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Abstract	20	

	21	

Multivariate	 decoding	 methods	 applied	 to	 neuroimaging	 data	 have	 become	 the	 standard	 in	22	

cognitive	neuroscience	for	unravelling	statistical	dependencies	between	brain	activation	patterns	23	

and	experimental	conditions.	The	current	challenge	is	to	demonstrate	that	decodable	information	24	

is	in	fact	used	by	the	brain	itself	to	guide	behaviour.	Here	we	demonstrate	a	promising	approach	25	

to	do	so	in	the	context	of	neural	activation	during	object	perception	and	categorisation	behaviour.	26	

We	 first	 localised	 decodable	 information	 about	 visual	 objects	 in	 the	 human	 brain	 using	 a	27	

multivariate	 decoding	 analysis	 and	 a	 spatially-unbiased	 searchlight	 approach.	 We	 then	 related	28	

brain	activation	patterns	to	behaviour	by	testing	whether	the	classifier	used	for	decoding	can	be	29	

used	 to	 predict	 behaviour.	 We	 show	 that	 while	 there	 is	 decodable	 information	 about	 visual	30	

category	 throughout	 the	 visual	 brain,	 only	 a	 subset	 of	 those	 representations	 predicted	31	

categorisation	 behaviour,	which	were	 strongest	 in	 anterior	 ventral	 temporal	 cortex.	Our	 results	32	

have	 important	 implications	 for	 the	 interpretation	 of	 neuroimaging	 studies,	 highlight	 the	33	

importance	of	relating	decoding	results	to	behaviour,	and	suggest	a	suitable	methodology	towards	34	

this	aim.		35	
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1	Introduction	37	

Multivariate	pattern	 analysis	 (MVPA),	 also	 called	brain	decoding,	 is	 a	 powerful	 tool	 to	 establish	38	

statistical	dependencies	between	experimental	conditions	and	brain	activation	patterns	(Carlson,	39	

Schrater,	 &	 He,	 2003;	 Cox	 &	 Savoy,	 2003;	 Haxby	 et	 al.,	 2001;	 Haynes,	 2015;	 Kamitani	 &	 Tong,	40	

2005;	Kriegeskorte,	Goebel,	&	Bandettini,	2006).	 In	 these	analyses,	an	 implicit	assumption	often	41	

made	by	experimenters	is	that	if	information	can	be	decoded,	then	this	information	is	used	by	the	42	

brain	in	behaviour	(de-Wit,	Alexander,	Ekroll,	&	Wagemans,	2016;	Ritchie,	Kaplan,	&	Klein,	2017).	43	

However,	the	decoded	information	could	be	different	(e.g.,	epiphenomenal)	from	the	signal	that	is	44	

relevant	for	the	brain	to	use	in	behaviour	(de-Wit	et	al.,	2016;	Williams,	Dang,	&	Kanwisher,	2007),	45	

highlighting	 the	 need	 to	 relate	 decoded	 information	 to	 behaviour.	 Importantly,	 this	 implicit	46	

assumption	of	decoding	models	 leads	to	testable	predictions	about	task	performance	(Naselaris,	47	

Kay,	 Nishimoto,	 &	 Gallant,	 2011).	 Previous	 work	 has	 for	 example	 correlated	 decoding	48	

performances	to	behavioural	accuracies	(Bouton	et	al.,	2018;	Freud,	Culham,	Plaut,	&	Behrmann,	49	

2017;	 Raizada,	 Tsao,	 Liu,	 &	 Kuhl,	 2010;	 van	 Bergen,	 Ji	 Ma,	 Pratte,	 &	 Jehee,	 2015;	 Walther,	50	

Caddigan,	 Fei-Fei,	 &	 Beck,	 2009;	 Williams	 et	 al.,	 2007).	 However,	 this	 does	 not	 model	 how	51	

individual	 experimental	 conditions	 relate	 to	behaviour.	Another	 approach	has	been	 to	 compare	52	

neural	 and	 behavioural	 similarity	 structures	 (Bracci	 &	 Op	 de	 Beeck,	 2016;	 Cichy,	 Kriegeskorte,	53	

Jozwik,	 Bosch,	 &	 Charest,	 2017;	 Cohen,	 Dennett,	 &	 Kanwisher,	 2016;	 Grootswagers,	 Kennedy,	54	

Most,	 &	 Carlson,	 2017;	 Haushofer,	 Livingstone,	 &	 Kanwisher,	 2008;	Mur	 et	 al.,	 2013;	 Proklova,	55	

Kaiser,	 &	 Peelen,	 2016;	 Wardle,	 Kriegeskorte,	 Grootswagers,	 Khaligh-Razavi,	 &	 Carlson,	 2016).	56	

While	this	approach	allows	to	link	behaviour	and	brain	patterns	at	the	level	of	single	experimental	57	

conditions,	 it	 is	 unclear	 how	 this	 link	 carries	 over	 to	 decision	 making	 behaviour	 such	 as	58	

categorisation	(but	see	Cichy	et	al.,	(2017)	for	recent	developments).	59	

	60	
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Recently,	 a	 novel	 methodological	 approach,	 called	 the	 distance-to-bound	 approach	 (Ritchie	 &	61	

Carlson,	2016),	has	been	proposed	to	connect	brain	activity	directly	to	perceptual	decision-making	62	

behaviour	at	 the	 level	of	 individual	experimental	conditions.	The	 rationale	behind	 this	approach	63	

(Bouton	et	al.,	2018;	Carlson,	Ritchie,	Kriegeskorte,	Durvasula,	&	Ma,	2014;	Kiani,	Cueva,	Reppas,	64	

&	Newsome,	2014;	Philiastides	&	Sajda,	2006;	Ritchie	&	Carlson,	2016)	is	that	for	decision-making	65	

tasks,	 the	brain	applies	 a	decision	boundary	 to	a	neural	 activation	 space	 (DiCarlo	&	Cox,	 2007).	66	

Similarly,	MVPA	classifiers	fit	multi-dimensional	hyperplanes	to	separate	a	neural	activation	space.	67	

In	 classic	 signal-detection	 theory	 (Green	 &	 Swets,	 1966)	 and	 evidence-accumulation	models	 of	68	

choice	behaviour	(Brown	&	Heathcote,	2008;	Gold	&	Shadlen,	2007;	Ratcliff	&	Rouder,	1998;	Smith	69	

&	Ratcliff,	 2004),	 the	distance	of	 the	 input	 to	a	decision	boundary	 reflects	 the	ambiguity	of	 the	70	

evidence	 for	 the	 decision	 (Green	 &	 Swets,	 1966).	 Decision	 evidence,	 in	 turn,	 predicts	 choice	71	

behaviour	 (e.g.,	 Ashby,	 2000;	 Ashby	&	Maddox,	 1994;	 Britten,	 Newsome,	 Shadlen,	 Celebrini,	 &	72	

Movshon,	 1996;	 Gold	 &	 Shadlen,	 2007;	 Shadlen	 &	 Kiani,	 2013)	 which	 also	 has	 clear	 neural	73	

correlates	(e.g.,	Britten	et	al.,	1996;	Ratcliff,	Philiastides,	&	Sajda,	2009;	Roitman	&	Shadlen,	2002).	74	

If	 for	 a	 decision	 task	 (e.g.,	 categorisation),	 the	 brain	 uses	 the	 same	 information	 as	 the	 MVPA	75	

classifier,	 then	 the	 classifier’s	 hyperplane	 reflects	 the	 brain’s	 decision	 boundary.	 This	 in	 turn	76	

predicts	 that	distance	to	 the	classifier’s	hyperplane	negatively	correlates	with	reaction	times	 for	77	

the	 decision	 task.	 In	 the	 distance-to-bound	 approach,	 finding	 such	 a	 negative	 distance-RT-78	

correlation	 shows	 that	 the	 information	 is	 then	 suitably	 formatted	 to	 guide	 behaviour.	 “Suitably	79	

formatted	to	guide	behaviour”	here	means	that	the	information	is	structured	in	such	a	way	that	80	

the	 brain	 can	 apply	 a	 linear	 read	 out	 process	 to	 this	 representation	 to	 make	 a	 decision	81	

(importantly,	this	does	not	imply	a	causal	link	with	behaviour).	Carlson	et	al.	(2014)	demonstrated	82	

the	promise	of	the	distance-to-bound	approach	in	a	region	of	interest	based	analysis	using	fMRI.	83	

Here	we	 go	 beyond	 this	work	 by	 using	 the	 distance-to-bound	method	 and	 a	 spatially	 unbiased	84	
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fMRI-searchlight	approach	to	create	maps	of	where	in	the	brain	information	can	be	used	to	guide	85	

behaviour.		86	

	87	

2	Materials	and	Methods	88	

In	 this	 study,	 we	 separately	 localised	 information	 that	 is	 decodable,	 and	 information	 that	 is	89	

suitably	 formatted	 to	 guide	 behaviour	 in	 the	 context	 of	 decodable	 information	 about	 visual	90	

objects	and	object	categorisation	behaviour.	To	ensure	robustness	and	generality	of	our	results,	91	

we	analysed	 in	parallel	 two	 independent	 fMRI	datasets	 (Cichy	et	al.,	2014,	2016),	with	different	92	

stimulus	sets,	and	in	relation	to	partly	overlapping	categorisation	behaviours.	Overall,	this	allowed	93	

us	 to	 investigate	 the	 relationship	 between	 decodable	 information	 from	 brain	 activity	 and	94	

categorisation	behaviour	for	seven	different	distinctions:	animate	versus	 inanimate,	 faces	versus	95	

bodies,	human	versus	animal,	natural	versus	artificial,	tools	versus	not	tools,	food	versus	not	food,	96	

and	 transport	 versus	 not	 transport.	 Note	 that	 the	 negative	 ‘not-X’	 category	 was	 defined	 as	 all	97	

stimuli	that	did	fall	into	one	of	the	aforementioned	classes.	Categorisation	reaction	times	for	those	98	

stimuli	were	 collected	 on	 Amazon’s	Mechanical	 Turk.	 In	 this	 section,	we	 describe	 the	 two-step	99	

searchlight	 procedure	used	 to	 create	 decoding	 and	 correlation	maps	of	 areas	 involved	 in	 visual	100	

object	categorisation.	101	

	102	

2.1	Experimental	design	103	

Stimuli	104	

Stimuli	for	experiment	1	consisted	of	92	visual	objects,	segmented	on	a	white	background	(Figure	105	

1A).	 Stimuli	 consisted	 of	 animate	 and	 inanimate	 objects.	 The	 animate	 objects	 could	 be	 further	106	

divided	 into	 faces,	 bodies,	 humans	 and	 animals.	 Inanimate	 objects	 consisted	 of	 natural	 (e.g.,	107	

plants	 or	 fruits)	 and	man-made	 items	 (e.g.,	 tools	 or	 houses).	 The	 stimulus	 set	 for	 experiment	 2	108	

consisted	 of	 118	 visual	 objects	 on	 natural	 backgrounds	 (Figure	 1C).	 A	 small	 proportion	 of	 the	109	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 7, 2018. ; https://doi.org/10.1101/248583doi: bioRxiv preprint 

https://doi.org/10.1101/248583


  6	

objects	 (27)	were	animate.	 The	 inanimate	objects	 included	 subcategories	 such	as	 tools,	 or	 food	110	

items.	 In	 both	 experiments,	 participants	 were	 presented	 with	 the	 visual	 object	 stimuli	 while	111	

performing	an	orthogonal	task	at	fixation.	Stimuli	were	displayed	at	2.9°	(Experiment	1)	and	4.0°	112	

(Experiment	 2)	 visual	 angle	with	 500	ms	 duration.	 Images	were	 displayed	 (overlaid	with	 a	 grey	113	

fixation	cross)	for	500	ms	in	random	order.		114	

	115	

fMRI	recordings	116	

The	 first	experiment	 (Cichy	et	al.,	2014)	had	high	 resolution	 fMRI	coverage	of	 the	ventral	 visual	117	

stream	 (Figure	 1B)	 from	 15	 participants	 with	 a	 2	 mm	 isotropic	 voxel	 resolution.	 The	 second	118	

experiment	(Cichy	et	al.,	2016)	had	whole	brain	from	15	participants	with	a	3	mm	isotropic	voxel	119	

resolution.	In	both	experiments,	at	the	start	of	a	session,	structural	images	were	obtained	using	a	120	

standard	 T1-weighted	 sequence.	 fMRI	 data	 were	 aligned	 and	 coregistered	 to	 the	 T1	 structural	121	

image,	 and	 then	 normalized	 to	 a	 standard	MNI	 template.	 General	 linear	models	 were	 used	 to	122	

compute	t-values	for	each	stimulus	(92	and	118,	respectively)	against	baseline.	123	

	124	

Reaction	time	data	125	

We	obtained	 reaction	 times	 for	 the	 stimuli	 in	multiple	different	 categorisation	 contrasts	 (Figure	126	

1A&B).	For	experiment	1,	these	were	animate	versus	inanimate,	face	versus	body,	human	versus	127	

animal,	and	natural	versus	artificial.	For	experiment	2,	we	tested	animate	versus	 inanimate,	tool	128	

versus	not	tool,	food	versus	not	food,	and	transport	versus	not	transport.	The	RTs	were	collected	129	

using	 Amazons	 Mechanical	 Turk	 (MTurk).	 For	 each	 of	 the	 categorisation	 contrasts,	 50	 unique	130	

participants	performed	a	categorisation	task	using	the	same	stimuli	as	were	used	in	collecting	the	131	

fMRI	data.	Participants	were	instructed	to	“Categorise	the	images	as	fast	and	accurate	as	possible	132	

using	the	following	keys:	 (z	 for	X,	m	for	Y)”,	where	X	and	Y	would	be	replaced	with	the	relevant	133	

categories	(e.g.,	animate	and	inanimate)	for	the	contrast.	On	each	trial,	an	image	was	presented	134	
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for	 500ms,	 followed	 by	 a	 black	 screen	 until	 the	 participant’s	 response	 (Figure	 1C).	 The	135	

presentation	order	of	the	stimuli	was	randomized	and	stimuli	did	not	repeat.	This	resulted	in	50	136	

reaction	 time	 values	 per	 exemplar	 (one	 for	 each	 participant).	 Each	 participant’s	 reaction	 times	137	

were	 z-scored.	 Next,	 we	 computed	 the	 median	 reaction	 time	 (across	 participants)	 for	 each	138	

exemplar.	his	resulted	in	one	reaction	time	value	per	exemplar,	which	were	used	in	the	rest	of	the	139	

study.	140	

	141	

2.2	Statistical	Analysis	142	

Searchlight	procedure	143	

For	each	categorisation	contrast	and	subject,	we	used	a	searchlight	approach	(Haynes	et	al.,	2007;	144	

Kriegeskorte	 et	 al.,	 2006)	 to	 create	 maps	 of	 decoding	 accuracy	 and	 of	 correlations	 between	145	

distance	 to	 the	 classifier	 boundary	 and	 categorisation	 reaction	 time.	 In	 contrast	 to	 pre-defined	146	

ROI’s,	which	 are	 used	 to	 test	 a-priori	 hypotheses	 about	 the	 spatial	 origin	 of	 information	 in	 the	147	

brain,	the	searchlight	results	in	a	spatially	unbiased	map	of	decodable	information.	An	overview	of	148	

the	approach	is	presented	in	Figure	1D.	149	

	150	

To	 create	 the	 decoding	 accuracy	 maps,	 we	 used	 a	 standard	 searchlight	 decoding	 approach	151	

(Grootswagers,	Wardle,	&	Carlson,	2017;	Haynes,	2015;	Kriegeskorte	et	al.,	2006;	Pereira,	Mitchell,	152	

&	Botvinick,	2009),	as	implemented	in	the	CoSMoMVPA	decoding	toolbox	(Oosterhof,	Connolly,	&	153	

Haxby,	2016).	In	detail,	at	each	spatial	location	(voxel)	in	an	fMRI	image,	a	support	vector	machine	154	

(SVM)	was	used	to	classify	visual	object	category	based	on	local	brain	patterns,	resulting	in	a	map	155	

of	 classification	 accuracies.	 We	 then	 determined	 the	 subset	 of	 the	 locations	 at	 which	 brain	156	

patterns	were	suitably	formatted	for	read-out	by	the	brain	using	the	distance-to-bound	approach	157	

(Ritchie	&	Carlson,	2016)	 in	a	second	searchlight	analysis.	Analogous	to	the	decoding	analysis,	at	158	

each	voxel,	an	SVM	was	trained	to	classify	visual	objects.	Diverging	at	this	point	from	the	decoding	159	
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approach	we	did	not	test	the	classifier,	but	rather	obtained	the	distance	for	each	exemplar	to	the	160	

hyperplane	 set	 by	 the	 SVM.	We	 then	 correlated	 those	 distances	 to	 reaction	 times	 acquired	 in	161	

separate	 categorisation	 tasks.	 The	 contribution	 of	 each	 category	 was	 assessed	 individually,	 by	162	

performing	 the	 correlations	 separately	 for	 the	 two	 sides	 of	 the	 categorisation	 (e.g.,	 one	163	

correlation	 for	 animate	 and	 one	 for	 inanimate	 exemplars).	 For	 each	 categorisation	 task	 this	164	

resulted	 in	 two	 correlation	maps	 per	 subject.	 The	maps	 of	 decoding	 accuracy	 and	 correlations	165	

were	 assessed	 for	 significance	 at	 the	 group	 level	 using	 sign-rank	 tests	 for	 random-effects	166	

inference.	The	results	were	thresholded	at	p	<	0.05,	using	the	false	discovery	rate	(FDR;	(Benjamini	167	

&	Hochberg,	1995))	to	correct	for	multiple	comparisons	at	the	voxel	level.	168	

	169	

Relating	the	results	to	topographical	locations	of	the	visual	system	170	

For	the	animacy	categorisation	contrasts,	we	identified	the	locations	of	the	significant	voxels	with	171	

respect	to	ROIs	of	the	visual	system.	The	significant	voxels	in	the	decoding	maps	and	correlation	172	

maps	 were	 compared	 to	 probabilistic	 topographic	 maps	 of	 visual	 processing	 areas	 (Wang,	173	

Mruczek,	Arcaro,	&	Kastner,	2015),	which	represent	for	each	voxel	the	visual	area	with	the	highest	174	

probability.	 A	 percentage	 score	 for	 each	 ROI	 was	 then	 computed,	 reflecting	 the	 percentage	 of	175	

voxels	in	this	ROI	that	were	significant	at	the	group	level.	We	obtained	a	bootstrapped	distribution	176	

of	 percentage	 scores	 for	 each	 ROI	 by	 repeating	 this	 procedure	 10,000	 times,	 while	 randomly	177	

sampling	the	subjects	with	replacement	and	recomputing	the	group	level	statistics.	We	report	the	178	

5th,	50th	and	95th	percentiles	of	this	distribution.	This	approach	allows	quantifying	the	difference	179	

between	the	number	of	decoding	voxels	and	correlation	voxels	per	visual	ROI.	180	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 7, 2018. ; https://doi.org/10.1101/248583doi: bioRxiv preprint 

https://doi.org/10.1101/248583


 

 9	

	181	

Figure	 1.	 General	 experimental	 rationale.	 Stimuli	 (A,C)	 used	 to	map	 fMRI	 brain	 responses	 and	182	

brain	coverage	(B,C)	for	fMRI	study	1	and	2	respectively.	E.	Acquisition	of	reaction	times	on	object	183	

categorisation	tasks.	Reaction	times	for	categorisation	contrasts	were	collected	in	a	different	pool	184	

of	participants	than	the	ones	participating	 in	the	fMRI	experiment.	On	each	trial,	a	stimulus	was	185	

displayed	 for	 250ms,	 and	 participants	 categorised	 it	 into	 two	 categories	 (exemplarily	 here:	186	

animate	 vs	 inanimate)	 by	 pressing	 one	 of	 two	 keys.	 F.	 The	 two-partite	 approach	 to	 separately	187	
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localize	decodable	information	and	information	that	is	suitable	for	read	out	in	behaviour.	For	both	188	

parts,	 a	 local	 cluster	of	neighbouring	voxels	 (i.e.,	 searchlight)	was	used	 to	 train	a	 linear	 support	189	

vector	 machine	 (SVM)	 on	 an	 image	 category	 classification	 task	 (e.g.,	 animacy).	 To	 localize	190	

decodable	 information,	 the	 classifier	 was	 tested	 on	 left-out	 data,	 storing	 the	 classification	191	

accuracy	at	the	centre	voxel	of	the	searchlight.	To	localise	information	that	was	suitably	formatted	192	

for	 read-out	 in	 a	 categorisation	 task,	 the	 distances	 of	 objects	 to	 the	 classifier	 hyperplane	were	193	

correlated	with	 the	 reaction	 times	 for	 the	 same	 object	 images	 on	 the	 same	 classification	 task.	194	

Repeated	 for	every	voxel,	 this	 resulted	 for	each	 subject	 in	one	map	of	decoding	accuracies	and	195	

one	 of	 correlations.	 For	 visualisation,	 significant	 correlation	 voxels	 were	 superimposed	 on	196	

significant	decoding	accuracy	voxels,	each	showing	group	average	values	in	significant	voxels.	197	

	198	

3	Results	199	

We	 examined	 the	 relationship	 between	 decodable	 information	 and	 information	 that	 is	 suitably	200	

formatted	for	read-out	by	the	brain	in	the	context	of	decodable	information	about	visual	objects	201	

and	 object	 categorisation	 behaviour.	 We	 determined	 the	 relationship	 between	 decodable	202	

information	and	behaviour	 separately.	 First,	we	determined	where	 information	about	objects	 is	203	

present	in	brain	patterns	using	decoding	in	a	standard	fMRI	searchlight	decoding	analysis	(Haynes	204	

et	al.,	2007;	Kriegeskorte	et	al.,	2006).	We	then	determined	the	subset	of	the	locations	at	which	205	

brain	 patterns	 were	 suitably	 formatted	 for	 read-out	 by	 the	 brain	 using	 the	 distance-to-bound	206	

approach	 (Ritchie	 &	 Carlson,	 2016)	 in	 a	 second	 searchlight	 analysis.	 The	 subject-specific	207	

searchlight	 results	were	 subjected	 to	 inference	 statistics	at	 the	group	 level	using	one-sided	 sign	208	

rank	tests	and	thresholded	at	p	<	0.05	(fdr-corrected	for	multiple	comparisons	across	voxels).	209	

	210	

3.1	A	subset	of	locations	that	have	decodable	information	about	animacy	also	had	information	211	

suitably	formatted	for	animacy	categorisation	behaviour	212	

Animacy	is	a	pervasive	and	basic	object	property	according	to	which	any	object	can	be	classified	as	213	

animate	or	inanimate	(Caramazza	&	Shelton,	1998).	Previous	studies	have	shown	that	the	division	214	
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of	animate	versus	inanimate	objects	is	reflected	in	the	large-scale	architecture	of	high-level	visual	215	

areas	 such	 as	 the	 ventral	 temporal	 cortex	 (VTC)	 (Caramazza	 &	 Shelton,	 1998;	 Grill-Spector	 &	216	

Weiner,	2014;	Kriegeskorte	et	al.,	 2008),	However,	 it	has	also	been	 shown	 that	animacy	 can	be	217	

decoded	not	 only	 from	VTC,	 but	 from	 the	whole	 ventral	 visual	 stream	 (Cichy	 et	 al.,	 2016;	Grill-218	

Spector	 &	Weiner,	 2014;	 Long,	 Yu,	 &	 Konkle,	 2017).	 Furthermore,	 categorical	 object	 responses	219	

have	also	been	found	in	the	dorsal	visual	stream	(Bracci,	Daniels,	&	op	de	Beeck,	2017;	Freedman	220	

&	Assad,	2006;	Konen	&	Kastner,	2008)	and	 in	 frontal	areas	 (Freedman,	Riesenhuber,	Poggio,	&	221	

Miller,	 2001,	 2003).	 This	 prompts	 the	 question	 of	 where	 in	 the	 visual	 system	 object	222	

representations	are	suitably	formatted	for	read-out	by	the	brain	for	animacy	decisions.	223	

	224	

Corroborating	 previous	 studies,	 we	 found	 decodable	 information	 about	 animacy	 in	 the	 entire	225	

ventral	visual	stream	from	the	occipital	pole	to	anterior	ventral	temporal	cortex	(Figure	2AB,	Table	226	

1AE,	N	 =	 15,	 one-sided	 sign-rank	 test,	 p	 <	 0.05	 fdr-corrected).	 In	 addition,	we	 found	decodable	227	

information	 in	 dorsal	 and	 prefrontal	 cortex	 (Figure	 2B)	 in	 experiment	 2	 which	 had	 full	 brain	228	

coverage.	Localising	the	brain	representations	suitable	to	guide	animacy	categorisation	behaviour	229	

(using	 the	 distance-to-bound	 approach)	 revealed	 convergent	 evidence	 across	 experiments	 that	230	

only	a	subset	of	voxels	containing	decodable	information	fulfilled	this	criterion.	In	detail,	distance-231	

RT-correlations	for	animate	objects	were	strongest	in	the	high-level	regions	of	the	ventral	and	the	232	

dorsal	stream.	For	inanimate	objects,	we	found	no	voxels	with	significant	distance-RT-correlations	233	

(Carlson	et	al.,	2014;	Grootswagers,	Ritchie,	Wardle,	Heathcote,	&	Carlson,	2017).	234	

	235	
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	236	

Figure	 2.	 Relationship	 between	 decodable	 information	 and	 categorisation	 behaviour	 for	237	

animacy.	 Decodable	 information	 is	 shown	 in	 hot	 colours	 and	 distance-RT-correlations	 in	 cool	238	

colours.	 Colour	 intensities	 reflect	 the	mean	 across	 subjects.	 Only	 significant	 voxels	 (N=15,	 sign-239	
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rank	 test,	p<0.05	 fdr-corrected)	are	shown.	Data	are	projected	onto	axial	 slices	of	a	standard	T1	240	

image	in	MNI	space.	A.	In	experiment	1,	decodable	animacy	information	(hot	colours)	was	found	241	

throughout	 the	 ventral	 stream.	 A	 correlation	 between	 distance	 to	 the	 classifier	 boundary	 and	242	

reaction	time	for	animate	stimuli	(cool	colours)	was	found	in	a	subset	of	these	areas.	The	colour	243	

intensities	 depict	 the	 mean	 across	 subjects.	 B.	 The	 results	 of	 the	 analysis	 for	 experiment	 2	244	

corroborated	 these	 findings,	 and	 showed	 decodable	 information	 in	 prefrontal	 areas	 and	 in	 the	245	

dorsal	 visual	 stream.	Correlations	between	distance	 and	 reaction	 time	were	 also	present	 in	 the	246	

dorsal	stream.	247	

	 	248	
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	249	

Contrast	 #significant	

voxels	

Max/min	 X	 Y	 Z	

A)	decoding	'animate'	vs	'inanimate'	(exp	1)	 11745	 0.80	 36	 -52	 -15	

				Distance-RT-correlation	'animate'	 6410	 -0.38	 38	 -58	 -19	

				Distance-RT-correlation	'inanimate'	 0	 -0.16	 -48	 -58	 5	

B)	decoding	'human'	vs	'animal'	 4863	 0.69	 22	 -90	 -13	

				Distance-RT-correlation	'human'	 0	 -0.29	 30	 -58	 -15	

				Distance-RT-correlation	'animal'	 0	 -0.17	 48	 -46	 -4	

C)	decoding	'face'	vs	'body'	 10661	 0.84	 44	 -78	 -10	

				Distance-RT-correlation	'face'	 226	 -0.32	 40	 -76	 -15	

				Distance-RT-correlation	'body'	 0	 -0.20	 -54	 -68	 16	

D)	decoding	‘natural’	vs	'artificial'	 0	 0.63	 30	 -52	 -17	

				Distance-RT-correlation	'natural'	 0	 -0.27	 42	 -72	 -4	

				Distance-RT-correlation	'artificial'	 0	 -0.24	 26	 -88	 3	

E)	decoding	'animate'	vs	'inanimate'	(exp	2)	 8824	 0.80	 36	 -55	 -11	

				Distance-RT-correlation	'animate'	 2015	 -0.34	 51	 -73	 -2	

				Distance-RT-correlation	'inanimate'	 0	 -0.12	 -21	 -43	 -2	

F)	decoding	'tool'	vs	'not	tool'	 0	 0.58	 -30	 -94	 7	

				Distance-RT-correlation	'tool'	 0	 -0.25	 -33	 -13	 19	

				Distance-RT-correlation	'not	tool'	 0	 -0.24	 -33	 -52	 -17	

G)	decoding	'transport'	vs	'not	transport'	 0	 0.59	 33	 -94	 1	

				Distance-RT-correlation	'transport'	 0	 -0.32	 15	 50	 4	

				Distance-RT-correlation	'non-transport'	 0	 -0.18	 -33	 -55	 -14	

H)	decoding	'food'	vs	'not	food'	 1092	 0.62	 36	 -55	 -14	

				Distance-RT-correlation	'food'	 0	 -0.16	 -18	 26	 -5	

				Distance-RT-correlation	'not	food'	 154	 -0.13	 27	 -40	 -14	

Table	 1.	 Results	 for	 all	 categorisation	 contrasts.	 For	 all	 categorisation	 contrasts,	we	 report	 the	250	

number	of	significant	voxels	(after	correction	for	multiple	comparisons),	its	peak	value	(maximum	251	

for	 decoding	 or	 minimum	 for	 distance-RT-correlation),	 and	 the	 peak’s	 location	 in	 MNI-XYZ	252	

coordinates.	253	

	254	
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3.2	The	proportion	of	region-specific	representations	suitably	formatted	for	behaviour	increases	255	

along	the	ventral	stream	and	decreases	along	the	dorsal	stream	256	

We	next	explicitly	determined	the	degree	to	which	representations	in	single	brain	regions	within	257	

the	ventral	and	dorsal	streams	are	suitably	 formatted	for	behaviour.	For	this	we	parcellated	the	258	

cortex	 (Figure	3A)	using	a	probabilistic	 topographic	map	of	visual	processing	areas	 (Wang	et	al.,	259	

2015).	For	each	 region,	we	calculated	 the	 ratio	between	 the	number	of	 significant	voxels	 in	 the	260	

decoding	analysis	and	the	total	number	of	voxels,	so	that	a	high	ratio	indicates	that	a	large	part	of	261	

a	region	contains	object	representations	with	categorical	information.	Similarly,	we	calculated	the	262	

ratio	 between	 the	 number	 of	 significant	 voxels	 in	 the	 distance-to-bound	 analysis	 and	 the	 total	263	

number	 of	 voxels.	 Here,	 a	 high	 ratio	 indicates	 that	 a	 large	 part	 of	 a	 region	 contains	 object	264	

representations	that	are	suitably	formatted	for	read	out	in	a	categorisation	task.	265	

	266	

In	 the	ventral	 stream,	our	 results	 suggest	 that	 these	 ratios	 increase	with	processing	stage,	 from	267	

early	 visual	 areas	 to	 high-level	 visual	 areas,	 with	 highest	 ratios	 in	 ventral	 occipital	 (VO)	 and	268	

parahippocampal	 (PHC)	 cortex	 (Figure	 3	 B&C).	 In	 contrast,	 in	 the	 dorsal	 stream	we	 observed	 a	269	

decrease	of	the	correlation	ratio	with	processing	stage.	In	addition,	significant	animacy	decoding	270	

information	was	 found	 in	similar	proportions	 in	 the	ventral-temporal	areas	as	 in	 lateral-occipital	271	

areas,	however,	the	proportion	of	voxels	with	information	suitable	for	categorisation	was	lower	in	272	

lateral-occipital	 areas.	 This	 is	 consistent	 with	 the	 notion	 that	 while	 both	 these	 regions	 contain	273	

object	representations,	the	VTC	contains	location-invariant	representations	which	are	essential	for	274	

object	 categorisation	 (Cichy	 et	 al.,	 2013;	 Haushofer	 et	 al.,	 2008;	 Schwarzlose,	 Swisher,	 Dang,	&	275	

Kanwisher,	2008;	Williams	et	al.,	2007).	The	results	were	similar	between	experiments,	with	the	276	

exception	 for	 area	 TO,	 which	 had	 a	 smaller	 proportion	 of	 voxels	 with	 RT-correlations	 in	277	

experiment	1.	It	is	possible	that	this	difference	was	caused	by	the	differences	between	the	stimuli	278	

(e.g.,	 segmented	 objects	 versus	 objects	 in	 scenes)	 used	 in	 the	 experiments.	 Alternatively,	 this	279	
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difference	 could	 be	 attributed	 to	 the	 size	 of	 the	 searchlight	 sphere,	 which	 was	 larger	 in	280	

experiment	2	than	in	experiment	1	due	to	their	different	voxel	sizes.	281	

	282	

In	sum,	these	results	show	that	representations	along	the	ventral	stream	are	suitably	 formatted	283	

for	 read-out	 of	 categorical	 information	 (Cichy	 et	 al.,	 2013;	 Grill-Spector	 &	 Weiner,	 2014).	 In	284	

contrast,	representations	in	the	dorsal	stream	might	be	shaped	for	the	read-out	in	different	tasks	285	

(Bracci	et	al.,	2017;	Freud	et	al.,	2017).	These	results	also	suggest	that	intermediate	stages	along	286	

the	ventral	and	dorsal	streams	may	be	similar	or	partly	shared,	as	suggested	by	the	similar	ratios	287	

of	information	suitable	for	read-out.	288	

	289	
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	290	

Figure	 3.	 Quantifying	 the	 decodable	 information	 in	 visual	 areas	 and	 their	 contribution	 to	291	

categorisation	behaviour.	A.	 Locations	of	 topographical	 ROIs	 of	 the	 visual	 system	 (Wang	et	 al.,	292	

2015),	containing	early	visual	cortex	(EVC)	areas	V1	and	V2,	mid-level	areas	V3	and	hV4,	high	level	293	

ventral	 occipital	 (VO)	 and	 parahippocampal	 cortex	 (PHC),	 temporal	 occipital	 (TO)	 and	 lateral	294	

occipital	(LO)	areas,	areas	in	the	intra-parietal	sulcus	(IPS),	the	superior	parietal	lobule	(SPL),	and	295	

the	frontal	eye	fields	(FEF).	B-C.	The	ratio	between	significant	voxels	in	an	ROI	and	the	size	of	the	296	

ROI.	Orange	points	show	the	ratio	of	voxels	within	the	ROI	that	had	significant	animacy	decoding	297	

performance.	Blue	points	show	the	ratio	of	voxels	with	a	significant	correlation	between	distance	298	

to	the	hyperplane	and	RT	for	‘animate’.	The	lower,	middle	and	upper	points	on	these	lines	indicate	299	

5th,	50th,	and	95th	percentiles	(bootstrapping	of	participants	10,000	times).	These	results	quantify	300	

the	 increasing	 contribution	 of	 early	 to	 late	 areas	 in	 the	 ventral	 visual	 stream	 to	 animacy	301	

categorisation	behaviour.	302	
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3.3	Decodable	information	about	subordinate	categorisation	tasks	is	also	suitably	formatted	for	303	

categorisation	behaviour	304	

While	 animacy	 categorisation	 may	 be	 based	 on	 large-scale	 representational	 differences	 in	 the	305	

visual	 brain	 (Carlson,	 Tovar,	 Alink,	 &	 Kriegeskorte,	 2013;	 Downing,	 Chan,	 Peelen,	 Dodds,	 &	306	

Kanwisher,	 2006;	 Grill-Spector	 &	 Weiner,	 2014;	 Kriegeskorte	 et	 al.,	 2008),	 subordinate	307	

categorisation	tasks	(e.g.,	faces,	bodies,	tools)	may	depend	more	on	fine	grained	patterns	in	focal	308	

brain	regions	(Downing,	Jiang,	Shuman,	&	Kanwisher,	2001;	Downing	&	Peelen,	2016;	Kanwisher,	309	

McDermott,	&	Chun,	1997).	Here,	we	 tested	whether	decodable	 information	about	 subordinate	310	

category	membership	is	also	suitably	formatted	for	read	out	in	respective	categorisation	tasks.	We	311	

tested	 two	subordinate	contrasts	 for	 the	animate	exemplars	 in	experiment	1:	 face	versus	body,	312	

and	human	versus	animal	using	the	same	general	procedure	as	for	animacy.	We	found	that	both	313	

contrasts	were	decodable	(Table	1B-C).	We	found	a	significant	correlation	between	distance	to	the	314	

classifier	 hyperplane	 and	 reaction	 times	 for	 faces	 in	 the	 face	 versus	 body	 task	 (Figure	 4A).	We	315	

found	 no	 significantly	 decodable	 information	 or	 significant	 correlations	 for	 the	 natural	 versus	316	

artificial	 objects	 (Table	 1D).	 Of	 the	 subordinate	 categorisation	 contrasts	 in	 experiment	 2	 (food,	317	

transport	 or	 tool	 versus	 everything	 else),	 transport	 and	 tool	 versus	 everything	 else	 were	 not	318	

significantly	decodable	information	nor	had	they	significant	correlations	(Table	1F-G).	Food	versus	319	

not	 food	 resulted	 in	 significant	 decodable	 information,	 and	 significant	 distance-RT	 correlations	320	

were	present	for	this	contrast	in	the	‘not	food’	category	(Figure	4B,	Table	1H).	Taken	together,	for	321	

some	subordinate	categorisation	contrasts	that	were	decodable,	we	were	successful	 in	 localising	322	

brain	patterns	suitably	formatted	for	read-out	in	behaviour.	323	
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	324	

Figure	 4.	 Relationship	 between	 decodable	 information	 and	 behaviour	 for	 subordinate	325	

categorisation	tasks.	Decodable	information	is	shown	in	hot	colours	and	distance-RT-correlations	326	

in	cool	colours.	Colour	intensities	reflect	the	mean	across	subjects.	Only	significant	voxels	(N=15,	327	
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sign-rank	test,	p<0.05	fdr-corrected)	are	shown.	Data	are	projected	onto	axial	slices	of	a	standard	328	

T1	image	in	MNI	space.	A.	In	experiment	1,	decodable	face	versus	body	information	(hot	colours)	329	

was	found	in	the	entire	ventral	stream.	A	distance-RT-correlation	for	the	face	stimuli	(cool	colours)	330	

was	found	in	a	subset	of	these	areas.	B.	In	experiment	2,	food	versus	not	food	was	decodable	in	331	

some	areas	 in	 the	ventral	visual	 stream.	A	distance-RT-correlation	 for	 the	 ‘not	 food’	stimuli	was	332	

found	in	a	subset	of	these	areas.	333	

	334	

4	Discussion	335	

4.1	Dissociating	between	decodable	information	and	information	that	is	used	in	behaviour		336	

The	 aim	 of	 this	 study	 was	 to	 examine	 where	 in	 the	 brain	 decodable	 information	 is	 suitably	337	

formatted	for	read-out	by	the	brain	in	behaviour.	We	found	that	only	a	subset	of	information	that	338	

is	decodable	could	be	related	to	behaviour	using	 the	distance-to-bound	approach,	which	argues	339	

for	 a	 partial	 dissociation	 between	 decodable	 information	 and	 information	 that	 is	 relevant	 for	340	

behaviour.	This	speaks	to	a	current	challenge	in	neuroimaging,	which	is	to	show	that	information	341	

visible	to	the	experimenter	is	in	fact	used	by	the	brain	(de-Wit	et	al.,	2016;	Ritchie	et	al.,	2017).	To	342	

illustrate,	 consider	 the	question	about	what	 regions	are	used	by	 the	brain	 to	perform	an	object	343	

animacy	categorisation	task	(DiCarlo,	Zoccolan,	&	Rust,	2012;	Grill-Spector	&	Weiner,	2014).	On	its	344	

own,	 the	 result	 of	 the	 animacy	 decoding	 searchlight	 might	 be	 interpreted	 as	 the	 brain	 using	345	

animacy	 information	 from	 anywhere	 in	 the	 ventral	 stream.	 However,	 when	 investigating	 this	346	

interpretation	 directly	 using	 the	 distance-RT-correlation	 results,	 it	 becomes	 clear	 that	 object	347	

animacy	information	is	suitably	represented	for	read-out	in	mid-	and	high-level	visual	areas	only.	348	

	349	

It	is	important	to	note	that	not	finding	a	correlation	between	distance	to	the	classifier	hyperplane	350	

and	RT	does	not	imply	that	the	information	revealed	using	the	decoding	approach	is	irrelevant	or	351	

epiphenomenal.	 The	 distance-to-bound	 approach	 taken	 here	makes	 specific	 assumptions	 about	352	

the	 brain’s	 read-out	 process,	 such	 as	 distance	 in	 representational	 space	 as	 the	 measure	 for	353	
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evidence,	 and	a	monotonic	 relationship	between	distance	and	 reaction	 time	 (Ritchie	&	Carlson,	354	

2016).	 Note	 that	 this	 model	 of	 readout	 follows	 from	 the	 assumptions	 behind	 the	 decoding	355	

methods	(Ritchie	&	Carlson,	2016;	Ritchie	et	al.,	2017).	While	the	model	may	not	be	perfect,	our	356	

results	 stress	 the	 importance	of	explicitly	 testing	models	of	 readout	when	decoding	 information	357	

from	the	brain.	Finding	the	correct	model	of	readout	would	significantly	increase	the	capacity	of	358	

cognitive	 neuroscience	 to	 infer	 brain-behaviour	 relationships.	 Other	 assumptions	 follow	 from	359	

those	 imposed	 by	 the	 decoding	 approach,	 such	 as	 the	 binary	 classification,	 the	 size	 of	 the	360	

searchlight	 radius,	 the	choice	of	classifier.	For	example,	 it	 could	be	 that	 the	 representations	are	361	

relevant	 in	a	different	task	 (Grootswagers,	Ritchie,	et	al.,	2017;	Ritchie	&	Carlson,	2016),	or	 that	362	

read-out	involves	pooling	over	larger	spatial	scales	or	multiple	brain	areas.	Therefore,	the	current	363	

approach	only	allows	the	positive	inference	on	the	level	of	suitability	of	decoded	information	for	364	

behaviour	 in	 the	 context	 of	 the	 current	 task	 and	 decoding	 parameters.	 On	 the	 other	 hand,	 a	365	

correlation	with	behaviour	 still	 does	not	prove	 that	 the	 information	 is	 used	by	 the	brain,	 but	 it	366	

shows	that	the	information	is	at	least	formatted	in	a	way	that	is	suitable	to	be	used	by	the	brain	367	

for	decisions.	Future	work	can	use	causal	measures	(e.g.,	TMS)	targeting	the	areas	highlighted	in	368	

the	current	results.	369	

	370	

4.2	The	contribution	of	ventral	and	dorsal	visual	regions	to	categorisation	behaviour	371	

We	 found	 that	 neural	 representations	 suitably	 formatted	 for	 behaviour	 in	 categorisation	 were	372	

most	prominently	 located	 in	 the	anterior	 regions	of	 the	VTC.	This	corroborates	previous	studies	373	

(Afraz,	 Kiani,	&	 Esteky,	 2006;	 Carlson	 et	 al.,	 2014;	Hong,	 Yamins,	Majaj,	&	DiCarlo,	 2016;	Hung,	374	

Kreiman,	 Poggio,	 &	 DiCarlo,	 2005),	 and	 reinforces	 the	 tight	 link	 between	 VTC	 and	 visual	375	

categorisation	behaviour.	In	these	areas,	our	results	provide	converging	evidence	for	the	(implicit)	376	

assumption	 made	 in	 neuroimaging	 studies,	 which	 is	 that	 information	 that	 is	 available	 to	 the	377	

experimenter	is	also	available	for	read	out	by	the	brain	in	behaviour	(cf.	de-Wit	et	al.,	2016).	378	
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	379	

However,	we	found	that	correlations	between	distance	to	boundary	and	RT	were	not	restricted	to	380	

anterior	 regions	of	 the	VTC,	but	were	also	prominent	 in	V3	and	hV4.	This	 is	 consistent	with	 the	381	

view	that	lower	level	visual	features	encoded	in	mid-level	visual	regions	could	aid	faster	read-out	382	

of	 category	 information.	 V4	 is	 thought	 of	 as	 an	 intermediate	 stage	 of	 visual	 processing	 that	383	

aggregates	 lower	 level	 visual	 features	 into	 invariant	 representations	 (Riesenhuber	 &	 Poggio,	384	

1999).	 It	 has	 been	 proposed	 that	 direct	 pathways	 from	V4	 to	 decision	 areas	 allow	 the	 brain	 to	385	

exploit	visual	feature	cues	for	fast	responses	to	ecologically	important	stimuli	(Hong	et	al.,	2016;	386	

Kirchner	 &	 Thorpe,	 2006;	 Thorpe,	 Fize,	 &	 Marlot,	 1996),	 such	 as	 identifying	 faces	 (Crouzet,	387	

Kirchner,	&	Thorpe,	2010;	Honey,	Kirchner,	&	VanRullen,	2008).	An	alternative	possibility	 is	 that	388	

read	out	is	not	happening	directly	from	V4,	but	its	representational	structure	is	shaped	by	the	low-389	

level	 feature	 differences	 in	 animacy.	 This	 structure	 is	 then	 largely	 preserved	 when	 it	 is	390	

communicated	to	more	anterior	areas,	 leading	to	similar	distance-RT-correlations.	Both	of	 these	391	

accounts	 are	 also	 consistent	 with	 recent	 findings	 that	 show	 differential	 responses	 for	 object	392	

categories	in	mid-level	visual	areas	(Long	et	al.,	2017;	Proklova	et	al.,	2016).	The	extent	to	which	393	

visual	 features	 contribute	 to	 the	 read-out	 process	 could	 be	 further	 investigated	 by	 using	 the	394	

approach	 from	 this	 study	 with	 different	 stimulus	 sets	 that	 control	 for	 these	 features	 (Kaiser,	395	

Azzalini,	&	Peelen,	2016;	Long	et	al.,	2017;	Proklova	et	al.,	2016).	396	

	397	

We	 found	 that	 distance-RT-correlations	 were	 also	 present	 in	 early	 parietal	 areas.	 The	 classical	398	

view	is	that	the	ventral	and	dorsal	visual	streams	are	recruited	for	different	function	(Ungerleider	399	

&	Mishkin,	1982).	However,	areas	 in	 the	ventral	and	dorsal	 streams	have	been	 found	 to	exhibit	400	

similar	object-selective	responses	(Freud	et	al.,	2017;	Konen	&	Kastner,	2008;	Sereno	&	Maunsell,	401	

1998;	 Silver	&	Kastner,	 2009).	 Consistent	with	 this,	we	 found	 similar	RT-distance-correlations	 in	402	

mid-level	 areas	 in	 the	 ventral	 and	 dorsal	 streams.	 However,	 our	 results	 also	 showed	 that	 the	403	
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proportion	 of	 correlations	 decreased	 along	 the	 dorsal	 stream,	 while	 they	 increased	 along	 the	404	

ventral	 stream.	 This	 suggests	 that	 representations	 in	 the	 ventral	 and	 dorsal	 streams	 undergo	405	

similar	transformations	at	first,	and	then	diverge	for	different	goals.	406	

	407	

4.3	 Without	 a	 task,	 neural	 object	 representations	 in	 the	 VTC	 are	 formatted	 for	 read-out	 in	408	

categorisation	decisions	409	

Here,	 the	 fMRI	 participants	 performed	 an	 orthogonal	 task,	 and	 were	 not	 actively	 categorising.	410	

Despite	 this,	 categorisation	 reaction	 times	 could	 still	 be	 predicted	 from	 representations	 in	 the	411	

visual	stream.	This	highlights	that,	without	a	categorisation	task,	information	in	the	visual	system	412	

is	 represented	 in	 a	way	 that	 is	 suitable	 for	 read	 out	 in	 behaviour	 (Carlson	 et	 al.,	 2014;	 Ritchie,	413	

Tovar,	 &	 Carlson,	 2015).	 This	 representation	 possibly	 reflects	 a	 more	 general	 property	 of	 the	414	

object	 that	 aids	 its	 categorisation,	 such	 as	 how	 typical	 it	 is	 for	 that	 category	 (Grootswagers,	415	

Ritchie,	et	al.,	2017;	Iordan,	Greene,	Beck,	&	Fei-Fei,	2016),	or	how	frequently	we	encounter	the	416	

object	in	our	lives.	In	addition,	the	orthogonal	task	in	the	scanner	has	the	advantage	that	it	avoids	417	

RT-	 and	difficulty	 confounds	 (see	e.g.,	Hebart	&	Baker,	 2017;	Woolgar,	Golland,	&	Bode,	 2014).	418	

Future	 studies	might	 use	 the	 distance-to-bound	 approach	with	 participants	 actively	 performing	419	

the	 same	 task	 in	 the	 scanner,	where	we	predict	 that	areas	 involved	 in	 the	decision	making	and	420	

execution	processes	would	contain	information	that	correlates	with	reaction	times.	For	example,	421	

some	 areas	 preferentially	 represent	 task-relevant	 information,	 such	 as	 areas	 in	 the	 prefrontal	422	

cortex	 (Duncan,	 2001;	 Jackson,	 Rich,	Williams,	 &	Woolgar,	 2016;	Woolgar,	 Jackson,	 &	 Duncan,	423	

2016),	and	in	the	parietal	stream	(Bracci	et	al.,	2017;	Freedman	&	Assad,	2016;	Jeong	&	Xu,	2016).	424	

In	 the	 absence	 of	 an	 animacy	 categorisation	 task,	 one	would	 predict	 that	 animacy	 information	425	

would	 not	 be	 strongly	 represented	 in	 these	 areas.	 Yet,	 our	 results	 showed	 that	 animacy	426	

information	 can	 be	 decoded	 from	 prefrontal	 and	 parietal	 areas	 when	 participants	 perform	 an	427	

orthogonal	 task.	However,	our	 results	did	not	provide	evidence	that	 the	animacy	 information	 in	428	
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these	 areas	 was	 suitably	 formatted	 for	 readout.	 This	 again	 argues	 for	 a	 dissociation	 between	429	

information	 that	 can	 be	 decoded,	 and	 information	 that	 is	 suitable	 for	 read	 out	 in	 behaviour.	 A	430	

prediction	 that	 follows	 from	 this	 is	 that	 performing	 an	 active	 object	 categorisation	 task	 in	 the	431	

scanner	 would	 change	 the	 representations	 in	 these	 task-relevant	 areas	 so	 that	 they	 become	432	

predictive	of	reaction	times	(Bugatus,	Weiner,	&	Grill-Spector,	2017;	McKee,	Riesenhuber,	Miller,	433	

&	 Freedman,	 2014).	 Similarly,	 representations	 can	 change	 when	 participants	 perform	 different	434	

tasks	on	the	same	stimuli,	such	as	categorising	a	specific	feature	(e.g.,	colour),	for	which	suitably	435	

formatted	information	would	be	predicted	in	other	areas.	436	

	437	

4.4	Asymmetric	distance-RT-Correlations	in	binary	categorisation	tasks	438	

In	 both	 experiments,	 we	 found	 correlations	 between	 distance	 and	 reaction	 times	 for	 animate	439	

stimuli,	but	none	 for	 the	 inanimate	stimuli.	This	 is	consistent	with	previous	work	 (Carlson	et	al.,	440	

2014;	Grootswagers,	Ritchie,	et	al.,	2017;	Ritchie	et	al.,	2015),	which	argued	that	this	discrepancy	441	

might	be	caused	by	inanimate	being	a	negatively	defined	category	(i.e.,	“not	animate”).	Under	this	442	

hypothesis	the	animacy	categorisation	task	can	be	performed	by	collecting	evidence	for	animate	443	

stimuli	and	responding	inanimate	only	when	not	enough	evidence	was	accumulated	after	a	certain	444	

amount	 of	 time.	 Here,	 we	 tested	 a	 prediction	 of	 this	 hypothesis	 by	 contrasting	 two	 positively	445	

defined	categories,	face	versus	body,	and	found	that	there	was	a	distance-RT-correlation	only	for	446	

faces.	This	goes	against	the	notion	of	the	negative	definition	of	inanimate	as	the	main	reason	for	a	447	

lack	of	correlation.	However,	it	still	is	possible	that	observers	still	treated	these	tasks	as	‘A’	or	‘NOT	448	

A’,	with	 ‘A’	being	the	category	 that	 is	easiest	 to	detect	 (Grootswagers,	Ritchie,	et	al.,	2017).	For	449	

example,	perceptual	evidence	for	a	face	would	be	easier	to	obtain	than	evidence	for	a	body-part,	450	

as	faces	share	low	level	visual	features	(Crouzet	&	Thorpe,	2011;	Honey	et	al.,	2008;	Wu,	Crouzet,	451	

Thorpe,	&	Fabre-Thorpe,	2015).	Thus,	while	not	explicitly	specified	as	a	negative	category,	it	could	452	

have	been	treated	as	such.	453	
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	454	

This	 suggests	 that	 the	 binary	 categorisation	might	 be	 an	 unnatural	 way	 of	 approaching	 human	455	

categorisation	behaviour	 in	 the	 real	world.	Other	 operationalisations	 such	 as	 picture	naming	or	456	

visual	 search	may	be	better	 suited	 to	 capture	 the	 relevant	behaviours	 (cf.	 Krakauer,	Ghazanfar,	457	

Gomez-Marin,	MacIver,	&	Poeppel,	2017).	Still,	it	is	important	to	note	that	the	binary	task	matches	458	

the	brain	decoding	task	performed	by	the	classifier.	The	above-chance	decoding	accuracy	 in	 the	459	

brain	decoding	task	is	commonly	interpreted	as	a	similar	dichotomy	in	the	brain’s	representation	460	

that	the	brain	can	use	in	a	decision.	However,	when	only	the	information	in	one	of	the	categories	461	

(i.e.,	 animals	 or	 faces)	 can	 be	 used	 to	 predict	 decision	 behaviour,	 as	 shown	 here,	 then	 this	462	

interpretation	needs	to	be	revisited.	463	

	464	

4.5	Limitations	of	the	approach	465	

Our	 results	 highlight	 the	 importance	 of	 relating	 decoding	 to	 behaviour	 and	 demonstrated	 one	466	

possible	methodology	to	address	this	issue.	However,	the	approach	taken	here	is	subject	to	a	set	467	

of	limitations	which	may	preclude	its	application	in	other	settings.	Firstly,	here	we	studied	a	binary	468	

visual	object	categorisation	task.	 It	 is	not	possible	to	describe	all	behaviours	as	binary	tasks,	and	469	

reaction	 times	 are	 not	 always	 a	 meaningful	 measure	 for	 behaviour.	 This	 can	 restrict	 the	470	

generalisability	 of	 the	 current	 approach	 to	 other	 domains.	 Secondly,	 finding	 an	 RT-correlation	471	

does	 not	 reveal	 the	 source	 of	 the	 variance	 in	 evidence	 for	 a	 decision.	 As	 the	method	 remains	472	

correlational,	it	is	important	to	stress	that	it	can	only	go	as	far	to	show	that	information	is	suitably	473	

formatted	to	be	used	by	the	brain	for	decisions,	and	that	the	critical	test	of	this	relationship	will	474	

require	causal	measures.	In	the	animacy	task,	one	possible	source	of	variance	is	typicality,	which	475	

modulates	animacy	categorisation	 (Posner	&	Keele,	1968;	E.	H.	Rosch,	1973;	E.	Rosch	&	Mervis,	476	

1975)	and	decoding	performance	(Iordan	et	al.,	2016),	and	typicality	ratings	have	been	shown	to	477	

correlate	with	 distance	 to	 the	 classifier	 decision	 boundary	 (Grootswagers,	 Ritchie,	 et	 al.,	 2017).	478	
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Yet,	 there	 is	 always	 the	 possibility	 of	 other	 covariates.	 For	 example,	 larger	 or	 more	 colourful	479	

objects	may	be	easier	to	identify	and	therefore	have	a	faster	reaction	times	and	larger	distances,	480	

and	it	 is	not	always	feasible	to	control	for	all	possible	covarying	features.	Note	that	this	 is	also	a	481	

strength	of	the	approach;	if	colourful	objects	are	indeed	easier	to	identify	(i.e.,	the	brain	is	using	482	

the	 feature),	 then	 areas	 where	 this	 feature	 is	 represented	 would	 have	 stronger	 correlations	483	

between	 distance	 to	 boundary	 and	 reaction	 times.	 If	 a	 stimulus	 property	 is	 thought	 to	484	

(unintentionally)	 drive	 decoding	 and	 behaviour	 in	 the	 same	way,	 then	 this	 property	 should	 be	485	

controlled	for	in	the	stimulus	set.	486	

	487	

4.6	Conclusion	488	

In	 this	 study,	 we	 combined	 the	 distance-to-bound	 approach	 (Ritchie	 &	 Carlson,	 2016)	 with	 a	489	

searchlight	decoding	analysis	 to	 find	brain	areas	with	decodable	 information	 that	 is	 suitable	 for	490	

read-out	 in	 behaviour.	 Our	 results	 showed	 that	 decodable	 information	 is	 not	 always	 equally	491	

suitable	for	read-out	by	the	brain	in	behaviour.	This	speaks	to	the	current	debate	in	neuroimaging	492	

research	about	whether	the	information	that	we	can	decode	is	the	same	information	that	is	used	493	

by	the	brain	in	behaviour	(de-Wit	et	al.,	2016).	494	

	495	
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