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Abstract

Dynamic Causal Modelling (DCM) is an advanced biophysical model which explicitly describes 

the entire process from experimental stimuli to functional magnetic resonance imaging (fMRI) 

signals via neural activity and cerebral hemodynamics. To conduct a DCM study, one needs to 

represent the experimental stimuli as a compact vector-valued function of time, which is hard in 

complex tasks such as book reading and natural movie watching. Deep learning provides the state-

of-the-art signal representation solution, encoding complex signals into compact dense vectors 

while preserving the essence of the original signals. There is growing interest in using Recurrent 

Neural Networks (RNNs), a major family of deep learning techniques, in fMRI modeling. 

However, the generic RNNs used in existing studies work as black boxes, making the 

interpretation of results in a neuroscience context difficult and obscure.

In this paper, we propose a new biophysically interpretable RNN built on DCM, DCM-RNN. We 

generalize the vanilla RNN and show that DCM can be cast faithfully as a special form of the 

generalized RNN. DCM-RNN uses back propagation for parameter estimation. We believe DCM-

RNN is a promising tool for neuroscience. It can fit seamlessly into classical DCM studies. We 

demonstrate face validity of DCM-RNN in two principal applications of DCM: causal brain 

architecture hypotheses testing and effective connectivity estimation. We also demonstrate 

construct validity of DCM-RNN in an attention-visual experiment. Moreover, DCM-RNN enables 

end-to-end training of DCM and representation learning deep neural networks, extending DCM 

studies to complex tasks.
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1 Introduction

Dynamic Causal Modelling (DCM) (Friston et al., 2003) is a nonlinear generative model, the 

only one that models explicitly the entire process from stimulus to functional magnetic 

resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal via neural activity 

and cerebral hemodynamics. It is thus considered by many to be the most biologically 

plausible as well as the most technically advanced fMRI modeling method (Smith, 2012)

(Smith et al., 2013). A causal brain architecture, defined in terms of effective connectivity, 

describes how neural activity in distributed brain regions influence each other - and how 

input stimuli perturb neuronal dynamics. DCM is classically used to test hypotheses of 

causal brain architectures and estimate associated brain effective connectivity. Various 

approaches have been proposed for DCM parameter inference, such as Expectation 

Maximization (EM) Gauss-Newton search (Friston, 2002), variational Bayes (Friston et al., 

2010, 2007, 2008; K. J. Friston, 2008), Kalman filtering methods (Daunizeau et al., 2009)

(Havlicek et al., 2011), and Markov Chain Monte Carlo (MCMC) methods (Chumbley et al., 

2007)(Aponte et al., 2016). DCM has enjoyed a rapid popularity uptake over the past decade 

(Friston, 2011). To conduct a DCM study, one needs to represent the experimental stimuli as 

a vector valued function of time. In simple paradigms, one entry in the stimulus vector can 

be a box train function to represent the on-off of an experimental condition or a continuously 

valued function to represent the intensity of an experimental condition. However, in complex 

paradigms such as book reading and natural movie watching, manually designing a compact 

vector representation of the complex stimuli, preserving the high level semantic meaning of 

the original signal, is very hard. Deep neural networks (DNNs) have been shown useful in 

representation learning, leading to state-of-the-art performance in various applications 

(Bengio et al., 2013). It is tempting to explore its use in DCM modeling.

Deep learning, which has shown considerable potential in the last decade as a powerful tool 

for data analysis, can help explore new possibilities of understanding of brain behavior 

(Gonzalez et al., 2017). As a major family of deep learning techniques, Recurrent Neural 

Network (RNN) is particularly suitable for temporal signals, e.g. fMRI, because it models 

temporal correlation among data explicitly with its recurrent structure. Recently, there is 

growing interest in using RNN to model fMRI signal (Gonzalez et al., 2017)(Barak, 2017). 

Specifically, Güçlü et al. (Güçlü and van Gerven, 2016) used RNNs to predict brain activity 

in response to natural movies to elucidate how complex visual and audio sensory 

information was represented in the brain. Qian et al. (Qian et al., 2016) trained a RNN to 

predict coming words in a book and were able to predict fMRI activity in reading subjects 

using hidden states in the RNN through linear mapping, suggesting a relationship between 

the RNN architecture and the cognitive process of reading. In addition, Sussillo et al. 
(Sussillo et al., 2015) trained RNNs to reproduce muscle activity in monkeys to explore the 

hypothesis that motor cortex reflects dynamics appropriate for generating temporally 

patterned outgoing commands. However, a major criticism of the use of generic RNNs in 

understanding biological processes is the lack of biophysical meaning.

Here, we harness the strengths of DCM to leverage its biophysical interpretability and 

extend this advantage to the nascent area of study applying RNNs to model fMRI signal. We 
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introduce DCM-RNN, a biophysically interpretable RNN. We cast DCM into a novel 

generalized recurrent neural network (G-RNN) without any compromise of biophysical 

significance. The hidden states of DCM-RNN are neural activity, blood flow, blood volume, 

and deoxyhemoglobin content and its parameters are quantities such as effective 

connectivity, oxygen extraction fraction at rest, and vessel stiffness. DCM-RNN finds the 

maximum a posteriori (MAP) estimations of its parameters with back propagation. We 

believe DCM-RNN is a versatile tool. It can fit seamlessly into the classic DCM study 

pipeline for model evidence calculation and effective connectivity estimation. Moreover, its 

RNN architecture allows a straightforward combination of DCM-RNN with other 

(representation learning) DNNs and enables end-to-end training. The optimal representation 

is task dependent because the learnt representation should preserve any information related 

to the task and remove any nuisances variance (Achille and Soatto, 2018). End-to-end 

training ensures that the representation and DCM-RNN are optimized jointly.

In the remainder of this paper, we first provide backgrounds on DCM and RNN in Sec. 2, 

including model evidence and free energy bound. In Sec. 3, we explicate the development of 

DCM-RNN: the conversion of DCM into DCM-RNN, parameter estimation in DCM-RNN, 

and important implementation details of DCM-RNN on a deep learning platform. In Sec. 4, 

we show effective connectivity estimation and model selection with DCM-RNN in classical 

simple-stimulus scenarios. The results are compared with DCM. Finally, Sec. 5 presents 

possible extensions of DCM-RNN to accommodate other variants of DCM. Sec. 6 

summarizes the main contribution of the paper. DCM-RNN studies with complex stimuli 

and DNN learnt representation will be explored in future work.

2 Backgrounds

2.1 Dynamic causal modeling

DCM can be expressed compactly as

ẋ(t) = f (x(t), u(t); θ) + w(t; θ) (1)

y(t) = g(x(tu(t); θ) + z(t; θ) (2)

where u(t) ∈ ℝM is the experimental or exogenous stimuli, the inputs to DCM. x(t) ∈ ℝ
Nb is 

the neural activity and y(t) ∈ ℝ
Nb is the modeled blood-oxygen-level dependent (BOLD) 

signal. w(t) ∈ ℝ
Nb is random fluctuation in the neural activity space which may be Wiener 

process (Daunizeau et al., 2009)(Havlicek et al., 2011), or analytic motion in the generalized 

coordinates (Friston et al., 2008)(K. J. Friston, 2008)(Friston et al., 2010), or absent (Friston 

et al., 2003). z(t) ∈ ℝ
Nb is observation noise which may be Gaussian or analytic motion in 

generalized coordinates (Friston et al., 2008)(K. J. Friston, 2008)(Friston et al., 2010). u, x, 
y, w, z are continuous-time functions of time t. θ is the whole set of DCM parameters, 
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encoding the causal brain architecture, and typically treated as constant. The superscript M 
indicates the number of stimuli. Each stimulus is indexed as um, m ∈ {1, 2, … Nb}, is a 

scalar function, an abstract descriptions of the neural activity in the n-th brain region. yn (t), 
n ∈ {1, 2, … Nb} is a scalar function which is a summary of the fMRI signals in the n-th 

brain region, often obtained by averaging over all voxels in the region. As per convention, 

temporal derivative is denoted by a dot above a variable. f models the evolution of the neural 

activity and will be referred to as neural evolution function in this manuscript.g maps the 

neural activity to modeled fMRI and will be referred to as the hemodynamic function in this 

manuscript.

Fig. 1 shows an overview of the original DCM proposed in (Friston et al., 2003). In the 

original DCM, w is absent, and the neural evolution function takes a bilinear form as the 

majority of DCMs do:

ẋ(t) = Ax(t) + ∑
m = 1

M
um(t)Bmx(t) + Cu(t) (3)

where A ∈ ℝ
Nb × Nb, Bm ∈ ℝ

Nb × Nb for m ∈ 1, 2, …M , C ∈ ℝ
Nb × M

 are parameters to be 

estimated, referred to as the effective connectivity (Friston, 2011). A indicates how the 

neural activity in one region influences those in other regions. Bm indicates how the m-th 

input stimulus alters the connectivity between regions. C indicates the impact of the input 

stimuli on the regional activities.

While the neural activity is coupled between brain regions, the hemodynamics of one region 

does not depend on other regions, given the neural activity in that region. We drop the region 

index n of the DCM states and parameters in Eq. (4)–(9) for simplicity and clarity. First, x 
evokes vasodilatory signal s, which modulates the blood inflow f to a brain region (Friston et 

al., 2000)

ṡ(t) = x(t) − κs(t) − γ( f (t) − 1) (4)

ḟ (t) = s(t) (5)

where κ is a constant of signal decay and γ is a constant of feedback regulation. The blood 

volume change in a brain region is determined by blood inflow and outflow(Buxton et al., 

1998)

v̇(t) = 1
τ f (t) − 1

τ f out(t) (6)
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where v is the volume of blood in a brain region, fout is blood outflow, the volume of blood 

leaving the brain region, and τ is mean transit time of blood. The blood outflow is a function 

of the blood volume based on the balloon model for vasculature (Grubb RL Jr, Raichle ME, 

Eichling JO, 1974):

f out(t) = v(t)
1
α (7)

where α is vessel stiffness. Under the assumption that oxygen extraction is tightly coupled to 

blood flow (Buxton et al., 1998)

q̇(t) = 1
τ

1 − (1 − E0)
1

f (t)

E0
f (t) − q(t)

v(t) v(t)
1
α (8)

where q is deoxyhemoglobin content, E0 is the oxygen extraction fraction at rest. A 

generalized BOLD signal model is proposed in (Stephan et al., 2007), which states that the 

modeled BOLD signal is a function of v and q

y(t) ≈ V0 k1 1 − q(t) + k2 1 − q(t)
v(t) + k3 1 − v(t) (9)

k1 = 4.3ϑ0E0TE

k2 = εr0E0TE

k3 = 1 − ε

where v0 is the resting venous blood volume fraction, ϑ0 is the frequency offset at the outer 

surface of the magnetized vessel for fully deoxygenated blood, E0 is the oxygen extraction 

fraction at rest, ΤE is the Echo Time, r0 is the slope of the relation between the intravascular 

relaxation rate and oxygen saturation, and ε is the ratio of intra- and extravascular signal.

As a summary, DCM describes each brain region with five state values {x, s, f, v, q}. Only 

the neural state x has interactions among regions. Hemodynamic states {s, f, v, q} work on 

each region separately and are only dependent on the neural state x in the same region. The 

whole model parameter set θ = {θC, θh, θλ} includes connectivity parameters θC, 

hemodynamic parameters θh and hyper parameters θλ as in Eq. (10) to Eq. (12).

θC = A, Bm, C m ∈ 1, 2, …, M (10)
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θh = α, ε, τ, κ, γ, E0, V0, θ0, r0 (11)

θ2 = λ (12)

Note that we drop the region index n of the DCM states and parameters in Eq. (4)–(9). Each 

element in θh is a Nb-dimensional vector, including the corresponding parameters in all 

brain regions (e.g. α = α1, …αn, …, αNb

T
). In the original DCM, the hyper parameters θλ are 

used to model the covariance of the Gaussian observation noise z.

In a particular study or a particular DCM implementation, θ can be reduced to one of its 

subset, by setting other parameters to known values based on prior studies. The same 

hemodynamic parameters for different brain regions can be constrained to have the same 

values. Table 1 summarizes the variables in DCM and their characteristics. θC is typically 

unknown before conducting an inference experiment while one may have hypothesis about 

the support of the matrices. An entry in a matrix in θC is allowed to deviate from non-zero in 

parameter estimation only if it is supported; otherwise, it is kept zero.

2.2 Model evidence and free energy

One of the principal uses of DCM is to evaluate the model evidence for different hypotheses 

given data and use Bayesian model comparison to adjudicate between hypotheses. A 

hypothesis is a particular combination of {f, g, w, z} and prior distributions associated with 

the combination. For example, one can use different forms of f to have nonlinear neural 

evolution function DCM (Stephan et al., 2008) and multiple neural states DCM (Marreiros 

et al., 2008). One can have deterministic DCM (Friston et al., 2003) by removing w in the 

neural evolution function and stochastic DCM (Friston et al., 2008)(K. J. Friston, 2008)

(Friston et al., 2010) in the present of w. One can also control the causal architecture by 

setting the supports of θC, which is equivalent to set the non-supported connectivity with 0 

mean and 0 variance in prior. Model evidence ln p(y|m) is the logarithm of the probability of 

seeing the fMRI data y given a model m. Here y is the fMRI signals from all brain regions 

and all time. The model evidence is usually not tractable and DCM resorts to variational 

Bayes for an approximation under the Laplace approximation. In variational Bayes, the 

model evidence can be expressed as
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ln p(y |m) = F + D

F = E + H

E = ∫ q(θ)ln p(θ, y |m)

H = − ∫ q(θ)ln q(θ)dθ

D = ∫ q(θ)ln q(θ)
p(θ y, m)dθ

(13)

where F is the free energy, D is the Kullback-Leibler (KL) divergence, E is the expected 

energy, and H is the entropy of q. q is the variational distribution used to approximate the 

hard-to-track p(θ|y, m). Since D is always non-negative, F forms a lower bound of the model 

evidence, which is known as an evidence lower bound (ELBO) in machine learning. In 

DCM, q takes Gaussian form q(θ) = N(μq, Σq) and consequently the entropy of q is

H = 1
2ln ∑q +

N p
2 +

N p
2 ln (2π) (14)

where Np is the number of parameters. The Laplace approximation expands ln p(θ, y|m) as a 

Taylor series of θ up to the second order term at a mode of θ. Denote the optimal q, 

N μq
∗, ∑q

∗ . The expected energy E can be approximated as (Friston et al., 2007)

E ≈ ln p μq
∗, y |m + 1

2
∂2ln p(θ, y |m)

∂θ ∂θ θ = μq
∗ ∑q

∗
(15)

The Laplace approximation is equivalent to assume that p(θ, y|m) is Gaussian with respect 

to θ and the majority probability mass of θ is concentrated at the mode μq
∗. Substitute Eq. 

(14)(15) into Eq. (13),

F ≈ ln p μq
∗, y |m + 1

2 tr ∂2ln p(θ, y |m)
∂θ ∂θ θ = μq

∗ ∑q
∗ +

N p
2 ln (2π) + 1

2ln (∑q
∗ ) +

N p
2 (16)

Take derivative of the right-hand sides of (16) and set it to 0, one obtains the optimal 

covariance:
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∑q
∗ = − ∂2ln p(θ, y |m)

∂θ ∂θ θ = μq
∗

−1

(17)

Substitute Eq. (17) into Eq. (16)

F ≈ ln p(μq
∗, y |m) +

N p
2 ln (2π) + 1

2ln ( | ∑q
∗ | ) (18)

If q∗ = p(θ y, m), D
q = q∗ = 0. The free energy bound is tight and thus can be used to 

approximate the model evidence,

ln p(y |m) ≈ ln p(μq
∗, y |m) +

N p
2 ln (2π) + 1

2ln ( | ∑q
∗ | ) (19)

In DCM, q* is found by maximizing the free energy bound F. μq and Σq are optimized 

iteratively and Σq provides the curvature information used in the μq updating:

until converge:

μq = arg max
θ

ln (p(y, θ |m)) (20)

∑q = − ∂2ln p(θ, y |m)
∂θ ∂θ θ = μq

−1

(21)

end

Newton’s method is used to update μq
c, μq

h  and μq
λ  iteratively in the μq step. In the 

conventional way of using the Laplace approximation, μq
∗is found first by any optimization 

solver according to Eq. (20) and ∑q
∗ is calculated post hoc (Friston et al., 2007).

2.3 Recurrent Neural Network

Different from other deep learning neural networks, which assume samples are independent, 

RNN respects the fact that samples are highly correlated in many applications, such as 

frames in video and words in a sentence. RNN models the correlation explicitly using the 

recurrent structure and thus is particularly suitable for sequence signal, such as fMRI. RNN 
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has two typical graphic representations as shown in Fig. 2. Fig. 2(a) is a compact 

representation where the dashed line means the arrow points from current time point to the 

next. Fig. 2(b) is the unfolded RNN through time. In this representation, there is no explicit 

recurrent unit, but it is essential to see that an input of the system has an influence on current 

and future outputs.

Multiple computational models can reside on the graphic structure in Fig. 2. The classic 

RNN (Zachary C. Lipton, 2015) models the relationship between its input and output as

ht = f h(whxxt + Whhht − 1 + bh) (22)

yt = f y(Wyhht + by) (23)

where x is the input, h is the hidden state, and yt is the output. W and b are weighting matrix 

and bias, the tunable parameters. Subscript t indicates time and superscripts are used to 

differentiate parameters. fh and fy are simple nonlinear functions. For example, fh can be 

sigmoid or rectified linear unit, and fy is often softmax for classification and density 

approximation problem. A well-known shortcoming of the classic RNN is that it cannot 

capture long term correlation. Long short-term memory (LSTM) (Hochreiter et al., 1997) 

and Gated Recurrent Unit (GRU) (Cho et al., 2014) attenuate the problem by using gate 

units to lock information in the memory cells. RNNs have many other enhancements. 

Bidirectional recurrent neural network (Schuster and Paliwal, 1997) explores correlation 

from both forward and backward directions of a sequential signal. LSTM with attention 

(Dzmitry Bahdana et al., 2015) imposes an explicit mechanism of highlighting crucial 

information. LSTM with external memory (Graves et al., 2014) provides RNN with even 

more power of capturing long term dependency in the data. LSTM with Generative 

Adversarial Net (Dzmitry Bahdana et al., 2015) enables LSTM to generate realistic signals 

with the help of a discriminative model.

RNNs commonly use Backpropagation Through Time (BPTT) (Werbos, 1990)(Zachary C. 

Lipton, 2015) for training. BPTT treats RNN in the unfolded fashion. In this view, RNN is 

no longer a recurrent network, but a deep feedforward neural network. The error at one time 

point can be propagated back until the first time point. After propagating back all the errors, 

parameters are updated simultaneously, where the gradient for a particular parameter is the 

sum of partial gradients of errors from all the time points with respect to the parameter. A 

practical modification of the naïve BPTT is Truncated Backpropagation Through Time 

(TBPTT) (Williams and Zipser, 1989) which fixes the maximum number of time steps any 

error is allowed to propagate back. It alleviates the gradient vanishing/exploding problem 

suffered by BPTT.
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3 Method

3.1 Convert DCM into DCM-RNN

We start the conversion from a generalization of the classic RNN by adding more 

nonlinearity into the classic RNN

ht = f h(Whϕh(xt, ht − 1; ξh) + bh) (24)

yt = f y(Wyhϕy(ht; ξy) + by) (25)

ϕh and ϕy are the added nonlinear functions, which are parameterized by ξh and ξy. This 

generalization greatly extends the flexibility of RNN and makes the resulting G-RNN 

capable of accommodating the complexity of DCM.

Practically acquired fMRI data are discrete signals, which requires DCM to be discretized. 

In classic DCM, the discretization is based on a local linearization with matrix exponential 

(Ozaki, 1992). We use simple Euler’s method:

ȧt ≈
at + 1 − at

Δt

for a ∈ x, s, f , v, q

(26)

where Δt is the time interval between adjacent time points. This approximation can be 

arbitrarily accurate as long as Δt is small enough. Taking ẋt as an example. Substituting Eq. 

(26) into the neural evolution equation, Eq. (3) becomes

xt + 1 ≈ (Δt × A + I)xt + ∑
m = 1

M
Δt × umt

Bmxt + Δt × Cut (27)

It can be organized and rewritten in the form of G-RNN

xt + 1 ≈ [(ΔtA + I) ΔtB ΔtC]ϕx xt
ut

≡ [Wxx Wxxu Wxu]ϕx xt
ut

(28)

where B = [B1, B2, …, BM] is a concatenation of the Bm matrices and
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ϕx xt
ut

=

xt

ut ⊗ xt

ut

(29)

where ⊗ is Kronecker product (Cichocki et al., 2015) defined as

ut ⊗ xt =

u1t
xt

u2t
xt

⋯
uMt

xt

(30)

Eq. (28) can be implemented as a part of a G-RNN shown in Fig. 3. Applying similar 

approximation to the hemodynamic equations, Eq. (4)–(8) become

st + 1 = Δt × xt − (Δt × κ − 1)st − Δt × γ( f t − 1) (31)

f t + 1 = f t + Δt × st (32)

vt + 1 = Δt
τ f t − Δt

τ vt

1
α + vt (33)

qt + 1 = qt + Δt
τ

1 − (1 − E0)
1
f t

E0
f t − Δt

τ
qt
vt

vt

1
α (34)

Grouping hemodynamic states {s, f, v, q} into a vector and some of their functions into one 

nonlinear function leads to Eq. (37), where
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ϕh

st

f t

vt

qt

=

st

f t

vt

qt

vt

1
α

qt
vt

vt

1
α

1(1 − E0)
1
f t

E0
f t

(35)

Eq. (26) can be implemented as a part of a G-RNN shown in Fig. 4. The fMRI output 

equation Eq. (9) is not a differential equation and can be directly rewritten without 

approximation to Eq. (38) where

ϕo vt
qt

=

vt

qt

qt
vt

(36)

Fig. 5 visualizes it as a piece of G-RNN.

Assembling all the pieces together, one obtains the final DCM in the G-RNN framework, 

shown in Fig. 6. In Fig. 6, variables are marked with both indicators in DCM and indicators 

in DCM-RNN to stress their relationship. The large rectangle over the hemodynamic and the 

output layer means the content inside the rectangle is repeated for each brain region. 

Repetition time is Nb as shown in the right bottom corner of the rectangle. Variables inside 

the rectangle are specific to each brain region.
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st + 1
f t + 1
vt + 1
qt + 1

=

−(Δtκ − 1)st −Δt × γ 0 0 0 0 0
1 Δt 0 0 0 0 0

0 Δt
τ 1 0 − Δt

τ 0 0

0 0 0 1 0 − Δt
τ

Δt
τ

ϕh

st

f t

vt

qt

+

Δt
0
0
0

xt +

Δt × γ
0
0
0

≡ Whhϕh

st

f t

vt

qt

+ Whxx + bh

(37)

yt = −1(1 − ε)V0 − 4.3ϑ0E0V0TE − εr0E0V0TE × ϕo vt
qt

+ V0 4.3ϑ0E0TE + εr0E0TE + (1 − ε)

≡ Woϕo vt
qt

+ bo

(38)

3.2 DCM-RNN parameter estimation

Since all its operators are partial differentiable, DCM-RNN can be trained by TBPTT. We 

first find the MAP estimation of θ and then calculate the free energy bound with the Laplace 

approximation post hoc. Assume the observation noise z and the prior distribution of θ for a 

given model are both Gaussian,

p y θ, m = N g1:T(θ), ∑ (θ) (39)

p(θ |m) = N(μp, ∑p ) (40)

where g1:T is the outputs of hemodynamic function g for all time points. Eq. (39)(40) lead to

ln p(θ y, m) ∝ ln p(θ y, m)p(θ m)

= − 1
2εy

T∑−1εy −
Ny
2 ln (2π) − 1

2ln ∑
− 1

2εp
T∑p

−1εp −
N p
2 ln (2π) − 1

2ln ∑p

(41)
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where εy = y − g1:T (θ) and εp = θ − μp. Ny = TNb is the total number of fMRI values. Σ 
accounts for the temporal and spatial correlation of the observation noise and takes a 

restricted form to constrain its degrees of freedom

∑ = ∑
i

exp(λi)
−1Qi (42)

where θλ = {λi|i = 1, 2,…} is the DCM hyper parameters and Qi ∈ ℝ
NbT × NbT

 are 

predefined covariance matrix patterns (Friston, 2002). The loss function l(θ) of DCM-RNN 

is set as − ln p(θ|y, m) after removing the constant terms

l(θ) = 1
2εy

T∑−1εy + 1
2ln ∑ + 1

2εp
T∑p

−1εp (43)

where εy, εp, and Σ are functions of θ. The optimization objective of l(θ) is essentially 

equivalent to the one for DCM described in Eq.(20).

3.3 Implementation of DCM-RNN on deep learning platform

In this section, we highlight some important details of our DCM-RNN implementation on 

Tensorflow (GoogleResearch, 2015), an open source deep learning platform supported by 

Google. It uses a variant of TBPTT for RNN parameter tuning. Instead of a complete 

unfolded RNN, matching the whole length of target signals, Tensorflow unfolds a RNN to a 

fixed length, which is short and closely related to the back propagation length in TBPTT. It 

balances computation and the model’s long-term correlation capturing ability. After building 

the short model, Tensorflow cuts training signals into (overlapping) segments and stacks 

segments from different samples into a batch. Segments in a batch are of the same time 

index. Gradients from the segments in a batch are calculated in parallel. The gradient used to 

update a parameter is the mean or the sum of gradient from all segments in the batch. It is 

the standard multi-sample parallelism. It speeds up the computation and stabilizes parameter 

tuning. Typically, model parameters are updated after each batch. Tensorflow respects the 

temporal dependency of batches. For each batch, the initial values of the hidden states are 

read from its preceding batch. It means parameter updating for a batch depends on parameter 

updating of its preceding batches.

The unfolding length is crucial for DCM-RNN and tends to be longer than the ones usually 

used for a classic RNN. On one hand, since input at one time point may affect the BOLD 

signal in the coming seconds, according to our rule of thumb, the unfolded DCM-RNN 

should cover a comparable or longer range, such as 8 seconds. Otherwise, the gradient 

obtained by TBPTT is not reliable and does not point to the right direction. On the other 

hand, the time interval between adjacent time points Δt needs to be small to validate the 

Euler’s approximation. According our experiments, Δt = 1/16 second seems an appropriate 

choice. Consequently, the unfolded DCM-RNN should be no shorter than 128 time points.
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The multi-sample parallelism is not applicable in DCM-RNN when we infer an interesting 

objective for a single subject with a single time series. The loss of the multi-sample 

parallelism leaves the DCM-RNN estimation slow and the gradient calculation instable. We 

develop a single-sample parallelism to attenuate the problems. At the beginning of each 

epoch, we use the parameters determined in the previous epoch to run a forward pass of 

DCM-RNN, namely simulating the whole fMRI sequence, to obtain the values of the hidden 

states at each time point. After cutting the single time series into segments, we stack every 

128 segments from the same sample into a batch and feed it into Tensorflow. Tensorflow 

will calculate gradients from the segments in the batch in parallel. The initial values of the 

hidden states for each segment come from the initial forward pass at the beginning of the 

epoch. We sum up gradients from all the batches and do a global updating of the model 

parameters. The singlesample parallelism detaches the temporal dependency of parameter 

updating but not the temporal dependency of the signals. Drop out can be used to randomly 

skip the gradient calculation for a percentage of the segments to further decreases the 

computation load. In our experiments, this parallelism leads to more than 10X speed up and 

enhances stability of parameter tuning.

Choosing a proper step size for parameter updating is tricky in DCM-RNN. The proper step 

size depends on many factors such as segment length, number of brain regions, fMRI signal 

magnitude, Δt, etc. The proper step size at the beginning of training can also be very 

different from the one at the end of a training. Instead of a fixed step size, in each epoch, we 

use adaptive step size so that the product of the step size and the maximal gradient 

magnitude among all the parameters equals to a constant. If an updating increases the loss 

value, we further decrease the step size, which is typically known as backtracking in 

optimization. A similar backtracking device is used in the Statistical Parametric Mapping 

(SPM) implementation of DCM, based on an abbreviated gradient descent and the matrix 

exponential form of the local linearization. Sometimes, after back tracking several times, 

DCM-RNN still cannot reduce the loss. It may be caused by two reasons: the step size is still 

too large, or the current gradient is not accurate. Since each segment only sees a short 

duration of the whole signal, the gradients calculated from segments may be different from 

the global optimal. Averaging the segment gradients are likely to reduce the error but not 

likely to eliminate it completely. The inaccuracy of the gradient may also result from 

random drop out of signal segments. Without inferring the exact reason, we abandon the 

current gradient and reduce the updating constant, i.e. the product of the step size and the 

maximal gradient magnitude, which systematically reduces the step size in all following 

iterations.

4 Experiments

4.1 General settings

The main widely-used DCM implementation is in Statistical Parametric Mapping (SPM). In 

our experiments, we use SPM 12, the latest released version of SPM, and we will refer to it 

as DCM-SPM. Several peripheral modifications are made to the released DCM-SPM codes 

to make the implementation match the theory discussed in this paper. In spm_dcm_estimate, 

fMRI signal is not detrended and not rescaled. In spm_fx_fmri, P.A is not log self-inhibited 
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and C is not rescaled to 1/16 of its original value. In spm_dcm_fmri_priors, the prior mean 

of the off-diagonal entries in A is set to zero, instead of 1/128 to prevent it from biasing 

toward positive value in parameter estimation. DCM-SPM provides several options of 

integration schemes to discretize DCM. We use spm_int_J, because it uses an explicit 

Jacobian-based update rule that is infallible and preserves nonlinearities in DCM, although it 

runs much slower than the default spm_int.

Functional MRI data are up sampled to meet the requirement of Δt in both models and fMRI 

signals are further cut into segments in DCM-RNN for TBPTT. They change the number of 

data points while the prior terms in the optimization objective in both models does not scale 

with data. Thus, we rescale the prior covariances to keep the models well-regulated during 

optimization. The variances are rescaled by two factors: the first is up sampling factor, 

calculated as the original fMRI temporal resolution divided by the up sampled fMRI 

temporal resolution; the second is segmentation factor, calculated as the original fMRI 

temporal length divided by the segment length and the batch size. For DCM-SPM, the 

segmentation factor is 1. After finding a MAP estimator of DCM parameters, we calculate 

the 90% confidence range for each parameter to evaluate the uncertainty of the estimation 

and the free energy as a metric of fitting goodness. The confidence range and the free energy 

are calculated based on the Laplace approximation using DCM-SPM routines. For DCM-

RNN, we feed the MAP estimator into DCM-SPM routines. Notably, fMRI signals in DCM-

RNN are only cut into segments during the MAP estimation phase, not the confidence range 

and free energy evaluation, and thus the segmentation prior rescaling factor is not applied. It 

ensures a fair comparison between DCM-RNN and DCM-SPM. The fMRI signal up 

sampling also has a direct influence on the confidence range and the free energy, because the 

added pseudo samples make the system overconfident in the estimation as if it had more 

observations than it actually did. For example, if fMRI signal is up sampled by a factor of 

two, the confidence range and the free energy will be half of their original values, given 

other terms in the object function properly rescaled accordingly. The overconfidence has 

been corrected in the reported confidence range and free energy. We do not compare the free 

energy bound on model evidence in noise free experiments because this would require an 

estimation of accuracy - and the accuracy is not well defined in the absence of observation 

noise.

In all experiments with simulated data, fMRI signals are generated with DCM-RNN and 

DCM-SPM respectively. Estimations are done with their own simulated data to avoid 

potential bias. The original simulated data with 1/64 second interval are down sampled to 2 

seconds interval, simulating fMRI acquisition process, and then up sampled to 1/16 second 

interval. Identical and independently distributed (i.i.d.) Gaussian noise is added to the down 

sampled signals with signal to noise ratio (SNR) being {5, 3, 1}, which are the typical values 

for fMRI. SNR is defined as the ratio of the standard deviation of BOLD signal and the 

standard deviation of the noise. In estimation, settings in DCM-SPM are kept as default if 

not otherwise stated and DCM-RNN is matched to DCM-SPM. The initial values of A is a 

negative identity matrix, and BC are zero matrices. This initialization only uses the prior 

knowledge that node self-loop should provide negative feedback as required by system 

stability. θh is initialized as its prior mean. Parameters are independently distributed in prior. 

The prior mean and the prior variance in DCM-RNN are summarized in Table 2. Note that in 
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DCM-SPM, {κ, τ, ε} and {f, v, q} are protected with an exponent transform to prevent them 

from running into negative values. In the presented experiments, such a problem does not 

occur in DCM-RNN and we do not adopt the transform in DCM-RNN for the moment. It 

will be added in further implementation. One covariance pattern Q is used for each brain 

region, which is a diagonal matrix. It essentially assumes that the observation noise is 

temporally and spatially uncorrelated, but the noise strength can be different for different 

regions. All parameters [θC, θh, θλ] are updated during estimation. Variational Bayes with 

Gauss-Newton search is used for parameter estimation for DCM-SPM as in spm_nlsi_GN. 

In spm_nlsi_GN, the initial log ascent rate is decreased to −10 to prevent algorithm crashing 

caused by aggressive parameter updating.

All the estimation experiments are carried out on a Macintosh laptop with an Intel Core i5 

processor and 16 GB memory. No graphic processor unit is used. We report running time of 

the two models, which reflects the current development of the two models but not a formal 

speed comparison since neither of the two model implementations is optimized for speed. 

For DCM-RNN, we do not count the time building a Tensorflow computation graph because 

it needs to be done only once and can be used for all experiments. Relative root mean square 

error (rRMSE) is used to compare similarity between variables, which is defined as the l2 

norm of the difference between two variables divided by the l2 norm of the anchor variable 

in the two, which is usually the ground truth one. All the codes used in the experiments, 

including the DCM-RNN and the modified DCM-SPM codes, are available online at https://

github.com/YuanWangOnward/DCM_RNN.

4.2 The impact of Δt

Euler’s method of integration approximation requires a small Δt. To evaluate the impact of 

Δt, we simulate fMRI signals with 10,000 different DCM parameter configurations and 

compare the signals obtained with different Δt in each configuration. The generation of the 

configurations is random, including the number of brain regions, the number of stimuli, the 

stimulus functions, θC and θh. However, not every random configuration can generate 

realistic fMRI signals, even if A is ensured to be a stable transition matrix. We filter out the 

unqualified ones by checking the maximum absolute value, the mean, and the variance of x, 

and the maximum and the minimum values of {s, f, v, q}. The criteria are chosen 

heuristically to avoid exploding and vanishing fMRI signals. The 10,000 configurations are 

the ones that survived the above criteria. In each configuration, fMRI signals generated with 

Δt = 1/64 second serves as the ground truth and others with Δt = {1/32, 1/16, 1/8, 1/4, 1/2} 

second are compared against it. In each comparison, the ground truth signal is down sampled 

to the lower temporal resolution and compared with the signal generated at the lower 

temporal resolution.

Fig. 7 shows three examples of fMRI signals generated using the DCM-RNN with randomly 

generated DCM configurations. The generated examples are realistic in the sense that they 

fluctuate with the inputs, without exploding or vanishing.

Fig. 8 shows the histograms of the simulation errors with different Δt and Table 3 

summarizes the mean and the deviation of each histogram. As predicted by error estimation 

for Euler’s method, the smaller the Δt is, the smaller the simulation error is. Δt = 1/32 
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second can almost ensure the whole rRMSE histogram is within 5% and the expectation of 

rRMSE with Δt = 1/16 second is within 5%. For a DCM-RNN covering a fixed length of 

time, its time complexity is O(1/Δt). It means as Δt approaches 0, the computation increases 

extremely fast. To balance between accuracy and computation, we use Δt = 1/16 second in 

the following experiments unless otherwise stated.

4.3 The impact of up sampling

The experiment on Δt shows that the current standard 2-second interval of fMRI accquisition 

is too large for the approximation to be valid. One quick fix is to up sample the accquired 

fMRI data, which may induce error. We perform a down-up sample comparison to evaluate 

the error. We re-use the fMRI signals generated in the previous experiment with Δt = 1/16 

second. The fMRI signals are first down sampled to Δt = 2 seconds, simulating the fMRI 

acquisition process, and then up sampled with cubic spline interpolation back to Δt = 1/16 

second.

Fig. 9 shows the histogram of rRMSE caused by the resampling process. The mean is 

0.901% and the standard deviation is 0.336%. It illustrates that the error caused by up 

sampling is small and stable.

4.4 Effective connectivity estimation with simulated data (study one)

4.4.1 Experimental settings—In this experiment, we will first generate fMRI data with 

known DCM parameters and evaluate the integration schemes implicit in DCM-SPM and 

DCM-RNN. We will then validate the two estimates in terms of the posterior expectations 

and 90% confidence ranges of effective connectivity, with various levels of observation 

noises. Functional MRI prediction error, connectivity estimation error, free energy, and 

running time will be included in the comparison.

In simulation, the input is randomly generated box train, θC is set as in Fig. 10. In 

estimation, the supports of the θC is set as the true ones and Δt = 1/16 second. In DCM-

RNN, the length of the unfolded DCM-RNN is 192. Simulated fMRI signals are cut into 

overlapping segments with segment length 192 and stride 1. The initial maximal parameter 

updating in each epoch is 0.002 and the maximal backtracking number is 4. Dropout rate is 

0%. We run DCM-RNN for 96 epochs before harvesting the results.

4.4.2 Results and discussion—Fig. 11 shows the randomly created input stimuli and 

the fMRI signal simulated by DCM-RNN and DCM-SPM. Comparing to the DCM-SPM 

simulation, the rRMSE of the DCM-RNN simulation is 0.482%. It shows that our 

conversion of DCM to DCM-RNN is faithful. We attribute the small difference to the 

different integration schemes used in the two models.

Fig. 12 shows the estimation results with noisy fMRI, SNR=5. The blue solid curves in Fig. 

12 (a)(b) show the resampled fMRI signals, which is used as the observed fMRI signals for 

parameter estimation. The resampling of fMRI induces 1.16% rRMSE in DCM-RNN and 

1.00% rRMSE in DCM-SPM. These are the errors of predicted fMRI signals with the 

ground truth parameters. The orange dashed curves in in Fig. 12 (a)(b) show the predicted 

fMRI with the estimated parameters. Fig. 12 (c) shows a bar plot of the estimated effective 
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connectivity values with 90% confidence range. Fig. 13 shows the estimation results with 

SNR=1. The figure presentation is analogous to Fig. 12.

Numerical results are summarized in Table 4. For all levels of noise, DCM-SPM tends to 

have smaller fMRI reproduction errors. However, the connectivity errors of DCM-SPM are 

significantly higher than DCM-RNN. It suggests that DCM-SPM converges to a local 

minimal other than the ground truth point in the parameter space. The accuracy of 

connectivity estimation of DCM-RNN is also supported by its higher free energy values. On 

average, DCM-SPM ran 21.0 iterations which took 20.5 minutes, DCM-RNN ran fixed 96 

epochs (iterations) which took 139.8 minutes.

This experiment shows that the effective connectivity can be estimated by back propagation. 

It is a demonstration that DCM-RNN can be used to infer biophysical objective in a neural-

network friendly way.

4.5 Effective connectivity estimation with simulated data (study two)

4.5.1 Experimental settings—In this experiment, we use a more challenging causal 

architecture, which consists of reciprocal connectivities as in Fig. 14. The architecture has 

been studied in (Friston et al., 2003). Other experimental settings stay the same as in study 

one, except that we run DCM-RNN for 128 epochs before harvesting the results.

4.5.2 Results and discussion—The figure presentation of Fig. 15 to Fig. 17 is 

analogous to Fig. 11 to Fig. 13. Compared to the DCM-SPM simulation, the rRMSE of the 

DCM-RNN simulation is 0.476%. The resampling of fMRI induces 0.775% rRMSE in 

DCM-RNN and 0.478% rRMSE in DCM-SPM. Numerical results are summarized in Table 

5. It is interesting to see that DCM-RNN did not do well in the noiseless case but better in 

the cases with small noise. We think it is because DCM-RNN got stuck in a flat area of the 

cost landscape, potentially a saddle point, and was not able to reach an optimal point before 

the optimization stopped. It is known that saddle points can significantly slow down gradient 

descent and noise can help the gradient descent algorithm to escape saddle points (Ge et al., 

2015). Saddle point is less a problem for DCM-SPM because its Gauss-Newton search uses 

local curvature to scale the step size which help to escape saddle points efficiently. In the 

noiseless case, DCM-SPM ran 26 iterations which took 34.3 minutes and DCM-RNN ran 

fixed 128 epochs (iterations) which took 348.0 minutes. In other cases, on average, DCM-

SPM ran 22.0 iterations which took 28.3 minutes and DCM-RNN ran fixed 128 epochs 

(iterations) which took 229.2 minutes. The running time of both models is significantly 

longer in noiseless case than in noisy cases. It supports our hypothesis that there may be 

some ill conditioned points (potentially saddle points) on the path from the initial point to 

the ground truth point in the parameter space. In the neighborhood of the points, the two 

models have to adjust the step size through back tracking frequently which slows down the 

estimation process. Noise appears to help the models escape from the ill conditioned points. 

The running time in this experiment is longer than the previous experiment, especially for 

DCM-RNN for the following reasons: 1) The total scan time is 6 minutes in this experiment 

and 5 minutes in the previous experiment. 2) DCM-RNN ran 128 epochs in this experiment 
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and 96 epochs in the previous experiment. 3) The loss landscape in this experiment seems to 

be harder to optimize on so that the models have to adjust step size very often.

Major observations are consistent with the previous experiment. DCM-SPM tends to have 

smaller fMRI reproduction errors but higher connectivity errors and lower free energy 

values. It is another evidence that DCM-RNN and back propagation can be used to infer 

biophysical quantities such as the effective connectivity.

4.6 Model selection with simulated data

4.6.1 Experimental settings—In this experiment, we try to identify the most plausible 

causal architecture among hypothesis candidates. The data generating causal architecture 

and the two competing hypotheses are abstracted from the model selection demo in the 

SPM12 manual chapter 35 “Dynamic Causal Modeling for fMRI”. The architectures have 

forward and backward connectivities representing reciprocal interactions which are known 

to play an important role for brain functional integration. We create five subjects in the 

experiment. The subjects have different hemodynamic parameters which are randomly 

sampled from the prior distribution of θh. Because of number of samples is small (i.e. 5), we 

constrain the sampling to 90% confidence range to avoid extreme samples. We use identical 

θC for the five subjects without random sampling, because the prior of θC is not 

biophysically informed and random sampling from it does not reflect inter-subject 

heterogeneity. Free energy values are calculated per subject and per model. They are used as 

the individual level statistics and fed into group level model comparison using the 

exceedance probability (Stephan et al., 2009) which measures the posterior probability that 

one model is preferred than any other model. The exceedance probability is calculated using 

spm_BMS.

The data generating causal architecture is shown in Fig. 18 and the two competing 

architecture hypotheses are shown in Fig. 19. The two hypotheses differ in the modulation of 

the third stimulus. In the first hypothesis, the third stimulus modulates a backward 

connectivity from N3 to N2; in the second hypothesis, it modulates a forward connectivity 

from N1 to N2. In simulation, the input is designed box trains exploring the input space. 

Before model inversion, the simulated signals are down-up sampled and i.i.d. Gaussian noise 

is added with SNR=3. Other experimental settings are the same as in effective connectivity 

estimation study one.

4.6.2 Results and discussion—Fig. 20 shows the inputs and the fMRI signals 

simulated by the two models for one subject. Fig. 21 and Fig. 22 show the estimated 

effective connectivity for two representative subjects. Although the connectivity B3(2, 1) 

does not exist in the true architecture, it can have a nontrivial value if incorrectly supported 

as in hypothesis one. Large confidence ranges of connectivity A(2, 3) crossing zero reflect 

large uncertainty in the estimation. For some subjects, the A(2, 3) estimation ended up with 

a wrong sign in DCM-SPM. Such a sign error did not occur in DCM-RNN. Fig. 23 shows 

the free energy comparison between hypotheses. For all the subjects, the free energy value is 

higher in hypothesis zero than in hypothesis one. The average free energy difference 

between hypotheses is 198.6 in DCM-SPM and 258.8 in DCM-RNN, which mean DCM-

Wang et al. Page 20

Neuroimage. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNN is more sensitive to hypothesis difference. The exceedance probability of hypothesis 

zero is 0.984% for both of the models, hitting the maximum output of spm_BMS. It means 

hypothesis zero, which is the true data generating architecture, is overwhelmingly favored in 

both models. This is a demonstration of DCM-RNN face validity with regard to model 

selection.

4.7 Effective connectivity estimation with real fMRI data

4.7.1 Experimental paradigm—Details of the experimental paradigm and the fMRI 

acquisition can be found in (Büchel and Friston, 1997). The purpose of the experiment is to 

evaluate the modulatory effect of attention. Visual stimuli are projected onto a screen with a 

fixation point at the center. Visual content contains dots moving from the centered fixation 

towards the screen boundary where they vanish. During certain periods, subjects are 

instructed to try to detect a change in speed of the dots and otherwise to ‘just look’. The 

preprocessed data can be found on the SPM website under the name of ‘Attention to Visual 

Motion fMRI data set’. The data set is smoothed, spatially normalized, realigned, slice-time 

corrected with SPM99.

4.7.2 Experimental settings—A DCM study is setup following the example in the 

SPM12 manual. There are three 0–1 box train inputs. If the visual content is present on the 

screen, the photic input is on; if the dots are moving, the motion input is on; if the subjects 

are instructed to detect dots speed change, the attention input is on. Three brain regions that 

are believed to be engaged during photic stimulation are included: V1, the primary visual 

cortex; V5, the middle temporal visual area responsible for motion perception; and superior 

parietal cortex (SPC). V5 and SPC are believed to be engaged during attention. The 

locations of the regions are identified by the general linear model (GLM) as the highest 

correlated points. Each region is a sphere with radius 8mm centered at V1(0, −93, 18), 

V5(−36, −87, −3), and SPC(−27, −84, 36) in the standard space as shown in Fig. 24. The 

support of the causal architecture is set as in Fig. 25.

An extra linear component is added to the hemodynamic function to account for the 

influence of baseline drifting or other low frequency non-neural fluctuations in the measured 

data. For the n-th region,

yn = g(xn) + Gβn + zn (44)

where G is the confound matrix, whose columns are the first 19 Discrete Cosine Transform 

(DCT) bases. β is a weight vector for the confounds. In DCM-RNN, θ and β are updated 

iteratively. The linear component is the default setting in DCM-SPM and 19 is the default 

value. In DCM-RNN, the length of the unfolded DCM-RNN is 256. Simulated fMRI signals 

are cut into overlapping segments with segment length 256 and stride 2. The initial maximal 

parameter updating in each epoch is 0.005 and the maximal backtracking number is 4. 

Dropout rate is 25%. We run DCM-RNN for 128 epochs before harvesting the results.
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4.7.3 Results and discussion—Fig. 26 shows estimation results with real fMRI. 

Compared to the observed fMRI signal, the fMRI prediction error is 56.8% for DCM-RNN 

and 56.0% for DCM-SPM. Given the noise level, the prediction accuracy of the two models 

are very similar. The free energy is −3.01 × 103 for DCM-SPM and −3.26 × 103 for DCM-

RNN. DCM-SPM ran 44 iterations before convergence which took 5.57 hours; DCM-RNN 

ran 128 epochs (iterations) which took 7.76 hours. All the estimated connectivity values by 

the two models have the same signs and the majority of them are qualitatively similar. DCM-

SPM indicated a very strong backward influence from SPC to V5 and then V1, while DCM-

RNN tends to use fewer significant non-zero connectivities. Foremost, the two models 

agreed on that attention had a positive influence on the backward connectivity from SPC to 

V5.

5 Discussion

In this paper, we focus on the original DCM (Friston et al., 2003). It is interesting to 

consider how other DCM variants may fit into DCM-RNN framework. The nonlinear DCM 

(Stephan et al., 2008) uses a quadratic form of the neural evolution equation where the 

quadratic term indicates the influence of the neural activity of one brain region on other 

connectivities. It can be achieved in DCM-RNN by augmenting ϕx with quadratic terms of x 
and adding corresponding coefficients in Wxx and Wxxu. The multiple neural states DCM 

(Marreiros et al., 2008) incorporates two neural states per region, which models the activity 

of an inhibitory and an excitatory population respectively. It can be achieved in DCM-RNN 

by splitting x into [xexcitatory, xinhibitory] for each brain region and enlarging Wxx and Wxxu 

accordingly. A hierarchical DCM can be found in (K. Friston, 2008)(Friston et al., 2010)

(Friston et al., 2008) where the hierarchy is built on the temporal derivatives of DCM states. 

In DCM-RNN, it can be achieved by augmenting x into [x, ẋ, ẍ…] and modifying the 

weighting matrices W properly: specifying the block structure and parameter sharing in W. 

In (Seghier and Friston, 2013), the prior covariance of A is derived from the observed fMRI 

signals to reduce the effective number of free parameters to enable DCM studies with large 

number of nodes. In DCM-RNN, one can simply change the corresponding part in Σp with 

the derived covariance for A.

Stochastic DCMs (Friston et al., 2008)(K. J. Friston, 2008)(Friston et al., 2010) assume a 

random fluctuation in the neural activity space which means one has to estimate the true 

neural states together with DCM parameters. Conceptually, one can absorb the states into 

parameters, treating the state value at each time point as a separate parameter. Obviously, the 

state parameters are highly correlated because of the neural evolution equation. Similar 

unification has been used in (Friston et al., 2010) where all parameters are absorbed into 

states. Denote the augmented parameter set as Θ. Incorporating the stochastic DCMs into 

DCM-RNN framework means being able to estimate the posterior distribution of Θ. 

Treatments of variational Bayes in DNN/RNN framework has been proposed in (Kingma 

and Welling, n.d.)(Fabius and van Amersfoort, n.d.). Briefly, one can declare the parameters 

of the posterior distribution of Θ as trainable variables in a DCM-RNN and then do the 

following steps iteratively until convergence: 1) randomly draw samples of Θ from the 

posterior distribution and calculate the loss values for the samples. 2) back propagate the 

loss to the parameters of the posterior distribution. In practice, one may want to assume 
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properties of the posterior distribution of Θ, such as independence between subsets of Θ and 

state transition p(xt+1|xt) indicated by the state evolution equations.

DCM has two variants tailored for rsfMRI (Friston et al., 2014a)(Friston et al., 2014b). The 

spectral DCM (Friston et al., 2014a) works in the frequency domain where the unknown 

stimuli can be parameterized very efficiently based on the power law. The spectral DCM 

predicts the cross spectra among observed fMRI signals instead of the raw values of fMRI 

signals. In (Friston et al., 2014b), the effective connectivities are further parameterized by 

eigenmodes and Lyapunov exponents, where the eigenmodes are derived from functional 

connectivity. In DCM-RNN, it is easy to parameterize the effective connectivities by 

eigenmodes and their Lyapunov exponents. Since the eigenmodes are derived from 

functional connectivity and fixed, one can declare the Lyapunov exponents as trainable 

variable and back propagate errors to the exponents. DCM-RNN is a time domain model in 

nature, but it does not mean it cannot use frequency information. One can parameterize the 

unknown stimuli in rsfMRI as a linear combination of DCT bases and tune the combination 

weightings with back propagation. This representation has been used in (Friston et al., 

2011). The prior distribution of the combining weightings can be configured according to 

the power law. One can add a layer on top of DCM-RNN which takes predicted fMRI 

signals as input and outputs the cross spectra. A loss can be defined as the difference 

between the predicted cross spectra and the observed cross spectra and back propagation can 

be used to tune the model parameters, including the DCT weightings and the effective 

connectivity, to minimize the loss.

6 Conclusions

In this paper, we propose a biophysically interpretable RNN, DCM-RNN. It casts the 

advanced biophysical model, DCM, into a generalized RNN. The conversion is faithful 

without loss of any biophysical significance of the original DCM. The hidden states of 

DCM-RNN are neural activity, blood flow, blood volume, and deoxyhemoglobin content and 

parameters of DCM-RNN are biological quantities such as effective connectivity, oxygen 

extraction fraction at rest and vessel stiffness. Through experiments with both simulated and 

real fMRI data, we demonstrate that DCM-RNN with back propagation is valid for DCM 

parameter estimation. It paves the way to DCM studies with complex stimuli and DNN-

based representation.
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Fig. 1. 
An overview of the original DCM.
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Fig. 2. 
Typical graphic representations of a RNN. (a) compact. The dashed line indicates the 

recurrent structure (b)unfolded along time. I, H, and O stand for input, hidden state, and 

output respectively.
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Fig. 3. 
Neural evolution equation as a piece of G-RNN.
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Fig. 4. 
Hemodynamic equations as a piece of G-RNN.
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Fig. 5. 
Output equation as a piece of G-RNN.
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Fig. 6. 
An overview of DCM-RNN
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Fig. 7. 
Three examples of fMRI signals simulated by random DCM configurations. (a) 1 stimulus 

and 3 fMRI signals. (b) 2 stimuli and 4 fMRI signals. (c) 3 stimuli and 5 fMRI signals.

Wang et al. Page 32

Neuroimage. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Histograms of simulation rRMSE with different Δt.. The histograms are normalized so that 

each sums to 1.
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Fig. 9. 
Histograms of errors caused by resampling.
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Fig. 10. 
The data generating causal architecture and effective connectivity in study one. N and S 

indicate brain region/node and stimuli.
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Fig. 11. 
Functional MRI simulation. (a) shows the random inputs. (b) shows the simulated fMRI 

signals by DCM-RNN and DCMSPM and the difference between the two.
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Fig. 12. 
Estimation results with noisy simulation, SNR=5. (a)(b) show the resampled fMRI signals as 

‘Observed’ and the predicted fMRI signals with estimated parameters for DCM-RNN and 

DCM-SPM (c) shows the estimated connectivity parameters with 90% confidence range.
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Fig. 13. 
Estimation results with noisy simulation. SNR=1. (a)(b) show the resampled fMRI signals as 

‘Observed’ and the predicted fMRI signals with estimated parameters for DCM-RNN and 

DCM-SPM. (c) shows the estimated connectivity parameters with 90% confidence range.
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Fig. 14. 
The data generating causal architecture and effective connectivity in study two. N and S 

indicate brain region/node and stimuli. This architecture has been studied in (Friston et al., 

2003).
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Fig. 15. 
Functional MRI simulation. (a) shows the random inputs. (b) shows the simulated fMRI 

signals by DCM-RNN and DCM-SPM and the difference between the two.
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Fig. 16. 
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Estimation results with noiseless simulation. (a)(b) show the resampled fMRI signals as 

‘Observed’ and the predicted fMRI signals with estimated parameters for DCM-RNN and 

DCM-SPM (c) shows the estimated connectivity parameters with 90% confidence range.
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Fig. 17. 
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Estimation results with noisy simulation. SNR=3. (a)(b) show the resampled fMRI signals as 

‘Observed’ and the predicted fMRI signals with estimated parameters for DCM-RNN and 

DCM-SPM. (c) shows the estimated connectivity parameters with 90% confidence range.
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Fig. 18. 
The data generating causal architecture and effective connectivity in model selection 

experiment. N and S indicate brain region/node and stimuli. This architecture has been 

studied in the model selection demo in the SPM12 manual chapter 35 “Dynamic Causal 

Modeling for fMRI”
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Fig. 19. 
The two hypotheses in the model selection experiment. (a) hypothesis zero. (b) hypothesis 

one. The hypotheses differ in the modulation of the third stimulus. These hypotheses have 

been studied in the model selection demo in the SPM12 manual chapter 35 “Dynamic 

Causal Modeling for fMRI”
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Fig. 20. 
Functional MRI simulation. (a) shows the inputs. (b) shows the simulated fMRI signals by 

DCM-RNN and DCM-SPM and the difference between the two. It is the simulation for one 

subject.
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Fig. 21. 
Estimated connectivity with 90% confidence range for one representative subject. (a) shows 

the result of hypothesis zero. (b) shows the result of hypothesis one.
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Fig. 22. 
Estimated connectivity with 90% confidence range for another representative subject. (a) 

shows the result of hypothesis zero. (b) shows the result of hypothesis one.
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Fig. 23. 
Free energy value comparison between the two competing hypotheses.
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Fig. 24. 
Locations of brain regions included in the attention experiment.
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Fig. 25. 
Support pattern of the DCM study in the attention experiment.
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Fig. 26. 
Estimation with real fMRI data. (a) shows the three inputs. (b) shows the predicted fMRI 

signals with estimated parameters. (c) shows the estimated connectivity.
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Table 1

Notations in DCM and their characteristics.

Meaning Note

u Input stimulus experimentally given

X Neural state: Neural activation Unknown hidden state

w Random fluctuation in neural space Unknown

s Hemodynamic state: vasodilatory signal Unknown hidden state

f Hemodynamic state: Blood flow induction Unknown hidden state

v Hemodynamic state: Blood volume Unknown hidden state

q Hemodynamic state: Deoxyhemoglobin content Unknown hidden state

y fMRI signal measured

z Observation noise Unknown

A Connection parameter weak prior, tunable

B Connection parameter weak prior, tunable

C Connection parameter weak prior, tunable

κ Constant of signal decay With prior, tunable

γ Constant of feedback regulation With prior, tunable

τ Mean transit time of blood With prior, tunable

E0 Oxygen extraction fraction at rest With prior, tunable

α Vessel stiffness With prior, tunable

V0 Resting venous blood volume fraction With prior, tunable

θ0 Frequency offset at the outer surface of the magnetized vessel for fully deoxygenated blood With prior, tunable

r0 Slope of the relation between the intravascular relaxation rate and oxygen saturation With prior, tunable

ε Ratio of intra- and extravascular signal With prior, tunable

λ Noise related hyper parameters May be estimated in advance, tunable

TE Echo Time experimentally given

M Number of stimuli experimentally given

t Scan time experimentally given

Nb Number of brain regions experimentally given

• With prior: mean and/or variance can be found from previous neuroscience studies

• Weak prior: only support may be hypothesized, mean and variance are not biophysically informative
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Table 2

Prior mean and variance before rescaling

Variable Mean Variance

A 0 1/64

B 0 1

C 0 1

κ 0.64 1/256

γ 0.32 0

τ 2 1/256

E0 0.4 0

α 0.32 0

V0 4 0

θ0 40.3 0

r0 25 0

ε 1 1/256

λ 6 1/128

• Zero variance of a variable means the variable is kept constant during parameter estimation as its mean

• If a variable is a vector or matrix, expectation and variance listed above are for each entry in the vector or matrix.
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Table 3

Mean and variance of simulation rRMSE for various Δt.

Δt (second) Mean Standard deviation

1/32 1.20% 0.690%

1/16 3.58% 2.24%

1/8 9.14% 6.24%

1/4 27.4% 29.3%

1/2 210% 271%
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Table 4

Results of effective connectivity estimation, study one.

Model SNR fMRI
rRMSE

Connectivity
rRMSE Free energy

RNN Noiseless 1.82% 1.01% /

SPM Noiseless 1.08% 8.39% /

RNN 5 9.83% 3.96% −2.52e+03

SPM 5 9.78% 13.8% −2.61e+03

RNN 3 15.4% 7.16% −3.84e+03

SPM 3 15.2% 17.0% −3.94e+03

RNN 1 43.8% 19.4% −8.26e+03

SPM 1 43.5% 29.7% −8.69e+03
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Table 5

Results of effective connectivity estimation, study two.

Model SNR fMRI
rRMSE

Connectivity
rRMSE Free energy

RNN Noiseless 5.13% 17.5% /

SPM Noiseless 0.621% 14.8% /

RNN 5 9.91% 12.1% −1.57e+03

SPM 5 9.68% 27.0% −1.67e+03

RNN 3 15.5% 13.2% −2.73e+03

SPM 3 15.3% 32.9% −2.92e+03

RNN 1 41.8% 22.5% −6.42e+03

SPM 1 41.5% 38.2% −6.73e+03
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