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A B S T R A C T

Local moment-to-moment variability exists at every level of neural organization, but its driving forces remain
opaque. Inspired by animal work demonstrating that local temporal variability may reflect synaptic input rather
than locally-generated “noise,” we used publicly-available high-temporal-resolution fMRI data (N¼ 100 adults;
33 males) to test in humans whether greater BOLD signal variability in local brain regions was associated with
functional integration (estimated via spatiotemporal PCA dimensionality). Using a multivariate partial least
squares analysis, we indeed found that individuals with higher local temporal variability had a more integrated
(lower dimensional) network fingerprint. Notably, temporal variability in the thalamus showed the strongest
negative association with PCA dimensionality. Previous animal work also shows that local variability may
upregulate from thalamus to visual cortex; however, such principled upregulation from thalamus to cortex has not
been demonstrated in humans. In the current study, we rather establish a more general putative dynamic role of
the thalamus by demonstrating that greater within-person thalamo-cortical upregulation in variability is itself a
unique hallmark of greater functional integration that cannot be accounted for by local fluctuations in several
other well-known integrative-hub regions. Our findings indicate that local variability primarily reflects functional
integration, and establish a fundamental role for the thalamus in how the brain fluctuates and communicates
across moments.
The human brain is remarkably variable across moments, exhibiting
multiple dynamic signatures at every level of neural function (Faisal
et al., 2008). However, the nature and driving forces of temporal vari-
ability remain opaque, with several competing definitions and associated
theories (Garrett et al., 2013b). If dynamic neural activity at the regional
level (in animals) is indeed a primary function of its synaptic inputs
(Britten et al., 2009), then one simple starting point is to investigate how
local temporal variability in the human brain may relate to functional
connectivity (Mi�si�c, 2011). Interestingly, the direction and manifestation
of this potential relationship is not trivial.

Theoretically, high local signal variability could result from entirely
disparate functional network scenarios. For example, (i) through a lower-
dimensional, well-integrated functional network composition, local
variability would be a function of a coherent and common “drive” among
a greater number of network regions (see Fig. 1). Accordingly, the dy-
namic range of a local brain signal would result from heightened levels of
synchronized processes across connected regions, regardless of whether
those processes are deterministic or stochastic (they must only be
shared). Further, with a greater number of functional inputs to any local
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region that may operate across moments (Faisal et al., 2008), the prob-
ability of variable functional output may also increase. Conversely, high
local variability could also conceivably result from (ii) a more fraction-
ated (higher dimensional) network system. Here, greater local
moment-to-moment fluctuations may be due to a lack of “entrainment”
by a reduced number of available functional inputs (and thus, likely
driven more by local sources of stochasticity); accordingly, local vari-
ability could therefore represent a lack of coordinated information
transfer in the brain. In light of theories suggesting that more discon-
nected, fractionated biological systems are less dynamic across moments
(Pincus, 1994), the former scenario (i) may be more likely. Strikingly,
animal and computational work focusing primarily on the visual cortex
has shown that the majority of apparent “noise variation” is shared across
neurons that are similarly functionally tuned (Goris et al., 2014; Lin et al.,
2015). These features suggest a plausible general phenomenon that could
also apply to the human brain – that more temporal variability at the
regional level may be characterized by a more integrated (lower
dimensional) network fingerprint.

Critically, the thalamus may play a key role in the relation between
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Fig. 1. Theoretical relations between local variability and functional integration. Toy example of three functional input scenarios for a given node “a”. Here, the expectation
is that with increasing functional inputs (i.e., going from 1 (green) to 2 (red) to 3 (blue) inputs; left panel), moment-to-moment brain signal variability expressed by
node a (middle panel) similarly increases. Accordingly, we anticipate generally that local variability may be a function of a common, synchronized “drive” among a
greater number of brain regions (right panel), regardless of whether such a process is deterministic or stochastic in time.
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local variability and whole-brain network dimensionality. The thalamus
maintains projections to the entire cortex and is thought to either relay
and/or modulate information flow throughout the entire brain (Bell and
Shine, 2016; Sherman, 2016). To the extent that temporal variability is
an expression of information flow or “dynamic range” (Garrett et al.,
2013b), thalamic variability may provide a key temporal signature of
whole-brain network dimensionality. Further, it has been demonstrated
that the macaque (Goris et al., 2014) and cat visual cortices (Kara et al.,
2000; Scholvinck et al., 2015) may inherit and then upregulate temporal
variability explicitly from thalamic inputs. However, such variability
differences between the thalamus and visual cortex have not yet been
demonstrated in humans, nor expanded to examine the links between
thalamic temporal variability and that of the broader cortex to which it
connects in the context of functional integration. We have posed previ-
ously that the brain's ability to modulate variability levels within-person
provides a key signature of neural “degrees of freedom” in response to
differential environmental demands (Garrett et al., 2013b, 2012; 2013a).
Should the thalamus indeed be considered a dynamic and integrative
“pacemaker” for the brain, then thalamic variability, and within-person
increases in signal variability from thalamus to its a priori structurally
connected cortical targets may also be associated with lower network
dimensionality. If so, the thalamus would qualify as a key region linking
locally-assessed brain signal variability to overall functional integration.

In the present study, we used publicly available multi-band fMRI
resting-state data (N¼ 100, 18–85 years) to test the hypothesis that
moment-to-moment variability in voxel-wise brain signals reflects lower
dimensional functional integration at the individual level. Furthermore,
we hypothesized that the thalamus should play a primary role in this
association.

1. Materials and methods

1.1. Neuroimaging, preprocessing, and analyses

We utilized high-speed, multi-band fMRI resting state data from 100
healthy adult participants (age range¼ 18–83 years; n¼ 33 males) from
the NKI-Enhanced dataset (publicly available at http://fcon_1000.
projects.nitrc.org/indi/enhanced/download.html). All participants
were reported to be psychiatrically and neurologically healthy. As noted
in Nooner et al. (2012), Institutional Review Board Approval was ob-
tained for the NKI-Enhanced project at the Nathan Kline Institute (Phase I
#226781 and Phase II #239708) and at Montclair State University
(Phase I #000983A and Phase II #000983B). Written informed consent
was obtained for all study participants.

Whole-brain resting-state fMRI data (10 min, 900 vol total) were
collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany)
using a multi-band EPI sequence (TR¼ 645 ms; TE¼ 30 ms; flip angle
60�; FoV¼ 222mm; voxel size 3� 3x3 mm; 40 transverse slices; for full
scanning protocol, see http://fcon_1000.projects.nitrc.org/indi/pro/
eNKI_RS_TRT/Rest_645.pdf). The first 15 vol (15� 645 ms¼ 9.7 s)
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were removed to ensure a steady state of tissue magnetization (total
remaining volumes¼ 885). A T1-weighted structural scan was also
acquired (MPRAGE: TR¼ 1900 ms; TE¼ 2.52 ms; flip angle 9�;
FoV¼ 250mm; voxel size 1� 1x1 mm; 176 sagittal slices; full details at
http://fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.
pdf).

fMRI data were preprocessed with FSL 5 (RRID:SCR_002823) (Jen-
kinson et al., 2012; S. M. Smith et al., 2004). Pre-processing included
motion-correction and initial bandpass filtering (0.01–0.20 Hz). We also
utilized extended preprocessing steps to further reduce potential data
artifacts (Garrett et al., 2011a, 2010; 2015). Specifically, we subse-
quently examined all functional volumes for artifacts via independent
component analysis (ICA) within-run, within-person, as implemented in
FSL/MELODIC (Beckmann and S. M. Smith, 2004). Noise components
were identified according to several key criteria: a) Spiking (components
dominated by abrupt time series spikes); b) Motion (prominent edge or
“ringing” effects, sometimes [but not always] accompanied by large time
series spikes); c) Susceptibility and flow artifacts (prominent air-tissue
boundary or sinus activation; typically represents cardio/respiratory ef-
fects); d) White matter (WM) and ventricle activation (Birn, 2012); e)
Low-frequency signal drift (A. M. Smith et al., 1999); f) High power in
high-frequency ranges unlikely to represent neural activity (�75% of
total spectral power present above .10 Hz); and g) Spatial distribution
(“spotty” or “speckled” spatial pattern that appears scattered randomly
across� 25% of the brain, with few if any clusters with �80 contiguous
voxels [at 2� 2x2 mm voxel size]).

Examples of these various components we typically deem to be noise
can be found in Garrett et al. (2013a). By default, we utilized a conser-
vative set of rejection criteria; if manual classification decisions were
challenging due to mixing of “signal” and “noise” in a single component,
we generally elected to keep such components. Three independent raters
of noise components were utilized; > 90% inter-rater reliability was
required on separate data before denoising decisions were made on the
current data. Components identified as artifacts were then regressed from
corresponding fMRI runs using the regfilt command in FSL. Finally, we
registered functional images to participant-specific T1 images, and from
T1 to 2mm standard space (MNI 152_T1) using FLIRT (affine). We then
detrended the functional images (up to a cubic trend) using SPM8, and
masked the functional data with the GM tissue prior provided in FSL
(probability> 0.37).
1.2. Voxel-wise estimates of signal variability

Voxel-wise signal variability was calculated using the square root of
power (summed between 0.01 and 0.10 Hz, or "total power") derived
from the pwelch function in Matlab. This quantity is akin to the standard
deviation of the time series within the same frequency range (see Taylor
et al., 2012). As expected, in the current data, the correlation between
voxel-wise estimates of square root of power and SD were extremely high
(average r¼ 0.99, sd¼ 0.01).
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1.3. Spatiotemporal dimensionality as a proxy estimate of functional
integration

Our primary within-subject network dimensionality estimation
technique utilized “spatial” principal components analysis (PCA), which
decomposes a correlation matrix for all voxel pairs from each within-
subject spatiotemporal matrix (885 (time points) * 171922 (common
MNI grey matter voxels across subjects at 2 mm),

PCAcorr¼USV0 (1)

where U and V are the left and right eigenvectors, and S is a diagonal
matrix of eigenvalues. We then counted the number of dimensions it took
to capture 90% of the within-subject voxel correlation data. Because the S
matrix represents the eigenvalues of the solution, and each eigenvalue is
proportional to the variance accounted for in the entire decomposition,
we summed eigenvalues until 90% of the total variance was reached. The
fewer dimensions there are for a given subject, the more that voxels
correlate with each other across time points. The same decomposition
technique was also applied to 14 individual a priori functional network
clusters reported and made publicly available by Shirer et al. (2011). For
each subject, we calculated a between-voxel correlation matrix using
only those voxels contained within each a priori network, and ran each
network matrix through PCA to calculate a network-specific dimen-
sionality score. In this way, we estimated individual differences in the
dimensionality of previously defined, group-level networks. We chose to
use the Shirer et al. (2011) network affiliations given the templates in-
clusion of subcortical structures in the possible network space, unlike
other commonly utilized, but cortical-only, alternatives (e.g., Yeo et al.,
2011). It is worth highlighting that our spatiotemporal dimensionality
estimation is done after ICA denoising. To ensure that greater removal of
noise components prior to further analyses does not bias dimensionality
estimation, we calculated the relation between the number of noise
components removed during preprocessing and the subsequent PCA
dimensionality estimate on the denoised data; we found no ostensible
relation between the two values across subjects (see Fig. S1; r¼�0.06,
p¼ .55).

Further, as noted in Results below, other decomposition methods
(i.e., covariance matrix-based PCA (PCAcovar) and independent compo-
nents analysis (ICA, which seeks statistical independence between di-
mensions rather than orthogonality) differ in potentially relevant ways
from PCAcorr. As a control, PCAcovar was run in the same manner as
described above, although using a within-subject, between-voxel
covariance matrix instead of a correlation matrix. ICA was run via
MELODIC in FSL (Beckmann and S. M. Smith, 2004). In both cases, we
again counted how many dimensions were required to capture 90% of
the spatiotemporal data, within-subject. However, because MELODIC
outputs the variance accounted for by each ICA component as a pro-
portion of a specific PCA subspace (i.e., the step preceding ICA estimation
in MELODIC to reduce the overall data space), it was first necessary to
choose a total subspace component count across subjects; maintaining
the complete variance space in the data would have required estimating
885 components per subject (there were 885 time points total), but this
model is intractable. Thus, we manually examined the PCA subspaces of
all subjects in the current sample, and chose a fixed PCA subspace
component count of 180 for all subjects (i.e., a value that ensured greater
than 97% of total variance accounted for in all subjects, yet allowing the
ICA to remain estimable; median 98.76%). Finally, ICA dimensionality
estimation (i.e., how many dimensions required to capture 90% of the
spatiotemporal data) was run on this 180-component subspace,
within-subject.
1.4. Statistical modeling: multivariate partial least squares

To examine multivariate relations between PCA dimensionality and
BOLDTotal Power, we utilized a behavioural PLS analysis (Krishnan et al.,
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2011; McIntosh et al., 1996), which begins by calculating a
between-subject correlation matrix (CORR) between (1) PCA dimen-
sionality (PCAdim) and (2) each voxel's BOLDTotal Power value. CORR is
then decomposed using singular value decomposition (SVD).

SVDCORR (BOLDTotal Power, PCAdim)¼USV0 (2)

This decomposition produces a left singular vector of PCAdim weights
(U), a right singular vector of brain voxel weights (V), and a diagonal
matrix of singular values (S). A single estimable latent variable (LV) re-
sults that represents the relations between PCA dimensionality and
BOLDTotal Power values. This LV contains a spatial activity pattern
depicting the brain regions that show the strongest relation of local signal
variability to network dimensionality identified by the LV. Each voxel
weight (in V) is proportional to the voxel-wise correlation between voxel
PCAdim and BOLDTotal Power.

Significance of detected relations was assessed using 1000 permuta-
tions of the singular value corresponding to the LV. A subsequent boot-
strapping procedure revealed the robustness of within-LV voxel saliences
across 1000 bootstrapped resamples of the data (Efron and Tibshirani,
1993). By dividing each voxel's weight (from V) by its bootstrapped
standard error, we obtained “bootstrap ratios” (BSRs) as normalized es-
timates of robustness. For the whole brain analysis, we thresholded BSRs
at values of �3.00 (which exceeds a 99% confidence interval) and
�24.00. For the network-specific analyses, we thresholded at �3.00.

We also obtained a summary measure of each participant's expression
of a particular LV's spatial pattern (a within-person “brain score”) by
multiplying themodel-based vector of voxel weights (V) by each subject's
vector of voxel BOLDTotal Power values (Q), producing a single within-
subject value,

Brain score¼ VQ0 (3)

Brain scores are plotted in various models noted throughout the
Results.
1.5. Statistical modeling of links between thalamo-cortical differences in
variability and functional integration (PCA dimensionality)

To address the hypothesis of whether thalamo-cortical upregulation
of local signal variability is linked to greater functional integration within
the a priori functional networks from Shirer et al. (2011), we first
manually determined the assignment of each of the Shirer et al. network
regions to one or more of the seven structurally connected cortical target
labels suggested by Horn et al. (2016) within their thalamic parcellation
(see Results). These labels also correspond to those utilized in Behrens
et al. (2003), but we chose the Horn et al. thalamic atlas as a result of its
derivation from an adult sample (N¼ 169) far larger than that utilized by
Behrens et al. (2003) (N¼ 7). Since we were primarily interested in
projections connecting thalamus to cortex, all Shirer et al. (2011) net-
works were cortically masked via the Harvard-Oxford Cortical Atlas
using a probability threshold of 5% (Desikan et al., 2006) prior to ana-
lyses. As the basal-ganglia network only contained 4% cortical voxels, it
was not considered further, and all successive analyses were calculated
on the remaining 13 networks. Subsequently, for every subject and
network, we calculated the median temporal variability of all voxels
within the cortical networks voxels and corresponding thalamic sub-
divisions. To model the relation between thalamo-cortical differences in
temporal variability and within-network dimensionality, we first
re-calculated within-person, network-specific PCA dimensionality scores
(as described above), although only using cortical voxels from each
network within the PCA. The relation between thalamo-cortical differ-
ences in temporal variability and network dimensionality was then
formalized for each network by a multiple regression of the form

PCAdim¼ a þ b1(VARthalamus) þ b2(VARcortex- thalamus) þ b3 … 7(VARhub1 …

5) þ e (4)
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where VARcortex-thalamus is the difference score between cortical and
thalamic temporal variability, VARthalamus is thalamic temporal vari-
ability, and PCAdim is the within-subject PCA dimensionality value from
within-cortical-network regions only. The partial regression coefficient
b2 quantifies the relation between the thalamo-cortical difference in
variability and PCA dimensionality, while controlling for baseline (i.e.,
thalamic) variability. Further controls (b3 … 7) are noted below.

1.6. Further control for temporal variability of cortical hub regions to
gauge the robustness of thalamic influences on functional integration

To provide evidence for the robustness of the influence of the thal-
amus and thalamo-cortical differences in local variability on fucntional
integration, we sought to control for fluctuations in other canonical hub
regions in all models (see equation (4) above). To do so, we first extracted
the temporal variability of four “classic” cortical hub-regions, for which
the a priori definition was based upon their well-known integrative roles
within healthy structural and functional brain networks (de Pasquale
et al., 2017; Perry et al., 2015; Power et al., 2013; van den Heuvel and
Sporns, 2013). These regions included (i) the posterior cingulate
(PCC)/precuneus, (ii) supplementary motor area (SMA), (iii) posterior
intra-parietal sulcus (pIPS), and (iv) the middle frontal gyri (MFG); the
corresponding MNI coordinates were extracted from de Pasquale et al.
(2016) (see Table S1). A spherical blob with a radius of 8 mm was con-
structed using the coordinates for each cortical “hub” region. We then
extracted the Shirer et al. functional network cluster which either
enveloped the “hub” blob or was most proximal in anatomical location
(see Fig. S2). Due to the overlap of the a priori MFG region to frontal
regions in both the visuospatial and executive control networks, we
selected the MFG-like regions from each of these networks as separate
controls. After extracting the local variability from each of these “best--
fitting” network clusters (noted in the above equation as “b3 … 7(VARhub1

… 5)”), we then covaried these regional values from each of the
subnetwork-based models linking thalamic power and thalamo-cortical
power differences to PCAdim.

Notably, for network-specific maps (Shirer et al., 2011) within which
hub regions were represented, local variability of such hub regions were
not covaried to maintain model stability. Given that cortical estimation of
variability within network regions may be largely determined by the
variability within their representative hub regions, it becomes statisti-
cally redundant to model a change score as well as both elements that
constitute the particular change score (i.e., we already model thalamic
variability and thalamo-cortical differences in variability). Thus, to avoid
model multicollinearity, for any given network model above, we only
control for variability within hub regions that are not part of that exact
network. Accordingly, for the dDMN network analysis, PCC/precuneus
was excluded as a control; for the sensorimotor network analysis, SMA
was excluded as a control; for the visuospatial network analysis, pIPS and
visuospatial MFGwere excluded as controls, and; for the RECN and LECN
networks, bilateral ECN network MFG was excluded as a control.

1.7. Publicly available data and code

All data are already publicly available at http://fcon_1000.projects.
nitrc.org/indi/enhanced/download.html. Our subject ID list, rationale
for sample selection, and all code written to reproduce the current results
is available on Github at https://github.com/LNDG/local-variability-
network-integration-garrett-2018-neuroimage.

2. Results

2.1. Whole-brain model linking local temporal variability and network
dimensionality

In line with our initial hypothesis, multivariate partial least squares
(PLS) modeling (see Methods) revealed that greater local temporal
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fluctuations coincided with lower PCA dimensionality (r¼�0.84 (95%
bootstrap confidence interval (CI)¼�0.81, �0.88); p ¼ 2.22*10�27).
Spatially, this was a robust and global phenomenon at typical threshold
levels (see Fig. 2 and for an unthresholded 3D view, see Fig. 2a.nii).
When increasing statistical thresholds greatly (Fig. 2, bottom panel),
temporal variability in bilateral thalamus was indeed the peak correlate
of lower whole-brain network dimensionality.

We subsequently probed the relation between within-voxel temporal
variability and PCA dimensionality via a series of control analyses. First,
because the majority of fMRI network analyses rely on parcellation
schemes as a data constraint, we utilized the Craddock et al. (2011)
functional network parcellation (n ¼ 500 and 950; https://www.nitrc.
org/projects/cluster_roi/) to replicate the link between network dimen-
sionality and local variability noted in Fig. 2. For each parcellation res-
olution (500 and 950), we first estimated the median time series from
each parcel, re-estimated whole-brain PCA dimensionality and the square
root of within-parcel power, and then ran two separate PLS models
linking PCAdim and local variability. As in our voxel-wise model (Fig. 2),
negative correlations remained strong, and thalamus remained a key
region (see Fig. S3 and unthresholded 3D files for each brain plot at Fig .
S3a.nii (500 regions) and Fig. S3b.nii (950 regions). This suggests that
despite loss of spatial information, parcellation schemes should not
grossly impact detection of the link between local variability and func-
tional integration, presumably as long as choice of parcellation resolution
is not overly crude.

Second, given that much of our previous work has demonstrated that
older adults express less temporal variability in brain signals (Garrett
et al., 2015, 2012; 2011a, 2010), we examined whether the link between
local variability and network dimensionality would hold after controlling
for adult age. We found that network dimensionality strongly predicted
local variability independent of age (semi-partial r¼�0.74). In line with
our previous findings (Garrett et al., 2015, 2012; 2011a, 2010), local
variability also decreased with age (see Table 1), although the zero-order
effect of age (r¼�0.46) was somewhat attenuated (semi-partial
r¼�0.24) when controlling for network dimensionality.

Third, for PCA dimensionality estimation in our primary results
above, we decomposed a spatiotemporal correlation matrix (PCAcorr) as
opposed to the more typical decomposition of a covariance matrix (see
Methods). PCA is variance-sensitive by design, so decomposing a
covariance matrix in which temporal variance is not scaled (as it is in
PCAcorr) could bias the relation between local variability and PCA
dimensionality. Conversely, decomposing a correlation matrix ensures
that differential temporal variances between region pairs are accounted
for (i.e., in the denominator of the correlation formula; see Methods for a
description). In any case, our results showed that the relation between
local variability (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Total Power

p
) and PCAcorr dimensionality (Fig. 2) held

in the absence of “variance bias.”However, because other decomposition
methods (i.e., covariance matrix-based PCA (PCAcovar) and independent
components analysis (ICA, which seeks statistical independence between
dimensions rather than orthogonality) are not only typical but also differ
in potentially relevant ways from PCAcorr, we also investigated whether
these alternative methods would grossly alter the relation between
network dimensionality and local temporal variability. PCAcovar was run
in the same manner as described in Methods, although using a within-
subject, between-voxel covariance matrix instead of a correlation ma-
trix. ICAwas run via MELODIC in FSL (Beckmann and S. M. Smith, 2004).
In all cases, we counted how many dimensions were required to capture
90% of the spatiotemporal data, within-subject. Results indicated that
PCAcovar (r¼ 0.88, bootstrap CI¼�0.84, �0.91; p ¼ 2.58*10�33) and
ICA (r¼ 0.82, bootstrap CI¼�0.72, �0.90; p ¼ 1.67*10�25) dimen-
sionality correlated strongly with PCAcorr dimensionality (see Fig. 3A).
Separate PLS models were also robust (see Fig. 3A) when linking PCAcovar
dimensionality to local variability (r¼�0.66, bootstrap CI¼�0.61,
�0.73; p ¼ 7.37*10�14) and ICA dimensionality to local variability
(r¼�0.64, bootstrap CI¼�0.50, �0.76; p ¼ 8.86*10�13). Thus,

http://fcon_1000.projects.nitrc.org/indi/enhanced/download.html
http://fcon_1000.projects.nitrc.org/indi/enhanced/download.html
https://github.com/LNDG/local-variability-network-integration-garrett-2018-neuroimage
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Fig. 2. PCA dimensionality negatively correlates with local temporal variability. Brain ScoreTotal Power¼ PLS model-derived latent score representing local temporal
variability (estimated by the total

ffiffiffiffiffiffiffiffiffiffiffiffiffi
power

p
within the .01 to .10Hz range); BSR¼ bootstrap ratio (see Online Methods). Both axis variables are z-transformed. Top right:

axial slices shown every 8mm from �24 to 64. Bottom row: due to global nature of the model effect at a typical threshold level (upper right panel), the bottom panel
depicts the strongest spatial representations of the effect (bilateral thalamus; BSR¼ 24; peak MNI coordinates at [-8–12 6] (183 voxels) and [14–18 10], 155 voxels).

Table 1
The relation between PCA dimensionality and voxel-wise temporal variability (depicted in Fig. 2) remains robust when covarying adult age.

Predictor b Bootstrap 95% CI SE t p Zero-order Partial Semi-Partial

PCA dimensionality �2532.81 (-2816.69, �2280.53) 167.19 �15.15 2.02*10�27 �0.84 �0.84 �0.74
Adult age �1034.77 (-1257.89, �794.25) 215.21 �4.81 6.00*10�6 �0.46 �0.44 �0.24

Note: PCA¼ principal component analysis; CI¼ confidence interval; SE¼ standard error; VIF¼ variance inflation factor. Significant p-values are in bold font. 95%
Bootstrap CI was computed via 1000 resamples with replacement of the data. “Zero-order”, “partial,” and “semi-partial” columns reflect effect sizes in Pearson's
correlation metric.
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regardless of exact dimensionality estimation method, all results
converged to demonstrate a reliable negative relation between network
dimensionality and local temporal dynamics.

Fourth, because our primary results in the current paper gauge local
temporal variability by estimating power in a typical bandpass range for
fMRI (0.01-0.10Hz), we also examined whether frequency range may
influence the relation between PCA dimensionality and local voxel-wise
variability. We separated the bandpass frequency range (0.01-0.10Hz)
into equal thirds (low, medium, high), calculated

ffiffiffiffiffiffiffiffiffiffiffiffiffi
power

p
for each voxel

and frequency range (as our estimate of local temporal variability), and
then ran a PLS model linking PCA dimensionality to local variability for
each frequency range within one model. We found a single significant
latent variable (p ¼ 1.08*10�27) demonstrating a similar effect as seen in
our overall results; for low (r¼�0.81; 95% bootstrap CI¼ .76, .87),
medium (r¼�0.74; 95% bootstrap CI¼ .69, .81), and high frequency
ranges (r¼ 0.71; 95% bootstrap CI¼ .65, .78), network dimensionality
and local variability were negatively correlated (see Fig. 3B).

Fifth, our primary finding thus demonstrates a stable negative rela-
tion between PCA dimensionality and local signal variability. Prior to
estimation of more specific models (see below), it is important to
consider that the statistical conditions required for this negative relation
to emerge are non-trivial. If we consider the correlation formula that
provides the initial matrix for PCA decomposition,
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r ¼ ðxi � xÞ ðyi � yÞ
SDxSDy

(5)

P

the between-region time series covariance (numerator) is scaled by the
time series' standard deviations of each region pair (denominator; rep-
resenting local temporal variability). For the current relation between
PCA dimensionality and local signal variability to be negative, it is
necessary for the covariance between regions (the numerator term) to
outpace the SDx SDy term (representing local temporal variability) in the
denominator of the correlation formula. If the local variability of regions
x and ywas random noise, then the covariance between x and y should be
minimized, pushing the correlation value to zero and the PCA dimen-
sionality estimate higher. In our results however, between-region cor-
relations appear high (resulting in lower PCA dimensionality) despite
high levels of local variability. As a simple demonstration that increasing
randomness should invert the effect we find in our data, we simulated the
impact of additive random noise on dimensionality by: (a) generating a
matrix of in-phase sine waves (amplitude ¼ 1) of equal spatiotemporal
dimension to the original within-subject 2 � 2x2mm voxel-wise data
(885*171922); (b) generating 171922 different vectors of uniformly
distributed random noise (885*1) in varying proportions of the sine wave
amplitude (here, 40–50%); (c) adding noise vectors to each generated
sine wave (thus increasing total time series variation), and; (d) calcu-
lating PCA dimensionality of the entire spatiotemporal matrix at each



Fig. 3. Control analyses for whole-brain model. (A) Consistent negative correlations between network dimensionality and local temporal variability across various forms
of dimensionality estimation. PCA¼ principal components analysis; PCAcovar¼ covariance matrix-based PCA; PCAcorr¼ correlation matrix-based PCA; ICA¼ inde-
pendent components analysis. Bottom row: Brain scoreTotal Power¼ latent score representing local temporal variability (estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
power

p
) from separate PLS model

runs for PCAcovar and ICA-based models. All axis variables are z-transformed. (B) Consistent negative correlations between network dimensionality and local temporal
variability across low (red), medium (blue), and high (yellow) frequency power bands. Brain scorePower¼ PLS model-derived latent score representing local temporal
variability (estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
power

p
) separately for low, medium, and high frequency ranges. (C) Increasing simulated random noise increases PCA dimensionality. %

Noise added¼ the proportion of random noise added to the simulated sine wave amplitude (amplitude¼ 1), thus reflecting an equivalent proportional increase in total
time series variation. (D) Global signal regression does not affect the relation between network dimensionality and local temporal variability. The left plot shows very
similar PCAs dimensionality estimates pre and post global signal regression. The right plot shows an equally strong relation between PCA dimensionality and local
variability as seen in Fig. 2. GSreg¼ global signal regression. Brain ScoreTotal Power (GSreg)¼ PLS model-derived latent score representing local temporal variability
(estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Total Power

p
) following global signal regression. All axis variables are z-transformed.
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noise level. In Fig. 3C, a clear positive (and effectively deterministic)
linear effect between random noise level and PCA dimensionality
emerges, the exact opposite effect we see in our data (see Fig. 2).

Finally, other influences that could drive the relation between local
variability and network dimensionality in the observed negative direc-
tion are equally essential to consider. The most obvious fMRI artifact to
account for in this regard is global signal (i.e., the average signal across
the entire brain) (Liu et al., 2017). Controversy remains regarding the
nature of the global signal in fMRI, and whether or not it should be
corrected (Liu et al., 2017; Power et al., 2017). Regardless of the mech-
anisms driving the global signal, this issue could be potentially salient for
the present study given that by definition, a higher unifying
between-region “global signal” would necessarily result in a lower
dimensional spatiotemporal network organization. We thus computed
the global signal within-subject (average of all voxels at each time point
from a whole-brain mask (2mm standard MNI), yielding a single
full-length time series), and regressed it from every voxel within-subject.
From the global signal-regressed spatiotemporal matrix, we then recal-
culated PCA dimensionality and voxel-wise temporal variability
within-person, and ran a new multivariate model linking the two. We
first found that not only did PCA dimensionality values calculated from
global signal regressed data correlate strongly with PCA dimensionality
from non-regressed data (r¼ 0.86; bootstrap CI¼ .81, .91;
p ¼ 4.68*10�31), but also that a very strong relation between network
dimensionality and local temporal variability using global signal
regressed data resulted (r¼�0.88; bootstrap CI¼�0.83, �0.92;
p ¼ 8.36*10�34; Fig. 3D). Global signal thus had little impact on our
primary findings.

2.2. Network-specific models

Next, we examined whether pre-selection of a priori networks would
affect the link between higher local temporal variability and lower
network dimensionality. Most studies examining networks in fMRI data
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typically rely on network patterns resolved at the group level (Beckmann
and S. M. Smith, 2004; Damoiseaux et al., 2006; Salami et al., 2014;
Shirer et al., 2011)). Researchers' expectation of, or interest in, such
group level networks (e.g., default mode network) may provide a clear
rationale for network-specific probing of relations between PCA dimen-
sionality and local variability. Thus, employing a widely used,
publicly-available 14-network parcellation (Shirer et al., 2011), we
re-computed (within-person) PCA dimensionality for each network
independently; in this way, we estimated divergence from unidimen-
sionality for each network separately, within-subject, and subsequently
related that value directly to temporal variability only in
network-specific voxels. For all networks, associations between local
variability and network dimensionality were robustly negative, ranging
from r¼�0.54 (p ¼ 8.31*10�9) to r¼�0.81 (p ¼ 3.39*10�24), with the
strongest link again being expressed in the basal ganglia network
(including thalamus, as in our overall model), as well as in the sensori-
motor network (see Fig. 4 (scatter plots) and Fig. 5 (brain plots), and
Table 2 (statistics)).

To provide a complementary view on these network specific effects,
we also calculated the variance accounted for by the first principal
component (which necessarily accounts for the most within-subject
spatiotemporal variance) from the within-subject PCAcorr solution for
each network. Doing so provides an alternative within-person measure of
the divergence from spatial network unidimensionality (i.e., spatiotem-
poral divergence from the network template) that does not require
setting an explicit summed variance criterion (e.g., 90%, as we have in
the current study). First dimension variance accounted for correlated
strongly with PCA dimensionality as estimated above (Fig. S4). These
results suggest that the links we report between PCA dimensionality and
local temporal variability above are not a function of arbitrary choice of
threshold (i.e., 90% of total spatiotemporal data), but rather, represent a
more general relation between divergence from network unidimension-
ality and local temporal variability.



Fig. 4. Consistent negative correlations between PCA dimensionality and local signal variability across possible a priori networks of interest. Network-specific PLS model runs.
BSwithin-network power¼ PLS model-derived latent brain score representing local temporal variability (estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Total Power

p
) within network. All axis variables are

z-transformed. DMN¼ default mode network. High Visual network: when holding out the four most extreme outliers (two on x-axis and two on the y-axis), the
correlation remains similar (r¼�0.60). Note the differences in value ranges on x and y axes across plots, which reflect differential within-network model fit.
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2.3. Greater thalamo-cortical upregulation in local temporal variability
correlates negatively with network dimensionality

In our overall model, moment-to-moment variability in thalamus was
a peak negative correlate of network dimensionality (see Fig. 2), in line
with our hypotheses. The thalamus indeed maintains projections to the
entire cortex, and is thought to relay and/or modulate information flow
throughout the entire brain (Bell and Shine, 2016; Sherman, 2016).
Importantly, animal work indicates that visual cortex may upregulate
temporal variability explicitly from thalamic inputs (Goris et al., 2014;
Kara et al., 2000; Scholvinck et al., 2015). We thus tested next whether
thalamo-cortical upregulation of signal variability relates to network
dimensionality. Utilizing the Horn et al. (2016) thalamic atlas, which
parcellates the thalamus via its structural connections to seven
non-overlapping cortical targets (see Methods), we calculated
within-person differences in temporal variability from thalamus to cor-
tex, and modelled its relations to network dimensionality by: (1) corti-
cally masking each of the Shirer et al. (2011) networks by intersecting
each network with the Harvard-Oxford Cortical Atlas (Desikan et al.,
2006); (2) manually determining which thalamic projections from the
Horn et al. atlas are associated with the cortical regions within each
subnetwork (see Fig. 6); (3) calculating the median temporal variability
for relevant thalamic regions and then from cortical voxels within each
network; (4) calculating PCA dimensionality from network-specific
cortical voxels, and; (5) modeling the relation between within-network
dimensionality and upregulation of temporal variability from corre-
sponding thalamic regions to within-network cortical regions (see
Methods). We did not submit the basal ganglia network for further
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analysis as only 4% of its voxels were localized in cortical areas. Eleven of
13 remaining networks were largely localized within the cortical regions
displayed in the Harvard-Oxford atlas (82%–94% overlap), with a
somewhat lower overlap for the right executive control network (67%)
and the sensorimotor network (53%). We found that in 12 out of 13
networks, greater within-person upregulation of temporal variability
from thalamus to cortex correlated with lower within-network dimen-
sionality (i.e., higher functional integration; see Methods for model de-
tails, and Table 3 (statistics)). Critically, thalamo-cortical upregulation
also predicted network dimensionality over and above local variability
thalamus and various other canonical integrative “hub” regions (i.e.,
posterior intraparietal sulcus (pIPS), middle frontal gyrus (MFG),
PCC/precuneus, and supplementary motor area (SMA); see Methods,
Table S1, and Fig. S2) embeddedwithin the Shirer et al. (2011) networks.
These findings thus suggest that greater upregulation of local temporal
variability from thalamus to cortex provides a unique signature of how
the brain functionally integrates overall.

It should be highlighted that in fMRI, although the technical and
biological reasons remain unclear in the literature, the total signal
strength recoverable in thalamus vs. more lateral cortical regions can be
lower. Regardless, we argue that potentially impoverished thalamic
signal strength cannot account for the present findings for several rea-
sons: (1) Our multivariate PLS model decomposes correlations between
local voxel-wise variability and network dimensionality; thus, model
weights are predicated on voxels with maximum (i.e., signal strength-
independent) correlation to dimensionality. (2) Our regression models
linking network dimensionality to thalamo-cortical differences in local
variability (see Table 3) control for baseline (thalamic) variability. Semi-



Fig. 5. Network-specific, PLS-derived brain plots representing consistent negative correlations between PCA dimensionality and local signal variability. BSR¼ bootstrap ratio.
Green voxels are those within the a priori network mask, but that did not meet the BSR threshold.
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Table 2
Correlations between network-specific PCA dimensionality and network-voxel-
specific local variability.

Network r 95% bootstrap CI p

Auditory �0.72 (-.64, �.80) 2.76*10�17

Basal ganglia �0.81 (-.76, �.86) 3.39*10�24

DMN (dorsal) �0.75 (-.69, �.83) 1.78*10�19

DMN (ventral) �0.67 (-.59, �.75) 1.56*10�14

Executive control (left) �0.61 (-.50, �.71) 1.05*10�11

Executive control (right) �0.64 (-.56, �.72) 8.61*10�13

High visual �0.54 (-.46, �.64) 8.32*10�09

Language �0.68 (-.58, �.77) 4.94*10�15

Precuneus �0.54 (-.40, �.65) 8.09*10�09

Primary visual �0.66 (-.59, �.74) 1.02*10�13

Salience (anterior) �0.73 (-.66, �.81) 4.23*10�18

Salience (posterior) �0.69 (-.60, �.77) 1.98*10�15

Sensorimotor �0.80 (-.75, �.85) 2.02*10�23

Visuospatial �0.68 (-.59, �.76) 1.21*10�14

Note: Statistics represent network-specific PLS model runs for each network. 95%
Bootstrap CI was computed via 1000 resamples with replacement of the data.
Significant p-values are in bold font.

Fig. 6. Within-network thalamo-cortical projection and mapping. (A) Thalamic re-
gions as in Horn et al. (2016). (B) Mapping of the thalamic regions to the Shirer
et al. (2011) networks.
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partial correlations between network dimensionality and thalamo-
cortical variability difference scores are provably identical to having Z-
transformed thalamic and cortical variability estimates prior to
computing difference scores, while again controlling for Z-transformed
baseline (thalamic) power. What matters in our specific regression
models (Table 3) is the predictive utility of the difference in local vari-
ability between thalamus and cortical targets, rather than absolute values
of each. As such, signal strength (or temporal SNR) arguments cannot
easily account for why thalamus is the strongest correlate of functional
integration overall in the current data. If anything, the strength of the
current thalamic findings would rather serve as statistical underestimates
if signal strength/temporal SNR were of primary concern.
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3. Discussion

Our results robustly demonstrate that high levels of local temporal
variability in the human brain reflect lower functional network dimen-
sionality. Our findings converge with recent computational and animal
work suggesting that local variability may be largely generated directly
from network interactions (Doiron and Litwin-Kumar, 2014; Vreeswijk
and Sompolinsky, 1998, 1996). Local spiking variance (in area V1) is
maximally shared among neurons that are similarly “tuned” (a hallmark
of functional connectivity) (Lin et al., 2015; Scholvinck et al., 2015);
beyond visual cortex however, we find that local variability reflects
network dimensionality across the entire human brain. Perhaps most
striking is the proportion of local dynamics accounted for by network
dimensionality, ranging from correlations of r ¼ �0.54 to �0.81 in in-
dividual networks, and r¼�0.84 at the whole brain level. It thus appears
that local variability largely reflects the dimensionality of functional
integration. Regarding how higher local variability could be produced
from a lower dimensional functionally connected brain, computational
and animal work suggests that greater moment-to-moment local vari-
ability may be driven by networks with balanced excitation and inhibi-
tion, particularly when connections are clustered or structured (Doiron
and Litwin-Kumar, 2014; Doiron et al., 2016; Litwin-Kumar and Doiron,
2012; Shew et al., 2009, 2011) (perhaps akin to our measure of network
dimensionality). A key hallmark of balanced networks is that fluctuations
in synaptic input (via network connectivity) reliably produce output
fluctuations at the single cell level (Doiron and Litwin-Kumar, 2014;
Shadlen and Newsome, 1994). Because lower network dimensionality
correlates with higher local variability in the current study, it is testable
in future studies (e.g., via magnetic resonance spectroscopy) whether
excitatory-inhibitory balance lies at the root of our findings. Although
debate continues as to whether and how BOLD may capture inhibition,
the on- and offset of excitation (glutamatergic release) likely captured by
BOLD dynamics (Bojak et al., 2010; Logothetis, 2008) may serve as an
effective proxy to test for balanced networks.

3.1. Thalamic variability, within-person thalamo-cortical upregulation of
temporal variability, and relations to functional integration

We found that the thalamic variability was a particularly salient
correlate of higher functional integration overall. Computational and
animal work indeed suggests that the thalamus (lateral geniculate) may
provide a primary source of local dynamics for visual cortex (Sadagopan
and Ferster, 2012), suggesting the presence of functional integration as a
driver of local variability (Wang et al., 2010); strikingly, our findings
indicate that greater temporal variability in thalamus is also one of the
strongest markers of lower dimensional functional connectivity in the
human brain overall. Given that the thalamusmaintains either afferent or
efferent projections with most cortical regions (Draganski et al., 2008; Ji
et al., 2015; Lenglet et al., 2012; Zhang et al., 2008), the thalamus may
indeed serve as a putative hub (Hwang et al., 2017) for local dynamics
throughout the human brain.

Critically, we hypothesized that heightened temporal variability in
cortex vs. thalamus may uniquely predict functional integration.
Although it is not currently feasible to model the causal nature of this
upward shift in variability directly using relatively temporally sparse
fMRI data (i.e., whether, per se, thalamic variability causally drives
cortical variability, or rather, thalamus dampens cortical variability),
our overall expectation that variability should be higher in cortex than
thalamus is largely derived from animal and modeling work by Goris
et al. (2014) on the thalamus and visual cortex. Here, the authors argue
that the visual cortex is required to integrate a greater number of
differing input sources (e.g., intra- and inter-cortically; thalamo-corti-
cally; top-down inputs), which may all have their own modulatory in-
fluences at different temporal scales. Indeed, the sheer number of
cortico-cortical connections far outweighs the number of
thalamo-cortical connections (Binzegger, 2004; Douglas and Martin,



Table 3
Regression model predicting functional integration (PCA dimensionality) from thalamic variability and thalamo-cortical variability upregulation (controlling for local
variability in canonical hub regions).

Dependent variable: PCAdim Predictor b Bootstrap 95% CI SE t p Zero-order Partial Semi-Partial

Low High

Auditory VARthalamus �0.02 �0.03 �0.01 0.00 �4.31 4.10*10�5 �0.59 �0.41 �0.29
VARcortex-thalamus �0.01 �0.02 �0.01 0.00 �5.16 1.00*10�6 �0.59 �0.47 �0.35

DMN (dorsal) VARthalamus �0.03 �0.05 �0.01 0.01 �4.34 3.60*10�5 �0.65 �0.41 �0.30
VARcortex-thalamus �0.02 �0.03 �0.01 0.01 �4.17 6.90*10�5 �0.50 �0.40 �0.29

DMN (ventral) VARthalamus �0.03 �0.05 �0.02 0.01 �3.26 0.002 �0.66 �0.32 �0.24
VARcortex-thalamus �0.02 �0.04 �0.01 0.01 �2.23 0.028 �0.39 �0.23 �0.16

Exec. control (left) VARthalamus �0.02 �0.03 �0.01 0.00 �3.86 2.13*10�4 �0.49 �0.37 �0.30
VARcortex-thalamus �0.01 �0.02 �0.01 0.00 �4.23 5.50*10�5 �0.43 �0.40 �0.33

Exec. control (right) VARthalamus �0.01 �0.02 0.00 0.00 �2.93 0.004 �0.43 �0.29 �0.25
VARcortex-thalamus �0.01 �0.02 �0.01 0.00 �3.06 0.003 �0.30 �0.30 �0.26

High visual VARthalamus 0.00 �0.01 0.00 0.00 �1.08 0.284 �0.38 �0.11 �0.09
VARcortex-thalamus �0.01 �0.01 0.00 0.00 �3.13 0.002 �0.52 �0.31 �0.27

Language VARthalamus �0.03 �0.04 �0.01 0.01 �4.38 3.20*10�5 �0.64 �0.42 �0.31
VARcortex-thalamus �0.02 �0.03 �0.01 0.01 �3.45 8.54*10�4 �0.31 �0.34 �0.25

Precuneus VARthalamus 0.00 �0.01 0.00 0.00 �0.95 0.34 �0.35 �0.10 �0.08
VARcortex-thalamus �0.01 �0.01 0.00 0.00 �2.45 0.016 �0.44 �0.25 �0.21

Primary visual VARthalamus 0.00 �0.01 0.00 0.00 �1.32 0.189 �0.44 �0.14 �0.11
VARcortex-thalamus 0.00 �0.01 0.00 0.00 �3.30 1.37*10�3 �0.57 �0.33 �0.26

Salience (anterior) VARthalamus �0.03 �0.05 �0.02 0.01 �4.07 1.00*10�4 �0.62 �0.39 �0.29
VARcortex-thalamus �0.02 �0.03 �0.01 0.01 �3.52 0.001 �0.50 �0.34 �0.25

Salience (posterior) VARthalamus �0.02 �0.03 �0.01 0.01 0.01 0.008 �0.49 �0.27 �0.22
VARcortex-thalamus �0.02 �0.02 �0.01 0.00 0.00 3.18*10�4 �0.37 �0.36 �0.30

Sensorimotor VARthalamus �0.02 �0.04 �0.01 0.01 �2.09 0.039 �0.54 �0.21 �0.18
VARcortex-thalamus �0.01 �0.02 0.01 0.01 �0.61 0.55 �0.11 �0.06 �0.05

Visuospatial VARthalamus �0.02 �0.04 �0.01 0.01 �3.17 0.002 �0.60 �0.31 �0.24
VARcortex-thalamus �0.02 �0.03 �0.01 0.01 �3.34 0.001 �0.48 �0.33 �0.25

Note: Variability difference¼within-network cortical variability minus thalamic variability (estimated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Total Power

p
). PCA¼ principal component analysis;

CI¼ confidence interval; SE¼ standard error; VIF¼ variance inflation factor. Significant p-values are in bold font. 95% Bootstrap CI was computed via 1000 resamples
with replacement of the data. “Zero-order”, “partial,” and “semi-partial” columns reflect effect sizes in Pearson's correlation metric. Variability within canonical hub
regions (IPS, MFG (visuospatial), superior/MFG (executive control network), SMA, PCC/precuneus) served as model covariates of no interest, unless otherwise specified
(see Methods for details).
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2004; Latawiec et al., 2000). Accordingly, higher cortical variability
(which we generally find is indicative of optimal cognitive performance
(Garrett et al., 2015, 2013b; 2013a, 2011a)) may be a direct reflection
of a more complex process of “local” integration over differentiated
inputs. Strikingly, we also found that greater thalamo-cortical upregu-
lation in variability was a hallmark of lower network dimensionality in
12 of 13 brain networks considered, suggesting that thalamo-cortical
upregulation may also provide a signature of generalized, distributed
(as well as local) neural integration. Further, as another potential
determinant of thalamo-cortical upregulation, observed temporal
variance levels at the single cell level appear much more differentiated
across cells in the visual cortex compared to relatively homogeneous
levels in the thalamus (Goris et al., 2014); given that fMRI captures
ensemble level activity across millions of neurons per voxel, integrating
spatially differentiated temporal variability levels across neurons into
voxels could amount to a greater degree of ensemble-level temporal
variance, compared to more spatially homogeneous voxels in thalamus.
Thus, greater thalamo-cortical upregulation in BOLD variability could
be a function of (1) increased functional integration over differing input
types, and (2) cell differentiation contributing to observed local
(ensemble) dynamics, which rises from thalamus to cortex in more in-
tegrated brains.

Further, Goris et al. (2014) also offer the most convincing computa-
tional model-based account for higher variability in cortex compared to
thalamus. They argue that fluctuations in neural gain appear to increase
from the thalamus to cortex, and that this gain parameter plausibly
represents modulatory influences on neural function, likely reflecting
synaptic activity/potentiation. Further, fluctuations in gain may occur
primarily on the order of minutes (Goris et al., 2014). These two features
permit the consideration of BOLD variability in relation to the Goris et al.
model; BOLD is indeed most closely linked to synaptic (modulatory)
activity (Viswanathan and Freeman, 2007), and can easily approximate
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the time scale of gain fluctuations proposed. In particular, BOLD also
likely dominantly reflects glutamatergic (excitatory) activity, rather than
inhibitory sources. As such, fluctuations in BOLD may represent fluctu-
ations in the excitatory system directly, thus approximating the Goris
et al. view of variance in neural gain (excitability) as the primary feature
of thalamo-cortical upregulation in variability. There are many potential
influences on fluctuations in neural excitability that could be tested in
future studies of moment-to-moment BOLD signal variability, such as
attention/vigilance, system arousal/wakefulness (Chang et al., 2016),
and reward (Goris et al., 2014). Previous work on the positive coupling of
dopamine, brain signal variability, and cognitive performance (Alavash
et al., 2018; Garrett et al., 2015) may also provide a fertile starting point
for testing theories of neural gain as a driving force for coupling between
thalamo-cortical variability upregulation and functional integration.
Alternatively, recent computational modeling shows that elevated
norepinephrine (NE)-based neural gain can lead to a more integrated
whole-brain network structure (Shine et al., 2018); complemented by
previous work suggesting that NE may determine differential expression
of oscillatory bursting and single spike firing modes in thalamus
(McCormick et al., 1991), the NE system may provide a promising neu-
romodulator beyond dopamine in the current context. Of course, DA and
NE systems are often tightly coupled, and although the nature and di-
rection of relations between DA and NE neurons can be highly complex
(El Mansari et al., 2010; Guiard et al., 2008), both systems remain key
targets for future research.

3.2. Further comments

With regard to the potential functional relevance of the current
resting-state results, past work suggests that greater local variability
predicts faster and more stable reaction time performance, both within-
and between-persons (Garrett et al., 2015, 2013b; 2013a, 2011b;
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McIntosh et al., 2008; Misic et al., 2010); given that the present results
demonstrate that higher local variability correlates strongly with lower
network dimensionality, it is tempting to infer that relatively lower
dimensionality may also serve as a marker of a well-functioning system
on task. We contend that the optimal behavioural working point for level
of network dimensionality will depend on experimental context. We do
not propose that an optimal brain should approach uni-dimensionality
(and presumably then, maximal local variability); it is rather more
likely that the number of dimensions should be as low as is necessary
given the contextual demands. Indeed, in the extreme, too-low dimen-
sional neural systems may prove entirely dysfunctional (e.g., during
epileptic seizure (Babloyantz and Destexhe, 1986)). Future work using
parametric task paradigms could more carefully address “optimal”
network dimensionality levels associated with high cognitive perfor-
mance within-person.

Interestingly, recent work by Fusi and colleagues (2016; Rigotti et al.,
2013) highlights neuronal-based dimensionality from a complementary
perspective. So-called “mixed selectivity neurons” (e.g., those that
respond well to auditory and visual input) tend to exhibit higher
“response” dimensionality and thus permit system flexibility. However,
highly selective neurons (e.g., those that respond only to visual input) are
low dimensional by nature and may be useful when, for example,
classification-type tasks are required (e.g., face/house discriminations
(Park et al., 2010, 2012)). In this way, higher and lower dimensionality
may be beneficial under different constraints. Critically however, our
current estimate of network dimensionality differs from this perspective
in that it captures how brain regions are jointly coupled in time,
regardless of whether neural ensembles respond to more or fewer stim-
ulus types. Interestingly, because mixed selectivity neurons would by
definition correlate with a greater number of different types of neurons,
then if anything, network dimensionality would reduce in the presence of
mixed selectivity neurons (e.g., such neurons would be more likely to
statistically “cross-load” on to different networks, rather than exhibit
unique properties), potentially also exhibiting greater signal variability
at the local level, as our current findings would suggest. It remains an
open question whether network dimensionality would respond differ-
entially to cognitive contexts in which mixed selectivity and highly se-
lective neurons may operate simultaneously (e.g., by ramping parametric
task complexity, such as employing a parametric multisensory integra-
tion paradigm).

4. Conclusion

Using publicly available fMRI data, the current results provide for an
immediately (re)testable, context-independent hypothesis in future
work – that the degree of local, observed moment-to-moment vari-
ability primarily reflects the level of functional integration in the
human brain, and that the thalamus may play a particularly important
role in this effect.

Acknowledgments

D.D.G was supported by an EmmyNoether Programme grant from the
German Research Foundation. U.L. acknowledges financial support from
the Intramural Innovation Fund of the Max Planck Society. D.D.G and
U.L. were also partially supported by the Max Planck UCL Centre for
Computational Psychiatry and Ageing Research. Finally, we would like to
thank Steffen Wiegert for assistance with data processing, and Andreas
Brandmaier, Julian Kosciessa, Randy McIntosh, and Nathan Spreng for
helpful discussions throughout the project.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.neuroimage.2018.08.019.
786
References

Alavash, M., Lim, S.-J., Thiel, C., Sehm, B., Deserno, L., Obleser, J., 2018. Dopaminergic
modulation of hemodynamic signal variability and the functional connectome during
cognitive performance. Neuroimage 172, 341–356. https://doi.org/10.1016/
j.neuroimage.2018.01.048.

Babloyantz, A., Destexhe, A., 1986. Low-dimensional chaos in an instance of epilepsy.
Proc. Natl. Acad. Sci. U.S.A. 83, 3513–3517. https://doi.org/10.1073/
pnas.83.10.3513.

Beckmann, C.F., Smith, S.M., 2004. Probabilistic independent component analysis for
functional magnetic resonance imaging. IEEE Trans. Med. Imag. 23, 137–152.
https://doi.org/10.1109/TMI.2003.822821.

Behrens, T.E.J., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-
Kingshott, C.A.M., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O.,
Thompson, A.J., Brady, J.M., Matthews, P.M., 2003. Non-invasive mapping of
connections between human thalamus and cortex using diffusion imaging. Nat.
Neurosci. 6, 750–757. https://doi.org/10.1038/nn1075.

Bell, P.T., Shine, J.M., 2016. Subcortical contributions to large-scale network
communication. Neurosci. Biobehav. Rev. 71, 313–322. https://doi.org/10.1016/
j.neubiorev.2016.08.036.

Binzegger, T., 2004. A quantitative map of the circuit of cat primary visual cortex.
J. Neurosci. 24, 8441–8453. https://doi.org/10.1523/JNEUROSCI.1400-04.2004.

Birn, R.M., 2012. The role of physiological noise in resting-state functional connectivity.
Neuroimage 62, 864–870. https://doi.org/10.1016/j.neuroimage.2012.01.016.

Bojak, I., Oostendorp, T.F., Reid, A.T., Kotter, R., 2010. Connecting mean field models of
neural activity to EEG and fMRI data. Brain Topogr. 23, 139–149. https://doi.org/
10.1007/s10548-010-0140-3.

Britten, K.H., Shadlen, M.N., Newsome, W.T., Movshon, J.A., 2009. Responses of neurons
in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169. https://
doi.org/10.1017/S0952523800010269.

Chang, C., Leopold, D.A., Sch€olvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Ye, F.Q.,
Turchi, J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fMRI. Proc.
Natl. Acad. Sci. U.S.A. 113, 4518–4523. https://doi.org/10.1073/pnas.1520613113.

Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S., 2011. A whole
brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain
Mapp. 33 (8), 1914–1928.

Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.,
Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects.
Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853. https://doi.org/10.1073/
pnas.0601417103.

de Pasquale, F., Corbetta, M., Betti, V., Penna, Della, S., 2017. Cortical cores in network
dynamics. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.09.063.

de Pasquale, F., Penna, Della, S., Sporns, O., Romani, G.L., Corbetta, M., 2016. A dynamic
core network and global efficiency in the resting human brain. - PubMed - NCBI.
Cerebr. Cortex 26, 4015–4033. https://doi.org/10.1093/cercor/bhv185.

Desikan, R.S., S�egonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D.,
Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.,
2006. An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. https://
doi.org/10.1016/j.neuroimage.2006.01.021.

Doiron, B., Litwin-Kumar, A., 2014. Balanced neural architecture and the idling brain.
Front. Comput. Neurosci. 8, 237. https://doi.org/10.3389/fncom.2014.00056.

Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G.K., Josic, K., 2016. The mechanics
of state-dependent neural correlations. Nat. Neurosci. 19, 383–393. https://doi.org/
10.1038/nn.4242.

Douglas, R.J., Martin, K.A.C., 2004. Neuronal circuits of the neocortex. Annu. Rev.
Neurosci. 27, 419–451. https://doi.org/10.1146/annurev.neuro.27.070203.144152.

Draganski, B., Kherif, F., Kloppel, S., Cook, P.A., Alexander, D.C., Parker, G.J.M.,
Deichmann, R., Ashburner, J., Frackowiak, R.S.J., 2008. Evidence for segregated and
integrative connectivity patterns in the human basal ganglia. J. Neurosci. 28,
7143–7152. https://doi.org/10.1523/JNEUROSCI.1486-08.2008.

Efron, B., Tibshirani, R.J., 1993. Introduction. In: An Introduction to the Bootstrap.
Springer US, Boston, MA, pp. 1–9. https://doi.org/10.1007/978-1-4899-4541-9_1.

El Mansari, M., Guiard, B.P., Chernoloz, O., Ghanbari, R., Katz, N., Blier, P., 2010.
Relevance of norepinephrine-dopamine interactions in the treatment of major
depressive disorder. CNS Neurosci. Ther. 16 (3), e1–e17. http://doi.org/10.1111/j.
1755-5949.2010.00146.

Faisal, A.A., Selen, L.P.J., Wolpert, D.M., 2008. Noise in the nervous system. Nat. Rev.
Neurosci. 9, 292–303. https://doi.org/10.1038/nrn2258.

Fusi, S., Miller, E.K., Rigotti, M., 2016. Why neurons mix: high dimensionality for higher
cognition. Curr. Opin. Neurobiol. 37, 66–74. https://doi.org/10.1016/
j.conb.2016.01.010.

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2012. The modulation of BOLD
variability between cognitive states varies by age and processing speed. Cerebr.
Cortex 23, 684–693. https://doi.org/10.1093/cercor/bhs055.

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2011a. The importance of being
variable. J. Neurosci. 31, 4496–4503. https://doi.org/10.1523/JNEUROSCI.5641-
10.2011.

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2010. Blood oxygen level-
dependent signal variability is more than just noise. J. Neurosci. 30, 4914–4921.
https://doi.org/10.1523/JNEUROSCI.5166-09.2010.

Garrett, D.D., McIntosh, A.R., Grady, C.L., 2013a. Brain signal variability is parametrically
modifiable. Cerebr. Cortex 24, 2931–2940. https://doi.org/10.1093/cercor/bht150.

Garrett, D.D., McIntosh, A.R., Grady, C.L., 2011b. Moment-to-moment signal variability in
the human brain can inform models of stochastic facilitation now. Nat. Rev. Neurosci.
12 https://doi.org/10.1038/nrn3061-c1, 612–612.

https://doi.org/10.1016/j.neuroimage.2018.08.019
https://doi.org/10.1016/j.neuroimage.2018.08.019
https://doi.org/10.1016/j.neuroimage.2018.01.048
https://doi.org/10.1016/j.neuroimage.2018.01.048
https://doi.org/10.1073/pnas.83.10.3513
https://doi.org/10.1073/pnas.83.10.3513
https://doi.org/10.1109/TMI.2003.822821
https://doi.org/10.1038/nn1075
https://doi.org/10.1016/j.neubiorev.2016.08.036
https://doi.org/10.1016/j.neubiorev.2016.08.036
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.1016/j.neuroimage.2012.01.016
https://doi.org/10.1007/s10548-010-0140-3
https://doi.org/10.1007/s10548-010-0140-3
https://doi.org/10.1017/S0952523800010269
https://doi.org/10.1017/S0952523800010269
https://doi.org/10.1073/pnas.1520613113
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref11
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref11
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref11
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref11
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1016/j.neuroimage.2017.09.063
https://doi.org/10.1093/cercor/bhv185
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.3389/fncom.2014.00056
https://doi.org/10.1038/nn.4242
https://doi.org/10.1038/nn.4242
https://doi.org/10.1146/annurev.neuro.27.070203.144152
https://doi.org/10.1523/JNEUROSCI.1486-08.2008
https://doi.org/10.1007/978-1-4899-4541-9_1
http://doi.org/10.1111/j.1755-5949.2010.00146
http://doi.org/10.1111/j.1755-5949.2010.00146
https://doi.org/10.1038/nrn2258
https://doi.org/10.1016/j.conb.2016.01.010
https://doi.org/10.1016/j.conb.2016.01.010
https://doi.org/10.1093/cercor/bhs055
https://doi.org/10.1523/JNEUROSCI.5641-10.2011
https://doi.org/10.1523/JNEUROSCI.5641-10.2011
https://doi.org/10.1523/JNEUROSCI.5166-09.2010
https://doi.org/10.1093/cercor/bht150
https://doi.org/10.1038/nrn3061-c1


D.D. Garrett et al. NeuroImage 183 (2018) 776–787
Garrett, D.D., Nagel, I.E., Preuschhof, C., Burzynska, A.Z., Marchner, J., Wiegert, S.,
Jungehülsing, G.J., Nyberg, L., Villringer, A., Li, S.-C., Heekeren, H.R., B€ackman, L.,
Lindenberger, U., 2015. Amphetamine modulates brain signal variability and
working memory in younger and older adults. Proc. Natl. Acad. Sci. U.S.A. 112,
7593–7598. https://doi.org/10.1073/pnas.1504090112.

Garrett, D.D., Samanez-Larkin, G.R., Macdonald, S.W.S., Lindenberger, U.,
McIntosh, A.R., Grady, C.L., 2013b. Moment-to-moment brain signal variability: a
next frontier in human brain mapping? Neurosci. Biobehav. Rev. 37, 610–624.
https://doi.org/10.1016/j.neubiorev.2013.02.015.

Goris, R.L.T., Movshon, J.A., Simoncelli, E.P., 2014. Partitioning neuronal variability.
Nat. Neurosci. 17, 858–865. https://doi.org/10.1038/nn.3711.

Guiard, B.P., Mansari, El, M., Merali, Z., Blier, P., 2008. Functional interactions between
dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological
study in rats with monoaminergic lesions. Int. J. Neuropsychopharmacol. 11 (5),
625–639. http://doi.org/10.1017/S1461145707008383.

Horn, A., Blankenburg, F., 2016. Toward a standardized structural–functional group
connectome in MNI space. Neuroimage 124, 310–322. https://doi.org/10.1016/
j.neuroimage.2015.08.048.

Hwang, K., Bertolero, M.A., Liu, W.B., D'Esposito, M., 2017. The human thalamus is an
integrative hub for functional brain networks. J. Neurosci. 37, 5594–5607. https://
doi.org/10.1523/JNEUROSCI.0067-17.2017.

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL.
NeuroImage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015.

Ji, B., Li, Z., Li, K., Li, L., Langley, J., Shen, H., Nie, S., Zhang, R., Hu, X., 2015. Dynamic
thalamus parcellation from resting-state fMRI data. Hum. Brain Mapp. 37, 954–967.
https://doi.org/10.1002/hbm.23079.

Kara, P., Reinagel, P., Reid, R.C., 2000. Low response variability in simultaneously
recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646. https://
doi.org/10.1016/S0896-6273(00)00072-6.

Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H., 2011. Partial Least Squares (PLS)
methods for neuroimaging: a tutorial and review. Neuroimage 56, 455–475. https://
doi.org/10.1016/j.neuroimage.2010.07.034.

Latawiec, D., Martin, K., Meskenaite, V., 2000. Termination of the geniculocortical
projection in the striate cortex of macaque monkey: a quantitative immunoelectron
microscopic study. J. Comp. Neurol. 419, 306–319. https://doi.org/10.1002/(sici)
1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2.

Lenglet, C., Abosch, A., Yacoub, E., De Martino, F., Sapiro, G., Harel, N., 2012.
Comprehensive in vivo mapping of the human basal ganglia and thalamic
connectome in individuals using 7T MRI. PLoS One 7, e29153. https://doi.org/
10.1371/journal.pone.0029153.

Lin, I.-C., Okun, M., Carandini, M., Harris, K.D., 2015. The nature of shared cortical
variability. Neuron 87, 644–656. https://doi.org/10.1016/j.neuron.2015.06.035.

Litwin-Kumar, A., Doiron, B., 2012. Slow dynamics and high variability in balanced
cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505. https://
doi.org/10.1038/nn.3220.

Liu, T.T., Nalci, A., Falahpour, M., 2017. The global signal in fMRI: nuisance or
Information? Neuroimage 150, 213–229. https://doi.org/10.1016/
j.neuroimage.2017.02.036.

Logothetis, N.K., 2008. What we can do and what we cannot do with fMRI. Nature 453,
869–878. https://doi.org/10.1038/nature06976.

McIntosh, A.R., Bookstein, F.L., Haxby, J.V., Grady, C.L., 1996. Spatial pattern analysis of
functional brain images using partial least squares. Neuroimage 3, 143–157. https://
doi.org/10.1006/nimg.1996.0016.

McIntosh, A.R., Kovacevic, N., Itier, R.J., 2008. Increased brain signal variability
accompanies lower behavioral variability in development. PLoS Comput. Biol. 4,
e1000106 https://doi.org/10.1371/journal.pcbi.1000106.

McCormick, D.A., Pape, H.C., Williamson, A., 1991. Actions of norepinephrine in the
cerebral cortex and thalamus: implications for function of the central noradrenergic
system. Prog. Brain Res. 88, 293–305.

Misic, B., Mills, T., Taylor, M.J., McIntosh, A.R., 2010. Brain noise is task dependent and
region specific. J. Neurophysiol. 104, 2667–2676. https://doi.org/10.1152/
jn.00648.2010.

Mi�si�c, B., 2011. Functional embedding predicts the variability of neural activity. Front.
Syst. Neurosci. 5 https://doi.org/10.3389/fnsys.2011.00090.

Nooner, K.B., Colcombe, S.J., Tobe, R.H., Mennes, M., Benedict, M.M., Moreno, A.L.,
Panek, L.J., Brown, S., Zavitz, S.T., Li, Q., Sikka, S., Gutman, D., Bangaru, S.,
Schlachter, R.T., Kamiel, S.M., Anwar, A.R., Hinz, C.M., Kaplan, M.S., Rachlin, A.B.,
Adelsberg, S., Cheung, B., Khanuja, R., Yan, C., Craddock, C.C., Calhoun, V.,
Courtney, W., King, M., Wood, D., Cox, C.L., Kelly, A.M.C., Di Martino, A.,
Petkova, E., Reiss, P.T., Duan, N., Thomsen, D., Biswal, B., Coffey, B., Hoptman, M.J.,
Javitt, D.C., Pomara, N., Sidtis, J.J., Koplewicz, H.S., Castellanos, F.X.,
Leventhal, B.L., Milham, M.P., 2012. The NKI-rockland sample: a model for
accelerating the pace of discovery science in Psychiatry. Front. Neurosci. 6 https://
doi.org/10.3389/fnins.2012.00152.

Park, J., Carp, J., Hebrank, A., Park, D.C., Polk, T.A., 2010. Neural specificity predicts
fluid processing ability in older adults. J. Neurosci. 30, 9253–9259. https://doi.org/
10.1523/JNEUROSCI.0853-10.2010.
787
Park, J., Carp, J., Kennedy, K.M., Rodrigue, K.M., Bischof, G.N., Huang, C.M., Rieck, J.R.,
Polk, T.A., Park, D.C., 2012. Neural broadening or neural attenuation? Investigating
age-related dedifferentiation in the face network in a large lifespan sample.
J. Neurosci. 32, 2154–2158. https://doi.org/10.1523/JNEUROSCI.4494-11.2012.

Perry, A., Wen, W., Lord, A., Thalamuthu, A., Roberts, G., Mitchell, P.B., Sachdev, P.S.,
Breakspear, M., 2015. The organisation of the elderly connectome. Neuroimage 114,
414–426. https://doi.org/10.1016/j.neuroimage.2015.04.009.

Pincus, S.M., 1994. Greater signal regularity may indicate increased system isolation.
Math. Biosci. 122, 161–181. https://doi.org/10.1016/0025-5564(94)90056-6.

Power, J.D., Plitt, M., Laumann, T.O., Martin, A., 2017. Sources and implications of
whole-brain fMRI signals in humans. Neuroimage 146, 609–625. https://doi.org/
10.1016/j.neuroimage.2016.09.038.

Power, J.D., Schlaggar, B.L., Lessov-Schlaggar, C.N., Petersen, S.E., 2013. Evidence for
hubs in human functional brain networks. Neuron 79, 798–813. https://doi.org/
10.1016/j.neuron.2013.07.035.

Rigotti, M., Barak, O., Warden, M.R., Wang, X.-J., Daw, N.D., Miller, E.K., Fusi, S., 2013.
The importance of mixed selectivity in complex cognitive tasks. Nature 497,
585–590. https://doi.org/10.1038/nature12160.

Sadagopan, S., Ferster, D., 2012. Feedforward origins of response variability underlying
contrast invariant orientation tuning in cat visual cortex. Neuron 74, 911–923.
https://doi.org/10.1016/j.neuron.2012.05.007.

Salami, A., Pudas, S., Nyberg, L., 2014. Elevated hippocampal resting-state connectivity
underlies deficient neurocognitive function in aging. Proc. Natl. Acad. Sci. U.S.A.
111, 17654–17659. https://doi.org/10.1073/pnas.1410233111.

Scholvinck, M.L., Saleem, A.B., Benucci, A., Harris, K.D., Carandini, M., 2015. Cortical
state determines global variability and correlations in visual cortex. J. Neurosci. 35,
170–178. https://doi.org/10.1523/JNEUROSCI.4994-13.2015.

Shadlen, M.N., Newsome, W.T., 1994. Noise, neural codes and cortical organization. Curr.
Opin. Neurobiol. 4, 569–579. https://doi.org/10.1016/0959-4388(94)90059-0.

Sherman, S.M., 2016. Thalamus plays a central role in ongoing cortical functioning. Nat.
Neurosci. 16, 533–541. https://doi.org/10.1038/nn.4269.

Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D., 2009. Neuronal avalanches imply
maximum dynamic range in cortical networks at criticality. J. Neurosci. 29,
15595–15600. https://doi.org/10.1523/JNEUROSCI.3864-09.2009.

Shew, W.L., Yang, H., Yu, S., Roy, R., Plenz, D., 2011. Information capacity and
transmission are maximized in balanced cortical networks with neuronal avalanches.
J. Neurosci. 31, 55–63. https://doi.org/10.1523/JNEUROSCI.4637-10.2011.

Shine, J.M., Aburn, M.J., Breakspear, M., Poldrack, R.A., 2018. The modulation of neural
gain facilitates a transition between functional segregation and integration in the
brain. Elife 7 e31130.

Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D., 2011. Decoding
subject-driven cognitive states with whole-brain connectivity patterns. Cerebr. Cortex
22, 158–165. https://doi.org/10.1093/cercor/bhr099.

Smith, A.M., Lewis, B.K., Ruttimann, U.E., Ye, F.Q., Sinnwell, T.M., Yang, Y., Duyn, J.H.,
Frank, J.A., 1999. Investigation of low frequency drift in fMRI signal. Neuroimage 9,
526–533. https://doi.org/10.1006/nimg.1999.0435.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-
Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K.,
Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.,
2004. Advances in functional and structural MR image analysis and implementation
as FSL. Neuroimage 23, S208–S219. https://doi.org/10.1016/
j.neuroimage.2004.07.051.

Taylor, P.A., Gohel, S., Di, X., Walter, M., Biswal, B.B., 2012. Functional covariance
networks: obtaining resting-state networks from intersubject variability. Brain
Connect 2, 203–217.

van den Heuvel, M.P., Sporns, O., 2013. Network hubs in the human brain. Trends Cognit.
Sci. 17, 683–696. https://doi.org/10.1016/j.tics.2013.09.012.

Viswanathan, A., Freeman, R.D., 2007. Neurometabolic coupling in cerebral cortex
reflects synaptic more than spiking activity. Nat. Neurosci. 10, 1308–1312. https://
doi.org/10.1038/nn1977.

Vreeswijk, C.V., Sompolinsky, H., 1998. Chaotic balanced state in a model of cortical
circuits. Neural Comput. 10, 1321–1371. https://doi.org/10.1162/
089976698300017214.

Vreeswijk, C.V., Sompolinsky, H., 1996. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science 274, 1724–1726. https://doi.org/
10.1126/science.274.5293.1724.

Wang, H.P., Spencer, D., Fellous, J.M., Sejnowski, T.J., 2010. Synchrony of
thalamocortical inputs maximizes cortical reliability. Science 328, 106–109. https://
doi.org/10.1126/science.1183108.

Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M.,
Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H.,
Buckner, R.L., 2011. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. https://doi.org/
10.1152/jn.00338.2011.

Zhang, D., Snyder, A.Z., Fox, M.D., Sansbury, M.W., Shimony, J.S., Raichle, M.E., 2008.
Intrinsic functional relations between human cerebral cortex and thalamus.
J. Neurophysiol. 100, 1740–1748. https://doi.org/10.1152/jn.90463.2008 .

https://doi.org/10.1073/pnas.1504090112
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1038/nn.3711
http://doi.org/10.1017/S1461145707008383
https://doi.org/10.1016/j.neuroimage.2015.08.048
https://doi.org/10.1016/j.neuroimage.2015.08.048
https://doi.org/10.1523/JNEUROSCI.0067-17.2017
https://doi.org/10.1523/JNEUROSCI.0067-17.2017
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1002/hbm.23079
https://doi.org/10.1016/S0896-6273(00)00072-6
https://doi.org/10.1016/S0896-6273(00)00072-6
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2
https://doi.org/10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2
https://doi.org/10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2
https://doi.org/10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2
https://doi.org/10.1371/journal.pone.0029153
https://doi.org/10.1371/journal.pone.0029153
https://doi.org/10.1016/j.neuron.2015.06.035
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.3220
https://doi.org/10.1016/j.neuroimage.2017.02.036
https://doi.org/10.1016/j.neuroimage.2017.02.036
https://doi.org/10.1038/nature06976
https://doi.org/10.1006/nimg.1996.0016
https://doi.org/10.1006/nimg.1996.0016
https://doi.org/10.1371/journal.pcbi.1000106
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref47
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref47
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref47
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref47
https://doi.org/10.1152/jn.00648.2010
https://doi.org/10.1152/jn.00648.2010
https://doi.org/10.3389/fnsys.2011.00090
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1523/JNEUROSCI.0853-10.2010
https://doi.org/10.1523/JNEUROSCI.0853-10.2010
https://doi.org/10.1523/JNEUROSCI.4494-11.2012
https://doi.org/10.1016/j.neuroimage.2015.04.009
https://doi.org/10.1016/0025-5564(94)90056-6
https://doi.org/10.1016/j.neuroimage.2016.09.038
https://doi.org/10.1016/j.neuroimage.2016.09.038
https://doi.org/10.1016/j.neuron.2013.07.035
https://doi.org/10.1016/j.neuron.2013.07.035
https://doi.org/10.1038/nature12160
https://doi.org/10.1016/j.neuron.2012.05.007
https://doi.org/10.1073/pnas.1410233111
https://doi.org/10.1523/JNEUROSCI.4994-13.2015
https://doi.org/10.1016/0959-4388(94)90059-0
https://doi.org/10.1038/nn.4269
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
https://doi.org/10.1523/JNEUROSCI.4637-10.2011
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref2a
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref2a
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref2a
https://doi.org/10.1093/cercor/bhr099
https://doi.org/10.1006/nimg.1999.0435
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref1a
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref1a
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref1a
http://refhub.elsevier.com/S1053-8119(18)30717-1/sref1a
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1038/nn1977
https://doi.org/10.1038/nn1977
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.1183108
https://doi.org/10.1126/science.1183108
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.90463.2008

	Local temporal variability reflects functional integration in the human brain
	1. Materials and methods
	1.1. Neuroimaging, preprocessing, and analyses
	1.2. Voxel-wise estimates of signal variability
	1.3. Spatiotemporal dimensionality as a proxy estimate of functional integration
	1.4. Statistical modeling: multivariate partial least squares
	1.5. Statistical modeling of links between thalamo-cortical differences in variability and functional integration (PCA dimension ...
	1.6. Further control for temporal variability of cortical hub regions to gauge the robustness of thalamic influences on function ...
	1.7. Publicly available data and code

	2. Results
	2.1. Whole-brain model linking local temporal variability and network dimensionality
	2.2. Network-specific models
	2.3. Greater thalamo-cortical upregulation in local temporal variability correlates negatively with network dimensionality

	3. Discussion
	3.1. Thalamic variability, within-person thalamo-cortical upregulation of temporal variability, and relations to functional inte ...
	3.2. Further comments

	4. Conclusion
	Acknowledgments
	Appendix A. Supplementary data
	References


