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A B S T R A C T

A key challenge for cognitive neuroscience is deciphering the representational schemes of the brain. Stimulus-
feature-based encoding models are becoming increasingly popular for inferring the dimensions of neural repre-
sentational spaces from stimulus-feature spaces. We argue that such inferences are not always valid because
successful prediction can occur even if the two representational spaces use different, but correlated, represen-
tational schemes. We support this claim with three simulations in which we achieved high prediction accuracy
despite systematic differences in the geometries and dimensions of the underlying representations. Detailed
analysis of the encoding models' predictions showed systematic deviations from ground-truth, indicating that high
prediction accuracy is insufficient for making representational inferences. This fallacy applies to the prediction of
actual neural patterns from stimulus-feature spaces and we urge caution in inferring the nature of the neural code
from such methods. We discuss ways to overcome these inferential limitations, including model comparison,
absolute model performance, visualization techniques and attentional modulation.
Introduction

A key challenge for cognitive neuroscience is to understand the neural
code that underlies the encoding and representation of sensory, motor,
spatial, emotional, semantic and other types of information. To decipher
the representational schemes of the brain, researchers often employ
neuroimaging techniques such as functional magnetic resonance imaging
(fMRI). fMRI measures the blood oxygenation level-dependent (BOLD)
activation in the brain that is elicited when participants engage with
different stimuli. The neural representation underlying each stimulus is
assumed to have measurable but complex effects on the BOLD activation
patterns. In order to understand what those patterns of activity can tell us
about how the brain processes and represents information, researchers
have used various analytical tools such as univariate subtraction
methods, multivariate pattern (MVP) classification, representational
similarity analysis (RSA) and, recently, explicit stimulus-feature-based
encoding and decoding models (for reviews, see Davis and Poldrack,
2013, Haxby et al., 2014, or Naselaris et al., 2011). Despite their dif-
ferences, all of these methods have the same goal – to quantify how
changes in task conditions and the properties of the stimuli relate to
changes in BOLD activation and vice versa. One way in which these
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methods differ is in how they achieve that mapping and in what in-
ferences they allow us to draw.

In this article, we review some of the known inferential limitations of
existing fMRI analysis methods and we highlight an often-overlooked
issue in interpreting results from stimulus-feature-based encoding and
decoding models. The latter are steadily becoming the de facto gold
standard for investigating neural representational spaces (Haxby et al.,
2014; Naselaris and Kay, 2015). Using simulated data with known
representational schemes, we demonstrate the limitations of these anal-
ysis methods. These simulations, the accompanying code and the text
also provide a useful guide for using encoding models to understand
neural representations.

Univariate vs. multivariate analysis

Two of the main questions that any fMRI analysis technique attempts
to answer are 1) where information is represented/processed and 2) what
the nature of those representations is (Davis and Poldrack, 2013). Across
the fMRI analysis techniques we review below it becomes apparent that
understanding how information is represented is more difficult than un-
derstanding where it is represented or processed.
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The localization and the representational questions are related, but
distinct. This difference is most clearly exemplified in univariate sub-
traction analyses. Before the advent of the more advanced techniques we
review below, the standard approach for analyzing fMRI data involved
comparing how activity in a single voxel or averaged activity in a
contiguous area of voxels differs between task conditions or stimuli (see
Fig. 1). Researchers have used these univariate subtraction methods
successfully to understand the relative engagement of certain brain areas
in specific tasks. For example, the observation that remembered stimuli
cause greater hippocampal activation during their encoding compared to
forgotten stimuli, has corroborated conclusions from lesion studies about
the role of the medial temporal lobe in memory formation (Wagner et al.,
1998).

Unfortunately, the coarse nature of this method precludes fine-
grained inferences about the underlying representational content and
computations that give rise to the observed BOLD signal. Univariate
methods assume that representational or processing differences between
stimuli can be observed in individual voxels, and they ignore any re-
lationships between different voxels (Davis and Poldrack, 2013). By
ignoring the possibility that information might be represented in a
distributed manner across voxels, the assumptions underlying univariate
subtraction methods limit their use in understanding neural representa-
tions. In addition, these methods cannot tell us whether changes in
activation are due to representational preferences, processing differ-
ences, or attentional variation among conditions (Coutanche, 2013).

In contrast, multivoxel pattern analysis (MVPA) techniques overcome
these limitations by looking at how various categories of stimuli or task
conditions lead to combinatorial differences (i.e. MVP classification) or
similarities (i.e. representational similarity analysis, RSA, see Fig. 2) in
distributed patterns of activity over multiple voxels. These methods have
become popular partly because they allow researchers to relate brain
states to informational content. This can be highly useful for real-world
applications, such as brain-computer interfaces (Lotte et al., 2007) and
the diagnosis of diseases (Ewers et al., 2011). More importantly for the
present paper, MVPA methods make it possible to study neural repre-
sentational spaces with greater sensitivity and resolution than univariate
approaches. For example, a seminal study by Haxby et al. (2001) found
Fig. 1. Univariate vs. Multivariate fMRI. In univariate fMRI (left), the average act
animal vs. tool words). In multivoxel pattern analysis (right), machine learning techn
activation patterns (yellow box) and its classification performance is evaluated on a
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that visual object categories can be classified based on the pattern of
activation that their exemplars elicited in the ventral temporal cortex.
The classification was successful despite the lack of overall activation
differences in that region. Similar methods have been used to show that
concepts have language-invariant representations in the anterior tem-
poral lobe (Correia et al., 2014), that very similar visual scenes can be
discriminated in the hippocampus (Bonnici et al., 2012) and that during
their retrieval from memory, the shape, color and identity of visual ob-
jects can be differentially decoded across several cortical areas (Cou-
tanche and Thompson-Schill, 2015).

Despite early enthusiasm that MVPA methods could be used to un-
derstand the structure of the neural code and the nature of the underlying
representations (Norman et al., 2006), conventional MVP classification
and RSA techniques share one of the same fundamental inferential lim-
itations of univariate methods. Researchers can use successful classifi-
cation or careful inspection of confusions/similarity matrices to learn
that some relevant information about the stimulus class is present in the
population of analyzed voxels, thus answering the where question. How-
ever, these methods cannot identify unambiguously exactly what that
information is (i.e., the stimulus category, category-related features, etc),
or how it is represented and organized (Naselaris and Kay, 2015; Pol-
drack, 2011; Tong and Pratte, 2012). Neural data is correlational, which
means that many different properties of the stimuli might lead to suc-
cessful classification of the stimulus category, the task condition, or the
brain state in question. For example, successfully categorizing whether a
word represents an animate or an inanimate object does not necessarily
mean that the region of interest encodes that category distinction. There
are many differences between animate and inanimate objects, such as
differences in their sensory and functional features (Farah and McClel-
land, 1991) that could be responsible for the successful classification.

In a similar argument, Ritchie et al. (2017) recently pointed out that
the main reason behind this limitation is that linear classifiers are
“informationally greedy”: they are likely to pick up any information that
distinguishes the to-be-classified categories and it is therefore often
impossible to knowwhat that information is. This uncertainty can lead to
disagreements between researchers looking at similar data. For instance,
it remains unclear whether the orientation of a grating can be decoded
ivation level in a brain region is compared across experimental conditions (e.g.,
iques are used to train a classifier to distinguish categories based on fine-grained
separate test set (red box).



Fig. 2. Representational Similarity Analysis (RSA).Multivoxel activation patterns of all items or conditions (e.g., words) are estimated (top panel) and compared to
each other (typically by calculating 1 - correlation) to produce a representational dissimilarity matrix (RDM; middle panel) that abstracts away from the precise
patterns related to each item and instead quantifies their dissimilarity. RDMs derived from neural activation patterns can be correlated with model RDMs that reflect
hypotheses about the organization of informational content in a given brain region. In this hypothetical example, the RDM based on activity patterns strongly cor-
relates with the RDM derived from behavioral ratings of animacy, but not with the RDM derived from behavioral ratings of size.
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from visual cortex because imperfect sampling of orientation-selective
columns leads to hyperacuity (Kamitani & Tong, 2005), because of
radial biases in the retinotopic map (Freeman et al., 2011), or because of
edge-related activity (Carlson, 2014). Ritchie et al. (2017) further sug-
gest that relating classifier performance to behavior only partly remedies
the problem as “a brain region might carry information which is reliably
correlated with the information that is actually used, but which is not
itself used in behavior”.

Another limitation of conventional MVP classifiers is that they cannot
342
generalize and predict behavioral responses to novel types of stimuli or
task conditions. An MVP classifier is usually trained on stimuli that are
tokens from several types. The relationship between these tokens and
types impacts the generality of the classifier. The stimuli tokens might be
different category exemplars, and the classifier is trained to predict the
type of category to which they belong. In this case, the classifier can only
be used to predict category membership of items that belong to one of the
categories on which it was trained. For instance, if one trains a classifier
to predict the color of objects and trains it on yellow and orange objects
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(Coutanche and Thompson-Schill, 2015), one will not be able to predict
the color of novel objects that are green. Alternatively, the tokens might
be multiple presentations of the same word in different modalities or
languages and the types are the unique words themselves. Even though
the classifier in this example could be used to predict exemplars in novel
languages or modalities, it is again restricted only to exemplars of the
words on which it was trained in the first place. In general, while the
tokens being tested might be novel, they can be successfully classified
only if they are exemplars of a type that has already been trained on.

This methodological limitation is important - just as understanding
how the decimal system represents numbers allows people to understand
and manipulate numbers they have never seen before, understanding
how a neural representational system works should allow researchers to
use the neural pattern associated with novel stimuli to predict their
identity, even if those stimuli are not exemplars of the types on which a
particular model was trained on.

Encoding models

To overcome these limitations many researchers are turning to a
novel analysis method that is known by a few different names – voxelwise
modelling (Naselaris and Kay, 2015), stimulus-model based encoding
and decoding (Haxby et al., 2014), voxel-based encoding and decoding
models (Naselaris et al., 2011), and forward models (Brouwer and
Heeger, 2009; Fernandino et al., 2016). For simplicity, we will refer to
this class of methods as encoding models.2

In contrast to MVP classifiers, which assign one of the trained cate-
gory labels to a novel stimulus token, encoding models can predict the
identity of novel types of stimuli. They achieve that by attempting to
predict the neural activity for a set of simpler features into which the
stimuli can be decomposed (see Fig. 3). In a seminal study, Mitchell et al.
(2008) predicted the neural activity associated with individual novel
words based only on the activation of other words. They decomposed
each word into a vector of weights on 25 sensory-motor semantic features
(verbs such as “eat”, “taste”, “run”, “fear”, etc.). The weights were esti-
mated from co-occurrence statistics of the word with each verb feature in
a large corpus. They trained a classifier to predict the neural activity
associated with each constituent feature of a training set of words, which
resulted in separate neural activation maps for each feature. Neural ac-
tivity for novel test words was then predicted highly accurately as a linear
combination of the semantic feature activation maps weighted by the
association of the word with each feature. Based on these results,
Mitchell et al. (2008) concluded that the neural representation of con-
crete nouns might be based on sensory-motor features.

Similar approaches have been used to predict the neural response to
novel natural images using Gabor filter features (Kay et al., 2008), to
novel colors based on color tuning curve features (Brouwer and Heeger,
2009), to novel music clips based on acoustic timbre features (Casey
et al., 2012), to natural sounds based on frequency, spectral and temporal
modulations (Santoro et al., 2014), to novel faces based on a PCA
decomposition of face features (Lee and Kuhl, 2016), to novel words
based on subjective sensory-motor ratings (Fernandino et al., 2016). The
motivating question behind many of these studies has been about the
nature of the representations used by the brain in encoding the experi-
mental stimuli, and the results are often cited as evidence that the neural
representation is based on the constituent features of the stimuli used in
the model.

In general, most encoding models use the following analysis pro-
cedure (see also Fig. 3):
2 Encoding usually refers to the prediction of neural patterns for the purpose
of understanding the neural representational space, while decoding refers to the
reconstruction of an experienced stimulus from neural data (Naselaris et al.,
2011).
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1 Specify a set of features that hypothetically underlie the representa-
tion of a stimulus set in the brain

2 Decompose a set of stimuli into vectors of weights for each feature
3 Select a region of interest (ROI) in the brain from which to analyze

neural activation
4 Train a model to predict activity in each voxel for a training set of

stimuli, using the weights of their features as predictors
5 Derive activation pattern maps (e.g. regression coefficients) associ-

ated with each feature
6 .Predict neural activity in the ROI for novel stimuli, based on their

feature weights and the activation pattern maps for each feature
7 Compare predicted neural activity for each novel stimulus with their

observed neural activity and derive a measure of fit and accuracy

Encoding models attempt to map a stimulus feature representational
space, where each feature is a separate dimension, and each stimulus is a
point in that space, to a neural activation space, where each voxel or each
neuron is a separate dimension, and the activation pattern elicited by
each stimulus is a point in that space (Kriegeskorte and Kievit, 2013).

What can we infer about neural representations?

Encoding models have grown in popularity due to their many ad-
vantages over more classical classification approaches. While there is
little doubt that these models are a useful and powerful analytic tool,
their growing use requires us to carefully consider what we can and
cannot conclude on the basis of above-chance prediction of neural ac-
tivity. What can a successful mapping between a stimulus feature space
and a neural activation space tell us about the nature of the representa-
tion used by the brain? A common inference in some of these studies is
that if you can predict the identity of novel stimuli based on that map-
ping, then the neural representation is likely based on the feature set used
by the model. Put formally, the inferential claim goes as follows:

� We can represent certain stimuli as a combination of lower-level
features

� We can show that it is possible to predict the neural pattern caused by
a novel stimulus in brain area A from an encoding model based on
these features

� Therefore, brain area A encodes those features and uses a represen-
tational scheme based on them.

This claim has been made to different degrees both in theoretical and
methodological papers reviewing the approach (e.g., Haxby et al., 2014;
Naselaris and Kay, 2015; Naselaris et al., 2011; Norman et al., 2006;
Ritchie et al., 2017; Tong and Pratte, 2012), as well as in empirical
studies that use it to address representational questions (Fernandino
et al., 2016; Kay et al., 2008; Mitchell et al., 2008; Santoro et al., 2014;
although some are more cautionary, e.g. Lee and Kuhl, 2016). While
some authors have carefully restrained their discussion to the practical
benefits of encoding models (Haxby et al., 2014; Davis and Poldrack,
2013), the interpretative benefits of encoding models over MVP classi-
fication are expressed strongly by many others (e.g., Naselaris and Kay,
2015; Ritchie et al., 2017).

A useful illustration of this inference in practice comes from a recent
study by Fernandino et al. (2016). The authors wanted to understand how
conceptual information is represented in a set of higher-order non--
modality-specific brain regions in the General Semantic Network (GSN;
Binder et al., 2009). An encoding model based on subjective ratings for 5
sensory-motor features (“color”, “motion”, “sound”, “shape”, “action”) of
training words was used to predict neural activation patterns related to
novel individual words. The model successfully predicted above chance
the brain activity patterns for concrete words in the semantic network
regions (61%mean accuracy), but not in a set of control regions associated
with visual word form processing. Based on these finding, Fernandino et al.
(2016) suggested that “the brain represents concepts as multimodal



Fig. 3. Encoding models. Stimuli are broken down into a set of features that are hypothesized to underlie stimulus representation. During training, a model learns to
associate each feature's weights with voxel-wise activity, resulting in one feature activation map per feature. The model then predicts voxel-wise activity to unseen test
stimuli as the linear combination of these feature activation maps weighted by the test items' association with each feature. Predicted activity is compared to the
actually observed activity per voxel to quantify prediction accuracy.
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combinations of sensory and motor representations” and that “heteromodal
areas involved in semantic processing encode information about the relative
importance of different sensory-motor attributes of concepts, possibly by storing
particular combinations of sensory and motor features” (p. 9763).

Putting aside the fact that 61% prediction rank accuracy is quite low,
albeit above chance,3 the more important issue is that this inference is
not formally valid. We need to consider what the data would have looked
like if the underlying neural representation was actually different
(Mahon, 2015). In this example, the above-chance prediction of con-
ceptual identity in the GSN based on an encodingmodel of sensory-motor
features does not necessitate the representational format in the GSN to be
sensory-motor in nature. The results might be obtained even if the GSN
3 In praxis, success of an encoding model is often defined as above-chance
prediction and thus treated like an all-or-nothing phenomenon. This is in part
because absolute prediction values are difficult to interpret (Hebart and Baker,
2017). However, attaining above-chance prediction does not justify strong
claims about the nature of neural representations.
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uses amodal representations, as long as the representational space used
by the GSN and the sensory-motor features are correlated. This correla-
tion could be driven by a non-arbitrary mapping between representations
in the GSN and sensory-motor features.

To illustrate, let us assume that the GSN instead encodes word co-
occurrence statistics. As co-occurrence statistics correlate with sensory-
motor feature ratings, it would be possible to predict GSN activity pat-
terns above-chance based on these features, even though they are not
driving the activity patterns. Thus, while we can rule out the possibility
that conceptual representations in heteromodal areas bear an arbitrary
relation to sensory-motor features, as has been argued by some pro-
ponents of symbolic systems (Fodor & Pylyshyn, 1988), we cannot
conclude that the GSN encodes multimodal sensory-motor information
on the basis of Fernandino et al. (2016) results. At most, we can say that
the subjective sensory-motor relevance ratings that Fernandino et al.
(2016) gathered for each concept capture some information represented
in the GSN, but not whether this information is sensory-motor in nature.

This issue is akin to the affirming the consequent fallacy. It is the case that
if the brain uses a specific representational scheme, an encoding model



Table 1
Limitations of representational analyses for fMRI.

Limitation Univariate MVP Encoding
models

1. Ignores distributed information þ – –

2. Cannot predict activity for novel types of
stimuli

þ þ –

3. Sensitive to correlated sources of
information

þ þ þ

Table 2
Examples of studies that use feature encoding models.

Source Item Features Response vector

Mitchell
et al.
(2008)

Concrete
words
(dog)

Co-occurrence
statistics with
25 sensory-
motor verbs

Pattern of activation in all cortical
voxels

Fernandino
et al.
(2016)

Concrete
words
(dog)

5 sensory-
motor
relevance
ratings

Pattern of activation in the GSN
(Binder et al., 2009)

Simulation
1

Numbers
(3497)

5 decimal digits
[0 3 4 9 7]

17 binary digits [0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 0 1 0 1 0 0 1]

Simulation
2

Colors
(skyblue)

RGB values,
[135 206 235]

HSV values [197, 42.6, 92.2]

Simulation
3

Colors
(skyblue)

HSV values
[197, 42.6,
92.2]

Population code based on 5
preferred values on each RGB
dimension
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that implements those feature will likely be able to predict neural activa-
tion fairly well. However, we cannot reverse this claim – successful pre-
diction of neural activity based of an encoding model does not guarantee
that the model in question is correct.4 We argue that information in one
representational system might be decoded or predicted above-chance
based on features from another, even if they use different representa-
tional schemes, as long as there is at least a partially systematic mapping be-
tween them, which causes their dimensions to be correlated. This limitation is
shared with univariate and MVP approaches (see Table 1). There are at
least three ways in which mappings between representational systems can
be made and successful prediction can occur in two of those cases.

Types of mappings

Arbitrary mappings between representations

First, items from two representational systems might be related in an
entirely arbitrary way, which results in no shared variance in their di-
mensions. For example, the meaning of words is mostly unrelated to their
orthographic features,5 and the geographic locations of countries are not
predictive of their names, etc. More generally, consider two unordered
sets of items, A ¼ fA1;A2;…;Ang and B ¼ fB1;B2;…;Bng An arbitrary
mapping between these two sets exists when the mapping from a specific
item in set A to a corresponding item in set B is unrelated to the mappings
between the remaining items in the two sets. In the context of encoding
models and the brain, predicting the identity of novel items from one set
would be impossible based on a feature model from the other set, if these
two sets are not correlated.
Sets that use the same representational scheme

In contrast, a successful prediction can occur if the two sets use the
same representational scheme. Consider the set of multi-digit numbers in
the decimal system, A ¼ f10;11;…;427;…g, and the set of 10 digits in
the decimal system, B ¼ f0; 1; 2;3;4; 5; 6;7;8; 9g. These sets use the
same representational scheme to represent quantities (the decimal sys-
tem), and there is a systematic linear mapping from the features (the
digits), to the multi-digit numbers, such that:

dndn�1…d1d0 ¼
Xn
i¼0

ðdi � 10iÞ

3491 ¼ 3� 1000þ 4� 100þ 9� 10þ 1� 1

When we have such systematic mappings between systems that use
the same representational scheme, knowing the mapping function allows
us to decompose any item from set A as a combination of features from
set B. An example of such a mapping would be Fernandino et al. (2016)
suggestion that the General Semantic Network encodes multimodal
4 This problem is similar, but not identical, to the problem of reverse inference
(Poldrack, 2006).
5 Whereas a minor degree of systematicity does seem to exist in this domain

(e.g., Monaghan et al., 2014), word meanings cannot be systematically predicted
based on their orthography and vice versa.
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combinations of sensory-motor features by integrating information from
modality-specific sensory-motor areas. If this were true, then you could
predict the neural pattern of novel items from their featural representa-
tions, which is what that study found as well.
Sets that use different but systematically related representational schemes

However, there is an alternative, which would also allow you to make
a successful prediction from encoding models due to shared variance in
nonequivalent representational spaces. Two sets can use different
representational schemes, while at the same time maintaining a sys-
tematic mapping between themselves. That systematicity results in
correlated dimensions and it allows us to predict the mapping of any one
pair of items from knowledge of the mapping function. Within the
context of conceptual representations in the brain, higher-level hetero-
modal areas might use a representational code that is different from the
one used by sensory-motor cortices, but the representational dimensions
in the two systems might be correlated.

For a simplified example, consider the relation between the decimal
and the binary systems for representing numeric values. A binary rep-
resented value can be transformed into a decimal number by applying the
following formula:

�
dndn�1…d0

�
2
→

 Xn
i¼0

ðdi � 2iÞ
!

10

100112→1� 24 þ 0� 23 þ 0� 22 þ 1� 21 þ 1� 20 ¼ 1610 þ 210 þ 110

¼ 1910

Clearly, there is a systematic but non-linear mapping between the
decimal and the binary system, and yet, these two systems use different
codes to represent numbers. If our argument is correct then it should be
possible to predict above chance the binary representation of a number
based on a decimal feature encoding model. Below we present a simu-
lation that achieves this by applying the encoding model approach often
used in neuroimaging studies. Within the simulation, binary vectors are
analogous to voxel activation patterns, and the encoding model is based
on decimal representations (Table 2).

Simulation 1: predicting binary representations with a decimal
feature encoding model

6As detailed previously, encoding models predict stimulus identity
6 The code for all simulations is available at https://github.com/venpopov/
inferential_pitfalls.

https://github.com/venpopov/inferential_pitfalls
https://github.com/venpopov/inferential_pitfalls
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from brain activation by modelling the relationship between the con-
stituent features of the training stimuli and their corresponding BOLD
activation in a group of voxels. Then they use that relationship to esti-
mate the expected neural activation patterns for novel test items based on
their feature representations. The predicted activation pattern for each
stimulus is compared to the observed patterns for all test stimuli. For the
following simulation, let us consider the numbers from 0 to 99 999 as our
stimulus set. They can be decomposed into 5-dimensional feature vectors
where each feature is a decimal digit (e.g., 3497 can be decomposed as [0
3 4 9 7]. These features can be considered analogous to the 5 sensory-
motor relevance ratings of words used by Fernandino et al. (2016) or
to the co-occurrence statistics with sensory-motor verbs used by Mitchell
et al. (2008). Further, let us consider the binary representation numbers
as 17-dimensional vectors (e.g. [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 1 0 1 0 1 0 0 1], to be analogous to the BOLD activation pattern in a set
of 17 voxels in an ROI under investigation. The correspondence between
these patterns and actual neuroimaging studies using this approach is
demonstrated in Table 2.

We trained an encodingmodel to predict the binary activation pattern
for a given number, based on its 5-dimensional decimal feature repre-
sentation. We performed a 10-fold cross-validation. The modelling fol-
lowed 4 steps: 1) splitting the stimuli into a training (90%) and a test
(10%) set, 2) fitting multiple linear regression models on the training set
with the 17 binary features as response variables, and the 5 decimal
features as predictors, 3) calculating predicted activation pattern (pre-
dicted maps, PMs) for each test item from its decimal features and the
multivariate regression model, 4) comparing the PMs with the actual
binary patterns for all test items (observed maps, OMs). In the compar-
ison stage, we computed the Euclidean distance between each PM and
the OMs for all test items, and we calculated the percentile rank of the
similarity between the PM and the OM of each item. For example, if the
PM for the number 29782 were most similar to the OM for that number,
then the percentile rank for it would be 10 000/10 000¼ 1. However, if it
were more similar to the OMs of 1000 other items, then its percentile
rank would be 9000/10 000¼ 0.9.

The encoding model successfully predicted above chance the binary
representation of untrained items based only on their decimal features
(Maccuracy¼ 0.7, SD¼ 0.24, p< .0001, Wilcoxon signed rank test). Since
by definition binary and decimal number systems use different repre-
sentational schemes, we cannot conclude that the representation of bi-
nary numbers encodes decimal features. By analogy, successfully
predicting patterns of neural activation based on a stimulus feature space,
Fig. 4. a) the RGB color space – black arrows show the three main color dimensions
color space; b) the HSV color space – black arrows show the value, saturation and hu
space. Images by Michael Horvath, available under Creative Commons Attribution-S
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cannot be used to infer that the brain encodes information about these
features or that its neural representational space is organized along the
dimensions of that feature space.

Simulation 2: predicting a color represented in one color space
with an encoding model in another color space

Another way to illustrate how two correlated, but distinct represen-
tational spaces can be predicted from one another, is to use color
representational spaces. Any color can be uniquely defined as a point in a
three-dimensional space. There exist numerous color spaces, and in some
of them the dimensions reflect three distinct colors that can be mixed in
different proportions to produce any other color (e.g., RGB, CMY), while
in other color spaces the dimensions reflect attributes such as hue,
saturation and lightness (e.g., HSL, HSV). RGB and HSV are both three-
dimensional spaces; however, their dimensions are related non-linearly
(see Fig. 4). As a result, their representational geometry is different,
and for example, one color can be equally distant from two others in RGB
space, while it can be closer to one of them in HSV space. Despite this, the
position of colors within those two spaces are systematically but non-
linearly related, and there exist a number of algorithms to convert RGB
representations to HSV and vice versa (for a primer on color spaces and
color space conversions, see Ford and Roberts, 1998).

The goal of the following simulation was to demonstrate that we can
successfully predict the three valued HSV representation of novel colors,
by training an RGB encoding model on a subset of randomly sampled
colors. For the stimuli, we used 1000 colors by selecting 10 equally
spaced values on each RGB dimensions. Thus, the stimulus features of
each color were its three RGB values. The response vectors in this case
were the corresponding three HSV values for each color. The procedure
was otherwise identical to the one in Simulation 1. We performed a 10-
fold cross-validation. Similar to Simulation 1, the encoding model based
on RGB color representations was able to predict the HSV color repre-
sentations of untrained colors quite well (mean rank accuracy 0.82,
SD¼ 0.22, p< .0001).

The current simulation allows us to illustrate how such a high pre-
dictive accuracy in and of itself might not provide enough information to
judge how well the encoding model reflects the neural representational
space. For each item, we can directly compare the predicted color from
the encoding model with the actual color of the stimulus. In Fig. 5, we
show the “observed” ground truth and the predicted color for each test
item. Each panel shows hues for different combinations of saturation and
, whose values are subtracted to achieve the resulting color at each point in the
e dimensions that are combined to determine the color of each point in the color
hare Alike 3.0 Unported license.



Fig. 5. Results from fitting the RGB-based encoding model on the HSV color stimuli. Each mini-panel shows observed and predicted colors for a specific saturation and
value combination. Within each panel, bottom row shows the sequence of HSV stimuli (i.e., ‘ground truth’ or ‘observed colors’), and the top row shows the predicted
color from the RGB encoding model.
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value. Within each panel, the bottom half shows the actual color and the
top half shows the predicted color based on the RGB encodingmodel. The
model fares well in predicting the value and the saturation of the color.
However, while overall it captures the hue progression, there are sig-
nificant deviations (e.g. failing to predict red colors, overpredicting
yellow-brown colors, and underpredicting blue colors). These deviations
occur because the model is trying to impose a linear transformation on
non-linearly related representational spaces. In summary, a high pre-
dictive accuracy is not by itself sufficient to conclude that an encoding
model reflects the nature of the underlying neural representation.

Discussion

Encoding models (Haxby et al., 2014; Naselaris et al., 2011) are a
powerful new tool for studying how the constituent features of stimuli
relate to the neural activation patterns elicited by these stimuli. They
represent a significant methodological advance over more traditional
MVPA methods because they allow us to predict neural activation for
novel items and because they can be used to decode the identity of such
items from neural data alone. While this is an impressive feat and an
incredibly useful tool, we have to be cautious in interpreting what such
successes mean for our understanding of the representational system of
the brain. Both theorists (e.g., Haxby et al., 2014; Naselaris and Kay,
2015; Naselaris et al., 2011; Norman et al., 2006; Tong and Pratte, 2012)
and practitioners (e.g. Fernandino et al., 2016; Kay et al., 2008; Mitchell
et al., 2008; Santoro et al., 2014) have suggested that we can infer that
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the brain uses a certain set of features to encode information, if we can
successfully predict the activity of novel items from such features.
However, as we have argued here, this inference is not formally valid.
Successful prediction might be the result of a systematic relationship
between the representational system of the brain and the stimulus feature
set, even if those utilize different representational schemes.

Representational equivalence – is it in the eye of the beholder?

How do we know whether two representational systems are truly
different? It could be argued that in our first example, both binary and
decimal number systems share many properties, and that they are merely
different implementations of the same fundamental representation. For
example, both systems use the position of a digit to encode its magnitude,
and as a result, all arithmetic procedures that can be performed with
decimal numbers can be applied to binary numbers as well. Despite these
similarities, the transformation required to get the decimal from the bi-
nary representation of a number is non-linear. Linearity is important – it
has been argued that two representational spaces could be considered
equivalent only if there exists a linear transformation from one to the
other (Naselaris et al., 2011). Linear transformations rotate multidi-
mensional spaces, but do not change the nature of the representation,
only the interpretation of the dimension. However, when the trans-
formation required is non-linear, then the geometry of the underlying
representational spaces is different (Kriegeskorte and Kievit, 2013).

We further propose that the key issue in determining whether two
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representational system are equivalent is whether you can establish a
one-to-one mapping relation between features at different levels of rep-
resentation in each system. For example, if you substitute each decimal
digit with a unique letter, the resulting system would appear to be very
different from the decimal system only on the surface – the relation be-
tween multi-digit numbers and their features would be the same in both
cases.7 In contrast, decimal and binary features have a qualitatively
different relation to the numbers they represent. Despite this, binary
representations can be predicted based on decimal features, illustrating
the inferential problem of encoding models we address here.

Simulation 2 allowed us to illustrate this point more clearly by
directly visualizing the differences in the geometries of RGB and HSV
color spaces. While both color models use 3 dimensions to represent
colors, these dimensions have distinct interpretations and can be related
by a systematic non-linear transformation. The RGB color model is an
additive mixture space, in which any color is produced by mixing the
three primary colors in different proportions. In contrast, the HSV model
represents colors by specifying their hue (e.g., red), their saturation (i.e.,
the intensity of the pigment), and their value (i.e., the darkness of the
pigment). These three-dimensional representational spaces have
different geometries, such that the relative distances between colors are
not identical. Yet, training an encoding model to predict the HSV rep-
resentation of novel colors based on the relationship between the RGB
and HSV features of other colors, was highly accurate on average.

Where to go from here?

Model comparison
An important question that naturally arises from the caveats we dis-

cussed is how one can maximize confidence in the outcome of a forward
encoding model approach, or conversely, guard oneself against unjusti-
fied inferences. As others have noted, it is crucial to compare the per-
formance of several possible encoding models (Haxby et al., 2014;
Naselaris et al., 2011). If one model leads to a higher prediction accuracy
than another, that is evidence that its features capture the variance of the
neural representations better than the alternative model. However, it is
not sufficient to use a “baseline model” that is unrelated to the domain of
interest (i.e., comparing a semantic feature model to a low-level visual
word formmodel as exemplified by Fernandino et al., 2016). Instead, one
or several alternative representational models should be tested that are
derived from competing theories (i.e., semantic model A vs. semantic
model B). To illustrate, an elegant comparison of a sensory-based vs.
non-sensory-based semantic model was achieved by Anderson et al.
(2015). These authors contrasted a visual model with a word
co-occurrence model to investigate which brain regions represent
modality-specific visual features, and which do not (using differential
correlation in RSA rather than an encoding model).

The relative superiority of a particular model at predicting activation
patterns in a brain region makes it more likely that the brain is using the
representational scheme of the better performing model rather than the
alternative. However, it is important to keep in mind that such compar-
isons only provide evidence for the relative likelihood of eachmodel, but,
due to the limitations discussed above, still do not allow us to infer that
the winning model is the “true” model (Palminteri et al., 2017). Addi-
tionally, when fitting these models, researchers need to account for dif-
ferences in the number of parameters in each model and the risk of
overfitting.

Absolute model performance
For that reason, besides the assessment of relative model performance

based on model comparison, a second crucial step is to evaluate absolute
7 In fact, because of that linear one-to-one relationship, replicating our
simulation with these two examples leads to perfect prediction accuracy;
compare that to the 0.7 prediction accuracy for the decimal-to-binary model.
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prediction performance. In particular, the observed prediction accuracy
can be compared to the “noise ceiling”, or to the “upper limit of pre-
diction accuracy” (Naselaris et al., 2011), reflecting the maximal per-
formance that can be feasibly achieved given the noise present in the
signal. The gap between the two can be thought of as the variance that is
not explained by the current model, which should motivate and guide the
search for an improved or alternative version of the model. Until such
maximal performance is obtained, we should be careful in making strong
representational inferences about the brain from the currently available
analytic methods. It is important to note that assessing absolute model
performance should not be done in isolation, but rather in combination
with model comparison as a givenmodel may in principle reach the noise
ceiling even if a more appropriate model exists.

Beyond the prediction accuracy: visualizing and comparing the organization
of predicted and observed neural activation patterns

It is important to note that even high decoding or predictive accuracy
on its own is insufficient to establish representational equivalence.
Despite the fact that in Simulation 2 our RGB encoding model predicted
the HSV representation with an 82% rank accuracy, a more careful in-
spection of the actual and the predicted HSV colors revealed that there
are significant deviations in the model predictions. This is because the
regression model is attempting to establish a linear rotation between the
non-linearly related RGB and HSV spaces.

This result should make us wary of making conclusions of represen-
tational equivalence based on a single accuracy value, as is the practice in
some published studies (e.g. Fernandino et al., 2016). Rather, it is
important to examine the actual correspondence of the representations
with additional RSA methods or dimensionality reduction and visuali-
zation techniques (e.g., Brouwer and Heeger, 2009; Foster et al., 2015).
For example, in studying color representation in the early visual cortex,
Brouwer and Heeger (2009) used principal components analysis (PCA)
on the predicted voxel activation patterns and showed that the two main
components present in the signal corresponded well to the actual orga-
nization of the colors in the color space they were using. Similarly, Foster
et al. (2015), who attempted to decode the orientation of lines that were
held in visual working memory, showed that activity in the hypothesized
angular channels, on which their encoding model was based, follows a
graded pattern that peaks at their preferred orientation. In summary, we
believe it is crucial to carefully examine the model predictions. If the
encoding model reflects the actual representational space, there should
be no systematicity in the errors it makes, and the relations between the
predicted activation patterns should resemble the relations and the or-
ganization of the observed activation patterns.

Attentional modulation
Ultimately, many of these inferential caveats exist because fMRI data

is correlational. Comparing alternative models and evaluating absolute
prediction performance might eventually converge on the true underly-
ing feature model, but this is not guaranteed. We propose that an even
better way to test representational hypotheses might be to experimen-
tally manipulate the hypothesized representational dimensions. For
example, one could prime participants to weight or attend to some fea-
tures of the stimuli more than others. This type of attentional modulation
decreases noise in the correlated activity between individual neurons,
which enhances population coding (Downer et al., 2015), and it also
increases selectivity of individual neurons for task-relevant stimulus
features (Sigala and Logothetis, 2002). Thus, if orienting attention to
some features of the stimuli improves the ability of an encoding model
based on those features to predict neural activity, this would constitute
much stronger evidence for the viability of the model.

Relatively little work exists to evaluate this proposal with fMRI,
although three recent studies present promising results with an atten-
tional modulation method that could eventually be extended to encoding
model analyses as well. Çukur et al. (2013) showed that when partici-
pants were searching for people or for vehicles in movie clips, individual



Fig. 6. Results of the attentional modulation simulation – mean rank accuracy in predicting neural population codes generated from an RBG model, depending on
whether attention is focused on none of the dimensions (‘no’), the R, the G or the B dimension. Each row shows results for different values of the Gaussian noise
standard deviation parameter; each column shows the attentional selectivity parameter, e.g., the reduction in the width of the Gaussian response of each “neuron” to
the attended dimension.
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voxels became more attuned to the attended category. This occurred
regardless of whether the target category was actually present in a scene.
Importantly, this tuning shift was progressively stronger in higher-order
visual areas compared to early retinotopic visual areas. Thus, attentional
tuning likely reflects the fact that some aspect of the attended informa-
tion is being represented in a specific ROI. Relatedly, Braunlich and Love
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(2018), showed that when one feature of artificial category stimuli be-
comes more relevant for a categorization task, the ability to predict the
presence of that feature increased. Additionally, they demonstrated that
predictive accuracy correlated with attentional modulation parameters
derived by cognitive models of conceptual representation.

Even more relevant is a recent study by Nastase et al., (2017), who



8 This would be analogous to asking participants to 1) discriminate between
colors; to respond which color is more 2) red, 3) blue or 4) green.
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extended this approach to representational similarity analysis. Partici-
pants saw a sequence of short clips with animals performing certain be-
haviors, and they had to respond to each clip in one of two ways. In one
condition, the task was to say whether the animal in the current clip is
from the same taxonomic category as the animal in the previous clip. In the
other condition, participants had to respond whether the animal was
performing the same behavior as the animal in the previous clip. The
authors derived two representational dissimilarity matrices for the
stimuli – one based on the taxonomic dissimilarity, and one based on the
dissimilarity in the behavior that the animals performed. They calculated
the correlation of these two representational dissimilarity matrix (RDM)
with an RDM derived from the neural signal. When participants attended
to the taxonomic category of the animals, the correlation between the
neural and the taxonomic RDM increased. In contrast, attending to the
animal's behavior increased the correlation of the neural RDM with the
behavioral RDM.

Perhaps the most relevant finding of the study is that even though
there was a significant correlation between the model RDMs and the
neural RDMs in several regions, attentional modulation did not increase
the correlation in all of them. For example, while the behavioral model
correlated with neural activity in both the early visual cortex, and in post-
central parietal regions involved in motion perception, attending to the
behavior of the animals increased the correlation only in the latter re-
gions. Thus, on the basis of the overall correlation one might have
concluded that behavior is represented even in early visual cortex;
however, the lack of the attentional modulation in those areas indicates
the overall correlation might have been driven by some visual informa-
tion that is simply confounded with the animal's behavior. Similarly,
taxonomic information correlated with the early visual cortex and the
ventrotemporal cortex, but attending to taxonomy increased the corre-
lation only in the latter. Nevertheless, one caveat to this proposal is that
some brain areas might not be susceptible to attentional modulation. For
that reason, it is important to note that while the presence of attentional
modulation increases support for the model, the absence of such does not
necessarily reduce it, and such inferences should be made with care.

Overall, these results provide some indication that modulating
attention to specific features of the stimuli can be beneficial in deter-
mining whether successful prediction reflects the nature of the neural
representation, or whether it is picking up systematically related infor-
mation instead. We expect that this technique can be effectively extended
to encoding models as well, as illustrated in Simulation 3.

Simulation 3: attentional modulation
One potential caveat to our proposal is that attentional modulation

might increase performance even for incorrect models, if attention is
focused on features that are highly correlated between the models. It
seems natural to suggest that the extent to which attentional modulation
will allow discrimination between models depends inversely on the de-
gree to which that the attended dimension is correlated in the two
models.

To test this intuition, we performed a third simulation, in which we
extended our color prediction example. As we discussed above, one of the
consequences of attentional modulation is the increased sensitivity of
neurons to their preferred stimulus. In order to simulate attentional
modulation, this time we simulated neural data from the RGB space in a
different way. We assumed that each dimension is represented by a
population code of five units, where each unit had a different preferred
value on that dimension and its activity followed a Gaussian distribution
around that preferred value (similarly to Foster et al., 2015). The
preferred values were equally spaced from 0 to 1 (i.e., 0.1, 0.3, 0.5, 0.7,
0.9), and the default standard deviation of the response was 1 in the
absence of attentional modulation. We additionally added Gaussian noise
to the activity of each neuron, because prediction was nearly perfect for
the correct RGB model.

To simulate increased selectivity due to attentional modulation, we
reduced the width (i.e. the standard deviation) of the Gaussian response
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function for units that coded the attended dimension, and we increased
the maximal response. The final response vector had 15 units, 5 for each
of the three dimensions, and we compared how successful the RGB
generating model and the alternative incorrect HSV model were in pre-
dicting the neural responses depending on four conditions – no atten-
tional modulation, attending to the R, to the G or to the B dimension.8

The R dimension was the least correlated on average with the HSV model
(r ¼ 0.24), followed by the G (r ¼ 0.38) and the B (r¼ 0.41).

We expected that for the true RGB model, the increase in predictive
accuracy would be the same regardless of which dimension attention was
focused on. However, for the incorrect HSV model, we expected that the
increase will be proportional to how strongly the attended dimension was
correlated with the model. We ran the simulation for a range of noise and
selectivity parameters, and the results are presented in Fig. 6. Our pre-
dictions were confirmed across all parameter values. In summary, a
predictive accuracy increase due to attentional modulation should in-
crease trust in the model to the degree to which 1) focusing on the
different dimension produces equivalent increases and 2) the attended
dimension is not correlated with alternative models. This further suggests
that attentional modulation might help identify which features of the
model are more likely to capture a feature of the underlying
representation.
Final remarks

Many of the points we have raised here are not specific to encoding
models, but can also be leveled against any other method currently in use
for understanding neural representations. The reason why we focused
here on encoding models is that they are becoming increasingly popular,
and we believe it is important to highlight their limitations. The speed at
which multivariate methods have developed since Haxby et al. (2001)
seminal study on multivariate analyses illustrates the importance of these
methods to the neuroscientific community. Encoding models have many
advantages over more traditional MVPA techniques, such as the ability to
decode or predict activity for items that the model has not been trained
on. However, because encoding models are so powerful, it is important to
understand what inferences we can and cannot draw from them. There is
little doubt that successful prediction or decoding in a certain brain area
tells us a lot about where in the brain the information might be repre-
sented. The question of how those representations are organized, albeit,
is more difficult and cannot be answered only on the basis of a single
significant prediction value. Our hope with this commentary is not to
downplay the important role of these methods, but to further the dis-
cussion about what we can and cannot learn by using them.
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