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Abstract

Functional connectivity analysis of functional MRI (fMRI) can represent brain networks and 

reveal insights into interactions amongst different brain regions. However, most connectivity 

analysis approaches adopted in practice are linear and non-directional. In this paper, we 

demonstrate the advantage of a data-driven, directed connectivity analysis approach called Mutual 

Connectivity Analysis using Local Models (MCA-LM) that approximates connectivity by 

modeling nonlinear dependencies of signal interaction, over more conventionally used approaches, 

such as Pearson’s and partial correlation, Patel’s conditional dependence measures, etcetera. We 

demonstrate on realistic simulations of fMRI data that, at long sampling intervals, i.e. high 

repetition time (TR) of fMRI signals, MCA-LM performs better than or comparable to correlation-

based methods and Patel’s measures. However, at fast image acquisition rates corresponding to 

low TR, MCA-LM significantly outperforms these methods. This insight is particularly useful in 

the light of recent advances in fast fMRI acquisition techniques. Methods that can capture the 

complex dynamics of brain activity, such as MCA-LM, should be adopted to extract as much 

information as possible from the improved representation. Furthermore, MCA-LM works very 
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well for simulations generated at weak neuronal interaction strengths, and simulations modeling 

inhibitory and excitatory connections as it disentangles the two opposing effects between pairs of 

regions/voxels. Additionally, we demonstrate that MCA-LM is capable of capturing meaningful 

directed connectivity on experimental fMRI data. Such results suggest that it introduces sufficient 

complexity into modeling fMRI time-series interactions that simple, linear approaches cannot, 

while being data-driven, computationally practical and easy to use. In conclusion, MCA-LM can 

provide valuable insights towards better understanding brain activity.
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1. Introduction

The investigation of intrinsic, spontaneous fluctuations observed in a resting human brain 

from functional connectivity analysis of fMRI scans has demonstrated that the brain 

inherently organizes itself into functional networks even at rest [1]. This seminal work was a 

strong impetus to the growth of resting-state functional connectivity analysis [2, 3, 4, 5, 6, 7] 

by providing a gateway to revealing information about underlying brain functioning. Since 

then, the dynamics of the brain, at both rest and under the influence of an activation 

paradigm, has been a widely-studied topic [8, 9, 10, 11]. The estimation of connectivity first 

requires defining a set of nodes in the brain which have an associated fMRI time-series such 

as the activity of regions of interests (ROIs) or single voxels. Subsequently, connections 

between these nodes (known as edges) are established based on directed or undirected (e.g. 

correlation) connectivity. Analyzing this data can reveal valuable information about the 

underlying dynamics of the brain. To this end, studies on functional integration, i.e. 

understanding interaction between different regions in the brain have been carried out [12, 

13]. Functional integration can be obtained using functional and/or effective connectivity 

analysis [14, 15]. Succinctly, functional connectivity analysis captures the statistical 

association between neurophysiological time-series, whereas effective connectivity analysis 

captures coupling or directed information flow between regions [14], most commonly using 

a priori models of interactions. Here, we use mutual connectivity analysis (MCA) [16] 

which estimates a form of directed functional connectivity by estimating mutual cross-

prediction between time series through state space reconstruction.

Functional MRI (fMRI) non-invasively captures brain activity by measuring the blood 

oxygen level dependent (BOLD) response to neural activity, which is a complex function of 

the metabolic rate of oxygenation, cerebral blood volume and cerebral blood flow [17]. 

Furthermore, fMRI time-series have been shown to exhibit dynamic non-linear behavior 

both in the presence of activation paradigms [18, 19] and at rest [20, 21]. However, a 

majority of functional connectivity literature has focused on linear techniques, such as 

correlation and partial correlation. One of the first few approaches that modelled the 

nonlinear brain dynamics was Dynamic Causal Modeling (DCM) [9]. DCM, which is an 

effective connectivity analysis approach, estimates neuronal interactions using a priori 

information about the intrinsic physiology to model neuronal activity from the recorded 
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fMRI time-series. Such an approach can model causal interactions between neurons. 

However, this is achieved at the cost of having to estimate a large number of parameters [7]. 

It is inherently a hypothesis-driven data modeling approach that uses the data to validate a 

prior hypothesis. In contrast, data-driven, model-free approaches discover patterns from the 

data itself and are more flexible than model-based methods.

Nonlinear data-driven approaches applied on fMRI data do not assume prior knowledge 

about the model driving a system and capture the signal dynamics without explicitly 

modeling the hidden neuronal state. A few such nonlinear data-driven methods for fMRI 

functional connectivity analysis have been proposed [22, 23]. We have recently introduced 

an approach called Mutual Connectivity Analysis (MCA) to quantify the nonlinear 

association between fMRI time-series in brain [16]. MCA constructs non-linear function 

approximators between every pair of time-series and tries to learn a mapping from one time-

series to another. The more accurate the cross-prediction from a given function approximator 

is, the more closely the time-series interact. We have previously demonstrated the 

applicability of MCA with generalized radial basis function neural networks and Local 

Models (LM) [16, 24]. In this paper, in contrast to previous publications, we perform a 

systematic evaluation of MCA-LM by testing it against realistic simulated fMRI [25] and 

compare it with more conventionally used approaches, such as Pearson’s and partial 

correlation, mutual information, Granger causality, coherence measures and Patel’s 

conditional dependence measures.

The use of nonlinear dynamic models to establish a measure of directed interaction between 

time-series has recently been applied in various domains, such as complex ecological 

systems [26], gene regulatory networks [27] and electroencephalography (EEG) [28]. Also, 

it has been discussed in [10, 21] that the brain dynamics may not be very different from 

other complex, nonlinear, dynamical systems such as those encountered in nature. As such, 

we have adopted this knowledge to model the brain dynamics using concepts from complex 

system theory to study connectivity in the brain with MCA-LM. Predictive modeling based 

on MCA-LM does not require sophisticated assumptions on the intrinsic mechanism of the 

signal being studied. It can hence provide a non-linear, data-driven approach to estimate 

connectivity from the BOLD fMRI signals. Each fMRI time-series can be represented by a 

state space, which is reconstructed from time delayed versions of itself and embedded into a 

state-space reconstruction (SSR) without any prior information of an exact model of its 

dynamics. Such a space of embedded points transforms the observed time-series into a 

manifold [29, 30, 31, 32] representing the evolution of states, i.e. its dynamics. The basic 

idea of such a non-linear time-series analysis scheme is to build local models of the state 

space dynamics for every fMRI time-series, which cross-predicts the trajectory of an 

influencing time-series. Although a wide range of local models have been described in time-

series literature [33], we focus on establishing connectivity as a measure of influence 

quantified by the cross-prediction between every pair of time-series using nonlinear 

weighted local average models [34, 26]. Such a weighting has been demonstrated to work 

well for ecological data [26] as well as electrocorticography ECoG data from monkeys [35].

In this work, we investigate the applicability of MCA-LM in fMRI analysis, i.e. MCA-LM, 

to detect interactions on realistic fMRI simulations as proposed by [25]. Their study 
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evaluated a wide range of network modeling methods with realistic fMRI simulations and 

has shown that, in general, correlation-based approaches and Bayes nets are quite effective 

in detecting presence of network connections regardless of direction. However, the 

estimation of directionality appears as a more challenging task, where most of the studied 

methods performed poorly, with Patel’s conditional independence performing the best 

amongst the tested methods. In [36], the authors showed that by performing group-level 

analysis, many of the Bayesian approaches performed well at estimating causal interactions. 

However, analysis at single subject level using these approaches did not perform as well 

[37]. In this paper, we investigate the use of MCA-LM to capture the presence of directed 

connections in simulated fMRI data as proposed in [25]. Furthermore, we study the effect 

that different sampling rates (repetition times) have on MCA-LM and various correlation-

based approaches.

We test MCA-LM under different conditions of simulated time-series generation which 

include 1) varying TR, 2) varying connection strength of neural interactions, 3) varying 

noise, 4) varying number of nodes, and 5) various network graph structures. In the following 

sections, we: 1) discuss the data used, both simulated and real resting-state fMRI, 2) give a 

brief overview of MCA-LM and the other approaches evaluated, 3) apply these methods on 

the realistic fMRI simulated data and study MCA-LM performance under various simulation 

settings, 4) investigate the applicability of MCA-LM to extract relevant connections from 

empirical resting-state fMRI data performing connectivity analysis of subnetworks within 

the Default Mode Network (DMN).

2. Materials

2.1. Simulated fMRI time-series

The simulation of fMRI data requires mathematical formulations about physiological and 

environmental influences affecting neuronal activity and the observed BOLD fMRI signals. 

To accomplish this task, we adopted the network structure designed by [25], where the 

resting-state fMRI time-series were modelled by simulating neuronal activity based on 

dynamic causal modeling [9] which was then passed through a non-linear balloon model [8] 

to estimate its vascular dynamics. The neural signal interaction was defined by the network 

connections in A. The neural network model was defined as:

ż = σAz + Cu (1)

where z is the neural time-series and ż is the rate of change of the neural time-series z, A is 

the network matrix, which is the ground truth of neural connections in this model, C is the 

matrix defining external connections, u are external connections, and σ controls the temporal 

smoothing and neural lag within-node and between nodes. Further details on the simulation 

can be found in [25]. All parameters apart from the TR and connection strength were 

adopted from [25]. Table 1 describes the various network structures and simulation 

parameters used. Figure 1 is an example of a ground truth network A (networks #4 and #12 

from Table 1). Network topologies for all other simulations can be found in Figure 2.
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We generated a number of simulations at different parameter settings, because we were 

interested in studying, how the performance of the methods were affected by such changes. 

A summary for all the simulations is provided in Table 1. For all simulations, i.e. sim#1 to 

sim#13 we investigated the effect of scan TR. We evaluated the methods on simulations 

obtained at TR = {0.5 s, 1 s, 1.5 s, 2 s, 3 s}. Ideally, a connectivity analysis approach should 

be scalable and work for large networks having many nodes as well as small networks. 

Sim#1 has 5 nodes, sim#4 has 50 nodes, while sim#2 and sim#3 have a number of nodes in 

between 5 and 50, Table 1. Sim#5 models bidirectional, inhibitory as well as excitatory 

connections (conn.) between nodes. Accounting for such connections is important, since in 

the brain it is rare that two regions are only influenced by undirected, excitatory connections. 

Sim#6 reflects inaccurate regions of interest (ROI) characterization. One of the most 

common pre-processing steps in the fMRI literature is to divide the brain into a number of 

ROIs. Inaccurate ROI representation presents a unique challenge, since this would result in 

mixing of the BOLD signal across regions. We were also interested in investigating, if 

MCA-LM could characterize cyclic connections as such networks theoretically cannot be 

recovered using Bayes net methods. Sim#7 models such cyclic connections. The network 

structure of sim#8 is very dense, which simulates a small network that is highly connected. 

More details about these simulations can be found in [25]. Furthermore, simulations sim#9 

through sim#13 were obtained using the same network structure as sim#1 to sim#5, with the 

only difference being that they were generated at moderate connection strength of neuronal 

interaction while the others were generated at weak neuronal connection strength. Both 

types of strengths were sampled from a Gaussian distribution, to model neuronal 

interactions, with standard deviation of 0.1; mean = 0.4 (with range limited between 0.2–

0.6) for moderate, and mean = 0.2 (with range limited between 0.15–0.25) for weak, 

connection strength. The distribution of moderate interaction strengths was adopted from 

[25] and used in [36, 38]. This was extended to model weak interactions. For all edges, this 

introduced small perturbation of edge strengths, which can be thought of as representing 

noise in the neuronal connection strength across trials.

With these simulations, we varied the number of nodes, similar to studies by [38, 36, 25], 

scan TR [39] and added thermal noise with standard deviation between (0.1% – 1%) of the 

signal [25], these factors and network structure are summarized in Table 1. In addition to 

these parameters, we also varied the strength of neuronal connection, examined networks 

with cyclic connections, dense networks and networks with bi-directional, forward and 

backward connections [25]. We studied the effect of weak and moderate connection strength 

of neuronal interaction. Fifty different trials for every network structure were generated. 

Each trial for a given model had the same network structure and parameters (number of 

nodes, TR, noise, etc.) as shown in Table 1, but had different neural time-series, HRF 

parameters (standard deviation of 0.5 s), and connection strengths. The connection strengths 

were varied between trials, within the limits described previously, to account for noise and 

possible difference between multiple fMRI recordings. However, the network structure was 

the same between trials. In total we tested 90 different simulation models, each with 50 

trials, obtained from combinations of parameters as described in Table 1. It should also be 

mentioned here that we do not perform high-pass filtering as was done in [25]. It was shown 
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in [40] that this step eliminates non-Gaussian information in the signal which can be useful 

in estimating direction.

2.2. Empirical resting-state fMRI data

Functional MRI (fMRI) data from 14 healthy subjects, was acquired using a 3.0 Tesla 

Siemens Magnetom TrioTim scanner at the Rochester Center for Brain Imaging (Rochester, 

NY, US). Two scans were acquired from the subjects within the span of an hour. The study 

protocol included: (i) High-resolution structural imaging using T1-weighted magnetization-

prepared rapid gradient echo sequence (MPRAGE, TE = 3.44 ms, TR= 2530 ms, isotropic 

voxel size 1mm,ip angle = 7).(ii) Resting-state fMRI scans using a gradient spin echo 

sequence (TE = 23 milliseconds, TR = 1650 milliseconds, 96 × 96 acquisition matrix, ip 

angle of 84). The acquisition lasted 6 minutes and 54 seconds, and 250 temporal scan 

volumes were obtained. A total of 25 slices, each 5 mm thick, were acquired for each 

volume. During acquisition, the subject was asked to lie down still with eyes closed. The 

data were acquired as part of a NIH sponsored study (R01-DA-034977). The individual had 

given written consent as per IRB approved study protocol.

Prior to computation of connectivity, the fMRI data used in this study was preprocessed 

using standard methodology. For each dataset, the first ten (of 250) volumes of functional 

magnetic resonance images were removed to analyze only those in which steady-state 

imaging had been reached. Next, motion correction, brain extraction and correction for slice 

timing acquisition were performed. Additional nuisance regression, to remove variations due 

to head motion and physiological processes was carried out. This model included linear and 

quadratic trends, signals from white matter and cerebrospinal fluid using CompCor [41], and 

the Friston-24 motion parameters (Friston et al., 1996). Each dataset was finally registered to 

the 2 mm MNI standard space using a 12-parameter affine transformation. All preprocessing 

steps were carried out using the C-PAC software [42] and its corresponding dependencies in 

FMRIB Software Library(FSL) [43]. Finally, the time-series were normalized to zero mean 

and unit standard deviation to focus on signal dynamics rather than amplitude [44].

3. Methods

3.1. Connectivity measures

Figure 3 illustrates how connectivity analysis summarizes information in the large number 

fMRI time-series recorded over multiple time points.

3.1.1. Pearson’s Correlation—Correlation is a measure of the linear statistical 

association between two time-series. We use the Pearson correlation coefficient, which is the 

most widely used correlation approach for fMRI functional connectivity analysis. The 

Pearson correlation, referred to here as full correlation (FC), normalizes the covariance of 

the two time-series by the product of their standard deviation.

3.1.2. Partial Correlation—Partial correlation (PC) quantifies a measure of interaction 

between two time-series controlled for the effects of other series in the system. PC is useful 

in a multivariate, setting as it is better able to distinguish between direct and indirect 
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connections unlike full correlation. Say that the PC between two time-series, x and y, is to 

be obtained for a system with N time-series. PC achieves this by first regressing out the 

information of all the other N − 2 time-series in the system from x and y followed by 

correlating these regressed time-series with each other. Since it is a computationally 

expensive task to solve many multiple regression problems, the covariance matrix inversion 

approach is used to obtain the full set of partial correlations [45].

3.1.3. Patel’s conditional dependence measures—Patel’s conditional dependence 

measures the imbalance between P(x|y) and P(y|x) to measure connectivity [46]. We adopt 

the approach used by [25] where each time-series is mapped to the range 0–1. From the 

normalized time-series, we extract Patel’s κ and Patel’s τ measures which quantify 

connection and directionality respectively. We also binarise the data at thresholds of (0.25, 

0.5, 0.75 and 0.9). However, we only report results on the continuous data and data 

thresholded at 0.25 since other thresholds gave poor results. We use the naming convention: 

Patel τ and Patel κ for the connectivity matrices calculated on continuous data while Patel25 

τ and Patel25 κ is calculated on binarized data. Directed connectivity matrices obtained 

from κ and τ are called Patel directed and Patel25 directed. Further details are provided in 

the supplementary material.

Additionally, we investigate multivariate Granger causality [47], mutual information [48] 

and coherence [49] approaches, details of which are provided in the supplementary material.

3.1.4. Mutual connectivity analysis: Local Model—Nonlinear modeling methods 

have the ability to characterize complex brain dynamics and reveal useful insights into the 

underlying functional architecture of the brain. To this end, we adopt a powerful technique 

from dynamical systems theory to reconstruct the state space and perform predictions using 

local models. In the following paragraphs, we describe mathematical formulations adopted 

from [26]. The convention used is: scalars - lowercase italics, vectors - lowercase boldface, 

matrices - uppercase boldface, matrices of dimension higher than 2 - uppercase boldface 

italicized. For example, time-point t of time-series x is given by the scalar x(t).

Consider a dynamical system with two time-series, x and y, sharing an attractor manifold 

[29, 30, 31, 32], representing the state space (phase space) of the system. If y influences x, 

estimates of the states of y can be obtained from that of x, but not vice versa, unless x 
influences y [26]. A measure of causation is established with local models, where, the 

signature of the influencing time-series y is looked for in the influenced series x. This is 

done by quantifying the correspondence between the libraries of nearby points in the 

attractor manifold built from x to that built from y. Details about the construction of such 

manifolds are given in the subsequent paragraph. To put this simply, a measure of the 

estimation quality of x cross-predicting y is related to the influence y has on x [26].

Using delay-coordinate embedding, time series x is represented as a d-dimensional mapping, 

i.e. manifold, Mx. Mx is constructed using vectors xt = [x(t − (d − 1)), …, x(t − 1), x(t)], and 

t ∈ d, …, T. To obtain a cross-prediction of y denoted as ŷ|Mx (where, ŷ|Mx, is the estimate 

of y obtained using Mx) at a point t, i.e. ŷ(t)|Mx, we obtain the d + 1 nearest neighbors of xt, 
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whose time-indices are used to identify nearest neighbors of y(t) and obtain an estimate ŷ(t)|
Mx as follows:

y(t) | Mx = ∑
i = 1

d + 1
wiy(ti) (2)

The cross-predicted estimate of ŷ(t)|Mx is established with weighted average local models to 

detect non-linear dynamics derived from time delay-coordinate embedding. The weights, wi 

(i ∈ 1, …, d + 1), are determined by a softmax, function such that the first nearest neighbor 

xt1 of xt has the highest weight,

wi = e
−‖xt − xti

‖2/‖xt − xt1
‖2

∑ j = 1
d + 1e

−‖xt − xt j
‖2/‖xt − xt1

‖2 (3)

If y influences x, the nearest neighbors of My should correspond to those of Mx (Figure 4), 

and hence a good estimate of y should be obtained. A similarity measure using correlation is 

calculated between the estimated ŷ|Mx and the original time-series y, which quantifies the 

ability of x to cross-predict y. The measure of cross-prediction quantifies a directed non-

linear measure of interaction, which is stored in an affinity matrix S, at matrix element S(x,y). 

Similarly, a measure of cross-prediction between each time-series pair is obtained. Further 

details can be found in [26].

We establish a measure of mutual connectivity, which quantifies the non-linear mutual cross 

mapping between every pair of time-series on the reconstructed state space with local 

models (LM). Such cross-maps establish a measure of nonlinear association between every 

pair of time-series in a dynamic system. These measures, used to construct connectivity 

profiles for every trial, quantify the underlying dynamics of the simulated resting-state 

fMRI. The embedding dimension d = 3 is chosen using Cao’s method [50].

The weighting function adopted here in eq 3 is user-specified. It is the same as that used in 

[26] that studies dynamical systems in ecology and in [35] that investigates brain activity in 

monkeys from Electrocorticography (ECoG) data. This approach is termed local models 

since the model for every state is constructed locally with only neighborhood of points. 

Local models for every state of the predictor are created by searching for its nearest 

neighbors in the state space, as such every state has a different set of nearest neighbors and a 

different weight. The closest neighbor is given the highest weight, while the furthest is 

assigned the least weight.

3.2. Simulated fMRI data

Connectivity matrices obtained using all the methods are estimated for all the simulations 

summarized in Table 1.
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3.2.1. Evaluation and summary of simulation results—Table 1 summarizes all the 

simulation models used in this study. Note that for every simulation, the TR and/or noise 

varies. For example, sim#9 has 10 different sub-models. To simplify the discussion of 

results, we use the following naming conventions - all simulations of #n, n ∈ {1, 2, …, 13} 

are sim#n and specific sets of parameters for sim#n are sim#n(TR;noise) (all other parameters 

for sim#n are a constant). Example: sim#9(1.5,0.1) refers to simulation #9 at TR = 1.5 s and 

noise = 0.1%.

In this paper, we study the effectiveness of MCA-LM in estimating interaction scores in a 

network under different time-series generation schemes and evaluate it against 

conventionally used approaches. MCA-LM is evaluated in its ability to quantify presence of 

connection regardless of direction in terms of c-sensitivity [25, 38]. This is done by 

symmetrizing the directed matrices [25] by considering the maximum of the two directed 

connections between nodes as the edge strength. C-sensitivity quantifies how well the true 

positives (TP) are separated from the false positives (FP) by measuring the fraction of TPs 

that are estimated with a higher connection strength than the 95th percentile of the FP 

distribution.

For every simulation model, the 50 iterations are summarized as a boxplot (example: Figure 

5). The circle with a dot inside the box represents the distribution median. The box spans the 

first quartile to the third quartile which is interquartile range (IQR). The vertical extensions 

from the box, whiskers, have a maximum length of 1.5 times the IQR. We test for significant 

differences between MCA-LM and the other methods with the Wilcoxon signed-rank test. A 

significant difference (p < 0.01) is indicated by a × sign in the plot. Inspection of the plots 

can reveal whether MCA-LM is significantly better or worse than the other approaches. The 

median of the c-sensitivity is represented as cm̃ethod, where method refers to the analysis 

method used, eg - MCA-LM, FC, PC, etc.

In addition to testing its ability to estimate a presence of a link, we measure MCA-LM’s 

ability in establishing direction by quantifying both, directional information and presence of 

a true connection with the Area Under the receiver operating characteristic Curve (AUC) and 

compare it with Patel’s conditional independence measures [46]. The Receiver Operating 

Characteristic (ROC) is a plot of the true positive rate (TPR) versus the false positive rate 

(FPR), which shows the tradeoff between these quantities. Ideally, TPR should be 1 and FPR 

= 0 for any particular threshold applied on the connectivity graphs, i.e. affinity matrix, this 

corresponds to an AUC = 1. An AUC of 0.5 represents random connections. Since the AUC 

quantifies both, the strength of connections and the direction of information flow, it is used 

to evaluate performance in estimating the true network structure.

3.3. Application to empirical fMRI data

3.3.1. Default mode network connectivity—We analyze specific interactions obtained 

within the default mode network (DMN) and performed test-retest reliability to study the 

robustness of all the approaches. Recently the role of the DMN in the human brain, 

especially during rest, has gained significant research attention [51, 52, 53, 54]. 

Abnormalities in the DMN have been characterized in a wide range of neurological diseases 

such as Alzheimers disease [55], schizophrenia [56], autism [57] and traumatic brain injury 
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[58, 59, 60, 61, 62] to name a few. In addition, efforts to study connectivity within the DMN 

has grown [53, 63].

In this paper, we perform a preliminary analysis on the resting-state fMRI data of 14 

subjects as described in section 2.2 to explore directed connectivity within the DMN. We 

divide the DMN of each subject into eight subnetworks, i.e., the precuneus/posterior 

cingulate cortex (PC/PCC), medial prefrontal cortex (MPFC), left and right inferior parietal 

lobe (lIPL, rIPL), left and right temporal cortex (lTC, rTC) and left and right medial 

temporal lobes (lMTL, rMTL) [53, 63]. Each subnetwork was obtained adopting a 

methodology similar to [64, 53]. To localize subnetworks in the DMN, first, Independent 

Component Analysis (ICA) is performed using the GIFT toolbox [65] resulting in 60 

components. Subsequently, the best spatially matching component to the subnetworks of the 

DMN is obtained, where, the subnetworks are defined combining regions from the automatic 

anatomical labeling (AAL) atlas [66] as described in [53]. A nonlinear template matching 

procedure [64, 67] was adopted, where the maximum of the difference between the average 

z-scores within the template (DMN subnetwork defined using the AAL template) and the 

average z-scores outside the template indicated the best component for the given template. 

For each subject, estimates of activity from the best fitting DMN subnetworks are identified 

by voxels exhibiting local maximum z-score of the independent component [53].

Measures of test-retest reliability are obtained by correlating connectivity scores of the two 

sequences for every subject, thus quantifying a measure of robustness of a connectivity 

analysis.

4. Results

4.1. Simulated fMRI

In this section, we present results on the simulated fMRI data and empirical data. For the 

simulations, we begin by presenting results in terms of c-sensitivity, followed by Area under 

the ROC curve. Subsequently, sensitivity and specificity measures are obtained from 

recovered graphs. For the empirical data, we quantify measures of robustness for all the 

approaches investigated.

Figure 5 compares performance of simulations 1 to 4 for different settings of TR. Observe 

that MCA-LM performs significantly better than either of the correlation based approaches, 

both Patel’s kappa methods, coherence based methods and Granger causality analysis (see 

supplementary material for GC and Coherence results) for TR ≤ 2 s in most of the results. 

For the four simulations shown in Figure 5, at TR ≤ 2 s, MCA-LM (c̃LM ≥ 0.82 for all the 4 

simulations) performs better than or on par with methods compared. At TR = 3 s its 

performance degrades a bit but is still comparable to the methods tested, with median 

dropping to 0.70 for the 50 node network.

For the 50-node model (sim#4) at TR = 0.5 s, c̃LM = 0.95, c̃FC = 0.77, c̃PC = 0.67, c̃Patelκ = 

0.75 and c̃Patel25κ = 0.79. Correlation based methods and Patel’s coefficients are not affected 

much by the increase in TR. However, there is a steady drop in performance of MCA-LM 

with increasing TR. Note that with increasing the number of nodes, performance of MCA-
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LM does not reduce much as compared to other approaches Figure 6. This figure captures 

the effect of network size on estimation of connections. Observe that at low TR (TR < 2 s) 

the drop in MCA-LMs performance is not as significant as the drop in performance of the 

other approaches when increasing the network size from 5 to 10. However, at TR = 3 s, 

network size seems to affect MCA-LMs performance.

MCA-LM performs considerably better than the other approaches for sim#5, which is the 

simulation with backward connections, as seen in Figure 7. Note from Figure 7, c̃LM = 1 for 

all TRs. Correlation, PC and Patel’s coefficients perform quite poorly with median c-

sensitivity ≤ 0.6 while Granger causality, mutual information and coherence methods 

produce a c-sensitivity ≤ 0.4 for all TR values. This is an important result with potentially 

significant biomedical implications, because in brain networks it is rare to have two regions 

having connections in only one direction and hence, a simulation with backward connections 

is more realistic. Results for simulations 6 to 8 for all approaches are in the supplementary 

material, Figure S2, S6. The general trend observed across all simulations is that the MCA-

LM performs better than the other approaches for all TRs in measuring the presence of 

connection regardless of direction. Furthermore, if the Regions of Interest (ROIs) are poorly 

defined, sim#6 all the approaches perform poorly as seen in the supplementary material 

Figure S2, S6.

Simulations 9–13 were obtained for moderate strength (0.2–0.6) of neuronal interaction. 

Figure 8 shows the results for sim#9–12, where, these simulations at noise = 0.1% are 

different from sim#1–4 only in strength of connections, all the other parameters were the 

same (Tabel 1). Notice that with an increase in connection strength, the performance of FC, 

PC and Patel’s measures (Granger causality, mutual information and coherence, Figure S7) 

increases as compared to lower connections Figure 5 (Figure S5). However, no such increase 

is observed for MCA-LM and although some methods, particularly partial correlation, 

perform significantly better than MCA-LM at moderate connection strengths, MCA-LM still 

performs well for TR < 2 s. Figure comparing performance for different connection 

strengths is provided in the supplementary material Figure S4. Sim#9–12 results at noise = 

1% follow a very similar trend as simulations with lower noise where c-sensitivity decreases 

with TR and are shown in Figure S2 and S8 of the supplementary material. However, at 

higher noise, the drop in performance with increased TR is more than that at lower 

connection strength.

Sim#13 is obtained for the same network structure as sim#5 but at a higher neural 

connection strength. MCA-LM performs much better than the other approaches for sim#13, 

which has both inhibitory and excitatory connections, for all TRs studied. Increasing noise 

degrades its performance but it is still better than the other approaches. The number of 

indirect connections increases with backward connections hence, full correlation performs 

poorly. In addition, PC and Patel’s measures perform poorly as well. Note from Figure 9, 

c̃LM = 1 for noise at 0.1% and TR ≤ 2 s. Also, FC and PC perform quite poorly at median c-

sensitivity of 0.6 or just under it for all TR and both noise levels. While Patel’s coefficients 

show the poorest performance at median c-sensitivity between 0.4–0.5 for all TR values.
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Figure 10 demonstrates the applicability of MCA-LM to recover presence and direction of 

connections. It is compared with Patel’s measure of conditional dependence. Details of how 

the directed Patel’s measure is calculated is provided in the supplementary material S3. For 

MCA-LM, the AUC drops with increasing TR. However, it is always better than Patel’s 

measures. At all TRs studied, the AUC > 0.90 in all but one simulation, i.e. sim#6 

corresponding to bad ROI definition.

Since the measures in Figure 10 does not provide a visualization of the results, we obtained 

one from average affinity matrices for simulations 1 through 13. Figure 11 shows the graphs 

obtained using the thresholded average affinity matrices for the simulations at TR = 2 s, 

where the threshold was applied at p < 0.01 under the null hypothesis. MCA-LM measures 

between non-interacting pairs of surrogate time-series, generated with the Iterative 

Amplitude Adjusted Fourier Transform (IAAFT) algorithm [68], gave the null distribution. 

We use the Chaotic Systems Toolbox [69] to generate the surrogates. The green arrow 

indicates detection of a right connection, while the red arrow indicates the false detection of 

non-existent connection. Figure 11 suggests that MCA-LM effectively identifies the 

presence and absence of connections. Figure 12 is the average specificity and sensitivity 

measures obtained for all the simulations with MCA-LM and Patel25 directed matrix. Since 

Patel25 performed better that Patel’s directed matrix, we have not included it in the results. 

Table S1 details the sensitivity and specificity for all the simulations.

4.1.1. Empirical data—To demonstrate the applicability of MCA-LM in quantifying 

resting-state fMRI connectivity profiles and extracting useful information about interaction 

patterns from the underlying dynamics of the human brain, we tested its performance on 

empirical rs-fMRI.

Default Mode Network Connectivity—We evaluated the robustness of all the methods 

investigated by testing reproduciblity of the DMN connectivity profiles estimated by each of 

the methods on two fMRI sequences of the 14 subjects. Two connectivity matrices, 

corresponding to each of the sequences, were obtained for every subject and each 

connectivity analysis method.

Results as of test-retest reliability are shown in Figure 13, where a measure of robustness for 

each connectivity analysis approach is obtained by correlating the two vectorized 

connectivity matrices for every subject. For MCA-LM, we show the results for both, 

symmetrized and non-symmetrized matrices and for Patel’s measure we present results on 

Patel’s κ, which is a symmetric measure, and directed matrices obtained using Patel’s κ and 

τ. We observe that, FC, PC, Patel’s κ are quite robust however, none of these approaches are 

significantly better than symmetrized MCA-LM. Comparing the directed matrices, i.e., 

MCA-LM with Patel directed and Patel25 directed (Figure 13), we see that on average, 

MCA-LM does perform better, however, significant differences using Wilcoxon signed rank 

test were not observed between MCA-LM and Patel’s measures.

Figure 14 plots the average amount every node is influence by every other node in the DMN. 

Where influence or directionality from x to y was quantified from the connectivity matrix 

using: S(x,y) − S(y,x) [35]. The average amount every region is influenced is given in Figure 
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14. A negative value indicates that the region is more of an influencer than one that is 

influenced.

Studies have shown that the PC/PCC is the core hub in the DMN, and that it is a central 

node in the DMN [53]. MCA-LM indicates that it is a strongly influenced node, while 

Patel’s measure capture contradictory information between its two measures. Additionally, 

Patel’s measure indicate that the rMTL is the most influenced while the lTC is the most 

influencing node.

5. Discussion

In this study, we investigate the applicability of MCA-LM to analyze realistic simulated and 

empirical fMRI data. The premise for performing such an analysis was that conventionally 

used linear methods of modeling functional interactions in the brain, such as correlation-

based approaches, fall short in their ability to capture directed, nonlinear dependencies in 

dynamic systems such as the brain. Moreover, full correlation cannot distinguish between 

direct and indirect connections. Additionally, connectivity estimates captured by full 

correlation, partial correlation and Patel’s conditional dependence measures do not improve 

with reduction in TR as our results suggest, indicating the inability of such standard methods 

to improve with better image acquisition techniques. For correlation based methods, this can 

be attributed to the simplistic nature of linear approaches, which in general, only provide a 

gross approximation of nonlinear processes. As discussed in [70], full correlation is quick to 

estimate and robust mathematically but is simplistic, however more complex methods that 

model biophysiological processes, such as DCM, [9] falls short when the number of regions/

voxels to be studied grows. Furthermore, Patel’s measures may be limited by the need to 

binarize the time-series data. Additionally, good estimation with Patel’s measures requires 

that the non-directed measures be estimated well first, which may not always be the case as 

seen for networks with both inhibitory and excitatory connections Figure 7 and 9). To bridge 

this gap, MCA-LM, introduces sufficient complexity in modeling time-series interactions by 

estimating nonlinear dynamics and providing a measure of causality which can be extended 

to large-scale brain networks. Additionally, in contrast, to other approaches it can extract 

useful information with improvement in the data representation. This is particularly 

important in the light of advancement in fMRI systems, where systems with temporal 

resolution of 200 ms [71] and more recently, 80 ms [72] have been developed.

MCA-LM, estimates causal interactions by quantifying the one-to-one mapping of predictor 

series states to states of predicted series. Here, states are reconstructed using lagged 

coordinates of the time-series. In short, MCA-LM tests if two time series belong to a 

common dynamical system. Additionally, MCA-LM estimates states of time-series and does 

not forecast system evolution through time, eliminating information loss in nonlinear 

systems [26]. The primary difference between MCA-LM and other lag-based approaches, 

such as Granger causality, is that it estimates states of say time-series y from x without using 

the past information of y and only instantaneous and lagged versions of x. Here, if x predicts 

y well, it implies that y causes x [26] which may seem counterintuitive to Grangers 

definition of causality but the fundamental difference lies in not using the past of the time-

series to be predicted. Additionally, MCA-LM can model nonlinear dynamics in systems 
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and may have an edge over Granger causality since it also uses instantaneous information of 

the predictor time-series which can be helpful to model differential systems observed more 

commonly in nature.

Essentially, analysis of the realistic simulated data in our study suggests that more complex, 

nonlinear modeling of dynamic systems such as the brain can reveal useful information and 

improve connectivity estimates as the sampling rate (repetition time, TR) decreases. In 

addition, we demonstrate its applicability in estimating connectivity from real resting-state 

functional MRI data.

Effect of TR

The repetition time (TR) is the length of time between two excitation pulses, i.e., it is the 

time interval between two consecutive scans of a point in the brain. The TR is directly 

related to the temporal resolution. As such, for a given scan duration, the reconstructed 

manifold space becomes less dense and less representative of the true manifold with 

increasing TR. Hence, increasing the TR has deleterious effects on the estimation of 

connections between time-series using MCA-LM. This decrease in MCA-LM performance 

with higher TR is a common trend evident from all the results. However, it still outperforms 

the other approaches even with the performance reduction at higher TR. Additionally, our 

results suggest that MCA-LM can potentially extract more meaningful information from 

improved data representation at low TR. There is a strong push to improving TR and shorter 

TRs are rapidly becoming the standard in resting-state fMRI analysis as is evident by the 

efforts of various neuroimaging projects (example - WU-Minn Human Connectome Project 

(HCP)). Hence, with improvements in scanning technology, non-linear approaches to 

estimating connectivity, such as MCA-LM, in the brain will find greater applications. 

Approaches such as correlation, partial correlation, coherence, mutual information, Patel’s 

measures do not improve with reduction in TR. However, Granger causality measures do 

improve with reduction in TR. Hence, they may find potential use for data acquired at low 

TR.

Effect of strength of connections

Comparing results in Figure 5 and Figure 8 at noise = 0.1 %, sim#1 and sim#9 respectively, 

which have the same model generation settings apart from the strength of connections, we 

note that MCA-LM is robust to reduction in the connection strength. However, the 

performance drops for other approaches with lower strength of neuronal interaction. MCA-

LM’s ability to capture connections in weakly linked systems could be useful as we do not 

exactly know the strength at which neurons interact. Even if the strength of influence of one 

time-series on another is low, the dynamics of the influencing time-series is embedded in the 

influenced one [26] which is captured by MCA-LM since it models the states of the time-

series. However, we observe that with regards to estimating influence at higher connection 

strength, MCA-LM and Patel’s measure have a poor specificity, Figure 12. This indicates 

that more false positives are detected when connections strength of neuronal interactions are 

high. Upon further investigation and as evident from Figure 11, at high strengths, 

bidirectional connections were captured. Analyzing the connectivity matrices estimated by 

MCA-LM we observed that, for unidirected connections, although the strength of 
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connections was higher in the direction of influence than in the opposite direction, 

significance testing detected both connections. MCA-LM was better able to capture 

direction in weak neuronal interactions, Figure 11.

Estimating backward connections

Simulations 5 and 13 are constructed having bidirectional influences, where influence is 

excitatory in one direction and inhibitory in the other [25]. This is inline with the current 

understanding that the connections in the brain constitute of inhibitory and excitory signals. 

Hence, such a simulation is a more realistic representation of the brain dynamics. A 

remarkable boost in performance (Figure 7 and Figure 9) with MCA-LM is found over the 

other approaches. We analyzed the connectivity matrices obtained with all the methods to 

understand why correlation-based approaches performed so poorly. It appears that using 

correlation-based methods for a pair of time-series having both inhibitory and excitatory 

connections, the inhibitory connection (example from time-series a to b) was acting counter 

to the excitatory connection (from b to a). Since, correlation-based approaches and Patel’s κ 
measure cannot disentangle determining a measure of interaction from a to b and b to a like 

MCA-LM, it establishes a low interaction between the two time-series. However, for time-

series that only had either excitatory or inhibitory connections between them, these 

approaches were able to capture a strong connection.

Cyclic connections, dense connections, poor ROI definitions and direction of connection

MCA-LM can capture the presence of connections, as evidenced by the high c-sensitivity in 

networks with cyclic connections and dense connections, performing similar to the other 

approaches. Another interesting model studied is the effect poor ROI definitions have on the 

detection of connections. In many fMRI analysis, spatial ROIs are used to divide the brain 

into a number of functional regions. However, such spatial ROIs do not necessarily match 

with the actual functional boundaries. With such an ROI definition, all methods perform 

very poorly.

With regards to direction of connections, MCA-LM is able to capture the direction of 

connections well as illustrated in Figures 10 and 11 as shown in Supplementary material 

Table 1 and 2. The AUC quantifies both, the detection of the presence and the direction of 

connections as one measure. MCA-LM performs favorably for all TRs. We note that apart 

from detecting a few wrong connections for the simulation with poor ROI definition and the 

simulation with dense connections, MCA-LM is able to detect connections well, as shown in 

Figure 11. In addition, it is able to detect the correct direction of connections for the cyclic 

graph, which is theoretically not possible using Bayesian approaches. These results 

underscore the effectiveness of MCA-LM in quantifying connections in a network. 

Interestingly, the connectivity matrices estimated with Patel’s measure perform well only for 

simulations generated with high strength of connections.

Apart from the methods analyzed in this paper, many approaches to estimate directed 

connectivity have been proposed literature. Especially in analyzing Electroencephalography 

(EEG), Magnetoencephalography (MEG) and fMRI data. However, approaches that work 

well with EEG/MEG data do not necessarily capture directed connectivity well on fMRI 
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data [73]. This can be attributed to the fact that fMRI is an indirect, smoothened measure of 

neuronal activity. As such, although there is a vast amount of literature that suggests directed 

connectivity approaches can quantify causal interactions in EEG/MEG, before applying 

them to fMRI data, proper validation needs to be carried out with fMRI simulations. In this 

work, we investigate approaches that are commonly applied to analyze fMRI data. We will 

also make available the simulations, which can act as a large test bed to validate different 

connectivity analysis approaches.

Applicability of MCA-LM analyzing empirical fMRI data

All the analyses discussed so far were carried out on simulations of fMRI time-series. 

However, we also investigated the spontaneous activity at a regional level in the default 

mode network from empirical resting-state fMRI data in the human brain. Since MCA-LM 

is a nonlinear data-driven approach, it does not assume prior knowledge about the model 

driving the dynamics of the system and captures signal dynamics without explicitly 

modeling the hidden neuronal states.

Previous studies have investigated functional interactions between subnetworks in the DMN 

[53] using partial correlation. In this study we investigate the robustness of connectivity 

analysis approaches in estimating connectivity profiles for different fMRI scans of every 

subject. Higher the similarity of connectivity profiles for the two scans, more robust the 

connectivity analysis approach. Our results suggest that MCA-LM is quite robust in 

uncovering the underlying network structure for individuals as evident from the correlation 

of connectivity profiles between the two runs.

We perform a connectivity analysis on the default mode network (DMN) and compare the 

resulting interactions with those established in the literature. In recent work [27, 26], it was 

demonstrated that a good cross-prediction with non-linear predictors was indicative of the 

presence of a causal influence from the predicted time-series to the predictor series. Using 

this concept, we provide a means to establish a form of influence to study interactions within 

the DMN, Figure 14. Our results (Figure 14) are in agreement with studies establishing 

functional connectivity of the DMN [53], demonstrating the central role of the precuneus/

posterior cingulate cortex in the DMN. This is complementary to the fact that PC/PCC has a 

high metabolic rate [51], is anatomically highly connected [74] and is known to play a 

central role in the DMN [75]. It is yet to be understood whether the PC/PCC is strongly 

influenced or a strongly influencing node, and although MCA-LM indicates that the 

PC/PCC is a highly influenced node, one Patel’s measure suggests that it is weakly 

influenced and the other Patel’s measure implies that it is an influencing node. These 

contradictory results indicate that on real fMRI data, directional analysis should be taken 

with a grain of salt. A larger cohort of subjects may give more conclusive results.

Limitations and Future work

In this study, we investigate the performance of various connectivity analysis approaches and 

compare it with a novel technique of using state space reconstruction from time-series to 

estimate connectivity, i.e. MCA-LM. We see that MCA-LM performs better than the best 

approaches determined in Smith et al 2011, [25], with the exception of weak performance at 
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high noise level and high TR. In this study we do not explore Bayesian approaches as 

proposed in [36], which have shown to work really well on the NetSim data [25], because 

such are particularly suited to performing group level inference rather than subject level. 

However the methods we have focused on in this work, do not use prior information from 

other subjects for inferring connectivity. With this study, we have shown that nonlinear state 

space modeling performs well on simulations and empirical data. An advantage of subject 

level connectivity analysis approaches, such as those investigated in this paper is that, these 

methods can be used when data is limited. In a future study we will compare subject level 

methods to group level Bayesian approach if data from multiple subjects is available.

One of the shortcomings of MCA-LM is its performance in the presence of noise. It uses 

local neighborhood information in estimating a time-series. This is sensitive to noise. A 

more robust model would be one that smoothens the state space thus being less sensitive to 

noise. Additionally, here, we use equation 3 to as the weighting function, which was also 

used in [26] and [35]. Another interesting research question would be whether using a 

different weighting function would produce better results.

Additionally, it has been shown that the brain works at multiple timescales [76, 77, 78], 

MCA-LM can be modified to account for different timescales by using a different 

embedding dimension d for the time-series. However, to test the impact of a non-optimal d 
on performance, we performed a preliminary analysis on the simulated data to test the effect 

of a higher d (d = 6), higher than the optimal we used, on the performance of MCA-LM. We 

observed that apart for a small drop in performance at higher TR (TR < 2 s) for a few 

simulations, the performance of MCA-LM was not significantly affected. This is observation 

is in line to the findings by Huanfei et al., 2014 [27]. Such a result is encouraging, since 1) it 

demonstrates the robustness of MCA-LM to parameters whose optimum can probably never 

be really known, additionally, 2) it also shows that even though the brain works at different 

timescales [76, 77, 78], selecting one d, that is not the optimal, will not deteriorate results 

significantly.

Analyzing results on simulations helps to understand a method’s advantages and 

disadvantages. However, it is also important to test the approach on empirical data. This is a 

challenging task since with empirical data we do not have a ground truth of connections. 

Test-retest reliability gives a measure of robustness of a method, however, it does not help 

determine if connections estimated are close to the truth. A possible truth can be obtained 

from fMRI task sequences as a study demonstrates [73]. This can help validate our approach 

more effectively on empirical data, especially since there would exist known directional 

relationships.

In summary, MCA-LM is able to estimate a measure of connectivity in different simulation 

scenarios as well in empirical resting-state fMRI data. It outperforms correlation-based 

methods, Patel’s conditional dependence measure, Granger causality and mutual information 

for most simulations. We observe that, for a given scan duration, performance of MCA-LM 

in estimating connections improves with decreasing TR. This is primarily because of two 

reasons 1) with decreasing TR the number of temporal samples increases and the 

reconstructed manifold space becomes more dense. 2) At lower TR, the distance between 
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consecutive time points decreases, resulting in better representation of signal states. 

Therefore, with improvements in fMRI technology [71, 72], methods that are able to capture 

the complex dynamics of the brain should be sought after and investigated so as to extract as 

much information as possible from the improved representation of the brain activity. This 

study aims to introduce one such approach, i.e. MCA-LM to extract true network 

connectivity from fMRI data. We have provided the analysis software on our lab website.

6. Conclusion

Mutual connectivity analysis using Local Models (MCA-LM) is a nonlinear modeling 

approach that extracts meaningful information from fMRI time-series without pre-

specification of network parameters. Unlike other non-linear methods of establishing 

connectivity that start from sophisticated model hypothesis on neural activity, hemodynamic 

response or cerebral blood flow using different priors, MCA-LM captures and learns useful 

information from the data itself without requiring potentially inaccurate assumptions about 

specific network architectures. Such an approach introduces sufficient complexity into 

modeling fMRI time-series interactions that simple, linear approaches cannot, while not 

encountering issues concerning increased network models to be pre-specified with more 

nodes; hence making them computationally practical, easy to use as well as capable of aid in 

estimating directed connections.

Our results on both the realistic simulated and empirical human resting-state fMRI time-

series reveal that MCA-LM can derive useful information from the data. With improvements 

in image acquisition rates, i.e. reduced TR, its performance improves, whereas other more 

commonly used approaches cannot exploit the improved time-series representation to derive 

better connectivity estimates. Our results suggest that such a nonlinear modeling of 

interactions, based on state space reconstruction, should be applied on data especially for 

data captured at low TR. In addition, MCA-LM appears robust in physiologically realistic 

scenarios that affect the captured fMRI data, such as: low connection strength of neuronal 

interactions, presence of inhibitory connections, dense connection patterns and cyclic 

connections. Furthermore, results on empirical human fMRI data suggest that such an 

approach can capture useful information about connectivity among components in the 

default mode network. There is a need for better characterization of underlying brain 

dynamics in the light of recent advances in fast fMRI acquisition techniques. We conclude 

that nonlinear methods that aim at accurately modeling the brains functionally interacting 

regions, such as MCA-LM, can provide valuable insights towards a better understanding of 

brain activity in both healthy and disease states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Network structure adopted from [25]. Figure (a) represents the connections as a network 

graph and Figure (b) represents the connections as a network matrix. We construct 50 

different networks for each repetition time (TR) having the same structure as is seen in this 

figure but with different connection strengths. Figure 2 shows all the network topologies 

adopted.
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Figure 2. 
Network topologies of all the simulations adopted in this paper. Sim#1 and sim#9, sim#2 

and sim#10, sim#3 and sim#11, sim#4 and sim#12, and sim#5 and sim#13 have the same 

network topologies but differ in neural interaction strength as indicated in Table 1.
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Figure 3. 
Illustration demostrating connectivity analysis of fMRI time-series. Connectivity analysis 

estimates a measure of interactions between fMRI time-series, represented as a matrix of 

interactions.
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Figure 4. 
Diagramatic representation of cross-mapping from Mx to My. In this illustration, the nearest 

neighbors (represented in the red circle) of xt (blue dot) map to the nearest neighbors of yt. 

This situation occurs when y influences x. However, if this is not the case, nearest neighbors 

of xt would not map to nearest neighbors of yt.
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Figure 5. 
C-sensitivity results on simulations 1 to 4 for different TR and different approaches 

visualized as boxplots. The bottom end of the box represents the first quartile and the top of 

the box represents the third quartile. Sim#1 through sim#4 have increasing number of nodes. 

Details are provided in Table 1. The circle with a dot in the box represents the distribution 

median. The ’x’ sign of a particular color indicates if MCA-LM is significantly (p < 0.01) 

better than the plot of the corresponding color and ’o’ indicates if it is significantly worse. 

At low TR, MCA-LM performs better than correlation-based methods (CM). Performance 

drops for all approaches as the number of nodes increases.
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Figure 6. 
This figure represents the same information present in Figure 5, however, here we compare 

performance of the methods with increasing number of nodes. Sim#1 through to sim#4 have 

5, 10, 15, 50 nodes respectively. C-sensitivity results on the simulations are visualized as 

boxplots for different TR. The bottom end of the box represents the first quartile and the top 

end represents the third quartile. The circle In the box represents the distribution median. At 

low TR, performance of MCA-LM does not reduce much with increasing number of nodes.
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Figure 7. 
C-sensitivity results on simulation 5 for different TR and different approaches visualized as 

boxplots. The bottom end of the box represents the first quartile and the top of the box 

represents the third quartile. The circle with a dot in the box represents the distribution 

median. This simulation accounts for bidirectional, inhibitory and excitatory connections. 

The ’x’ sign of a particular color indicates if MCA-LM is significantly (p < 0.01) better than 

the plot of the corresponding color. MCA-LM clearly performs better than the other 

approaches for all TRs.
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Figure 8. 
C-sensitivity results on simulations 9 to 12 for different TR with 0.1% noise and different 

approaches visualized as boxplots. The bottom end of the box represents the first quartile 

and the top of the box represents the third quartile. The circle with a dot in the box 

represents the distribution median. The ’x’ sign of a particular color indicates if MCA-LM is 

significantly (p < 0.01) better than the plot of the corresponding color and ’o’ indicates if it 

is significantly worse. MCA-LM and the other approaches perform well. These simulations 

differ from sim#1 to sim#4 (at noise = 0.1%) in only connection strength.
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Figure 9. 
C-sensitivity results on sim#13 for different TR and different approaches visualized as 

boxplots. The bottom end of the box represents the first quartile and the top of the box 

represents the third quartile. The circle with a dot in the box represents the distribution 

median. The ’x’ sign of a particular color indicates if LM is significantly (p < 0.01) better 

than the plot of the corresponding color. Sim#13 models excitatory and inhibitory 

connections. For such a simulation, MCA-LM clearly performs better than the other 

approaches for high and low noise.
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Figure 10. 
Plots showing the AUC obtained when comparing the presence or absence of network 

connections recovered by MCA-LM and Patel’s measures with the known network ground 

truth for the various simulations. The (1) Green plot corresponds MCA-LM, (2) Dark blue to 

Patel directed and (3) Light blue to Patel25 directed. The bold line represents the median 

AUC while the shaded portions correspond to the interquartile range. Observe that for 

MCA-LM, in nearly all cases the AUC is above 0.90. Also, the AUC drops steadily with 

increasing TR.
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Figure 11. 
Graphical representation of network structures recovered with MCA-LM for simulations 1 

to 13 at TR = 2 s. Graphs were obtained for each simulation after thresholding the average 

affinity matrix obtained for all trials at p <0.01. Green, red and blue arrows indicates right 

connection, false connection and missed connection respectively.
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Figure 12. 
Heatmap comparing average sensitivity and specificity measures obtained with MCA-LM 

and Patel25 directed connectivity matrix. We clearly see that Patel’s measures do not work 

well for simulation 5 and 13 which correspond to simulations with backward connections. 

Additionally, its performance does not change with TR.
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Figure 13. 
Comparing robustness of connectivity analysis approaches in estimating connectivity 

profiles for two fMRI scans of every subject measured with Pearson’s correlation 

coefficient. The bar corresponds to the mean of correlation for the 14 subjects, and the error 

bar is one standard deviation above and below the mean.
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Figure 14. 
Plot shows the average amount each of the eight nodes in the DMN are influenced by other 

nodes. Positive value indicates a node being influenced strongly while negative value 

represents an influencer node.
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