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Abstract

The first postnatal years are an exceptionally dynamic and critical period of structural, functional 

and connectivity development of the human brain. The increasing availability of non-invasive 

infant brain MR images provides unprecedented opportunities for accurate and reliable charting of 

dynamic early brain developmental trajectories in understanding normative and aberrant growth. 

However, infant brain MR images typically exhibit reduced tissue contrast (especially around 6 

months of age), large within-tissue intensity variations, and regionally-heterogeneous, dynamic 

changes, in comparison with adult brain MR images. Consequently, the existing computational 

tools developed typically for adult brains are not suitable for infant brain MR image processing. To 

address these challenges, many infant-tailored computational methods have been proposed for 

computational neuroanatomy of infant brains. In this review paper, we provide a comprehensive 

review of the state-of-the-art computational methods for infant brain MRI processing and analysis, 

which have advanced our understanding of early postnatal brain development. We also summarize 

publically available infant-dedicated resources, including MRI datasets, computational tools, 

grand challenges, and brain atlases. Finally, we discuss the limitations in current research and 

suggest potential future research directions.
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T1w, T2w, FA images, tissue segmentation results as well as the reconstructed inner and outer 

surfaces of a typically-developing infant, scanned longitudinally at 2 weeks, 3, 6, 9 and 12 months 

of age. Inner surfaces are color-coded with the maximum principal curvature, and outer surfaces 

are color-coded with cortical thickness.
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1 Introduction

The first postnatal years are an exceptionally dynamic and critical period of structural, 

functional and connectivity development of the human brain. At term birth, although all 

primary and secondary cortical folds have been established, the average volume of the 

normal neonatal brain is only one third of that of the adult (Knickmeyer et al., 2008). During 

the first postnatal year, the brain volume doubles with regionally-heterogeneous growth 

patterns (Knickmeyer et al., 2008). Although the biological mechanisms of the early brain 

development remain unclear, complex underlying microstructural changes, e.g., myelination, 

increases in dendritic arborization, axonal elongation and thickening, synaptogenesis and 

glial proliferation, are typically considered as the main driving factors (Lyall et al., 2014). 

Increasing evidence suggests that many neurodevelopmental and psychiatric disorders are 

the consequence of abnormal brain development in this stage of rapid brain growth during 

infancy (Gilmore et al., 2010; Hazlett et al., 2005). For example, infants with autism, which 

affects >1.4% of children in the United States, demonstrate brain overgrowth associated with 

an increase in cortical surface area before 2 years of age (Hazlett et al., 2011). Identifying 

early biomarkers of neurodevelopmental and psychiatric disorders during infancy will allow 
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designing targeted preemptive intervention strategies to improve prognosis or even prevent 

disorder onset.

The increasing availability of non-invasive infant brain multimodal MR images, e.g., T1-

weighted (T1w), T2-weighted (T2w), diffusion-weighted (DW), and resting-state functional 

MR images, provides unprecedented opportunities for accurate and reliable charting of 

dynamic early brain developmental trajectories in understanding normative and aberrant 

growth. For example, the Baby Connectome Project (BCP) will acquire and release cross-

sectional and longitudinal high-resolution multimodal MRI data from 500 typically-

developing children from birth to 5 years of age (http://babyconnectomeproject.org). The 

Developing Human Connectome Project (dHCP) in the UK will release MRI data from 1500 

subjects acquired from 20 to 44 weeks post-conceptional age (http://

www.developingconnectome.org). These large-scale datasets will undoubtedly greatly 

increase our limited knowledge on normal early brain development, and provide important 

insights into the origins and abnormal developmental trajectories of neurodevelopmental 

disorders, such as autism, schizophrenia, bipolar disorder, and attention-deficit/hyperactivity 

disorder (ADHD).

However, infant brain MRI typically exhibits reduced tissue contrast (especially from 3 to 9 

months of age), large within-tissue intensity variations, and regionally-heterogeneous 

dynamic image appearance and development, in comparison with adult brain MRI. In terms 

of white-gray matter contrast, infant brain T1w and T2w MR images exhibit three distinct 

phases, as shown in Fig. 1 (Paus et al., 2001): (1) the infantile phase (≤ 3 months), in which 

the gray matter shows a relatively higher signal intensity than the white matter in T1w 

images, and the tissue contrast in T2w images is better than in T1w images; (2) the 

isointense phase (5–9 months), in which the signal intensity of the white matter is increasing 

during the development due to the myelination and maturation process; in this phase, gray 

matter and white matter have the lowest signal differentiation in both T1w and T2w images; 

(3) the early adult-like phase (≥12 months), where the gray matter intensity is much lower 

than the white matter intensity in T1w images, largely similar to the tissue contrast pattern in 

adult T1w images. Hence, the existing computational tools typically developed for 

processing and analyzing adult brain MRI, e.g., SPM, FSL, BrainSuite, CIVET, FreeSurfer 

and HCP pipeline, often perform poorly on infant brain MRI.

To address these challenging issues, many infant-tailored computational methods have been 

proposed for computational neuroanatomy of infant brains, and have led to many important 

discoveries on early postnatal brain development. This review article aims to provide a 

comprehensive review of the state-of-the-art computational methods dedicated for 

processing and analysis of infant brain structural T1w and T2w MR images. As illustrated in 

Fig. 2, for processing and analyzing structural T1w and T2w brain images, a computational 

pipeline typically consists of the following main steps: image preprocessing, tissue 

segmentation, image registration, regions of interest (ROIs) labeling, topology correction, 

surface reconstruction, surface registration, surface parcellation, volumetric/surface atlas 

construction, and measurement. In this review, we will discuss the challenges and the 

existing solutions for each of these major steps in infant brain studies, and also suggest 

future research directions. We will also list those publically available resources dedicated for 
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advancing infant brain MRI studies, e.g., datasets, computational tools, grand challenges, 

and brain atlases. Note that the techniques for fetal brain MRI processing and analysis, 

which are different from processing infant brain MRI, is not the focus of this review and 

thus will not included in this review. But the respective techniques can be found in those 

fetus-dedicated review articles (Benkarim et al., 2017; Makropoulos et al., 2017a; 

Studholme, 2011).

2 Image Preprocessing

In brain MRI studies, image preprocessing is a fundamental step for subsequent image 

processing and analysis. This step usually includes motion correction, intensity 

inhomogeneity correction, and skull stripping, thus improving image quality and reducing 

undesired disturbance.

2.1 Motion Correction

Motion correction has been an active area of research within MRI community. Compared to 

adults, imaging infants is susceptible to motion, because it is difficult to expect infant subject 

to remain still during acquisition (Dean et al., 2014). Meanwhile, motion artifacts can 

manifest in the forms of ghosting, blurring, contrast changes or signal voids, which hampers 

accurate image processing, and thus often necessitate a rescan. To minimize motion-related 

artifacts, the most widely used strategy is to scan infants when they are asleep. However, 

infants are still prone to move or wake up. To date, advanced retrospective (Atkinson et al., 

1999), prospective (Zaitsev et al., 2006), and hybrid (Aksoy et al., 2012) techniques have 

been developed for motion correction. Such techniques could be used in conjunction with 

the infant dedicated protocols to achieve high success rates with artifact-free images 

(Hughes et al., 2016). Recently, Cordero-Grande et al. (Cordero-Grande et al., 2018) 

proposed a method for reconstruction of multi-shot, multi-slice neonatal MRI to address the 

problem of rigid motion, leading to a remarkable improvement of image quality on 500+ 

neonates. Detailed reviews of motion correction techniques can be found in (Malamateniou 

et al., 2013; Zaitsev et al., 2015).

2.2 Intensity Inhomogeneity Correction

Intensity inhomogeneity refers to the smoothly varying signal intensities across an image, 

also referred to as radio-frequency coil non-uniformity, magnetic field inhomogeneity, etc. 

(Vovk et al., 2007). Intensity inhomogeneity could greatly decrease the performance of 

algorithms for infant MRI analysis, especially when algorithms assume intensity 

homogeneity within each tissue class. Therefore, correction of intensity inhomogeneity is 

important for accurate segmentation and registration of infant brain MRI. The widely used 

methods for intensity inhomogeneity correction for infant brain MRI are nonparametric 

nonuniform normalization (N3) algorithm (Sled et al., 1998) and its improved version, N4 

(Tustison et al., 2010), despite they are not specifically designed for infants. Although most 

studies address intensity inhomogeneity at the pre-processing stage, some works incorporate 

intensity inhomogeneity correction into tissue segmentation techniques (Wang et al., 2011). 

Detailed reviews of intensity inhomogeneity correction techniques can be found in 

Belaroussi et al. (Belaroussi et al., 2006) and Vovk et al. (Vovk et al., 2007).
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2.3 Skull Stripping

Background—Skull stripping, also known as brain extraction, aims to retain brain 

parenchyma and discard non-brain tissues, such as skull, scalp, and dura (Smith, 2002). 

Skull stripping has become a standard procedure to preprocess brain MR images and is 

important for subsequent image analysis. Accurate skull stripping is crucial, since 

incorrectly-removed brain tissues cannot be recovered in subsequent processing steps, and 

also unremoved non-brain tissues (especially the dura) could cause overestimation of the 

local brain volume or cortical thickness.

Challenges—Numerous skull stripping methods have been proposed over past years, 

while, most of them were validated only on adult brain MR images. In comparison, infant 

MR images are considerably more challenging for skull stripping, due to their low spatial 

resolution, dynamic changes of imaging intensity, brain size and shape. Hence, only a few 

methods have been developed for skull stripping of infant brain MR images.

Methods—Representative skull stripping methods developed for infant brain images can be 

categorized into deformable surface-based methods (Mahapatra, 2012) and learning-based 

methods (Serag et al., 2016; Shi et al., 2012a). In particular, Mahapatra et al. (Mahapatra, 

2012) proposed a technique for skull stripping of the neonatal brain using the prior shape 

information within a graph cuts framework, with a validation on 20 neonates. Inclusion of 

the prior shape information obtained from a set of manually labeled training images 

facilitated accurate identification of brain and non-brain tissues. Thus, Shi et al. (Shi et al., 

2012a) proposed a method named Learning Algorithm for Brain Extraction and Labeling 

(LABEL). The basic idea is to perform multiple complementary brain extractions for a given 

image by using a meta-algorithm including BET and BSE, where the parameters of each run 

of the meta-algorithm were effectively learned from the training data. Also, representative 

subjects were selected as exemplars and used to guide brain extraction of new subjects in 

different age groups. A level-set based fusion method was proposed to combine multiple 

brain extractions for obtaining the final extraction. This method has been extensively 

evaluated on 200+ infant subjects. Serag et al. (Serag et al., 2016) proposed a multi-atlas-

based learning method for skull stripping. This method used a sparsity-based atlas selection 

strategy that required a very limited number of atlases ‘uniformly’ distributed in a low-

dimensional data space, combined with a machine learning based label fusion technique, and 

has been validated on 50 newborns.

Future Directions—Due to the dynamic changes of imaging contrast in both T1w and 

T2w images, skull striping methods should adaptively choose the appropriate T1w or T2w 

image, or combine them together, to achieve the best performance. Recently, deep learning 

has achieved the state-of-the-art performance in many applications in neuroimaging. Using 

deep learning and its combination with existing methods could further improve the 

performance.
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3 Image Segmentation and Registration

After image preprocessing in Section 2, brain tissue segmentation, registration, labeling and 

volumetric atlas construction can be performed. Tissue segmentation aims to segment the 

brain into different tissue types, such as white matter (WM), gray matter (GM) and 

cerebrospinal fluid (CSF). Brain registration aims to establish inter-subject or intra-subject 

image correspondences. Brain ROI (region of interest) labeling is to partition the brain into 

anatomically or functionally meaningful regions, such as subcortical regions and cortical 

regions. Atlas construction aims to build an unbiased and population-based common space 

for brain analysis. Each of these 4 steps can help or guide each other to achieve more 

accurate results. For example, tissue segmentation results could be used for registration and 

atlas construction, and in turn the constructed atlas could be used to guide tissue 

segmentation and registration of new subjects. Each of these steps is reviewed in the 

following four sections.

3.1 Tissue Segmentation

Background—Accurate tissue segmentation of infant brain MR images into different 

regions, e.g., white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF), is a 

fundamental step for quantifying early brain development. A large amount of work has been 

dedicated to the segmentation of adult brain MRI, resulting in many successful software 

packages, e.g., FSL, SPM, FreeSurfer, BrainSuite, and CIVET.

Challenges—Segmentation tools developed for adult brains are not suitable for processing 

infant brains, due to the significant imaging appearance differences between infant and adult 

brain MRI as well as the dynamic contrast changes in infant brain MRI. To date, there is 

very limited publicly available software for infant brain MRI segmentation. In fact, 

segmentation of infant brain MRI is considerably more challenging than that of adult brain 

MRI due to the reduced tissue contrast (especially at around 6 months of age), severe partial 

volume effect, high image noise, strong motion effect, and dynamic white matter 

myelination. Actually, as shown in Fig. 1, there are three distinct phases in infant T1w and 

T2w MRI, i.e., the infantile phase (≤ 3 months), the isointense phase (5–9 months), and the 

early adult-like phase (≥12 months), with each phase having its distinct white-gray matter 

contrast pattern (Paus et al., 2001). As an illustration, the middle column of Fig. 1 shows 

examples of T1w and T2w images at around 6 months of age. It can be observed that the 

intensities of voxels in gray matter and white matter are in a similar range in both T1w and 

T2w images (especially around the cortical regions), resulting in the lowest image contrast 

and hence significant difficulty for tissue segmentation.

Methods—This section provides an overview of the representative infant brain MRI 

segmentation techniques in the literature, as also summarized in Table 1. According to the 

strategies used, we roughly divide the state-of-the-art segmentation methods into four 

categories: atlas-based, deformable-surface-based, learning-based, and hybrid approaches. 

The atlas-based approaches are further subdivided, based on the type of the atlases used, into 

population atlas based and subject-specific atlas based approaches. Similarly, learning-based 
approaches are subcategorized, based on the type of the features used, into hand-crafted 
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features based approaches and deep learning based approaches. From Table 1, we can also 

see that the focus of infant brain segmentation has recently shifted from the infantile phase 

to the more challenging isointense phase. Algorithms have evolved from basic atlas-based 

label fusion methods to more advanced deep learning frameworks.

3.1.1 Atlas based approaches—Most of the techniques for infant brain tissue 

segmentation rely on pre-segmented brain atlases (please refer to Section 3.4 for detailed 

introduction of atlases). The popularity of atlases stems from their widespread utility, as they 

can guide the segmentation process in areas of poor tissue contrast and help in 

distinguishing between tissues with similar intensities.

Population Atlas Based Approaches: An atlas can be generated from manual or automated 

segmentation of an individual image, or a population of images from different individuals. 

Population-based atlases provide a probabilistic estimate of each tissue at every voxel. This 

is essential for probabilistic segmentation approaches that require a prior probability model 

for each tissue label. For example, Prastawa et al. (Prastawa et al., 2005) generated an atlas 

by averaging three semi-automatically segmented images and then integrated it into the 

expectation-maximization (EM) scheme for tissue classification. Similarly, Xue et al. (Xue 

et al., 2007a) constructed multiple age-specific atlases and performed the EM algorithm for 

tissue segmentation, in conjunction with the Markov random field (MRF). Song et al. (Song 

et al., 2007) built a population-based atlas with diffeomorphic flow based registration. 

Weisenfeld et al. (Weisenfeld et al., 2006) built a population-based atlas from 20 preterm 

infants scanned at 42 GA weeks, which were manually segmented by an expert based on 

initially automatic segmentations produced by (Warfield et al., 2000). Later, Weisenfeld and 

Warfield (Weisenfeld and Warfield, 2009) also employed an atlas of spatial priors 

constructed from 15 newborns. Other methods directly employed those publicly available 

infant atlases, e.g., UNC Infant 0–1–2 atlas (Shi et al., 2011b), 4D neonatal atlas (Kuklisova-

Murgasova et al., 2011), and Melbourne Children’s Regional Infant Brain (M-CRIB) atlas 

(Alexander et al., 2017). For example, Wang et al. (Wang et al., 2012b) proposed a neonatal 

segmentation algorithm based on the segmentation tool from SPM and the 4D neonatal atlas 

(Kuklisova-Murgasova et al., 2011).

Subject-specific Atlas Based Approaches: The performance of population atlas-based 

approaches highly depends on the quality of the atlas used and its spatial alignment with the 

to-be-segmented images. Moreover, a pre-defined atlas may not be able to account for the 

considerable anatomical variability among subjects. As proposed in (Aljabar et al., 2009; Shi 

et al., 2010a), a subject-specific atlas, which can be constructed from images that are similar 

to the to-be-segmented image, leads to more accurate segmentation results than the 

population-based atlases. Thus, Shi et al. (Shi et al., 2010a) proposed a novel approach for 

neonatal brain segmentation by utilizing an atlas built from the longitudinal follow-up image 

of the same subject (i.e., the image scanned at one or two years of age) to guide neonatal 

image segmentation. Since many neonatal subjects do not have longitudinal follow-up scans, 

Shi et al. later proposed a multi-region-multi-reference framework (Shi et al., 2010b) to 

generate a similar atlas for the to-be-segmented image. Wang et al. (Wang et al., 2014b) 

estimated a subject-specific atlas by using patch-based sparse representation. Nevertheless, 
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these approaches still do not eliminate the use of atlases, although not population-based 

atlases.

3.1.2 Deformable surface based approaches—Most of the above-mentioned atlas are 

based on voxel-wise approaches. Consequently, prior geometric/anatomical information is 

not fully explored, e.g., cortical thickness, which can help constrain the relative locations of 

different tissue boundaries. To effectively explore this information, deformable surface based 

approaches provide an alternative way for infant brain segmentation. A representative work 

was proposed in (Wang et al., 2011), in which cortical thickness was easily incorporated into 

a coupled level sets framework. To provide a robust initialization of the zero level set, a 

population-based atlas or a subject-specific atlas was usually employed. For example, in 

(Wang et al., 2014b), a subject-specific atlas estimated by a patch-based sparse 

representation was used as an initialization for level set evolution.

3.1.3 Learning based approaches—It is worth noting that atlas-based approaches and 

deformable surface-based approaches mainly focus on the infantile phase (neonatal) brain. 

They typically donot work well on the isointense infant images, due to the extremely low 

image contrast in both T1w and T2w images, as shown in Fig. 1. To address this issue, 

learning-based approaches have been proposed and achieved better performance on the 

challenging isointense images. According to features used, we divided learning-based 

approaches into hand-crafted features based approaches and deep learning based approaches.

Hand-crafted Features Based Approaches: Anbeek et al. (Anbeek et al., 2013) proposed a 

neonatal brain segmentation method based on supervised classification. Each voxel was 

represented using its intensity and spatial features. Based on these features, each voxel was 

assigned to one of eight tissue classes using K-nearest neighbor classifier. Wang et al. (Wang 

et al., 2015) proposed a learning-based multi-source integration framework for segmentation 

of infant brain images (shorted as LINKS). They employed the random forest technique 

(Breiman, 2001) to train a classifier to effectively integrate 3D Haar-like features from 

multi-source images for tissue segmentation. Here, the multi-source images include initially 

only the multi-modal (T1w, T2w and FA) images and later also the iteratively estimated and 

refined tissue probability maps of WM, GM, and CSF. They evaluated their method on 

infant brain MR images at all three phases during the first year of age.

Deep Learning Based Approaches: In recent years, deep learning (LeCun et al., 2015) has 

achieved great success in many fields. Instead of designing hand-crafted features, deep 

learning can automatically learn effective feature hierarchies from the infant brain MR 

images. Zhang et al. (Zhang et al., 2015) proposed deep convolutional neural networks 

(CNNs) to segment isointense phase MR images, in which a hierarchy of increasingly 

complex features from MR images were learned. Moeskops et al. (Moeskops et al., 2016) 

proposed a CNN-based method for automatic segmentation of neonatal brain MR images. 

To well capture brain structural details and enforce spatial consistency, the proposed network 

used multiple patch sizes and multiple convolution kernel sizes to acquire multi-scale 

information of each voxel. Nie et al. (Nie et al., 2016) used fully convolutional networks 

(FCNs) for segmentation of isointense phase images, and later further proposed a 3D fully 
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convolutional network (3D–FCN) trained in an end-to-end and voxel-to-voxel fashion for 

segmentation of isointense phase images (Nie et al., 2018).

3.1.4 Hybrid approaches—Many methods combined or integrated different strategies 

into a hybrid segmentation framework. For example, Beare et al. (Beare et al., 2016) utilized 

a combination of unified segmentation, a population-based neonatal atlas (Kuklisova-

Murgasova et al., 2011), morphological segmentation tools and topological filtering, to 

segment neonatal images. Gui et al. (Gui et al., 2012) proposed an atlas-free neonatal 

segmentation method based on the high-level brain morphology knowledge, integrating 

relative tissue location, connectivity and structure. They employed some established 

segmentation methods, such as the marker-based watershed and region-based active 

contours, and then validated on neonatal images.

Future Directions: Although many algorithms have been proposed and achieved reasonable 

performances, there are still many open directions to explore. First, most infant brain images 

used in the previous studies are from normal subjects without visible pathology or severe 

imaging artifacts. However, in clinical routine, scans with artifacts, especially motion 

artifacts, as well as scans with pathology are very common. Second, myelinated white matter 

(MWM) was usually poorly segmented, compared to other tissues, due to the small volume 

of myelin in the infant brain and the extremely low contrast with the surrounding tissues in 

isointense phase. Third, most of previous methods ignore brain anatomical/topological 

information during segmentation, resulting in many geometric/topological errors, which will 

be discussed in Section 4. Fourth, ground-truth annotations, usually from manual 

segmentations, are critically important in developing algorithms, especially for the learning-

based approaches. However, these resources are highly limited.

3.2 Image Registration

Background—Image registration aims to establish accurate inter-subject and intra-subject 

brain anatomical/functional correspondences. Image registration techniques are the 

cornerstone of many applications, such as segmentation (Section 3.1), ROI labeling (Section 

3.3) and volumetric atlas constructions (Section 3.4). Herein, we mainly focus on the 

techniques for deformable/nonlinear image registration, necessary for both intra-subject and 

inter-subject comparisons in infants. For the affine or linear registration, tools developed for 

adults can be directly adopted.

Challenges—To date, a number of deformable registration methods have been developed 

(Klein et al., 2009; Sotiras et al., 2013), yet most of them are proposed for registering adult 

brain images and are not directly applicable to infant brain images. This is because the infant 

brain undergoes dramatic changes in imaging appearance, brain size, shape, and folding 

degree in region-specific manners as shown in Fig. 1. Therefore, it is very challenging to 

register two infant brain images with a large age gap, especially across different subjects.

Methods—To tackle the challenges in infant image registration, recent studies fully 

exploited the prior knowledge, such as the previously registered longitudinal infant images, 

to guide registration of new infant subject images. In general, the representative methods fall 
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into three categories: intensity-based methods (Wang et al., 2014c; Wei et al., 2017; Wu et 

al., 2015), segmentation-based methods (Ha et al., 2011; Shi et al., 2010a; Wang et al., 

2012a; Xue et al., 2007b), and hybrid methods (Dong et al., 2017; Xue et al., 2006), as listed 

in Table 2.

Intensity-based Methods—Intensity-based registration methods include learning-based 

methods and modeling-based methods. Learning-based methods can be further classified 

into two subcategories: supervised learning based methods, and sparse representation 

learning based methods. The supervised learning based methods aim to learn a complex 

mapping from an intensity image to its corresponding deformation field to a given reference 

image. In the training stage, machine learning techniques, such as random forest regression 

model and auto-context model (Wei et al., 2017), were applied to learn an appearance-to-

displacement model and an appearance-to-appearance model in a patch-wise manner. The 

learned models were used to predict the deformation pathways as well as alleviate the 

appearance differences between infant MR images with a large age gap. In the testing stage, 

the learned models can be used to predict a deformation field and appearance change for the 

new infant subject image. Following the prediction, the conventional deformable registration 

methods, such as diffeomorphic demons (Vercauteren et al., 2009), can be further used to 

refine the image registration. On the contrary, sparse representation learning based methods 

can directly achieve good registration performance without using a registration refinement. 

For example, Wang et al. proposed a sparsity learning based method to detect spatio-

temporal correspondences within the to-be-registered subjects with the help of a set of 

intermediate sequences with established longitudinal correspondences (Wang et al., 2014c). 

Wu et al. further improved the registration performance by using a hierarchical and 

symmetric registration strategy to iteratively increase the key points in the images and to 

symmetrically deform the two infant images towards their common space (Wu et al., 2015).

Segmentation-based Methods—Different from intensity-based methods, segmentation-

based registration methods establish more accurate image correspondences using 

morphological features extracted from segmented images (Shi et al., 2010a; Wang et al., 

2012a). These segmented images can be obtained by using the methods mentioned in 

Section 3.1. In addition to using the segmented images, Ha et al. proposed a method by 

incorporating both tissue probability maps and surface anatomical descriptors for 

longitudinal infant image registration (Ha et al., 2011).

Hybrid Methods—The last category above is the hybrid registration methods. On one 

hand, image registration can benefit from the segmentation, where geometric features can be 

extracted to help identify image correspondences. On the other hand, the refined image 

registration results can bring more useful information leading to better tissue maps for 

guiding the segmentation process. Inspired by this, Dong et al. proposed a novel joint 

segmentation and registration method for infant brain images by using spatiotemporal 

trajectories learned from a large number of training subjects with complete longitudinal data 

(Dong et al., 2017). By using a sparse learning multi-atlas based label fusion method, 

coupled with a level-set segmentation approach, the initial image correspondences can be 

established by registering segmented images. Then, with spatial correspondences, 
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segmentation accuracy of the new infant image can be further improved by incorporating 

additional label fusion priors from the reference time domain. Thus, through iterative 

segmentation and registration steps, both segmentation and registration performances can be 

progressively improved.

Future Directions—Future research should still focus on improving both registration 

performance and computational efficiency. Considering the power of deep learning, one may 

employ deep learning techniques to learn a mapping model between infant brain image and 

its predicted deformation field as well as its predicted image appearance changes.

3.3 Brain ROI Labeling

Background—Brain ROI labeling aims to partition brain image into anatomically/

functionally meaningful regions. These labeled regions provide the basis for many 

applications, such as quantitative measurement of regional development and serving as 

nodes for studying structural and functional networks. There are two major ways to label 

brain ROIs. One is to directly label volumetric images. The other one is to label the 

reconstructed cortical surfaces. In this section, we focus on the volumetric ROI labeling, 

while detailing cortical surface parcellation in Section 4.4.

Challenges—Existing methods for brain image labeling typically leverage multi-atlases 

with manul labels. For infant brain image labeling, there are three main challenges: 1) 

Infant-dedicated multi-atlases are scarce; 2) It is difficult to establish accurate image 

correspondences between the to-be-labeled image and multi-atlases; 3) ROI boundaries in 

the infant brain are typically not very clear.

Methods—Although many approaches have been proposed for labeling brain ROIs, very 

few works were dedicated to infant brains. Gousias et al. (Gousias et al., 2008) labeled 2-

year-old brain images, by propagating the manually labeled ROIs from 30 normal adult 

brains, using the non-rigid registration and majority voting strategy. Gousias et al. further 

explored the term-born and preterm infant brain ROI labeling (Gousias et al., 2012). In 

particular, they defined a labeling protocol to manually label the preterm brain into 50 ROIs 

based on the macro-anatomical landmarks from both T1w and T2w images, and applied to 

15 preterm subjects and 5 term subjects using label fusion. Later, they generated an atlas 

named ALBERT, consisting of the voxel-wise manual labeling template for each subject 

(Gousias et al., 2012). In their following works (Gousias et al., 2013), the ROI labels on the 

atlas were propagated onto individual subjects based on the multi-atlas registration and label 

fusion. In another work (Makropoulos et al., 2014), an Expectation-Maximization (EM) 

based labeling fusion strategy was adopted for propagating the ALBERT atlas labels onto 

the target image. Blesa et al. (Blesa et al., 2016) used the intermediate registration strategy to 

build the Edinburgh Neonatal Atlas (ENA33), which consists of 107 ROIs propagated from 

the adult brain. Alexander et al. (Alexander et al., 2017) built another neonatal cortical and 

subcortical atlas with 100 brain ROIs, which includes the popular FreeSurfer Desikan 

cortical parcellation scheme (Desikan et al., 2006) and subcortical regions.
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Apart from labeling the whole brain, some studies just focused on the labeling of particular 

regions, for example, the hippocampus. Guo et al. used a multi-atlas registration based 

approach that integrated multimodal information of both T1w and T2w images (Guo et al., 

2014). The hierarchical multi-set kernel canonical correlation analysis is used to obtain 

common feature representations for multi-modal data. These features are then used for 

sparse patch-based label fusion to propagate the hippocampus labels on atlases to the target 

images. Dong et al. (Dong et al., 2015) proposed a multi-atlas multi-modal label fusion 

method to label hippocampus at various ages from neonates to 1-year-old infants. A 

hypergraph was employed to leverage the label integration from both T1w and T2w multi-

atlases. In a later sequential study, Guo et al. (Guo et al., 2016) further considered the 

longitudinal consistency by introducing cross-time point edges into the hypergraph. Table 3 

summarizes the representative works on infant brain ROI labeling.

Future Directions—Future developments might include: 1) developing advanced 

learning-based methods for labeling; 2) creating more infant-specific labeling protocols and 

multi-atlases; 3) developing methods for temporally-consistent labeling of longitudinal 

infant images.

3.4 Volumetric Atlas Construction

Background—A brain atlas incorporates prior knowledge of voxel characteristics for 

neuroimaging studies. An atlas can be constructed by a single subject or a population of 

subjects. A typical population-based atlas usually includes an intensity model (also called 

template) that defines a spatial coordinate system, and additional features such as tissue 

probability maps and ROIs. Most atlases were developed using adult subjects, while infant-

dedicated atlases are few. In fact, registration of infant images to adult atlases results in poor 

alignment, due to considerable differences between infant brains and adult brains.

Challenges—The main challenges in population-based atlas building are caused by 

inaccurate inter-subject registration due to complex cortical folds and poor image contrast, 

especially in the isointense phase. Hence, the constructed infant atlases are typically blur and 

fuzzy in image appearance, especially in the cortical regions with large inter-subject 

variability of cortical folding.

Methods—A population-based atlas can be generated from a population of subjects by 

registering individual images into a common space and then averaging them to get a mean 

template. Kazemi et al. proposed a neonatal atlas by a normalization process including an 

affine registration followed by a nonlinear registration with 7 individual images to represent 

their mean intensity and shape (Kazemi et al., 2007). Oishi et al. constructed a population-

averaged atlas from 25 neonates through a multi-step alignment process with linear and 

nonlinear registrations (Oishi et al., 2011). Considering that infant images have low spatial 

resolution and insufficient tissue contrast, Shi et al. proposed to first segment the infant 

images with dedicated algorithms, and then register the segmented images (Shi et al., 

2011b). In registration, as selecting one individual as a reference might hamper 

generalizability and induce bias, groupwise registration is considered as a better way, where 

no reference image is selected and all images are registered together to a hidden common 
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space (Bhatia et al., 2007; Wu et al., 2011). As certain blurriness is always observed from 

the group averaged averaging, some works enhanced the sharpness of constructed atlas using 

sparse representation in intensity domain (Shi et al., 2014) and spatial-frequency domain 

(Zhang et al., 2016b).

Due to the nature of the rapid development of infant brains, estimating age-specific infant 

brain atlases would be highly needed. For example, Kuklisova-Murgasova et al. proposed a 

4D neonatal atlas covering the ages between 29 and 44 gestational weeks from 142 

premature born neonates (Kuklisova-Murgasova et al., 2011). Through affine registration 

and a kernel-based regression method, age-specific templates and tissue probability maps 

were produced for a given age. Serag et al. further improved this 4D atlas by employing a 

more sophisticated nonlinear registration method (Serag et al., 2012a). Shi et al. proposed 

atlases for neonates, 1-year-olds and 2-year-olds, based on 95 subjects with longitudinal 

images (Shi et al., 2011b) (Fig. 3). Zhang et al. presented a 4D infant atlas covering 5 time-

points from birth to 1 year of age with an interval of 3 months from 35 longitudinally 

scanned subjects, by using group-wise registration, patch-based atlas construction, and 

spatial-temporal consistency constraint (Zhang et al., 2016a).

The obtained average template, serving as a major component of the atlas, is widely used for 

spatial normalization of brain images. Furthermore, other maps with voxel-wise properties, 

such as tissue probabilities and ROI parcellation, can be transferred to the same coordinate 

system using the estimated deformation fields between individual intensity image and the 

average template. Beside ROIs defined by brain structures, functional connectivity based 

parcellation were also proposed (Shi et al., 2017).

Future Directions—Future developments might include improving the atlas sharpness 

with better registration approaches, using larger sample size, using longitudinal data densely 

covering a larger developmental period, and integrating multiple image modalities.

4 Cortical Surface Based Analysis

Based on the brain tissue segmentation results in Section 3, cortical surface-based analysis 

can be performed, which plays a central role in mapping brain structure, function and 

connectivity. Cortical surface-based analysis is advantageous over volume-based analysis by 

1) respecting the topological properties of the cortex, 2) facilitating alignment, analysis, and 

visualization of the highly-folded cortical regions, and 3) precisely measuring multiple 

biologically-distinct cortical properties, e.g., cortical thickness, surface area, cortical folding, 

myelin content, and cortical diffusivity. Hence, cortical surface-based analysis is well suited 

to capture the dynamic and complex neurobiological changes of the cortex during early 

brain development. As shown in Fig. 2 and Fig. 4, typical pipelines for cortical surface-

based analysis include topology correction, surface reconstruction, surface registration, 

surface parcellation, and surface measurement. This section provides a comprehensive 

review of representative computational methods for cortical surface-based analysis of the 

infant brain. Of note, compared to the abundant works on infant brain segmentation, infant-
dedicated methods for cortical surface-based analysis are still very limited. As an alternative 
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preliminary solution to the scarcity of such methods, many tools developed for examining 

the adult brain were adopted or modified to some extent to study the infant brain.

4.1 Topology Correction

Background—Geometrically, the cortical surface of each hemisphere is topologically 

equivalent to a sphere, when closing the midline hemispheric connections. However, due to 

the highly-folded, thin cortex and low neuroimaging resolution, topological defects are 

inevitably present in tissue segmentation results. Even a subtle error in tissue segmentation 

could lead to a large topological defect, thus bringing large errors to the surface-based 

analysis. Therefore, topology correction is an important step for cortical surface-based 

analysis (Fig. 4(e)).

Challenges—Topological defects in infant brains are more prevalent and complicated, 

compared to adult brains, due to more segmentation errors in infant brains. Hence, directly 

applying topology correction methods developed for adult brains to infant brains typically 

leads to many anatomically-incorrect regions. Such errors are largely generated by confusing 

two different topologies, i.e., holes and handles (bridges across sulcal banks), which are 

typically hard to distinguish when solely relying on geometric information. Typically, holes 

incorrectly perforate the cortical surface, while handles erroneously bridge the geodesically 

nonadjacent regions. Cortical surface correction methods generally focus on two topological 

operations: either filling a “hole” or breaking a “handle”, thus fixing all topology defects and 

preserving the anatomical structures of the cortex.

Methods—Topology correction involves two sequential tasks, i.e., (1) localizing 

topologically defected regions, and (2) correcting these regions. Representative topology 

correction methods, which have been applied to infant studies, can be roughly classified into 

four categories (as summerized in Table 4): a) graph-based methods (Han et al., 2002; 

Shattuck and Leahy, 2001), b) surface mapping methods (Fischl et al., 2001; Segonne et al., 

2007), c) topology-preserving deformation methods (Bazin and Pham, 2007; Han et al., 

2003), and d) learning-based infant-specific method (Hao et al., 2016). Each category is 

briefly discussed in the following text.

Graph-based Methods—These methods typically convert a white matter (WM) volume 

into a graph, in which any circle indicates a topological defect. The circles can be removed 

by either changing the foreground voxels (WM voxels) into background (i.e., breaking a 

handle) or changing the background voxels into foreground (i.e., filling a hole), depending 

on the operation requiring minimal changes in the volume (Shattuck and Leahy, 2001) or 

constructing a maximum cycle-free sub-graph (Han et al., 2002). As many topological 

defects are complex in infant brains, this strategy may erroneously treat holes as handles, or 

vise versa, leading to anatomically less accurate results.

Surface Mapping Methods—These methods leverage spherical surface mapping to 

identify and remove topological defects (Fischl et al., 2001; Segonne et al., 2007). 

Specifically, first, the initially tessellated surface mesh of WM is mapped onto a spherical 

surface. The locations of topological defects on the mapped spherical surface have overlaps 
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or self-intersections of triangular meshes. Topological defects can be corrected by re-

tessellating their corresponding local meshes. For example, in (Fischl et al., 2001) a greedy-

strategy is used to sort the intersected edges and meticulously add them back. In (Segonne et 

al., 2007), a set of non-separating loops are selected using a Bayesian framework for 

opening and sealing the surface. These methods are computationally expensive due to the 

spherical mapping, especially for large topological defects.

Topology-preserving Deformation Methods—These methods deform a surface with a 

spherical topology towards the WM surface, while preserving its initial topology by 

detecting cirtical points in topology (Bazin and Pham, 2007; Han et al., 2003). As the 

external forces typically rely on the image intensity, they may not work well for infant brain 

images, due to their dynamic, regionally-heterogeneous image intensity. However, as 

suggested in (Hao et al., 2016), if relying on the segmented image, such methods can 

properly fill all the holes when shrinking the initial surface to wrap the WM volume. 

However, all “handle” defects are erroneously treated as “hole” defects and thus are 

incorrectly filled.

Learning-based Method—To effectively distinguish handles from holes, a learning-

based method, which does not rely on any ad hoc rules, was proposed to correct topological 

defects for infant cortical surfaces (Hao et al., 2016). To locate topologically defected 

regions, a topology-preserving level set method is leveraged. Specifically, a level set 

function with a spherical topology is first initialized by a large ellipsoid containing all WM 

voxels, and then gradually shrinks towards the WM surface, while preserving its initial 

topology. Next, a comparison between the converged WM volume and the original WM 

volume is performed to localize all topologically defected regions. To fix each topological 

defect, the correction scheme is learned from a number of well-defined segmentations that 

have been manually edited by experts. A region-specific dictionary is built for each defected 

region using the corresponding regions of these aligned reference images. Finally, the 

correct structure is inferred from the dictionary using a sparse representation method. For 

large topological defects that typically cannot be fully corrected using one-shot sparse 

representation, the above process can be iterated to gradually refine the results.

Future Directions—Although these methods can remove many topological errors, their 

performance is still less promising for the regions with large segmentation and topological 

errors, such as in the occipital cortex, frontal pole, and medial temporal cortex. More 

advanced methods, especially those based on machine learning, are highly desired.

4.2 Cortical Surface Reconstruction

Background—After tissue segmentation and topology correction, cortical surfaces can be 

reconstructed, which play a vital role in studying structure, function and connectivity of the 

human brain (Dale et al., 1999). Cortical surface reconstruction can usually be divided into 

two sub-problems: reconstruction of the inner surface (the interface between white matter 

and gray matter), and reconstruction of the outer/pial surface (the interface between gray 

matter and cerebrospinal fluid). The central/middle surface, which lies in the geometric 
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middle layer of the cortex, is also often reconstructed for a more balanced representation of 

the cortical geometry.

Challenges—There are a few challenges that need to be paid attention to, when 

reconstructing infant cortical surfaces. First, due to the severe partial volume effects in infant 

MRI, accurate reconstruction of the outer cortical surface in deep narrow sulcal regions for 

infant brains is more challenging than for adult brains. This is because in deep sulci the 

opposing sulcal banks are often closer than the MRI resolution and the cerebrospinal fluid 

can hardly be seen. Second, because of the changing image contrast during the first year, low 

image resolution, severe partial volume effects, and the possible errors involved in the image 

processing, the reconstructed cortical surfaces of the same subject may be not longitudinally 

consistent, leading to inaccurate measurement of the longitudinal development of infant 

brains.

Methods—Existing approaches reconstruct cortical surfaces using a common framework, 

which is first to reconstruct the inner cortical surface (Fig. 4 (f)) and then to deform it into 

the central/outer cortical surface (Fig. 4 (g)). This common framework works for both adult 

and infant cortical surface reconstruction. In what follows, we briefly introduce this common 

framework, then several infant-specific methods will be discussed (as summarized in Table 

5).

• Common Framework: The most common framework for cortical surface reconstruction 

is to first reconstruct the inner surface based on the white matter segmentation, then to 

deform the inner surface outwardly to obtain the central or outer surface. Under this 

common framework, each method may use a different strategy to implement each step of 

cortical surface reconstruction. The methods can vary in the following important aspects: (a) 

surface initialization, (b) surface evolution, (c) deep sulci processing. Each aspect is briefly 

discussed as follows.

• Surface Initialization: There are mainly two surface initialization methods. The first one 

is to use the surface of the white matter volume following topology correction for 

initialization. The second one is to use the surface of a sphere/ellipsoid shape enclosing the 

white matter without topology correction for initialization. If the initial surface is an implicit 

surface (e.g., level set), then it is first deformed then tessellated. In contrast, if an explicit 

surface is used, it is first tessellated then deformed. Typical tessellation methods include 

Marching Cubes algorithm (Lorensen and Cline, 1987) and its variances, and the method in 

(Dale et al., 1999).

• Surface Evolution: The deformation of the initialized surface can either be driven by the 

explicitly defined forces or implicitly achieved by minimizing an energy function. Either 

ways, the deformable model should always include two important terms: a data fitting term 

and a smoothness (regularization) term. The data fitting term provides the external force to 

push the surface moving towards the desired location. It can be modeled either based on the 

intensity image (Dale et al., 1999) or the tissue segmented image (Han et al., 2004; Kim et 

al., 2005; Li et al., 2012), or both (Makropoulos et al., 2017b). The smoothness term 

provides the internal force to keep the surface tight and spatially smooth, while respecting 
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the geometry of highly-convoluted cortical folding. The smoothness term can be based on 

local quadratic patch modeling (Dale et al., 1999), or curvature (Makropoulos et al., 2017b), 

or stretch and bending energy (Kim et al., 2005; MacDonald et al., 2000), or Taubin 

smoothing filter (Li et al., 2012). Another important component is the prevention of surface 

self-intersection. For implicit surface evolution, such intersections can be avoided by using 

topology-preserving level set algorithm (Han et al., 2004), while for explicit surface 

evolution, intersections can be avoided by introducing intersection prohibition terms in the 

energy function (MacDonald et al., 2000), or by explicitly detecting the potential 

intersecting triangles caused by evolution (Dale et al., 1999; Li et al., 2012).

• Deep Sulci Processing: Due to the severe partial volume effect, the CSF between the deep 

and narrow sulcal banks typically cannot be captured in MR imaging, giving no hint to 

correctly reconstruct the outer cortical surface. In (Dale et al., 1999; Makropoulos et al., 

2017b), for the deep sulci, the opposing sulcal banks deformed towards each other until they 

are close enough but without self-intersection. In (Han et al., 2004; Li et al., 2014a; Li et al., 

2012; Mangin et al., 1995), the deep sulci are recovered using an anatomically consistent 

enhancement method. Specifically, in the sulcal regions a central skeleton is built in the 

middle of two back-to-back sulcal banks based on the weighted geodesic distance 

measurement. The skeleton is thinned to be no more than one voxel and treated as CSF. A 

similar idea is also used in (Kim et al., 2005), where a partial volume classification 

algorithm is used to label and thin voxels containing CSF components.

Infant-specific methods—Some surface reconstruction tools developed for adult brains, 

e.g., FreeSurfer, Caret and CIVET, could be modified for reconstructing infant cortical 

surfaces, when providing infant tissue segmentation results (Hill et al., 2010; Kim et al., 

2016b). Several infant-dedicated methods have also been proposed. Leroy et al. (Leroy et al., 

2011) proposed an infant-specific method for inner cortical surface reconstruction. In this 

method, first, a feature field is constructed based on the contrast of the T2w image. Then, the 

inner cortical surface is reconstructed by simultaneously deforming two surfaces, which 

change at different speeds along different directions. Specifically, the first surface is 

initialized by setting a threshold of the feature field and deforms outwards; and the second 

surface is set as the brain bounding box and deforms inwards using a topology preserving 

method. When the two surfaces converge and meet, the second surface is used as the inner 

cortical surface. A neonate-specific method is proposed in (Makropoulos et al., 2017b). In 

this method, a triangular mesh is first initialized as a convex hull of the white matter volume, 

and further deformed to reconstruct the inner surface and outer surfaces. The internal forces 

are based on curvature information and repulsion forces. The external forces are based on 

tissue image and intensity image. Specially, the surface is first pushed towards the white 

matter volume, and then further refined based on the intensity information to obtain the 

inner surface. The outer surface is obtained by further deforming the inner surface.

Independent reconstruction of cortical surfaces at multiple time points of the same infant 

typically leads to temporally-inconsistent and inaccurate measurements, as surface 

reconstruction involves complex nonlinear optimization, which is typically sensitive to noise 

and initialization. Li et al. (Li et al., 2014a) proposed a method for reconstructing 
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longitudinally-consistent cortical surfaces. Specifically, the inner cortical surfaces are first 

independently reconstructed then modeled by using a surface growth model. Next, the 

vertex-wise correspondence is established between each pair of successive inner surfaces. 

Then all cortical surfaces are jointly deformed with a spatio-temporal deformable surface 

method to reconstruct all longitudinal inner and outer cortical surfaces, with the same 

triangular mesh configuration, thus providing a more accurate measurement of the dynamic 

development of the infant cortex. When removing the temporal constraint, this method can 

also be used to reconstruct infant cortical surfaces at a single time point.

Future Directions—Regions with extremely low contrast and small folding structures, 

e.g., the medial occipital cortex, frontal pole, medical temporal cortex, and temporal pole, 

typically have less accurate segmentation results and thus the poor surface reconstruction. 

Leveraging the prior information of these regions may help improve the results. Moreover, 

for longitudinal infant studies, the longitudinal consistency of cortical surfaces is an 

important issue to consider.

4.3 Cortical Surface Registration and Atlas Construction

Background—Cortical surface registration aims to establish intra-subject and inter-subject 

cortical correspondences, so that longitudinal and cross-sectional analyses can be performed 

meaningfully. Cortical surface atlas construction aims to create population-based 

representative cortical properties based on surface registration. In turn, surface atlases can 

guide surface registration and play a fundamental role in analysis, visualization, and 

comparison of results across individuals and studies.

4.3.1 Cortical Surface Registration

Challenges: There are mainly two challenges in cortical surface registration. The first one is 

the remarkable inter-subject variability of the highly-convoluted cortical folding patterns. 

The second one is the dynamic changes of cortical properties during early brain 

development. Therefore, features used for driving surface registration need to be meaningful 

and reliable for capturing key characteristics of the infant cerebral cortex.

Methods: Many methods have been developed for cortical surface registration of adult 

brains, but infant-dedicated registration methods are still lacking. In this section, we mainly 

focus on those methods which have been successfully applied in infant studies.

The most popular and widely used methods for cortical surface registration are based on the 

spherical representation of the cortical surface (Fig. 4 (j)) (Fischl et al., 1999). These 

methods leverage the 2D nature of the cerebral cortex sheet, thus greatly facilitating the 

registration and analysis of the convoluted cortex. Typically, these methods first inflate and 

map the cortical surface onto the standard sphere with minimal distortion (Figs. 4 (h) and 4 

(i)) (Fischl et al., 1999). Many cortical properties are computed either from the original 

surface (e.g., curvature, sulcal depth, myelin content, and sulcal-gyral curves) or the 

inflation procedure (e.g., average convexity). Then, the spherical surface registration can be 

performed based on slected cortical properties. A hallmark software for cortical surface 

registration is FreeSurfer (Dale et al., 1999; Fischl et al., 1999), which uses geometric 
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features (e.g., curvature and average convexity) to drive the spherical registration. Later, Van 

Essen et al., proposed a surface registration method based on manually-delineated sulcal-

gyral landmark curves (Van Essen, 2004; Van Essen et al., 2001). This method has been 

adopted for construction of the first neonatal cortical surface atlas (Hill et al., 2010). 

Robbins et al. (Robbins et al., 2004) proposed another strategy for the cortical surface 

registration based on spherical representation. Their method is based on the free-form 

deformation, with the control points’ similarities derived from the local geodesic distance 

from gyral crown vertices. Yeo et al. (Yeo et al., 2010) proposed a fast spherical demons 

algorithm using the same geometric features as FreeSurfer. This method has been leveraged 

to build the first 4D (spatial + temporal) infant cortical surface atlases (Li et al., 2015d). 

Robinson et al. (Robinson et al., 2014) modeled the spherical registration as a Markov 

random field labeling procedure. Besides cortical folding features, function related features 

(e.g., myelin content and functional connectivity) are also introduced into the registration 

framework for better functional alignment.

4.3.2 Cortical Surface Atlas Construction

Challenges: For adult MRI studies, many cortical surface atlases have been generated and 

widely adopted. However, they cannot be simply used in infant studies, due to the dynamic 

changes of brain size, shape and cortical folding. Given the dynamic development, the infant 

surface atlases should be constructed as spatiotemporal atlases with a dense sampling of age. 

However, very limited works (as summarized in Table 6) focused on building infant cortical 

surface atlases.

Methods: Hill et al. (Hill et al., 2010) constructed the first neonatal cortical surface atlas, 

PALS-term12 atlas, by co-registration of spherical cortical surfaces of 12 term-born 

neonates based on constraints of manually-delineated sulcal-gyral curves, using the method 

in (Van Essen, 2004; Van Essen et al., 2001). Kim et al. (Kim et al., 2016a) built 

spatiotemporal cortical surface atlases for preterm-born neonates from 26 to 40 weeks 

postmenstrual age based on SURFTRACC framework (Lyttelton et al., 2007; Robbins et al., 

2004) from the CIVET pipeline. Specifically, they used 231 scans from 158 preterm-born 

neonates and built atlases at four age ranges, i.e., 26–30, 31–33, 34–36, and 37–40 weeks of 

gestation. Bozek et al. (Bozek et al., 2016) created spatiotemporal neonatal cortical surface 

atlases at each week from 38 to 42 gestational weeks, based on 44 subjects, by co-

registration of cortical surfaces in each age group using MSM registration method (Robinson 

et al., 2014). As atlases constructed from small datasets may not be representative to the 

neonatal population, Wu et al. (Wu et al., 2018) thus constructed spatiotemporal cortical 

surface atlases at each week from 37 to 44 gestational weeks, based on a large-scale dataset 

with 764 neonates.

All these atlases only cover the neonatal stage, and thus are still not able to accurately 

characterize the dynamic, regionally-heterogeneous cortical development during infancy. To 

address this issue, Li et al. (Li et al., 2013) created the first longitudinal infant cortical 

surface atlases at 0, 1, and 2 years of age, based on 219 serial MRI scans from 73 healthy 

infants, by groupwise registration of spherical cortical surfaces of all subject at each age 

using spherical demons (Yeo et al., 2010). To more comprehensively capture the dynamic 
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development during the first two years, Li et al. (Li et al., 2015d) further constructed the first 

4D (spatiotemporal) infant cortical surface atlas at seven densely-sampled time points (as 

shown in Fig. 5), including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI 

scans from 35 healthy term-born infants, with each infant scanned longitudinally since birth. 

To ensure the longitudinal consistency and unbiasedness to any specific subject and age in 

this 4D surface atlas, they first computed the within-subject mean cortical folding by 

groupwise co-registration of all longitudinal cortical surfaces of each infant, by using 

spherical demons. Then, they further established longitudinally-consistent and unbiased 

inter-subject cortical correspondences by groupwise co-registration of within-subject mean 

cortical folding across all infants. Thus, this 4D surface atlas captured both longitudinally-

consistent dynamic mean shape changes and the individual variability of cortical folding 

during early brain development. Recently, Wu et al. (Wu et al., 2017) extended the 4D 

surface atlas to densely cover the first 6 years with 11 time points (i.e., at 1, 3, 6, 9, 12, 18, 

24, 36, 48, 60, and 72 months of age), based on 339 longitudinal MRI scans from 50 healthy 

infants. Moreover, to improve the clarity and sharpness of the atlas, instead of simply 

averaging of cortical folding features across the co-registered surfaces, a spherical patch-

based sparse representation technique was also developed to eliminate the possible 

registration errors across subjects, thus preserving more details of cortical folding patterns.

Future Directions: Cortical folding geometries are typically used for driving surface 

registration and for representing surface atlases. More cortical properties, e.g., myelin 

content, functional connectivity, and structural connectivity, could be potentially encoded in 

surface atlases and used for surface registration. However, as some cortical properties 

develop dynamically during infancy, they should not be simply used in surface registration 

involving subjects at very different ages. Meanwhile, as cortical development during the first 

months is extremely dynamic, surface atlases would be better to have denser time points 

during this stage.

4.4 Cortical Surface Parcellation

Background—Cortical surface parcellation aims to divide the cerebral cortex into small 

parcels that are distinguishable from each other according to their micro/macro structures, 

functional properties or connectivity patterns (Eickhoff et al., 2017). Parcellation can be 

performed on a population level or an individual level. A population-level parcellation 

captures the commonly distinct cortical regions in population of subjects and can be defined 

on surface atlases, while an individual-level parcellation more accurately reflects the 

individualized cortical regionalization. In this section, we mainly focus on infant cortical 

surface parcellation based on structural MRI information.

Challenges—There are two main challenges in infant cortical surface parcellation. First, 

due to dramatic differences in cortical properties between infants and adults, the available 

cortical parcellation protocols defined in adults may not be optimal for infant studies. 

Second, in longitudinal infant studies, the dynamic cortical development may cause 

longitudinally-inconsistent parcellations, especially for those ambiguous regions.
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Methods—There are very limited works on infant cortical surface parcellation. Existing 

methods can be roughly categorized into two groups: 1) sulcal-gyral based parcellation, 

where the cortical sulcal-gyral macro-structures are used to define basic units of the cortical 

surface (Fig. 4 (k)), and 2) development based parcellation, which aims to define the basic 

cortical units that are distinct in developmental trajectories of cortical properties.

• Sulcal-gyral Based Parcellation: Some existing methods developed for adult cortical 

parcellation could be modified for infant cortical parcellation at a single time point. To 

address the issue of longitudinal consistency, Li et al. (Li et al., 2014b) proposed a multi-

atlas labeling approach for simultaneous parcellation of multiple longitudinal infant cortical 

surfaces. In this method, an energy function was explicitly formulated to adaptively enforce 

the spatial smoothness and temporal consistency in the longitudinal surface parcellation. Of 

note, this method can also be applied to infant cortical parcellation at a single time point, 

when removing the temporal consistency term. Due to the lack of infant-specific multi-atlas 

surfaces, this study was based on adult multi-atlas surfaces with manual labels by experts. 

Using infant-specific multi-atlas surfaces may improve the parcellation results, given that 

adult brains are not representative of infant brains.

• Development Based Parcellation: Given that cortical microstructural and functional 

borders do not always match the sulcal-gyral structures, Li et al. (Li et al., 2015c) proposed a 

population-level parcellation of infant cortical surfaces based on the developmental 

trajectories of cortical properties, e.g., cortical thickness and surface area. The central idea is 

that the developmental trajectories indirectly reflect the underlying changes of 

microstructures and their connectivity, which jointly determines the functional principal of 

each region (Zilles and Amunts, 2010). Thus, compared to sulcal-gyral structures, the 

development based cortical parcellation may lead to a better definition of developmentally, 

micro-structurally, and functionally distinct regions. Given the development trajectory of a 

cortical property, they first built the affinity matrix for each subject between each pair of 

vertices in the cortical surface. Then, after fusion of the affinity matrices for all subjects, the 

output parcellation was produced by performing spectral clustering algorithm on the fused 

affinity matrix. To more precisely localize each individual’s distinct regions and better 

understand the inter-subject variability, Li et al. (Li et al., 2017) further proposed to derive 

an individualized parcellation with the prior guidance from the population-level parcellation. 

The developmental trajectory requires multiple longitudinal infant scans, this may 

potentially limit its immediate extension to other applications.

Future Directions—As existing infant cortical surface parcellations are based on a single 

cortical property, development of methods using multiple cortical properties are highly 

desired, as multiple properties provide complementary information on cortical architecture 

(Glasser et al., 2016). To this end, numerous questions remain open to future research, such 

as how different cortical properties contribute to the parcellation and which properties are 

more correlated with each other.
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4.5 Surface-based Measurement

With the results of surface reconstruction, registration and parcellation, one can 

quantitatively measure multiple biologically distinct cortical properties, such as cortical 

thickness, surface area, myelin content, and cortical folding, at both vertex-wise level and 

region-level in the infant brain. To quantify the cortical folding, many methods have been 

proposed, e.g., gyrification index (GI), local GI, sulcal depth, and curvature derived 

measurements. These cortical properties are discussed below.

• Surface Area—At each vertex, the vertex-wise surface area can be computed as one-

third the sum of the areas of all triangles associated with this vertex. The total surface area is 

the sum of vertex-wise surface areas of all vertices. Although surface area can be computed 

based on any surface, the central/middle surface is frequently used, as it is a more balanced 

representation of the sulci and gyri of the cerebral cortex. Of note, for vertex-wise 

comparison in both longitudinal and cross-sectional studies, the vertex-wise surface area 

should be computed based on the registered and resampled cortical surfaces for ensuring 

vertex-to-vertex cortical correspondences.

• Cortical Thickness—At each vertex, the cortical thickness can be computed based on 

the reconstructed inner and outer surfaces, e.g., the minimum distance between inner to 

outer surfaces. The mean cortical thickness is computed as the average thickness values of 

all cortical vertices.

• Cortical Volume—At each vertex, the cortical volume can be computed as the product of 

the surface area and cortical thickness. The total cortical volume is calculated as the sum of 

each vertex’s cortical volume, or the sum of the volume of each voxel. As can be seen, the 

cortical volume development is jointly determined by two distinct cortical measurements.

• Myelin Content—At each vertex on the central surface, the myelin content, which is 

related to brain functional areas, is defined as the ratio of the original T1w/T2w image 

intensities prior to intensity inhomogeneity correction (Glasser and Van Essen, 2011).

• GI and Local GI—The global cortical folding degree can be quantified by using GI 

(Zilles et al., 1988), i.e., the ratio of the surface area of the pial surface and that of the 

cerebral hull tightly wrapping the brain in 3D space. Given the regional variations of cortical 

folds, it is desired to measure the local gyrification. Li. et al. (Li et al., 2014c) proposed an 

infant-dedicated method to ensure a meaningful comparison and measurement of local GI 

for the dynamic developing brain (Fig. 4 (l)). Specifically, they first established intra-subject 

and inter-subject cortical correspondences and resampled all cortical surfaces using the same 

triangular mesh configuration. Then, they computed the local GI for each vertex as the area 

ratio of its N-ring neighborhood vertices on the outer surface and that of their corresponding 

regions on the cerebral hull surface.

• Sulcal Depth—Sulcal depth provides a continuously varying measurement of both 

coarse and fine shape information. For each vertex, it can be computed as the distance from 

the outer surface to the nearest point on the cerebral hull surface. Based on the sulcal depth 
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map, sulcal pits, the locally deepest points in sulci, can be extracted based on the watershed 

method (Meng et al., 2014).

• Curvature-based Measurements—The curvature reflects fine-scale properties of the 

cortical folding. Many measurements based on curvature have been proposed, mainly based 

on the maximum principal curvature and the minimum principal curvature, e.g., mean 

curvature, Gaussian curvature, shape index, curvedness, to measure the complexity of the 

cortical folding (Awate et al., 2010; Kim et al., 2016b; Pienaar et al., 2008; Rodriguez-

Carranza et al., 2008).

4.6 Multimodal Information Mapping

Multimodal information from functional MRI and diffusion MRI can be mapped and 

integrated onto the infant cortical surface to study the cerebral cortex in a more accurate and 

comprehensive way, as in HCP (Glasser et al., 2013). For functional MRI, functional signals 

can be resampled on the central/middle cortical surface for studying functional connectivity. 

For diffusion MRI, cortical diffusivity information can also be mapped onto the central 

cortical surface for studying cortical microstructure. For example, white matter fibers 

extracted from diffusion MRI can be mapped onto the inner cortical surface for studying 

cortical structural connectivity (Li et al., 2015b; Nie et al., 2014; Rekik et al., 2015b). Thus, 

all cortical information from structural, diffusion and functional MRI can be integrated and 

mapped onto the cortical surface for multimodal analysis.

4.7 Growth Modeling and Prediction

Background—Modeling and prediction of the dynamic brain development during infancy 

can help us better understand the normal brain development and provide insights into 

neurodevelopmental disorders. However, predictive models which can track the dramatic 

spatiotemporal changes in infant brains remain very scarce.

Challenges—Scarcity of such predictive models might be primarily due to: (1) the lack of 

longitudinal infant multimodal MRI data with dense acquisition timepoints from birth, and 

(2) the complex changes in both highly-folded cortical shape and MRI appearance during 

the first years.

Methods—Recently, a few pioneering models have been devised to predict the 

development of brain MRI, cortical surface shape, brain multishape (cortical surface and 

white matter fibers), and cortical property maps from neonatal data. Nie et al. pioneered the 

first mechanical cortical growth model (Nie et al., 2010; Nie et al., 2011) to simulate the 

dynamics of cortical folding from longitudinal MRI data in the first postnatal year, by 

modeling the cerebral cortex as a deformable elastoplasticity surface. Although promising, 

this method requires the use of cortical surfaces at later timepoints of the same infant to 

guide the growth model. Fishbaugh et al. (Fishbaugh et al., 2013) developed a geodesic 

shape regression in the framework of currents to estimate subcortical structures at 6 months 

of age based on shapes from 9 to 24 months. However, this model also requires more than 

one timepoint to predict the developmental trajectory from later to early acquisition 

timepoints. Rekik et al. proposed the first learning-based framework that predicts the 
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dynamic cortical shape from a single baseline cortical surface at birth using a diffeomorphic 

surface regression model (Rekik et al., 2015a). This model used the current metric to first 

learn a population-based cortical shape atlas then individualize it to predict subject-specific 

cortical shape development. A more advanced version was proposed in (Rekik et al., 2016), 

where the varifold metric, a more robust and elegant mathematical representation of shapes, 

was used to predict cortical shape development. Since the human brain can be modeled as 

multiple interrelated shapes (multishape), such as the cortex and white matter pathways, 

Rekik et al. (Rekik et al., 2017) further proposed the first infant brain multishape 

development prediction model to jointly predict the development of cortical surface shape 

and underlying whiter matter fiber connectivity. Meng et al. (Meng et al., 2017) proposed a 

Dynamically-Assembled Regression Forest (DARF) learning framework to predict the 

development of the cortical property maps (e.g., cortical thickness) during the first postnatal 

year, based on neonatal MRI features. This provides complementary information to the 

cortical shape prediction model, as a few cortical properties, e.g., cortical thickness, cannot 

be directly derived from the cortical shape.

Future Directions—Building models that predict not only time-varying anatomy but also 
time-varying function and connectivity, as well as cognitive/behavioral scores and risk for 

brain disorders, is a compelling research direction that remains unexplored.

5 Resources

5.1 Datasets and Challenges

Table 7 lists publicly available large-scale datasets of baby brain images, including the Baby 

Connectome Project (BCP), Developing Human Connectome Project (dHCP) and National 

Database for Autism Research (NDAR). Especially, the BCP, a joint effort between the 

University of North Carolina at Chapel Hill and the University of Minnesota, aims to map 

detailed functional and structural connectome of the human brain during the first five years 

of life. The ongoing BCP will acquire and release cross-sectional and longitudinal high 

resolution multimodal brain MRI scans (including T1w, T2w, DTI and rs-fMRI) of 500 

typically developing children from 0 to 5 years of age. The imaging quality and resolution 

from BCP will be comparable to that in the Human Connectome Project (HCP).

Table 8 lists grand challenges for the infant brain MR images segmentation. For 

NeoBrainS12, 2 axial scans (acquired at 40 weeks corrected age) and 2 coronal scans 

(acquired at 30 weeks corrected age) are available for training and 15 neonatal subjects are 

available for testing. For iSeg-2017, 23 isointense infant subjects are randomly chosen from 

the pilot study of BCP, of which 10 subjects are provided for training and the remaining 13 

subjects are provided for testing. These manual labels provided by the challenge organizers 

are highly valuable for methodological development from the community.

5.2 Computational Tools and Atlases

Publicly available computational tools for infant brain MR image processing are listed in 

Table 9. It is worth-noting that iBEAT (Dai et al., 2013) successfully integrates many major 

steps of infant MR image processing, including preprocessing, skull stripping, tissue 
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segmentation, image registration and ROI labeling. Also, it will be further extended to 

include tools for surface-based analysis. However, as can be seen, still limited software 

packages are available for processing the infant brain MR images, especially for the 

isointense and early-adult phases.

The available infant brain volumetric atlases are listed in Table 10. Especially, Zhang et al. 

(Zhang et al., 2016) presented the first set of detail-preserved longitudinal volumetric atlases 

at 1, 3, 6, 9, and 12 months of age. For each time point, both T1w and T2w atlases, and the 

tissue probability maps are provided. The available cortical surface atlases are listed in Table 

6. Especially, Li et al. (Li et al., 2015d) created the first 4D infant cortical surface atlases 

from neonates to 2 years of age, including 1, 3, 6, 9, 12, 18, and 24 months, based on 339 

serial MRI scans from 50 healthy infants, with each being scanned longitudinally from birth. 

Meanwhile, they have also mapped both the FreeSurfer parcellation (Desikan et al., 2006) 

and the HCP multi-modal parcellation (MMP) (Glasser et al., 2016) onto the 4D infant 

cortical surface atlases, as shown in Fig. 5. These infant volumetric and cortical surface 

atlases with dense time points will greatly facilitate neuroimaging mapping of the dynamic 

early brain development in many pediatric studies.

Besides T1w and T2w atlases, we also summarize in Table 11 for baby brain diffusion-

weighted (DW) atlases that have been reported in the literature. A good summary of DW 

atlases can also be found in (Dickie et al., 2017). Most atlases are cross-sectional, except the 

UNC-CH atlases (Kim et al., 2017), which are constructed from a longitudinal dataset 

acquired every three months since birth. Except the UNC-CH and NUS atlases, all atlases 

provide group-averaged diffusion tensor (DT) images (Oishi et al., 2013; Oishi et al., 2011) 

or DTI-based contrasts, such as fractional anisotropy (FA) and mean diffusivity (Avants et 

al., 2015; Blesa et al., 2016). The UNC-CH and NUS atlases provide group DW images, 

allowing the flexibility of fitting any diffusion models (Bai et al., 2012; Broekman et al., 

2014; Kim et al., 2017; Saghafi et al., 2017). The atlases constructed by (Oishi et al., 2013; 

Oishi et al., 2011) include a parcellation map of WM structures of the neonatal brain.

6 Discussion and Conclusion

Based on the above discussed infant-specific methods and tools, researchers can 

comprehensively quantify brain development in both typically-developing infants and 

infants with or at-risk of neurodevelopmental disorders, thus addressing a variety of 

questions on early postnatal brain development. For example, how the gray matter and white 

matter volumes grow in specific brain regions during infancy (Gilmore et al., 2011; 

Knickmeyer et al., 2008)? What are the spatiotemporal developmental patterns of multiple 

biologically-distinct brain properties, e.g., cortical thickness, surface area, cortical 

gyrification, sulcal depth, curvatures, and myelin content, in the first two postnatal years 

(Hill et al., 2010; Li et al., 2015a; Li et al., 2013; Li et al., 2014c; Lyall et al., 2014; Meng et 

al., 2014; Meng et al., 2017)? How the inter-subject variability and left-right hemispheric 

asymmetries of these brain properties emerge and evolve during infancy (Duan et al., 2017; 

Dubois et al., 2010; Glasel et al., 2011; Hill et al., 2010; Li et al., 2014c; Meng et al., 2016)? 

How these brain properties relate to gender, cognitive/behavioral functions, genetics and 

environments (Jha et al., 2018)? How these properties are differentially associated with risks 

Li et al. Page 25

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for neurodevelopmental disorders (Hazlett et al., 2017; Kapellou et al., 2006; Li et al., 2016; 

Melbourne et al., 2014)? What are the structural and maturational covariance patterns of 

these properties (Fan et al., 2011; Geng et al., 2017; Shi et al., 2012b)? How these properties 

co-develop with structural and functional connectivity? More neuroscientific and clinical 

applications of infant-specific computational methods and tools can be found in (Dubois and 

Dehaene-Lambertz, 2015; Gilmore et al., 2018).

Although remarkable progress has been achieved on computational neuroanatomy of infant 

brains, there are still various limitations and open questions, which have been discussed in 

the previous sections and are also briefly summarized here:

• Methods

Due to the partial volume, dynamic, and regionally-varing apparances of infant MR images, 

conventional methods are often unable to achieve satisfactory accuracy, especially for 

isointense images around 6 months of age with insufficient tissue contrast. Recently, 

machine learning techniques have been shown to boost the accuracy in several challenging 

tasks, such as tissue segmentation and image registration. In particular, deep learning has 

recenly emerged as a powerful tool in medical image analysis. For example, in iSeg-2017 

MICCAI Grand Challenge, the majority of the top performing methods were based on deep 

learning. Hence, development of advanced learning-based methods for infant MRI 

processing and analysis is an important avenue of research.

• Validation

Most existing methods are only validated on small-scale datasets acquired using a single 

imaging protocol. Therefore, their performance might be limited in the studies involving 

different imaging protocols, scanners, brain disorders/pathologies, and age groups. To make 

the developed methods truly useful, validation on multiple datasets capturing different 

scenarios as mentioned above is recommended.

• Resources

The accessibility to infant MRI datasets, computational tools, and brain atlases is critical for 

advancing research in pediatric neuroimaging studies. However, due to challenges in image 

acquisition and processing, freely accessible resources for computational neuroanatomy of 

infant brains are still very limited. Efforts should be directed to make those carefully 

validated resources publically available.

This article has been focused on T1w and T2w. Also important for understanding the early 

development of the human brain is diffusion MRI (DMRI), which is capable of revealing 

tissue microstructural properties due to its sensitivity to the diffusion of water molecules. 

Besides the infant-dedicated DMRI atlases summarized in Table 11, infant-specific 

computational tools also need to be developed for DMRI, so that DMRI can be used 

effectively for understanding early brain development. For example, the following issues 

need to be addressed: (1) Low SNR caused by signal attenuation due to water diffusion that 

is much less restricted in the developing brain (Hüppi and Dubois, 2006); (2) Insufficient 

spatial resolution due to smaller brain size; (3) Partial volume effects, requiring greater 
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microstructural models to tease apart signal contributions from different tissue 

compartments (Assaf et al., 2004; Fieremans et al., 2011; Kaden et al., 2016; White et al., 

2013; Zhang et al., 2012); (4) Tractography uncertainty resulting from the significantly 

lower diffusion anisotropy in the developing brain (Yap et al., 2011).

In summary, we have reviewed state-of-the-art computational methods dedicated to 

processing and analyzing infant brain MRI. We have also briefly discussed their 

representative applications to advancing our understanding of normal and abnormal brain 

development. We believe that future improvements and disseminations of computational 

tools for infant brain MRI processing and analysis will allow us to better chart and 

understand the dynamic brain developmental trajectories in typically-developing infants as 

well as the roots of abnormal neurodevelopmental trajectories in infants with disorders, thus 

informing early diagnosis and intervention.
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Highlights

1. A comprehensive review of infant-dedicated computational methods and tools

2. A discussion of contributions to the understanding of infant brain 

development

3. A discussion on current limitations and potential future directions
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Fig. 1. 
T1w, T2w, FA images, tissue segmentation results (by LINKS, (Wang et al., 2015)) as well 

as the reconstructed inner and outer surfaces of a typically-developing infant, scanned 

longitudinally at 2 weeks, 3, 6, 9 and 12 months of age. Inner surfaces are color-coded with 

the maximum principal curvature, and outer surfaces are color-coded with cortical thickness.
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Fig. 2. 
Flowchart of a typical pipeline for analyzing T1w and T2w structural MR images. Note that, 

in infant studies, many steps need to be infant-specific.
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Fig. 3. 
An example of age-specific atlases for neonate, 1 year and 2 years with multiple components 

from (Shi et al., 201 1b).
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Fig. 4. 
A typical computational pipeline for cortical surface-based analysis of infant brains.
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Fig. 5. 
UNC 4D infant cortical surface atlases and parcellations, created by the method in (Li et al., 

2015d). (a) and (c) are the average convexity maps on the spherical space and mean cortical 

shape, respectively. (b) and (d) are the mean curvature maps on the spherical space and mean 

cortical shape, respectively. (e) and (f) are the FreeSurfer parcellation and HCP parcellation, 

respectively. The left-hand column indicates the age in months.
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Table 2

Representative registration methods for infant brain images.

Study Dataset Modality Applied infant ages Method

(a) Intensity-based approaches

(Wei et 
al., 2017)

24 infants 
(leave-two-out 
validation)

T1w or T2w 2 W to 12 M, 3 M to 12 M, 6 M 
to 12 M, 9 M to 12 M

Learning based method using random forest and auto-
context

(Wang et 
al., 
2014c)

9 infants 
(leave-one-out 
validation)

T1w or T2w 2 W to 6 M, 6 M to 12 M Sparse learning based method

(Wu et al., 
2015)

24 infants 
(leave-one-out 
validation)

T1w or T2w 2 W to 12 M, 3 M to 12 M, 6 M 
to 12 M, 9 M to 12 M

Longitudinal-image-guided correspondence detection

(b) Segmentation-based approaches

(Wang et 
al., 
2012a)

28 infants T1w, T2w, FA 2 W, 3 M, 6 M, 9 M, 12 M Tissue maps based method

(Shi et al., 
2010a)

10 infants 
(leave-one-out 
validation)

T1w and T2w Neonate, 1 Y, 2 Y Tissue maps based method

(Ha et al., 
2011)

10 infants T1w Neonate to 2 Y Tissue maps and geometric descriptors based method

(c) Hybrid approaches

(Dong et 
al., 2017)

10 infants 
(leave-two -
out validation)

T1w and T2w 2 W to 12 M, 3 M to 12 M, 6 M 
to 12 M, 2 W to3 M, 2 W to 6 

M, 3 M to 6 M

Joint segmentation and registration

(W: weeks; M: months; Y: years; GA: gestational age)
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Table 4

Representative methods applied to infant cortical topology correction.

Study Localizing defects Correcting
defects

Infant-
dedicated Method

(Shattuck and 
Leahy, 2001; 

Han et al., 2002)

Identifying circles in the 
graph of WM volume

Changing voxels in WM volume, 
based on rules

No Graph-based

(Fischl et al., 
2001; Segonne 

et al., 2007)

Detecting overlapping 
triangles of WM surface 

mapped on sphere

Re-tessellating of triangles No Surface mapping based

(Bazin and 
Pham, 2007; 

Han et al., 2003)

Detecting non-simple/
critical points in topology

Preserving the topology of a 
deformable surface with a 

spherical topology

No Topology-preserving deformation based

(Hao et al., 
2016)

Difference of the WM 
volume before and after 

topology-preserving 
deformation

Multi-atlas based sparse 
representation

Yes Learning-based

(WM: white matter)
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Table 7

Publicly available datasets of infant brain T1w and T2w MR images.

Dataset Imaging parameters Subjects Link

BCP T1w: TR/TE = 2400/2.24 ms, voxel size = 0.8 × 0.8 × 0.8 
mm3 T2w: TR/TE = 3200/564 ms, voxel size = 0.8 × 0.8 
× 0.8 mm3

Normal children 0–5 Y http://babyconnectomeproject.org

dHCP T1w: TR/TE = 11/4.6 ms, voxel size = 0.8 × 0.8 × 0.8 
mm3 T2w: TR/TE = 12,000/156 ms, voxel size = 0.8 × 
0.8 × 1.6 mm3

Neonates and fetuses http://www.developingconnectome.org

NDAR T1w: TR/TE = 2400/3.16 ms, voxel size =1×1×1 mm3 

T2w: TR/TE = 3200/499 ms, voxel size =1×1×1 mm3
Normal and autistic infants 

at 6, 12, 24 M
https://ndar.nih.gov

(Y: years; M: months)
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Table 8

Segmentation challenges for infant brain MR images.

Challenge Subjects Link

NeoBrainS12 Neonates: 4 training subjects, 15 testing subjects http://neobrains12.isi.uu.nl/

iSeg-2017 6-month-olds: 10 training subjects, 13 testing subjects http://iseg2017.web.unc.edu/
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Table 9

Publicly available computational tools for infant brain MR images.

Tool Functionality Applicable Stage Link

iBEAT Preprocessing, skull 
stripping, tissue 
segmentation, 

image registration, 
ROI labeling, 
surface-based 

analysis (available 
soon)

Infantile, isointense, early-adult http://www.nitrc.org/projects/ibeat

ALFA Skull stripping Infantile http://brainsquare.org

Neoseg Tissue segmentation Infantile https://www.nitrc.org/projects/neoseg

DrawEM Tissue segmentation Infantile https://github.com/MIRTK/DrawEM

MANTiS Tissue segmentation Infantile https://github.com/DevelopmentalImagingMCRI/mantis

INSTAR Joint tissue 
segmentation and 

registration

Infantile https://www.nitrc.org/projects/instar

dHCP Structural Pipeline Segmentation and 
surface-based 

analysis

Infantile https://github.com/DevelopingHCP/structural-pipeline
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