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Abstract

A novel approach is presented for group statistical analysis of diffusion weighted MRI datasets 

through voxelwise Orientation Distribution Functions (ODF).

Recent advances in MRI acquisition make it possible to use high quality diffusion weighted 

protocols (multi-shell, large number of gradient directions) for routine in vivo study of white 

matter architecture. The dimensionality of these data sets is however often reduced to simplify 

statistical analysis. While these approaches may detect large group differences, they do not fully 

capitalize on all acquired image volumes. Incorporation of all available diffusion information in 

the analysis however risks biasing the outcome by outliers.

Here we propose a statistical analysis method operating on the ODF, either the diffusion ODF or 

fiber ODF. To avoid outlier bias and reliably detect voxelwise group differences and correlations 

with demographic or behavioral variables, we apply the Low-Rank plus Sparse (L + S) matrix 

decomposition on the voxelwise ODFs which separates the sparse individual variability in the 

sparse matrix S whilst recovering the essential ODF features in the low-rank matrix L.

We demonstrate the performance of this ODF L + S approach by replicating the established 

negative association between global white matter integrity and physical obesity in the Human 

Connectome dataset. The volume of positive findings (p < 0.01, 227cm3) agrees with and expands 

on the volume found by TBSS (17cm3), Connectivity based fixel enhancement (15cm3) and 

Connectometry (212cm3). In the same dataset we further localize the correlations of brain 

structure with neurocognitive measures such as fluid intelligence and episodic memory.
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The presented ODF L+S approach will aid in the full utilization of all acquired diffusion 

weightings leading to the detection of smaller group differences in clinically relevant settings as 

well as in neuroscience applications.
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1. Introduction

Diffusion weighted magnetic resonance imaging (DWI MRI) samples the diffusive 

displacement of water and its interactions with cellular structures such as axon membranes 

in in vivo white matter (Callaghan, 1993; Basser and Pierpaoli, 1996). By encoding the 

anisotropic tissue micro-structure, DWI MRI provides insight in the complex white matter 

tract architecture (Wedeen et al., 2012; Fernandez-Miranda et al., 2012). The crossing fibers 

translate in each voxel to Orientation Distribution Functions (ODF (Callaghan, 1993)), 

captured by detailed High Angular Resolution Diffusion Imaging (HARDI, (Tuch et al., 

2002)) methods such as Diffusion Spectrum Imaging (DSI (Callaghan, 1993; Wedeen et al., 

2005, 2012; Reese et al., 2009)) and Q-ball imaging (Tuch, 2004).

The long acquisition times, imposed by the large number of q-space samples needed to 

accomplish sufficient angular resolution, have long hindered widespread adoption of 

HARDI datasets in group studies (Kuo et al., 2008; Setsompop et al., 2012b). Recent 

developments in simultaneous multi-slice or multiband techniques (Setsompop et al., 2012a; 

Blaimer et al., 2013) and sequence design (Baete et al., 2015, 2016b; Baete and Boada, 

2017) have however led to data acquisition times that, for the first time, make HARDI a 

routine viable and practical tool for clinical applications and neuroscience research. This 

evolution has highlighted the need for robust methodologies for statistical analysis of group 

ODF datasets.

A number of methods have been proposed to identify and study differences in the diffusion 

signals of groups of subjects. Diffusion-specific Voxel-Based analysis (VBA) methods 

register quantitative diffusion measures for the whole brain (Whitcher et al., 2007) or project 

them on a tract skeleton (Tract-Based Spatial Statistics, TBSS (Smith et al., 2006; Jbabdi et 

al., 2010)) or surface (Zhang et al., 2010). Most of these approaches are based on 
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information gained from Diffusion Tensor Imaging (DTI, (Basser and Pierpaoli, 1996)), an 

incomplete representation of the complex intravoxel crossings in the human brain (Jeurissen 

et al., 2013). This incomplete representation is partially mitigated by an extension of the 

TBSS-method accommodating two crossing fibers (Jbabdi et al., 2010). Nevertheless, the 

focus of these methods on DTI makes them ill-suited to fully exploit the much higher 

dimensionality of ODFs. In addition, the projection based methods suffer from inaccurate 

tract representations and projections (Bach et al., 2014; Raffelt et al., 2015).

Other methods use tractography results to identify structurally connected fiber populations 

globally (Jahanshad et al., 2015; Chen et al., 2015; Raffelt et al., 2012, 2015) or locally (Yeh 

et al., 2016). The resulting connectivity matrices can then be used directly for statistical tests 

(Jahanshad et al., 2015; Chen et al., 2015; Mitra et al., 2016) or the tractograms can inform 

tract-specific smoothing (Raffelt et al., 2012, 2015) and enhancement of statistical maps 

along the tracts (Raffelt et al., 2012, 2015; Yeh et al., 2016) using Threshold-Free Cluster 

Enhancement approaches (TFCE, (Smith and Nichols, 2009)). Whilst these tractography 

based methods are powerful, they suffer from problems related to imperfections in the 

tractography (Jones et al., 2013; Reveley et al., 2015; Thomas et al., 2014), some limit the 

identified fiber directions to a predefined template (Yeh et al., 2016) and they generally miss 

more subtle differences in diffusion patterns conveyed in the ODF.

The most promising methods for group difference identification in diffusion MRI studies 

capitalize on the full dimensionality of the rich information contained in ODFs registered to 

a common atlas. Early work used voxelwise whole brain multivariate statistics on the 

coefficients of spherical harmonic representations of ODFs (Lepore et al., 2010a). The first 

approach to mine the high dimensionality of the whole ODF rather than a representation, 

applied Principal Component Analysis (PCA) to identify the defining ODF features in each 

voxel in a whole brain group analysis (Chen et al., 2015). Statistical analysis of the weights 

of the Principal Components, the PC-scores, then informs the significance of group 

differences (Chen et al., 2015). However, PCA is sensitive to outliers and can be easily 

corrupted by the individual variability of subjects (Zhou et al., 2014; Lin, 2016), reducing 

the power of the statistical test.

Here, we extend the previous work by isolating the essential ODF features in each voxel 

which are common/different within/between subject cohorts from the individual subject 

variability. This is achieved by replacing the PCA of ODF distributions by a Low-Rank plus 

Sparse (L + S) Matrix Decomposition (Candes et al., 2011; Chandrasekaran et al., 2011; 

Otazo et al., 2015a). The L + S decomposition, also referred to as Robust PCA (RPCA), 

separates the sparse individual variability in the sparse matrix S whilst recovering the 

essential ODF features in the low-rank matrix L. Subsequently, statistical tests can focus on 

the defining ODF features in L, thus increasing the detectability of group differences and 

correlations in diffusion datasets. This is then extended to a whole brain analysis using 

Threshold-Free Cluster Enhancement (TFCE, (Smith and Nichols, 2009)) to correct for 

Family Wise Errors (FWE). Although we will apply this technique here to the diffusion 

ODF, as derived from Q-Ball imaging (Tuch, 2004), DSI (Callaghan, 1993), or Generalized 

Q-Space Sampling (GQI,(Yeh et al., 2010; Yeh and Tseng, 2011)), it is also applicable to the 

fiber ODF (fODF) obtained by spherical deconvolution (Tournier et al., 2004).
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The L + S matrix decomposition is ideally suited for the isolation of the essential low-rank 

ODF features in L. Indeed, the exact recovery of the L and S components has been 

mathematically proven under limited restrictions of rank and sparsity (Candes et al., 2011; 

Chandrasekaran et al., 2011). These mathematical properties are exploited in, amongst 

others, image alignment (Peng et al., 2012), denoising and background extraction in video 

(Bouwmans and ZahZah, 2014; Lin, 2016), segmentation of images and video (Bouwmans 

and ZahZah, 2014; Lin, 2016), reconstruction of diffusion MRI (Gao et al., 2013), dynamic 

CT (Gao et al., 2011) and MRI (Otazo et al., 2015a) images, and filtering of fMRI datasets 

(Otazo et al., 2015b).

The Principal Components of L would identify in each voxel the essential ODF features 

which can be used to calculate group difference ΔODF and correlation RODF ODFs. ΔODF 

and RODF visualize significant group differences and correlations and serve as input for 

tractography similar to the local tractography visualization approach used in (Yeh et al., 

2016).

In this work, we introduce the use of L + S matrix decomposition for examining ODF group 

differences and correlations with biological measurements in HARDI datasets. We establish 

the applicability and feasibility in theoretical analysis and computer simulations. 

Subsequently, we demonstrate the approach by confirming the well-established negative 

association between global white matter integrity and physical obesity (Gianaros et al., 

2013; Mueller et al., 2011; Stanek et al., 2011; Verstynen et al., 2013, 2012; Yeh et al., 2016) 

in a cohort of healthy Human Connectome Project volunteers. Finally, in the same cohort we 

explore white matter areas correlated to motor functioning, language and vocabulary 

comprehension and decoding, episodic memory and fluid intelligence (Smith et al., 2015; 

Powell et al., 2017).

2. Theory

The ODFs in each voxel of a set of registered whole brain diffusion datasets can be expected 

to be highly correlated within that voxel (Fig. 1). Although subject subgroup differences can 

arise, one can assume that all ODFs will be drawn from a lower-dimensional subspace. This 

means that the ODF features which are common between or within subject groups will be 

captured in that low-dimensional subspace if we, for a moment, ignore the sparse individual 

variability. The low-dimension assumption of the ODFs can be translated in an assumption 

of low rank (Zhou et al., 2014; Lin, 2016) where the rank of a matrix is the number of 

linearly independent rows or columns that define a basis set to represent the matrix. Hence, 

once we identify the low-rank subspace of the ODFs, we can easily identify the ODF 

features different between subject subgroups.

Earlier work used PCA to identify the key ODF features (Chen et al., 2015). While this 

method does share the philosophy of determining the low-rank basis of the ODFs, PCA is 

easily corrupted by gross errors due to its assumption of independently and identically 

distributed Gaussian noise (Zhou et al., 2014). If the individual variability is non-Gaussian 

and strong, even a few outliers can make PCA fail (Lin, 2016).
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The exact recovery of both the low-rank and sparse components of matrices (Candes et al., 

2011; Chandrasekaran et al., 2011) has been of great interest in a number of applications 

(Peng et al., 2012; Bouwmans and ZahZah, 2014; Lin, 2016; Gao et al., 2013, 2011; Otazo 

et al., 2015a,b). Separating these components allows focus on either the common features or 

the dynamic aspects of datasets, respectively the low-rank L and sparse S submatrices. The 

L + S matrix decomposition is commonly expressed as

minimize‖L‖∗ + λ‖S‖1 subject to L + S = M (1)

with M the matrix to decompose, ||·||* the nuclear norm defined by the sum of all singular 

values as a surrogate for low-rank (Yuan and Yang, November 2009), ||·||1 the l1-norm 

defined by the element-wise sum of all absolute values as a surrogate for sparsity (Yuan and 

Yang, November 2009) and λ a trade-off between the sparse and low-rank components to be 

recovered. Recent advances have shown that both components L and S can be recovered 

exactly from M (Candes et al., 2011; Yuan and Yang, November 2009; Chandrasekaran et 

al., 2011). In addition, recoverability is independent of the magnitude of outliers, it rather 

depends on the sparsity of the outliers (Lin, 2016).

The problem in (1) can be solved computationally efficient with the alternating directions 

method (ADM, (Yuan and Yang, November 2009)), a method based on augmented Lagrange 

Multipliers (Lin et al., 2010). One drawback of this algorithm is the reliance on the nuclear 

norm ||·||* as an approximation of matrix rank. The nuclear norm is essentially an l1-norm of 

the singular values of the matrix which over-penalizes the larger singular values (Kang et al., 

2015). This biased estimation is avoided by using a non-convex rank ||·||γ which is a closer 

approximation of the true matrix rank (Kang et al., 2015). Here, we use the Robust PCA via 

Nonconvex Rank Approximation algorithm (noncvxRPCA, (Kang et al., 2015)) which is 

also based on the augmented Lagrange Multipliers method but uses ||·||γ rather than ||·||*.

The L+S-matrix decomposition solved using the noncvxRPCA-algorithm has two main 

tuneable parameters: λ (Eq. 1) and μ, a Lagrange penalty parameter. The parameter λ 
balances L and S in (1), a higher λ will put more emphasis on the sparsity of S while a lower 

λ will force the rank of L down. Although the outcome of 1 could be expected to depend on 

the choice of λ, it was shown mathematically that a whole range of λ values ensure the 

exact recovery of L and S (Candes et al., 2011). A universal choice of λ = 1/ n with n = 

max(n1, n2) and n1, n2 the dimensions of M has been suggested (Candes et al., 2011; Lin et 

al., 2010) and successfully applied in a large number of applications. We have employed 

λ = 1/ n ≈ 0.05 in this work when observing 321 vertices per ODF and ±350 subjects, 

though a wide range of λ performs as desired (Fig. 2).

The variable μ in the augmented Lagrange multiplier optimization approach is the penalty 

parameter for the violation of the linear constraint ||L + S − M|| during the search. 

Simulations (Fig. 2) suggest that a large μ enforces a very sparse S whilst a small μ 
decreases the rank of L. Hence it is important to select an appropriate value of μ for our 

application. Here, we have chosen to use μ = 0.9 in accordance with literature (Kang et al., 
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2015). Indeed, simulations (Fig. 2) show that values of μ in a range around 1 balance the 

sparsity of S with the rank of L as desired.

Mathematical analysis has shown that the L and S components of M can be recovered 

exactly with a high probability when the rank of L is low and S is sparse (Candes et al., 

2011; Yuan and Yang, November 2009; Chandrasekaran et al., 2011; Zhou et al., 2014). The 

limit for the average normalized rank of L was identified by Candes, et al. (Candes et al., 

2011) as rank(L)/min(n1, n2) ≤ c1/log(n)2 ≈ c1 0.03 with c1 a positive constant. Similarly, the 

upper limit for the normalized cardinality, counting the non-zero elements of a matrix as a 

measure for sparsity, is m(S)/(n1n2) ≤ c2 with c2 a positive constant (Candes et al., 2011). 

While the constants c1 and c2 are not known, simulation results (Yuan and Yang, November 

2009; Candes et al., 2011) indicate that the recovery of L and S is valid for normalized rank 

values below 0.1 and normalized cardinalities below 0.2. The normalized rank of L and 

cardinality of S averaged over the whole brain in this work are 0.016 ± 0.002 and 0.01 

± 0.01 respectively. Additionally, the oversampling ratio (Zhou et al., 2014) of the single 

voxel ODF matrices M is 24 ± 5. Hence, the L + S-decomposition can be reliably used to 

identify the low-rank subspace of ODFs in a matrix of vectorized ODFs.

Once the low-rank subspace of ODFs is identified in each voxel, we use the PC-scores in 

these low-rank bases as input for statistical testing (Fig. 1). The large numbers of multiple 

comparisons are corrected using the Threshold-Free Cluster Enhancement method (TFCE, 

(Smith and Nichols, 2009)) which obviates the need for a suitable cluster threshold choice 

(Nichols and Holmes, 2001). In addition, combining TFCE permutation inference with 

complex General Linear Models (GLM) allows accounting for nuisance variables (Winkler 

et al., 2014). These methods assume that the joint probability distribution of the variables 

does not change if they are rearranged (Winkler et al., 2014). This is a valid assumption 

since the joint distribution of errors of the ODFs PC-scores can be assumed to be invariant 

on exchange (Winkler et al., 2014). Significance of group differences or correlations can be 

assessed based on the p-values fully corrected for multiple comparisons across space (Smith 

and Nichols, 2009) calculated from the TFCE-output.

In addition to group difference significance, the low-rank basis of the ODFs in each voxel is 

used to calculate difference ODFs ΔODF between subject groups A and B (nA, nB members) 

based on the Principal Components (PCi) and their PC-scores (ti,j)

ΔODF = ∑
i, pi < pthres

PCi
1

nA
∑
j ∈ A

ti, j − 1
nB

∑
j ∈ B

ti, j (2)

for the PCs which were detected to hold significant differences pi < pthres between groups. 

Similarly, when observing trends related to a demographic or behavioral variable, the 

correlation ODF RODF can be calculated as
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RODF = ∑
i, pi < pthres

PCiri (3)

with ri the correlation coefficient between ti,j and the demographic or behavioral variable. 

The ODFs in (2) and (3), obtained from statistical analysis, are expressed in the same 

physical quantities as the original ODFs since they are expressed in terms of the PC-basis. 

They can be used for visualization of the significant differences between subject groups, 

significant trends in the dataset or as a basis for tractography visualization (Fig. 1).

ΔODF and RODF illustrate group differences or correlations, both in magnitude and direction, 

in the underlying diffusion properties of the fiber bundle in the voxel. Since the spatial 

extent of each peak is related to the Quantitative Anisotropy (QA (Yeh et al., 2010)), both 

increases in Dax and decreases in Drad will increase the peak length. Similarly, both 

decreases in Dax and increases in Drad will decrease the peak length. Hence, in the difference 

ODFs, we encapsulate both possible changes, possibly missing compensating changes.

3. Methods

3.1. Simulated ODF generation

Single voxel groups of Radial DSI datasets of two crossing fiber bundles with equal weight 

(60, λ1/λ2/λ3 1.00/0.10/0.10μ m2/ms) and a water pool (10%) are simulated with Radial q-

space sampling (59 radial lines, 4 shells, bmax = 4000 s/mm2, (Baete et al., 2016b)). Rician 

noise (SNR 30 in non diffusion attenuated signal) and group-outliers (10%, SNR 5%) are 

added to the simulated diffusion signals before reconstructing the ODFs (Tuch, 2004). Each 

single voxel group contains 100 ODFs, simulating a study with 100 co-registered cases per 

group. The group differences are emulated by changing Dax (λ1) or Drad ((λ2 + λ3)/2) of 

one of the two fibers fiber or the crossing angle of the fibers. Since these are single-voxel 

simulations, two-sided Student’s t-test (5% significance level) statistics and p-values are 

used to evaluate the detectability of simulated group differences. The average ODFs of each 

group are plotted where appropriate.

3.2. In vivo acquisitions

In vivo subject datasets were downloaded from the Human Connectome Project (HCP) 

consortium led by Washington University, University of Minnesota, and Oxford University. 

We used the 355 subjects from the December 2015 release (S900, 180/175 female/male, 

28.2 ± 3.9 y/o, BMI 26.6 ± 5.2). Diffusion imaging using mono-polar gradient pulse 

sequence (6 b0-images and 270 q-space samples on three shells, b = 1000,2000 and 3000 

s/mm2; all diffusion directions are acquired twice, one with phase encoding left-to-right and 

once with phase encoding right-to-left; TR/TE = 5500/89.50ms, 1.25 mm isotropic 

resolution, 210×180 mm field of view, 111 slices, simultaneous multi-slice acceleration of 3 

(Sotiropoulos et al., 2013); acquisition time of approximately 55 min) and structural imaging 

(MPRAGE; TR/TE = 2400/2.14ms, 192 slices, 1×1×1 mm resolution, TI = 900/1000ms, 
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parallel imaging (2x, GRAPPA), 5:03min) was performed on a Siemens 3T Skyra with 100 

mT/m maximum gradient strength.

Preprocessing of the HCP dataset was performed by the Human Connectome Project 

consortium as described in (Glasser et al., 2013). The diffusion datasets were reconstructed 

with the generalized q-space diffeomorphic reconstruction (Yeh et al., 2010; Yeh and Tseng, 

2011) as implemented in DSIStudio (Yeh et al., 2010) to the MNI-atlas (Alexander et al., 

2001; Lepore et al., 2010b; Yeh and Tseng, 2011; Raffelt et al., 2011, 2012). The ODFs 

calculated from these reconstructions are transformed Spin Density Functions (SDF, (Yeh et 

al., 2010; Yeh and Tseng, 2011)) as they are multiplied by the spin density as estimated from 

the b0-map (Yeh and Tseng, 2011). The spin density of the ODFs is then scaled relative to 

the amount of diffusing spins in 1 mm 3 free water diffusion, estimated as the diffusion in 

the cerebrospinal fluid (Yeh et al., 2010). This allows for a unified reference within and 

between subjects (Yeh et al., 2010).

3.3. Simulations using in vivo acquisitions

The choice of parameters and the ODF group difference detection of the L + S-matrix 

decomposition is evaluated using registered in vivo ODFs selected from the HCP datasets. 

The ODFs from a single voxel assist in evaluating the impact of the tunable parameters λ 
and μ of the noncvxRPCA algorithm. In a larger selected region, ODFs from adjacent voxels 

are reorganized to simulate group differences. Group differences detected with the L + S--

decomposition are then compared to the Jensen-Shannon Divergence (JSD) (Cohen-Adad et 

al., 2011) between the mean ODFs of the voxels.

3.4. Statistical testing

Statistical significance of detected group differences is assessed using a 2-sample t-test for 

single voxel comparisons and simulations. In whole brain analysis, the FWE are corrected 

using the TFCE-method (Smith and Nichols, 2009) using the randomise implementation of 

FSL. In this permutation-based testing, the nuisance variables age and gender are accounted 

for by using a General Linear Model (10000 permutations, (Winkler et al., 2014)). Results 

are displayed using Matlab (Mathworks) and DSIStudio (Yeh et al., 2010).

Whole brain ODFs are correlated with a number of demographic and neurocognitive 

variables from the HCP Data Dictionary1. The analysis focuses on Body Mass Index (BMI), 

motor functioning (NIH Toolbox 2-minute Walk Endurance Test Endurance AgeAdj and 4-

meter Walk Gait Speed Test GaitSpeed Comp (Society, 2002; Reuben et al., 2013)), 

language and vocabulary comprehension and decoding (NIH Toolbox Picture Vocabulary 

Test PicVocab AgeAdj and Oral Reading Recognition Test ReadEng AgeAdj (Gershon et al., 

2014)), episodic memory (NIH Toolbox Picture Sequence Memory Test PicSeq AgeAdj 
(Dikmen et al., 2014)) and fluid intelligence (Raven’s Progressive Matrices: Number of 

Correct Responses PMAT24 A CR and Total Skipped Items PMAT24 A SI (Bilker et al., 

2012)).

1https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500+Subject+Release
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3.5. Comparison with existing methods

The ODFs found to correlate with BMI with ODF L + S are compared with results from 

existing methods (Smith et al., 2006; Jbabdi et al., 2010; Yeh and Tseng, 2011; Raffelt et al., 

2012, 2015). The default TBSS pipeline (Smith et al., 2006; Jbabdi et al., 2010) was used by 

performing registration, skeletonisation and statistical analysis as suggested by the TBSS 

user guide2 with FSL v5.0.9. Connectivity-based fixel enhancement (Fixel) (Raffelt et al., 

2012, 2015) analysis included estimation of the individual fiber response functions, 

calculation of individual fODFs, generating a study-specific fODF template and performing 

tractography on this template, registering all subjects to the template and statistical analysis 

of the apparent fiber density according to the MRtrix user guide3. MRtrix34 version 0.3.15 

was compiled from source. Lastly, a local connectome based statistical analysis (Yeh et al., 

2016) was performed using DSIStudio ((Yeh et al., 2010) compiled from source on March 

18th, 2017). The suggested workflow5 was followed to create a connectometry database 

using q-space diffeomorphic reconstruction to the HCP-842 template (Yeh and Tseng, 2011) 

and to run group connectometry analysis (10000 permutations, T-score threshold 1.6 to 

obtain p < 0.001).

4. Results

In this section, we will demonstrate the applicability of the L + S-matrix decomposition for 

detection of ODF group differences and correlation with biological and behavioral 

measurements using simulated and in vivo group data.

4.1. Simulation results

Figures 3 and 4 show results of the detection of differences between groups of 100 simulated 

ODFs of two crossing fibers. When comparing large differences (Fig. 3ab, bottom row, 50% 

reduction of Drad), visual comparison of the average ODF-values (Fig. 3c) easily confirms 

the separation of PC-scores of both ODF-matrix M (Fig. 3d) and Low-Rank matrix L (Fig. 

3f). When comparing smaller group differences however (Fig. 3, top two rows, 10% and 

20% reduction of Drad), statistical testing of M is not significant (Fig. 3d), while testing of L, 

after separation of the individual variability in S, does succeed in identifying the simulated 

group differences (Fig. 3f).

Figure 4 looks at the detectability of a broader range of changes of Dax (Fig. 4a), Drad (Fig. 

4b) and crossing angle (Fig. 4c) between groups of simulated ODFs. Similarly, figure S1 

studies the detectability of changes in number of fibers (Fig. S1a,b) and relative fiber 

weights (Fig. S1c). The left columns of Figure 4 and S1 plot the t-test test statistic and the 

right columns the t-test p-value. Changes in Dax, Drad and relative weight, which create more 

subtle differences in the ODF peaks, are better detected by analyzing the PC-scores of L 
versus M. Larger changes in the ODF, such as a shift in the ODF peak orientation by 

changing the crossing angle or adding fibers to the ODF, are detected equally well by both 

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
3http://mrtrix.readthedocs.io/en/latest/fixel_based_analysis/mt_fibre_density_cross-section.html
4https://github.com/MRtrix3
5http://dsi-studio.labsolver.org/Manual/diffusion-mri-connectometry
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approaches. Note that there are almost linear relationships between the test statistics and the 

changes in diffusion parameters (Fig. 4, S1, left column).

The ΔODF (Eq. 2) in Fig. 5 are a visual representation of the detected ODF group 

differences. They scale with the detected ODF group difference for simulated changes in Dax 

(5a) and Drad (5b) of one fiber bundle in a crossing pair and with changes of their crossing 

angle (5c). Both an increase in Dax and a decrease in Drad give rise to a larger peak, hence a 

positive (blue-colored) ΔODF -lobe. A change in crossing angle gives rise to a positive (blue-

colored) and a negative (red-colored) lobe scaling with the change in crossing angle (5c).

4.2. Simulations using in vivo data

The relationship between in vivo group differences and t-test statistics and p-values is 

explored in Figure 6. A central segment is randomly taken from the registered in vivo whole 

brain HCP dataset (Fig. 6a,b). Group differences are artificially introduced by comparing all 

ODFs of each pair of voxels in the segment (Fig. 6bc). The results of these comparisons 

using M (Fig. 6de) and L (Fig. 6fg) are plotted versus the JSD of the average ODFs of the 

respective voxels. The detected p-values are smaller (larger −log(p) values) when analyzing 

L over M, indicating higher detected significance. The comparison test is in addition 

inconclusive (p close to 1) on less occasions. These beneficial properties of the analysis of L 
remain for a wide range of values for L + S-matrix decomposition parameters λ and μ (Fig. 

6h).

4.3. In vivo results

In the HCP dataset, ODFs correlate strongly with the demographic variable BMI. As 

expected, the ODFs negatively correlate (Fig. 7b) with BMI, indicating a loss of anisotropy 

with increasing BMI (Fig. 5a,b). This result is consistent with the well-established negative 

association between global white matter integrity and physical obesity (Mueller et al., 2011; 

Stanek et al., 2011; Verstynen et al., 2012; Gianaros et al., 2013; Verstynen et al., 2013). The 

fiber directions (Fig. 8a,b) identified from RODF can be used to perform tractography (Fig. 

8c,d). Resulting tracts (Fig. 8c,d) show a pronounced loss of anisotropy in the corticospinal 

tracts, the optic radiations and the right superior longitudinal fasciculus. These results are 

corroborated by the existing methods TBSS (Fig. 9a,b, S2a,b), Connectivity-based fixel 

enhancement (Fig. 9c,d, S2c,d) and local connectometry (Fig. 9e,f, S3a,b). The volume of 

positive findings of correlation with BMI is largest when using the full ODF information 

with the ODF L + S approach (Fig. 9). In addition, in a test of specificity, no voxels are 

found to correlate with randomly permuted BMI (Fig. S4).

The individual variability of ODFs can be caused by ODF reconstruction errors due to image 

artifacts (Fig. S5.1), registration errors and individual differences in brain structure (Fig. 

S5.3–4). In the HCP ODFs individual variability due to the first two of these contributions is 

limited by the low number of artifacts and the high image resolution in the HCP DWI 

images. As a result, ODF correlations of BMI identified with ODF PCA ((Fig. 9g,h, S3c,d)) 

and ODF L + S (Fig. 9i,j, 7) are similar in this dataset. However, in a dataset with higher 

individual variation, notable improvement of ODF L + S over ODF PCA can be observed 

(Baete et al., 2016a).
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The HCP ODFs also correlate with neurocognitive measures (Fig. 10 and 11). Walking 

endurance (Fig. 10a and 11a) predictably relates to the corticospinal tract, while the frontal 

part of the corpus callosum indicated in gait speed has been identified before when 

comparing endurance athletes with non-athletes (Raichlen et al., 2016) and when studying 

the effect of treadmill training after stroke (Enzinger et al., 2009). Language recognition and 

comprehension tasks (Fig. 10b and 11b), as measured by the Oral Reading and Picture 

Vocabulary test, correlate with ODFs in areas identified by fMRI work (Berl et al., 2010): 

posterior superior temporal gyrus and inferior frontal gyrus connected by stretches of the 

arcuate fasciculus pathway/superior longitudinal fasciculus III. Besides these areas, 

language comprehension also relates with ODFs in the medial frontal gyri and the left 

precuneus (Schmithorst et al., 2007). Our analysis further connects the Episodic Memory 

measure with the posterior cingulate and precuneus, though not with the medial temporal 

cortex (Fig. 10c and 11c). These areas have been shown to deactivate in episodic memory 

tasks (Dickerson and Eichenbaum, 2010). Lastly, Fluid Intelligence correlates widely with 

ODFs in the prefrontal, parietal and temporal cortex as indicated before (Gray et al., 2003) 

as well as with ODFs along tracts connecting these regions (Fig. 10d and 11d).

5. Discussion

In analyzing large neuroimaging data sets, we strive to fully utilize all the information 

available in each voxel to identify group differences or population correlations. The 

available information in each voxel of high quality diffusion MRI acquisitions is often 

represented as an ODF, be it a diffusion ODF or a fiber ODF. ODFs and their key features 

identified by PCA-analysis are thus the ideal starting point for statistical analysis. These 

statistical tests are however biased by individual variability of the subjects since PCA is 

sensitive to outliers (Zhou et al., 2014; Lin, 2016). This bias is mitigated in the results 

presented here by separating individual variability and essential ODF features through the L
+S decomposition of the ODFs.

Statistical testing of ODFs based on L + S decomposition more reliably identifies the 

underlying relationships between ODF shapes and observed behavior. Indeed, separating the 

outliers from key ODF features reduces the uncertainty regarding the existence of 

correlations in the dataset (Fig. 4, S1,5,6). This reduced uncertainty increases the detected 

significance of group differences (Fig. 4, S1 and Fig. 6d,e vs. 6f,g). Furthermore, removal of 

individual variability decreases the bias in the estimated correlations coefficients r and PC-

scores t. We can thus deploy r and t to calculate difference and correlation ODFs (resp. ΔODF 

and RODF) which help in visual interpretation of the test results (Fig. 5, 8 and 11).

Several methods exist to analyze populations of diffusion MRI datasets, typically working 

on a reduced dimensionality subset of the diffusion data. TBSS (Jbabdi et al., 2010), limiting 

the analysis to a projection to a tract skeleton, succeeds in identifying the tracts most 

significantly correlated with BMI (analysis of FA, Fig. 9a,b, S2a,b) but misses the full extent 

of the correlations. The Connectivity-based fixel enhancement (Raffelt et al., 2015) and 

Connectometry (Yeh et al., 2016) approaches do include more of the available information 

and hence perform better than the TBSS method (Fig. 9c,d, S2c,d (Fixel enhancement) and 

9e,f, S3a,b (Connectometry) vs 9a,b, S2a,b (TBSS)).
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None of the above methods however capitalizes on the full ODF information. This in 

contrast to the approach presented in this paper. The ODF L + S approach indeed identifies a 

larger volume of significant findings (227 cm3) than the existing methods tested here (TBSS 

17 cm3, Connectivity-based fixel enhancement 15 cm3 and Connectometry 212 cm3, Fig. 

9b,d,f,h,j). That is, by analyzing the full ODF information and not reducing the 

dimensionality of the diffusion data, as is commonly done, the ODF L + S approach is able 

to pick up on smaller significant changes, better grasping the full extent of the significant 

findings. Limitations on computational power and diffusion acquisitions (e.g. DTI) which 

inspired the data reduction of older methods no longer exist. It is hence advisable to 

maximize the amount of information included in the analysis as in the approach presented 

here.

Using the L + S decomposition (Eq. 1) means that a choice for the balance parameter λ and 

the Lagrange penalty parameter μ has to be made. Choosing λ is straightforward as a 

universal choice λ = 1/ n is suggested by theoretical considerations (Candes et al., 2011; 

Lin, 2016). Simulations furthermore show that the decomposition is relatively insensitive to 

λ (Fig. 2). An appropriate value for μ will however have to be found heuristically. While our 

results were stable for μ in range around 1, it is clear that the extraction of essential ODF 

features will suffer when μ is too small (too few ODF features in L) or too large (too much 

individual variability in L) (Fig. 2).

Group differences or behavioral correlations of subject ODFs signal micro-structural 

changes in the white matter. The origin of the detected changes can unfortunately not always 

be teased out from the ODF analysis. For instance, both increases in Dax and decreases in 

Drad will increase anisotropy and as a result increase the ODF peak length. Both changes 

will thus results in similar ΔODF or RODF (Fig. 5), which will both illustrate the detected 

change in anisotropy. As a result, it is not possible to separately detect changes to axon 

density, axon diameter, membrane permeability and axon bundle curvature and divergence; a 

drawback shared with other analysis methods (Raffelt et al., 2012; Yeh et al., 2016). Group 

differences may consequently not be identified at all in the relatively unlikely case of 

confounding changes to these micro-structure parameters (Raffelt et al., 2012).

Besides potential confounding micro-structure changes, the presented ODF L + S approach 

is also sensitive to other limitations. The main limitations are the processing parameters of 

the analysis pipeline. The choice of L + S algorithm parameters λ and μ is straightforward 

and the decomposition is stable in a range of parameter choices. Nevertheless, certain 

combinations of λ and μ will affect the outcome of the analysis. This might be avoided by 

future automated tuning strategies for λ and μ. In the stable parameter range, a high 

probability of exact recovery of L from M is mathematically guaranteed when L is low rank 

and S is sparse (Candes et al., 2011; Yuan and Yang, November 2009; Chandrasekaran et al., 

2011; Zhou et al., 2014). The ODF L+S approach is thus limited to low rank L. Our in vivo 
analysis shows though that L is sufficiently low rank for a stable L+S decomposition. 

Results will further depend on the number of available diffusion directions and shells, 

quality control of the images, careful choice of preprocessing steps and parameters, the 

reconstruction used to generate the ODFs, the choice of template for registration, the method 

used for registration to a template and the parameters of the FWE correction method. For 
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each of these steps, we have striven to make common sense best practice choices. Of these 

steps, the often imperfect inter-subject registration will have the largest confounding impact, 

similar to other analysis methods (Raffelt et al., 2012; Yeh et al., 2016).

In conclusion, high quality diffusion MRI datasets of groups of individuals open a window 

to studying brain structure changes related to disease condition and behavioral functions. 

Full incorporation of all available diffusion information however risks biasing the outcome 

by outliers, often leading to statistical analysis of diffusion measures with reduced 

dimensionality. Here we apply a Low-Rank plus Sparse decomposition on the voxelwise 

ODF distributions. Analyzing the Low-Rank ODF distribution reduces the impact of inter-

subject variability and thus avoids outlier bias by focusing on the essential ODF features of 

the population while maximizing the dimensionality of included diffusion information. This 

approach provides a foundation for improved detection of group differences in DWI through 

PCA-based analysis. The identified group differences can then also be visualized with 

difference ODFs ΔODF and correlation ODFs RODF. This method will aid in the detection of 

smaller group differences in clinically relevant settings as well as in neuroscience 

applications.

Source code (Matlab) for the ODF L + S approach is available for download at https://

bitbucket.org/sbaete/odflpluss.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BMI Body Mass Index

DSI Diffusion Spectrum Imaging

DWI Diffusion Weighted Imaging

DTI Diffusion Tensor Imaging

fODF fiber Orientation Distribution Function

FWE Family Wise Errors

GLM General Linear Models

GQI Generalized Q-Space Sampling

HARDI High Angular Resolution Diffusion Imaging
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HCP Human Connectome Protocol

JSD Jensen-Shannon Divergence

ODF Orientation Distribution Function

noncvxRPCA Robust PCA via Nonconvex Rank Approximation 

algorithm

PC Principal Component

PCA Principal Component Analysis

QA Quantitative Anisotropy

RPCA Robus Principal Component Analysis

SNR Signal to Noise Ratio

TBSS Tract-Based Spatial Statistics

TFCE Threshold-Free Cluster Enhancement

VBA Voxel-Based Analysis
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Figure 1. 
Differences between or correlations in groups of ODFs, taken from registered voxels, are 

identified by reorganizing the ODF-values in an ODF-matrix M. Subsequently, the L + S 
decomposition isolates the features of M common/different between groups in L and splits 

the individual variability and outliers away in S. Significance of ODF differences is assessed 

by a statistical analysis of the Principal Component scores (t) of L (pL). Difference ODFs 

ΔODF can be calculated from the significant group differences while correlation ODFs RODF 

can be calculated from significant correlations with a random variable.
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Figure 2. 
Impact of the choice of the regularization parameter λ (X-axis) and the search algorithm 

parameter μ (Y-axis) on the performance of the L+S-decomposition of M. The performance 

is stable for a broad range of λ and μ. Each block of three matrices shows the ODF-matrix 

M (top), the low-rank-matrix L (middle) and the sparse matrix S (bottom) (ODFs from 355 

healthy volunteers (HCP)).
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Figure 3. 
Simulation of detection of reductions in Radial Diffusivity (Drad ↓ leads to QA ↑) of one 

fiber in a pair of crossing fibers (a,b). Large reductions of Drad (50%) in group B (b) relative 

to group A (a) are easily detected by direct Principal Component Analysis (PCA) of the 

ODFs (d), though smaller differences (e.g. 10% drop) are better identified by PCA of the 

Low-Rank L-matrix (f). The difference ODFs ΔODF (e,g) identify the increase of group B 

relatve to group A.
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Figure 4. 
Simulations of percentual changes in Axial Diffusion Dax (a), Radial Diffusion Drad (b) and 

crossing angle (c) of ODFs of two crossing fibers. Two-sided t-test test statistics (left 

column) and p-value (right column) of the Principal Component-scores of the M and L-

matrices are plotted relative to percentual changes in fiber characteristics.

Baete et al. Page 22

Neuroimage. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Difference ODFs ΔODF of simulations of two groups of two crossing fibers. A group of 

ODFs (average ODF displayed, green) undergoes percentual changes in Axial Diffusion Dax 

(a), Radial Diffusion Drad (b) and crossing angle (c) of fibers relative to the reference group 

of ODFs. Blue and red ΔODF-lobes indicate positive and negative changes respectively.
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Figure 6. 
Evaluation of ODF group difference detection on groups of registered in vivo ODFs (c) 

taken from a segment (b) of a whole brain scan (a) (ODFs from 25 healthy volunteers 

(HCP)). The ODFs are reorganized (c) and for all possible voxel combinations (columns in 

the matrix in (c)), the JSD (JSD < 5) is plotted versus the t-test p-value (d) and t-statistic (e) 

of M (PCA-analysis) and the p-value (f) and t-statistic (g) of L (L+ S-analysis) (color 

indicates point density according to the scale in (f)). h) Impact of the choice of the 

parameters λ (regularization) and μ (search algorithm penalty) of the L+S-decomposition on 

the detection of significant ODF group differences (individual plots similar to f).
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Figure 7. 
Voxels with ODFs significantly positively (a) or negatively (b) correlated with BMI as 

detected after isolating ODF-features (L) from individual variability (S) using the ODF L + 

S approach in a cohort of healthy HCP volunteers. Voxels with FWE p-value < 0.01 (red) are 

overlaid on the MNI-atlas.
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Figure 8. 
Fiber directions (a,b, QARODF < 0.015) identified from and fiber tractography of the RODF 

(c,d, p < 0.01, QARODF < 0.001) positively (a,c) or negatively (b,d) correlating with BMI in 

a cohort of healthy HCP volunteers. (Eq. 3)
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Figure 9. 
Voxels on selected slices significantly positively (a,c,e,g,i) or negatively (b,d,f,h,j) correlated 

with BMI as detected with Tract-based Spatial Statistics (TBSS, a,b), with Connectivity 

based fixel enhancement (Fixel, c,d), with the Connectometry based approach as 

implemented in DSIStudio (Connect., e,f) and with the ODF PCA and ODF L + S approach 

in a cohort of healthy HCP volunteers. Voxels with FWE p-value < 0.01 (red) are overlaid on 

the MNI-atlas and the mean FA skeleton (green, TBSS). The volume of positive findings is 

indicated at the top right of each plot. Full brain results are displayed in Fig. 7 (ODF L + S) 

and Suppl. Fig. S2 and S3b.
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Figure 10. 
Voxels with ODFs significantly correlated with the indicated neurocognitive metrics in a 

cohort of healthy HCP volunteers as detected after isolating ODF-features (L) using the 

ODF L + S approach. Voxels with FWE p-value < 0.05 are overlaid on the MNI-atlas.
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Figure 11. 
Fiber tracts identified by fiber tractography of the RODF (p < 0.05, QARODF < 0.001) 

correlating with the indicated neurocognitive metrics in a cohort of healthy HCP volunteers 

(Eq. 3). Tracts are displayed in a surface and on a slice derived from the MNI-atlas.
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