the degree to which the559

stimulus at time t+ 1 impacts the observers certainty regarding the stimulus560

expected at t + 2. Computational work has shown that PIR is maximal for561

series with intermediate levels of disorder, but lowest for both very regular562

and random series (Abdallah & Plumbley, 2009). A third possibility is that563

these brain areas are involved in the generation of predictions and sensitive564

to prediction error, but only so long as predictions are licensed by the input.565

This might be reflected in gradually increasing activity as disorder increases566

within a reasonable bound, but with a subsequent decline for the random567

condition, where no predictions are licensed. Thus, both the highly ordered568

and random condition would be accompanied by low prediction errors. We569

note, however, that the latter interpretation may be the least plausible for570

the relatively brief 10 s series presented here, because for such short random571

series it may be quite difficult to establish evidence that prediction is not572

licensed, particularly given the tendency to perceive streaks in completely573

random inputs (Huettel et al., 2002).574

Areas encoding audiovisual entropy were largely non-overlapping with575

areas encoding entropy in unisensory visual and auditory series, which is576

consistent with prior work (Andric, Davis, & Hasson, 2017). This relatively577

modest overlap is also consistent with behavioral work suggesting that mul-578

tisensory regularities are learned independently of regularities conveyed via579

their unisensory constituents (Seitz, Kim, van Wassenhove, & Shams, 2007).580

In the current experiment, the auditory and visual channels in the audio-581

visual condition provided redundant statistical information (mutual infor-582

mation was maximal). This may have produced a more efficient encoding583

of the series tokens themselves, in this way affording greater sensitivity to584

audiovisual regularities.585

Although participants performed an orthogonal cover task, we cannot rule586

out the possibility that implicit attentional allocation may have co-varied587

with the entropy manipulation. Attention and prediction are related con-588

structs and often conflated experimental work (Summerfield & Egner, 2009),589

where statistical regularities licensing expectations are often used to guide590

attention (Posner, Snyder, & Davidson, 1980; Zhao, Al-Aidroos, & Turk-591

Browne, 2013). Recent work on the interaction of these processes has met592

with mixed results (Jiang, Summerfield, & Egner, 2013; Kok et al., 2012)593
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and our experiment was not designed to adjudicate between these processes.594

Note that our procedure for normalizing response patterns may be robust to595

simple attentional effects (by mean-centering each searchlight), but does not596

necessarily rule out more complex attentional effects (Jehee, Brady, & Tong,597

2011; Nastase et al., 2017).598

Our findings point to the importance of examining non-monotonic re-599

sponses to predictability and uncertainty when studying brain systems sen-600

sitive to input statistics, as such responses may be as prevalent as the more-601

studied monotonic response profiles. More generally, they demonstrate the602

utility and importance of using cross-modal classification for drawing conclu-603

sions about supra-modal computations underlying statistical learning. While604

work to date, including our own, has largely failed to identify supra-modal605

systems sensitive to sequential structure, suggesting that sensory cortices606

support these computations (e.g., Dehaene et al., 2015; Nastase et al., 2014;607

Schubotz & von Cramon, 2002), this conclusion may rely in part on ana-608

lytic limitations. The cross-classification approach used here suggests that609

widespread association cortices are sensitive to structure in sequential stimuli610

across sensory modalities.611

4.2. Methodological considerations612

Multivariate approaches provide specific insights into distributed neural613

representation, with prior studies suggesting that searchlight pattern analyses614

are both more sensitive and more opportunistic in exploiting potential con-615

founding variables (Coutanche, 2013; Davis et al., 2014; Jimura & Poldrack,616

2012). As such, several considerations should be discussed when interpreting617

the current findings. First, the searchlight approach provides coarse localiza-618

tion, as each searchlight aggregates information over numerous (i.e., over 100)619

voxels and overlaps with numerous neighboring searchlights. Furthermore,620

to better approximate other correlation-based classification analyses (e.g.,621

Haxby et al., 2001), we normalized (i.e., Z-scored) response patterns across622

voxels within each searchlight prior to classification (Misaki et al., 2010;623

Nastase et al., 2016). This procedure effectively removes any searchlight-624

average differences in response magnitude between experimental conditions.625

The classifier therefore operates solely on distributed response topographies626

of relative activity, and cannot capitalize on general differences in overall627

response magnitudes across conditions within a given searchlight. Aban-628

doning this normalization scheme and allowing the classifier to also utilize629
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regional-average response magnitudes would likely more closely approximate630

a conventional univariate analysis.631

Davis et al. (2014) argued that multivariate analyses may appear to of-632

fer greater sensitivity than univariate analyses because they exploit idiosyn-633

cratic within-participant response variability that is typically discarded at634

the group level in univariate analyses. However, this concern holds primarily635

for within-participant classification analyses where the result of classifica-636

tion (e.g., classification accuracy, cross-validated across runs within a par-637

ticipant) is then aggregated in a group level statistical analysis. In contrast,638

here we used leave-one-participant-out cross-validation, which limits classi-639

fiers to voxel-level response variability that is consistent across participants.640

Allefeld and colleagues (2016, pp. 382–383) have demonstrated that perform-641

ing second-level statistical tests on participant-level classification accuracies642

(which are typically distributed asymmetrically above chance) does not prop-643

erly perform population-level inference (effectively testing only the global null644

hypothesis that there is no effect for any participant). When separate clas-645

sifiers are trained per participant, accuracies may result from idiosyncratic646

patterns that distinguish conditions in one individual but do not generalize647

to other individuals. Allefeld and colleagues suggest that performing cross-648

validation across participants, on the other hand, effectively provides rigorous649

population inference. However, this approach comes with a potential cost.650

Specifically, leave-one-participant-out cross-validation requires that response651

patterns are spatially registered across participants (within the radius of a652

searchlight). Although all participants’ data were spatially normalized to the653

MNI template prior to classification, anatomical alignment cannot in prin-654

ciple perfectly align fine-grained functional topographies and yields differen-655

tially effective alignment across the brain (Guntupalli et al., 2016; Haxby656

et al., 2011). While our results add to previous work in demonstrating that657

cross-participant classification is feasible (e.g., Mourao-Miranda et al., 2005),658

due to the imperfect registration of functional topographies, classification659

may rely on relatively coarse-grained response topographies differentiating660

levels of uncertainty.661

4.3. Summary662

To date, relatively modest progress has been made in developing neurobio-663

logical accounts of uncertainty that extend beyond explanations of monotonic664

responses in single modalities. The current study informs current neurobi-665

ological models of neural sensitivity to statistical regularities in two ways.666

21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/243550doi: bioRxiv preprint 

https://doi.org/10.1101/243550
http://creativecommons.org/licenses/by-nc/4.0/


We identified neural systems that encode information about statistical regu-667

larities in a supra-modal manner, as evidenced by cross-modal multivariate668

classification. In addition, our findings emphasize that the human brain re-669

sponds to uncertainty both monotonically and non-monotonically, suggesting670

that some brain regions track uncertainty per se, while others code for struc-671

tural features of the systems generating the sensory input.672
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