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Abstract 

Functional connectivity is frequently derived from fMRI data to reduce a complex image of the brain to a graph, 
or "functional connectome". Often shortest-path algorithms are used to characterize and compare functional 
connectomes. Previous work on the identification and measurement of semi-metric (shortest circuitous) 
pathways in the functional connectome has discovered cross-sectional differences in major depressive disorder 
(MDD), autism spectrum disorder (ASD), and Alzheimer’s disease. However, while measurements of shortest 
path length have been analyzed in functional connectomes, less work has been done to investigate the 
composition of the pathways themselves, or whether the edges composing pathways differ between 
individuals. Developments in this area would help us understand how pathways might be organized in mental 
disorders, and if a consistent pattern can be found. Furthermore, studies in structural brain connectivity and 
other real-world graphs suggest that shortest pathways may not be as important in functional connectivity 
studies as previously assumed. In light of this, we present a novel measurement of the consistency of 
pathways across functional connectomes, and an algorithm for improvement by selecting the most frequently 
occurring "normative pathways" from the k shortest paths, instead of just the shortest path. We also look at this 
algorithm's effect on various graph measurements, using randomized matrix simulations to support the efficacy 
of this method and demonstrate our algorithm on the resting-state fMRI (rs-fMRI) of a group of 34 adolescent 
control participants. Additionally, a comparison of normative pathways is made with a group of 82 age-matched 
participants, diagnosed with MDD, and in doing so we find the normative pathways that are most disrupted. Our 
results, which are carried out with estimates of connectivity derived from correlation, partial correlation, and 
normalized mutual information connectomes, suggest disruption to the default mode, affective, and ventral 
attention networks. Normative pathways, especially with partial correlation, make greater use of critical 
anatomical pathways through the striatum, cingulum, and the cerebellum. In summary, MDD is characterized 
by a disruption of normative pathways of the ventral attention network, increases in alternative pathways in the 
frontoparietal network in MDD, and a mixture of both in the default mode network. Additionally, within- and 
between-groups findings depend on the estimate of connectivity. 

Keywords: Functional connectivity; major depressive disorder; pathways; adolescent depression; graph theory; 
resting-state fMRI 

1. Introduction 

1.1 Resting State fMRI and Connectomics 

Functional Magnetic Resonance Imaging (fMRI) acquires temporal information on blood-oxygen level de- 
pendent (BOLD) signals from the human brain. Functional connectomics (Friston et al., 1993) reduces the 
dimensionality of these datasets to graphs (composed of nodes, representing brain areas, connected by edges) 
that illustrate the relationships between areas of the brain. Graph theory estimates the qualities of brain 
organization with measures such as centrality (or “hubness”)(Sporns et al., 2007; Joyce et al., 2010; Lohmann 
et al., 2010; Rubinov and Sporns, 2010; Tomasi and Volkow, 2010, 2011; Zuo et al., 2011) and community 
structure (or “modularity”)(Traag and Bruggeman, 2009; Mucha et al., 2010; Bassett et al., 2013; Sporns and 
Betzel, 2016). In general, the functional connectome is characterized by high complexity (Sporns et al., 2000; 
Sporns, 2006), high efficiency (Buzsaki et al., 2004), global and local synchronizability(Masuda and Aihara, 
2004), and high levels of clustering with short path lengths(Hilgetag et al., 2000; Stephan et al., 2000; Bassett 
and Bullmore, 2006), indicating a small-world architecture(Milgram, 1967; Watts and Strogatz, 1998).  

1.2 Path analysis of connectomes 

Studies of average shortest path length (Gong et al., 2009; Yan et al., 2011; Lynall et al., 2010; Betzel et al., 
2014) and its inverse, graph efficiency (Latora and Marchiori, 2001), have been conducted on both binarised 
functional (Bassett and Bullmore, 2006; Sporns et al., 2007; Wang et al., 2009; Lynall et al., 2010) and 
structural connectomes (Achard and Bullmore, 2007; Gong et al., 2009; Yan et al., 2011). Related to these 
measures are “rich clubs” (van den Heuvel and Sporns, 2011; van den Heuvel et al., 2012) that measure the 
tendency of nodes with high degree to be more densely connected amongst themselves than with other nodes 
of the connectome, which has implications for which nodes tend to be the most utilized in pathways. Like the 



functional connectome, an efficient, small-world structure has been shown to characterize the structural 
connectome(Hilgetag et al., 2000; Sporns and Zwi, 2004; Gong et al., 2009; Yan et al., 2011). Shortest-path- 
based node centrality measurements (such as betweenness (Freeman, 1977), regional efficiency(Latora and 
Marchiori, 2001; Achard and Bullmore, 2007), and closeness (Freeman, 1979)) are outlined and discussed in 
Sporns et al. (2007), Joyce et al. (2010), Zuo et al. (2011), and Rubinov and Sporns (2010). 

The majority of connectomic analyses assume the importance of the shortest pathway, even though real- world 
networks often do not have knowledge of their own global structure (Boguña et al., 2009; Abdelnour et al., 
2014; Goñi et al., 2013b), and so in practice, the shortest pathway is unlikely to utilized by prior planning (da 
Fontoura Costa and Travieso, 2007; Serrano et al., 2007; Estrada and Hatano, 2008). Studies of structural 
connectivity have investigated the relationships between two nodes other than the shortest pathway, such as 
path ensembles derived from the k shortest pathways (Avena-Koenigsberger et al., 2017), maximum flow (Yoo 
et al., 2015), and robustness (Kaiser et al., 2007). Furthermore, the structural con- nectome is both a predictor 
and a constraint for neural communication across the functional connectome (Passingham et al., 2002; Galán, 
2008; Honey et al., 2009; Hermundstad et al., 2013; Park and Friston, 2013; Goñi et al., 2013a; Betzel et al., 
2014; Mišić et al., 2015), and thus we hypothesize that alternatives to the shortest pathway provide a richer 
description of the topology of the functional connectome.  

1.3 Previous work on semimetric analysis of functional connectomes 

Functional connectomes are represented, in the case of Pearson correlations, as a positive semi-definite matrix 
with values on [-1,1] or, in the case of alternative measurements like normalized mutual information, as a matrix 
with values on [0,1]. It is often the case that path finding is performed after thresholding of edges to generate a 
binary graph with nodes defined as voxels (van den Heuvel et al., 2009) or regional parcels of the brain 
(Sporns et al., 2000; Stephan et al., 2000; Bassett and Bullmore, 2006). More recently, however, path finding 
on unthresholded functional connectomes has been undertaken (Rocha, 2002; Cao et al., 2014; Simas and 
Rocha, 2014; Simas et al., 2015; Suckling et al., 2015) by inverting them from a proximity graph to a distance 
graph, which is embedded in a semimetric space (see Methods; Figure 1; Appendix A). 

Previous studies have shown both sensitivity and specificity in differentiating control participants from 
individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD) (Simas et al., 2015) 
using the proportion of edges in semimetric distance space with a shorter indirect path: the semimetric 
percentage. Additionally, Suckling et al. (2015) used a similar semimetric analysis to classify patients with 
Alzheimer’s Disease (AD). Although successful in distinguishing alterations in brain functional organization, 
these semimetric approaches rendered scalar measurements for large regions of the brain without investigating 
the origins of the changes, and in particular the edge composition of the constituent pathways. 

Whilst there may be a difference in the proportion of shortest paths between two nodes that are indirect, there 
has not yet been a characterization of the routing of the shortest indirect paths, or their consistency of routing 
through particular areas of the brain. Furthermore, if the shortest indirect path among individuals is 
inconsistent, is there a second, third, or kth shortest pathway that consistently connects two areas? And do 
indirect paths differ in patients with mental health disorders; for example, MDD, as compared to healthy 
individuals? 

Many psychiatric and neurological (Delbeuck et al., 2003) disorders are now being characterized from the 
perspective of altered or disrupted connectivity. Functional plasticity is central to the development and ageing of 
the brain (Anderson and Thomason, 2013), its response to injury (Anderson et al., 2005), and 
neurodegeneration (Greenwood, 2007). Thus, an expansive analysis of the constellation of shortest paths that 
route information through complex brain networks is key to a deeper understanding of the information 
contained within the functional connectome. Below, we identify and analyze the normative pathways, which 
refer to a set of the most consistently occurring of the k shortest pathways across a group of connectomes. 



#  

Figure 1: Illustration of different graph types and the terminology used to reference them in this 
article. See also Methods 2.2. 

2. Methods 

2.1 Measurements and optimisation 

In this article, we define normative pathways and discuss a method for their detection, illustrating its 
performance on simulated data and in vivo images acquired in a case-control design. We present: (1) an 
index to measure the consistency of pathways between two nodes across a group of individuals - the 
Jaccard Edge Index; (2) an optimization problem that maximizes this index, thus identifying normative 
pathways, by analyzing the k shortest pathways between two nodes; (3) an optimisation algorithm that 
heuristically estimates this problem, providing a practical means of finding normative pathways; (4) the 
behavior of the optimization algorithm and its ability to accurately identify normative pathways tested with 
simulated matrices where the ground truth is known; (5) a comparison of normative pathways to shortest 
pathways, in terms of edge composition, centrality measures, and efficiency, in a group of control 
adolescents; and (6) a derivation of a statistical method for the detection of differences between 
normative pathways in two groups of connectomes, and apply it to a case-control comparison between 
adolescents with a diagnosis of MDD and control individuals. 

In common with the overwhelming body of prior work in functional connectomics, the Pearson correlation 
of time-series extracted from two nodes is the estimate of connectivity that weights the edges between 
the nodes in the connectome. However, we also applied the methods of identifying and comparing 
normative pathways when estimating connectivity with partial correlation (which regresses out the time 
series of every other node in its comparison), and normalized mutual information (which quantifies the 
shared information between two variables). We refer to different connectivity measurements as 
modalities, and in each experiment we compare across modalities. 

2.2 Terminology 



A graph, G is defined as a set of nodes, or vertices V, connected by edges E (G={V,E}), that may be 
directed or undirected, depending on whether edges have associated directionality. Functional 
connectomes are generally undirected graphs of which there are two types: weighted and unweighted (or 
binary) which, respectively, refer to graphs with and without numerical values associated with their edges. 
We use the term proximity graph when larger edge values represent stronger connections. Thus, in a 
proximity graph with edge values on [0,1], 0 represents a weak association and 1 represents a strong 
association. Conversely, we use the term distance graph when smaller edge values are associated with 
stronger (i.e. closer) connections and larger edge values are associated with weaker (i.e. more distant) 
connections. In distance graphs, edges may be metric or semi-metric depending on whether or not they 
satisfy the triangle inequality. Thus, an edge is semi-metric if it is not the shortest path between the two 
nodes it directly connects. See Figure 1 for a visual depiction of these different terms. 

2.3 Participants and MRI Data 

Control data were taken from a sample of 34 healthy adolescents (7 males and 27 females, aged 12 to 18 
years, mean age = 15.7, standard deviation = 1.45) with no family history of depression, who were 
recruited by advertisement from local schools. Forty (40) were initially recruited, with a total of 6 excluded. 
All of the participants were rescanned six months later as part of a longitudinal study, with four excluded. 
Participants were processed using a 116-area anatomical connectome. For details on data acquisition 
and processing, see Appendices B and C. 

2.4 Deriving the semimetric connectome 

Due to controversies around interpretation of negative correlations between brain regions (Fox et al., 2009; 
Murphy et al., 2009), when constructing a graph from estimates of connectivity we first take the common step 
of setting the negative Pearson correlations to zero (Cao et al., 2014), and additionally set those correlations 
with an associated p>0.05 to zero (this value is, of course, arbitrary, but it is an effort to eliminate spurious 
connections). To convert the edges of this weighted proximity graph to a distance graph on which path finding 
algorithms may be applied, we use a mathematical construct called a t-norm that converts from [0,1] to [∞,0] 
using a version of the Dombi t-norm (Dombi, 1982; Simas, 2012): 

    f(x) =1/x-1     (1) 

#  
As these inverted weights may violate the triangle inequality, the distance graph is embedded in a semi-metric 
space in which path finding algorithms may be applied. To convert back from semi-metric distance space to a 
proximity space, we apply the inverse of Equation 1: 

    f-1(x)=1/(x+1)    (2) 

#  
2.5 Path length measurements 

Functional connectomes are most commonly represented as proximity rather than distance graphs, and thus it 
is convenient to also express paths in proximity space. We therefore find our path lengths by first converting 
the graph from a proximity to distance space (Equation 1), summing the distances, and then converting back 
from distance to proximity space (Equation 2). 

Within a distance graph, the path length is the sum of the values of edges that make up a path between 
two nodes. Within the Pearson correlational space that has negative correlations set to 0 and using a 
Dombi t-norm to sum correlations, the path, P, from node i to node j, consisting of correlations (i.e. edges)
{P1,P2,...Pn} is summed to weight W(P): 



    W(P) = 1/(∑{i=1}^{n} (1/Pi - 1) + 1)    (3) 

#  

This is simply Equation 1 (the Dombi t-norm) embedded in a summation within Equation 2 (the inverse of 
the Dombi t-norm). See also Appendix D. 

2.6 Jaccard Edge Index 

When assessing the shortest pathways connecting nodes i and j in two functional connectomes, both may 
have similar lengths yet be routed through different brain regions. Thus, when comparing pathways 
connecting two areas across individuals, not only is the length (W(P), Equation 3) of the paths important, 
but also their edgewise composition. We perform this comparison by viewing a path as a set of edges. 

The Jaccard index is a value between 0 and 1 that compares the composition of two sets: 

    J(A,B) = |A∩B| / |A∪B|    (4)

#  

If J(A,B)=1, then A and B are identical sets, and if J(A,B)=0, then A and B have no elements in common. 
Thus, taking the Jaccard Index of the edges of two paths gives a measure of their similarity; i.e., the 
number edges the paths have in common divided by the number of unique edges that compose the two 
paths. Across multiple paths, the index is averaged between each pairing of pathways. For example, 
suppose η(G,i,j) returns the shortest path from nodes i to j for graph G. Then, for N graphs, [G1,G2,...GN], 
using Equation 3 (W(P)) to evaluate path lengths, this gives us an array J with elements: 



#  

Figure 2: Optimal Jaccard Edge Index that is obtained when K={1,2,3} (i.e. when the first, second, 
and third shortest paths are considered) on a set of toy binary graphs. The top row displays, on the 
colored dotted lines, the three shortest paths of each of the three binary networks between the start and 
end nodes. The following three rows show which path would be selected in each of the three networks to 
obtain the optimal Jaccard Edge Index (if K=2, the two shortest paths are considered but not the third). 
The function J(x,y) is the Jaccard Edge index for the paths considered between two given networks. Note 
that the first and second shortest paths for network A are equal in length and the choice is arbitrary. 

 Jij =2/(N(N-1)) x ∑{x=1}^{N}∑{y=x+1}^{N} (|η(Gx,i,j) ∩ η(Gy,i,j)|)/(|η(Gx,i,j) ∪η(Gy,i,j)|) (5)

#  

See Figure 2 for an illustration of the Jaccard Edge Index on toy graphs. 

The Jaccard Edge Index provides a measure of consistency of the shortest paths across a group of 
functional connectomes. If Jij=1, then the same pathway connects nodes i and j in all connectomes; if 
Jij=0, then the pathways connecting i and j do not have a common edge. 
To find a global measurement of shortest path consistency, we took the average of the nxn matrix J, 
excluding redundant paths: 

 Jglobal=2/(n(n-1)) ∑{i=1}^{n}∑{i=j+1}^{n} Jij   (6) 

#  



We refer to Equation 5 as the Jaccard Edge Index of the path connecting nodes i and j, and to Equation 6 
(the average of all Jaccard Edge Indices) as the Global Jaccard Edge Index. 

2.7 Normative pathways 

For a variety of reasons, the shortest paths may not be utilized in real-world graphs. To accommodate this 
perspective, we found the paths across a particular group that minimized path length whilst maximizing 
edge sharing. We refer to these pathways as normative. 

We define the normative pathways as the selection of pathways that maximise the Jaccard Edge Index 
over a selection of the k shortest pathways, across a group of connectomes. Informally, this means that, 
instead of identifying the optimally shortest pathways connecting two nodes (which may differ depending 
on the connectome), we identify a set of slightly suboptimal pathways that pass through similar areas. 
Thus, to identify the normative pathways between two nodes across individuals, we search for the k 
shortest paths that maximize J. To do this, we use Yen's K-Shortest Path algorithm\citep{Yen1971}, which 
finds the k shortest pathways by searching around each edge in the shortest path (found by Dijkstra's 
algorithm) and ranking the resulting paths. 

Suppose that k(G,i,j) returns the kth shortest path for a given connection from nodes i to j in graph G, 
searching across a maximum of K paths, for computational feasibility. Suppose, also, that kl is the kth 
path selected for network l (so that, for instance, [k1,k2,k3...kN] = [1,18,2...9]). For a group of N graphs, [G1, 
G2...GN], the normative pathways yield the maximum Jij in the following equation: 

Jij = maxkl, l ϵ N( 2/(N(N-1)) x ∑{x=1}^{N}∑{y=x+1}^{N} |ηkx(Gx,i,j) ∩ ηky(Gx,i,j)| / |ηkx(Gx,i,j) ∪ ηky(Gy,i,j)| )(7) 

#  
An instance of the maximum Jaccard Edge Index found for K={1,2,3} on a set of toy graphs can be seen 
in Figure 2. 

When K=1 in the Jaccard Edge Index Maximization problem, this simply returns the shortest paths. As K 
increases, pathways become more consistent across individuals (i.e., the Jaccard Edge Index increases), 
although the path lengths become longer. 

2.8 Identification of normative pathways by Maximization of the Jaccard Edge Index 

The maximisation problem expressed in Equation 7 is nontrivial to solve, and must be estimated via a 
heuristic. For each of N graphs, the k shortest paths are computed (a total of Nxk paths). With each graph 
contributing one path, the set of N pathways is found that share the most common edges, thus 
maximizing the Jaccard Edge Index, Jij. 

We can maximise each Jij value independently. Given N connectomes and starting from ∀l ϵ N, kl=1, we 
may iterate through l ϵ N in random order, finding the value kl ϵ K that maximizes Jij. We cease when no 
further increases in Jij or can be made for ∃l ϵ N: kl < K. We refer to this algorithm as the Jaccard Edge 
Index Maximization Algorithm. 

Informally, iterating through the set of functional connectomes in random order, we test which of the k 
shortest paths connecting nodes i and j in a particular graph is most similar to the current set of paths 
from all other connectomes (Equation 7). We then use the path that maximizes the Jaccard Edge Index, 
stopping when no further increments can be made to the Index. 

We tested the algorithm on all node pairings of a test group of 34 control participants across K=[1...20], 
testing its ability to raise the Jaccard Edge Index (and decrease the average path length) as K increases. 

2.9 Ground-Truth Simulation of Randomized Matrices 



To test the efficacy of this algorithm in identifying normative pathways, we simulated randomized matrices 
with seeded ground-truth pathways and applied the Jaccard Edge Index Maximization Algorithm. We did 
so first by sampling time series from MDD and control participants, combining the two datasets to 
increase the overall size of our sampling pool. For each test, we then averaged 3 to 7 nodes (varying path 
length from 2 to 6) with another timeseries, randomly selected from another participant. In half of our 
tests, the same random variable was used for all nodes in a particular instance (effectively seeding a 
subgraph), while the other half saw an independent variable seeded in each node pairing. We then 
measured the Pearson's correlation, partial correlation, and normalized mutual information matrices for 
each test. 

When seeding the path, we varied path length from 2 to 6 and signal-to-noise ratio of the simulated 
effects from 0 to 2 with increments of 0.025, and then measured the percentage of times in 20 tests that 
the seeded pathway was present in the 20 shortest pathways connecting the respective nodes, for a total 
of 19,200 simulations. Following this, we tested whether the Jaccard Edge Index Maximization Algorithm 
converged on the simulated pathway between the two seeded nodes. 

2.10 Comparing Edge Usage of Normative Pathways to that of Shortest Pathways 

As a means of displaying which edges are more utilized between the shortest pathways and the 
normative pathways, we ran the Jaccard Edge Index Maximisation Algorithm on the test group of 34 
control adolescents (K=20), finding all normative pathways for each node pairing across all participants. 
We separately find the shortest pathways (K=1). We then count, for each edge in each participant’s 
connectome the number of times that a normative and a shortest pathway utilizes it, giving a groupwise 
aggregate. The counts of normative and shortest usage are each normalized to a z-score and subtracted 
from one another, giving each edge in the connectome a score that approximates its increased utilisation 
by either normative or shortest pathways. Informally, this shows us which areas and connections 
normative pathways tend to utilize more than shortest pathways. 

2.11 Closeness Centrality and Efficiency of Normative pathways 

To summarize normative pathways in a connectome, we analyzed modified versions of two common graph 
measurements: closeness centrality (Bavelas, 1950; Freeman, 1979) and average efficiency (Latora and Mar- 
chiori, 2001). In our context, the closeness centrality of node i is the average path length (W(P), Equation 3) of 
the normative paths extending from node i to all other nodes in that graph. Average efficiency is the average of 
all closeness centralities for a particular graph. 

Both measures were modified to consider the normative (K = [2...20]) pathways, rather than only the shortest 
(K=1) pathways. 

Given a set of paths from i to all other n nodes, {Pi,1,Pi,2...,Pi,i-1,Pi,i+1...Pi,n}, we define closeness centrality 
for node i as 

    Ci = 1/(n-1) x ∑{j ϵ n, j ≠ i} W(Pi,j)    (8)

#  

The variance of these centralities with increasing paths (K=1, 2, ... 20) was also recorded, as well as the 
derivative of this value with respect to the number of paths used, since we are interested in the stability of 
these measurements as the set of shortest paths increases in number. 

Additionally, the average efficiency of the graphs as K increased was calculated to observe the Jaccard 
Edge Index Maximization Algorithm's effect on global path length measurements. 

  E = 1/n x ∑{i=1}^{n} Ci    ( 9 )



#  

We calculated these values and variances for the test and retest control groups and plotted them against 
K. See Appendix E for information on the relationship between the Jaccard Edge Index and the shortest 
pathways on the average connectome. 

2.12 Cross-group normative pathway comparison 

To apply these concepts to case-control studies, we look at a statistical method of comparing the 
normative pathways in two separate groups of connectomes, in order to detect the areas in which 
normative pathways converge in one group but not another and vice-versa. This method focuses on 
finding differences in the Jaccard Edge Indices of normative pathways between groups that show 
statistically significant differences, with significance found via comparison to a null model. 

For two groups, A and B, the nxn Jaccard Edge Indices, JA and JB respectively, are obtained for each 
separately: 

  Jdiff = JA - JB    ( 1 0 )

#  

High values of elements in the resulting matrix, Jdiff, are node pairings with normative pathways that 
converge to a greater in extent in Group A than Group B, while low values are node pairings with 
normative pathways with greater convergence in Group B, but not Group A. 

To find the statistically significant values of Jdiff, we created n null model matrices, [JN1, JN2..., JN3], each 
found by applying the Jaccard Edge Index Maximization Algorithm samples of connectomes randomly 
assigned to each of the two groups preserving the group sizes of the observed sample. For each possible 
pairing, Jdiff was calculated (Equation 10) to give a total of nx(n-1) different Jdiff matrices. Subsequently, 
the distribution of nx(n-1) values under the null hypothesis was derived for each connection between 
nodes i and j. By taking the mean and standard deviation of these distributions, we converted the values 
of the observed Jdiff matrix into a z-score for each node pairing: 

Jz = (Jdiff - ⟨JNi ∀i ϵ n ⟩)/√(⟨JNi2∀i ϵ n ⟩- ⟨JNi ∀i ϵ n ⟩2)   (11) 

#  

The z-scores were converted to p-values using the Fisher Z transformation. Correction for multiple 
comparisons was undertaken using false discovery rate (Benjamini and Hochberg, 1995) and 
thresholding at q=0.05, identifying the elements of Jdiff  that were statistically significant between groups. 

We performed this analysis on the MDD and control groups, which gives a number of normative pathways 
for each group. We quantified the number of times each edge was used across participants for each 
group, then determined to which regions of the brain these edges connected and which they passed 
through most often, using the same normalisation technique as above. As a means of validation, we 
compared these results with different studies including meta-analyses performed in MDD-control 
connectivity, primarily with adult participants. We counted the number of edges composing normative 
pathways that were significantly different that crossed through each area. The areas were then ranked 
and compared with those areas found to be functionally different between MDD and control adult groups 
in the meta-analysis of Kaiser et al. (2015). When a different parcellation, or no parcellation, was used, 



we manually found the closest corresponding area of the brain in the Automated Anatomical Labelling 
(AAL) parcellation (Tzourio-Mazoyer et al., 2002). 

#  

Figure 3: Comparison of the Jaccard Edge Indices with normalized mutual information, partial 
correlation, and correlation modalities in the test group of control participants. This displays the 
levels of consistency in pathways for each of the modalities. As we can see, Normalized Mutual 
Information offers the highest path consistency overall, being 0.80 at K=20. 

#    #  

Figure 4: Comparison of the average path lengths (i.e. efficiency) for different modalities over the 
test group of control participants as K increases. The left side shows the average efficiency of 
connectomes in the control group as more pathways are optimized for consistency; upper dotted lines 
represent the efficiency at K=1, while the lower dotted lines represent the efficiency of the mean graph 
(see Figure E.1), which offers a way of scaling these lines. The right shows these three lines after scaling. 
See Methods 2.11. 



Table 1: Mean pathway recovery percentages across all tests and signal-to-noise ratios for 
randomized simulations. See Figure 7. 

 

Table 2: Mean Jaccard Edge Indices across all signal-to-noise ratios for randomized simulations. 
See Figure 8. 

3 Results 

3.1 Performance of the Jaccard Edge Index Maximization Algorithm 

Figure 3 shows the improvements in the Jaccard Edge Index as K=[1...20] increases, while Figure 4 
shows the decrease in overall efficiency (indicating path length) as K=[1...20] increases. The matrices for 
K=[0,10,20] are shown in Figure 5. Each modality saw a sharp increase in internal consistency of its 
pathways by the application of the Jaccard Edge Index Maximization Algorithm, utilizing a greater 
distribution of edges in composition of paths (Figure 6), with a small loss in overall efficiency of these 
paths. The most consistent pathways were seen with connectivity estimated by normalized mutual 
information at K=20, with Jglobal=0.80; in other words, the normative pathways of connectomes using the 
normalized mutual information modality, on the whole shared the fewest edges, but exhibited the most 
internal consistency. 

3.2 Ground-truth simulation with randomized matrices 

We simulated randomized matrices that maintained a small-world structure and degree distribution of functional 
connectomes by randomly sampling time series from the control and MDD datasets. The results are shown in 
Figure 7. We then applied the Jaccard Edge Index Maximization Algorithm to each set of 20 matrices having 

Ind Glob

No.	
Edges

2 3 4 5 6 2 3 4 5 6

Corr 0.5025 0.2006 0.0549 0.0136 0.0006 0.6790 0.5469 0.4494 0.0049 0

Part 0.8562 0.8210 0.7562 0.6753 0.5994 0.7216 0.3568 0.0568 0 0

NMI 0.6784 0.1765 0.0031 0 0 0.7438 0.5531 0.4130 0.0006 0

Ind Glob

No.	
Edges

2 3 4 5 6 2 3 4 5 6

Corr 0.3296 0.1157 0.0581 0.0596 0.0662 0.6970 0.7025 0.7048 0.6859 0.6813

Part 0.7589 0.7440 0.6999 0.6340 0.5682 0.6670 0.4925 0.3838 0.2764 0.2212

NMI 0.7978 0.8337 0.8187 0.8342 0.8300 0.8806 0.8800 0.8835 0.8761 0.8777



the same seeded path, signal-to-noise ratio, and edge independence. The means of each of the recovery 
percentages (the percent of tests in which the seeded path appeared in the 20 shortest paths) and the Jaccard 
Edge Index, across all tests, path lengths, and signal-to-noise ratios, are shown in Tables 1 and 2, respectively. 

When independent variables were seeded for each edge, partial correlation saw the highest success in 
recovering the seeded pathway, uncovering paths an average of 59.94% of the time on paths of length 6, 
while the highest average recovery rate for correlation and normalized mutual information for paths of 
length four and above was 5.49% (see Table 3). When a single, global variable was seeded for each path, 
however, partial correlation did a poorer job of recovering these pathways (as one may expect, since the 
single random variable, appearing in multiple time series, is regressed out), having a 5.6% average 
recovery rate for paths of length 4 and 0% for lengths 5 and 6. Correlation and normalized mutual 
information modalities had a 44.94% and 41.30% average recovery rate, respectively, for paths of length 
4. 

In general, the Jaccard Edge Index converged in the presence of a normative path with a high signal-to-noise 
ratio, regardless of path length. This indifference to path length is likely due to the convergence of the algorithm 
on another path that utilized individual edges of the seeded path. See Table 2 and Figure 8. 

Due to the recovery percentages, this result indicates that the Jaccard Edge Index Maximization Algorithm is 
capable of finding seeded pathways in data, although this is dependent on both the modality and the exact 
method of seeding the pathways (i.e., whether we use one random variable per edge or different ones). 
Although this is an imperfect analogy for real-world fMRI data, it does offer an idea of the baseline efficacy of 
the algorithm. 

#  

Figure 5: The matrices of the Jaccard Edge Index across three modalities, only considering the 
first shortest paths, the 10 shortest paths, and the 20 shortest paths. These matrices compare the 
consistency (as measured by the Jaccard Edge Index) of the pathways selected by the Jaccard Edge 
Index Maximization Algorithm when considering the K=1, K=10, and K=20 shortest pathways across a 
group of 30, between the 116x115 possible pathways between nodes in the AAL parcellation. The 
averages of these matrices over K=[1...20] can be seen in Figure 3. 



#  

Figure 6: Comparison of overall edge utilization between the shortest pathways (K=1) and the 
normative pathways (K=20) for the 34 control participants. In aggregate, the normative pathways 
utilized a greater proportion of the edges than the shortest pathways. Note that, for Pearson's correlation 
and, to a greater degree, partial correlation, the composition of pathways is strongly affected by the 
thresholding of the negative edges. 

3.3 Comparing Edge Usage of Normative Pathways to that of Shortest Pathways 

Figure 9 shows which edges and nodes were utilized more, in aggregate, by normative pathways (K=20) 
than shortest pathways (K=1), between modalities. As expected, normative pathways utilized a wider 
range of edges, including weaker ones. Average path lengths of the normative pathways for Pearson’s 
correlation, partial correlation, and normalized mutual information modalities were 3.48, 3.93, and 2.12, 
respectively, compared to 3.39, 2.37, and 3.35 for the shortest pathways. 

Normative pathways were more frequently routed through nodes along the upper cerebellum and the 
border between the brain hemispheres, where one would expect anatomical pathways to bottleneck. This 
is most apparent with connectomes constructed with partial correlations which showed particular 
increased traversing of pathways through the striatum, which receives projections from the entire cerebral 
cortex. Connectomes constructed with normalized mutual information showed large increases in the left 
and right middle cinguli; anatomically, the cingulum is a highly connected area (Hagmann et al., 2008) 
that acts as a global connector for other functional networks (Guimera et al., 2007; Leech and Sharp, 
2014). Finally, connectomes constructed with Pearson’s correlation showed large increases in parts of the 
upper cerebellum and vermis, and along areas directly bridging the two hemispheres; the most apparent 
exception, however, is between the two superior temporal lobes. 

These differences suggest that normative pathways vary depending on the modality. Considering the 
differing values of individual edges in each connectome and the edge utilisation in the K=1 shortest 
pathways and the K=20 normative pathways (Figure 3), this is more than likely due to inherent differences 
in the modalities. 



#  
 

Figure 7: Percentage of times that seeded pathways appeared in top 20 shortest pathways in 
simulated matrices. In the top row ("Local"), one random variable was used for each edge in the path; in 
the bottom row ("Global"), one random variable was used for the entire path, effectively seeding a 
subgraph into the time series. See Section 2.9. 

#  

Figure 8: The Jaccard Edge Indices from the simulations in Figure 7. These show that, in the 
presence of real paths, the Jaccard Edge Index converges, even if it does not necessarily converge on 
the exact path that was seeded. 

3.4 Closeness Centrality and Efficiency of Normative pathways 

We measured the closeness centrality and the efficiency of normative pathways in the test group of 34 
control participants for K=[1...20]. As noted above, the efficiency of normative pathways for all three 
modalities decreases as K increases, indicating that closeness centralities, on average, decrease. This is 
trivially true. However, we also measured the variance of the closeness centralities across all brain areas 
in all participants as K increased, finding that these variances, on average, increase as K increased. The 
average variance of these centralities (displayed as the red lines in Figure 10) monotonically increased 
except in the case of correlation, which reached its minimum at K=4 and monotonically increased 
thereafter. While it may be thought that normative pathways provide more stability in their global 
measurements than shortest pathways, this appears to not be the case in the test group. However, in the 
retest group of 30 control participants (scanned six months later), the variance of all three modalities 



tested decreased monotonically as more paths were considered (Figure 11). Thus, correlation displays a 
consistent decrease in its closeness centrality variance with this algorithm for up to K=4, though this is not 
replicated for partial correlation and normalized mutual information 

While we can conclude that the algorithm is effective in recovering normative pathways on real-world 
data, with substantial differences between modalities, the question of whether this algorithm has an effect 
on the consistency of measurements of these pathways within a group is inconclusive. 

#  
Figure 9: A display of which edges are more utilized between the shortest pathways and the 
normative pathways in the control participants. This visualization shows the difference in edge usage 
between K=1 in the Jaccard Edge Index Maximization Algorithm (i.e., when only the shortest paths are 
considered) and when K=20 (i.e., when the most consistently occurring, normative pathways are used). 
We counted the number of each times an edge appeared in a pathway when K=1 and K=20 across the 34 
control participants, normalized these values to have the same mean and variance, and subtracted these 
normalized counts in K=1 from those in K=20, giving each edge a difference in z-score; the results are 
visualized in the second column, while the first column shows the hubs in the parcellation whose outgoing 
edges showed the greatest increments in utilization between K=1 and K=20; the flatmaps in the third 
column shows this across the whole brain. 



#  

Figure 10: Variance of closeness centrality for all 116 nodes in the control group. (Above) The 
variance of the closeness centrality of each node, depending on the modality analyzed. Each blue line 
indicates the closeness centrality of one particular node in the parcellation, while the red line is the 
average. In general, higher variance is associated with a higher centrality value. (Below) The derivatives 
of these variances over path lengths considered after being fitted to a polynomial curve, which makes 
their fluctuations more evident. Note that, in these graphs, the order of magnitude is different, and these 
are meant to compare merely the fluctuations in variance per modality as the number of paths considered 
increases. Also note that the red lines are not true sums of variances in the true statistical sense, but are 
mainly used for display purposes to show general trends. 

#  

Figure 11: The same closeness centrality variance results as Figure 10 on the retest group. The 
retest group showed decreasing variances on its closeness centrality values, whereas the original group 
only showed this behavior in correlation. 



Table 3: Areas with the most unique normative pathways. Shown is the 20 areas through which 
the most normative pathways unique to that group (see Figure 12) pass through. Highlighted are 
those anatomical areas in which differences in connectivity between adult with MDD and control 
participants. 

Ventral Attention Frontoparietal Default Mode Affective
Controls

Corr Par. Corr NMI
Anat. Area # Edges Anat. Area # Edges Anat. Area # Edges

Cerebelum 6 L 1186 Postcentral L 362 SupraMarginal R 70
Occipital Sup L 626 Precentral L 208 Occipital Sup L 68

Cerebelum Crus1 L 624 Occipital Sup R 176 Cerebelum 10 R 34
Occipital Mid L 538 Cuneus R 172 Pallidum L 34

Cerebelum Crus2 R 446 Calcarine L 142 Parietal Sup L 34
Frontal Mid R 400 Vermis 1 2 132 Calcarine R 34

Temporal Sup L 348 Frontal Sup Medial R 132 Rectus L 34
Caudate R 348 Rectus R 130 Frontal Med Orb R 34
Vermis 6 312 Vermis 9 122 Frontal Sup Medial L 34

Frontal Sup Medial L 302 Rectus L 118 Olfactory R 34
Cuneus L 294 Occipital Mid R 108 Rolandic Oper R 34

Temporal Sup R 272 Cuneus L 106 Frontal Inf Oper R 34
Cingulum Mid L 264 Olfactory R 106 Frontal Sup Medial R 8
Frontal Sup R 256 Cerebelum Crus2 L 100 Cerebelum 6 R 2

Supp Motor Area R 254 Fusiform R 94 Temporal Sup R 2
Precuneus L 244 Calcarine R 86 Precuneus L 2

Frontal Inf Oper R 234 Lingual L 76 SupraMarginal L 2
Cerebelum Crus1 R 220 Paracentral Lobule L 74 Lingual L 2

Cingulum Mid R 192 Olfactory L 74 Cingulum Post R 1
Frontal Sup Medial R 192 Frontal Sup Medial L 72 Frontal Mid R 2

Cerebelum 6 R 188 Rolandic Oper L 72 - -
MDD

Corr Par. Corr NMI
Anat. Area # Edges Anat. Area # Edges Anat. Area # Edges
Insula R 384 Temporal Mid R 672 Supp Motor Area R 792

Temporal Pole Sup R 268 Temporal Sup R 487 Precentral L 702
Fusiform L 260 Temporal Mid L 296 Postcentral L 698

ParaHippocampal R 258 Frontal Sup Medial L 272 Cingulum Mid L 634
Frontal Mid R 240 Temporal Inf R 236 Temporal Pole Sup R 588
Fusiform R 178 Frontal Sup Medial R 228 Frontal Mid R 564

ParaHippocampal L 174 Frontal Mid R 202 Cerebelum 4 5 L 560
Lingual L 172 Cingulum Mid L 188 Rolandic Oper L 544

Temporal Inf L 164 Cerebelum Crus1 R 178 Cerebelum 6 L 524
Insula L 164 Frontal Sup R 172 Precentral R 524

Frontal Inf Orb R 164 Cerebelum Crus2 R 170 Fusiform L 514
Putamen L 150 Frontal Mid L 162 Frontal Med Orb L 494

Frontal Inf Tri R 96 Cerebelum Crus2 L 155 ParaHippocampal R 484
Temporal Pole Sup L 92 Cerebelum Crus1 L 150 Frontal Sup L 480

Cerebelum 6 R 90 Calcarine L 142 Supp Motor Area L 478
Cerebelum 4 5 R 86 Frontal Sup L 142 Insula R 470

Lingual R 86 Cingulum Mid R 140 Thalamus L 468
Cingulum Mid R 86 Caudate R 136 Cerebelum 8 L 444
Rolandic Oper R 84 Temporal Sup L 132 ParaHippocampal L 432
Cerebelum 9 R 82 Fusiform L 126 Cerebelum 6 R 426

Cerebelum Crus2 R 82 Calcarine R 122 Frontal Sup Orb R 400



#  

Figure 12: A visualization of the normative pathways that appear uniquely in each group. These 
values were obtained by subtracting the Jaccard Edge Indices in each group from each other and 
comparing those values with differences found in a set of null models, to determine which were 
statistically significant. Edge intensity in the visualization is associated with that edge's use in the selected 
normative path in its respective group. Matrices show the fractions of edges in each extrema that connect 
different regions and halves of the brain. 



3.5 Cross-group comparisons 

Using the cross-group normative pathway comparison, we performed a groupwise comparison between 
the control and MDD groups, finding the normative pathways that were more frequently present in one 
group relative to the other, across all three modalities. Figure 9 displays the edges most used by 
normative pathways that were significantly different between the test group and the MDD group. In the 
section below, we generalize those differences. 

In all three modalities, we identified, in both groups, unique normative pathways in the frontal lobe; the 
MDD group had unique normative pathways in the cerebellum. Normative pathways derived from 
correlation and partial correlation were found more utilized in the control group in the occipital lobe. The 
MDD group was found to utilize a number of normative pathways more in the temporal lobe. With the 
exception of normalized mutual information in the control group, these normative pathways were typically 
local in nature, occurring within brain regions and within particular lobes. 

Table 1 shows the brain areas connected to the most edges in each group and their associated network 
found to be disrupted in depression in a meta-analysis of studies with adult participants Kaiser et al. 
(2015). 

In the case of partial correlation, the clearest disrupted network intersected the occipital lobe, which may 
be related to anxiety (Goddard et al., 2001; Adenauer et al., 2010; Brühl et al., 2011; Graham et al., 2013) 
in patients with MDD. The right cuneus and superior and mid occipital lobe were also those three areas 
found in Kaiser et al. (2015) to have significant hypoconnectivity in MDD with the ventral attention 
network. Differential normative pathways derived from partial correlation also implicated areas previously 
found to be hyperconnected with the default mode network and hypoconnected to the affective network in 
MDD, largely validating many of the findings in Kaiser et al. (2015). 

Normalized mutual information and correlation detected many new and disrupted normative pathways 
that intersected the cerebellum. Though the cerebellum is not implicated in the meta-analysis performed 
by Kaiser et al. (2015), which used a multikernel density analysis, it was found to have significantly 
altered connectivity in rs-fcMRI in Guo et al. (2015), a study which used Pearson correlations as the 
estimate of connectivity, and altered negative correlations Cao et al. (2012).  

4 Discussion and Future Work 

The overarching goal of this study was to find evidence of pathways that are utilized by the functional 
connectome in order to discover common, potentially underlying routes of information transfer in human 
brains. Our specific objective in this study was to find and analyze a consistent set of strong pathways in 
the functional connectome, to distinguish them from the shortest pathways, and to analyze the ways in 
which these paths differed between groups. This study provides evidence that these normative pathways 
are present in the functional connectome and utilized in different ways in MDD and control adolescents. 

4.1 Semimetricity 

The extensive development and application of graph theory in a wide range of scientific fields has encouraged 
its use in brain connectomics. A key concept frequently adopted is the idea of shortest pathways connecting 
spatially distinct regions along which information might preferentially flow. Although few studies have analyzed 
the application of pathfinding algorithms directly in functional connectomes, such algorithms are often used 
indirectly; for instance, deriving system-level structures such as “rich clubs” (van den Heuvel and Sporns, 
2011), and in the calculations of metrics that characterize overall network topology, such as betweenness 
centrality, closeness centrality (Zuo et al., 2011), and efficiency (van den Heuvel et al., 2009). Though the idea 
of shortest pathways is embedded in the analysis of brain connectomes, previous studies have neither asked 
where these shortest pathways travel through in the brain, nor whether these pathways vary from one 
individual to another. Many studies have applied them to binarized functional connectomes (Bassett and 
Bullmore, 2006; Sporns et al., 2007; Wang et al., 2009; Lynall et al., 2010), but this approach reduces the 
amount of data represented by a connectome. By mapping connectomes from a proximity space to a distance 



space, we can apply pathfinding algorithms to weighted functional connectomes, giving us a richer analysis of 
the data.  

4.2 Normative Pathways 

As in other real-world networks, information does not necessarily travel along the shortest pathways (Borgatti, 
2005; Hromkovic et al., 2005; da Fontoura Costa and Travieso, 2007) . We argue against the preeminence of 
shortest pathways in brain connectivity and suggest instead that normative pathways are a key element to the 
distribution of information across the connectome. This article demonstrates that normative pathways are 
distinct from shortest pathways in the functional connectome; that inter hemispheric normative pathways 
closely follow direct callosal connections (Figure 9), which, considering previous work showing that inter-
hemispheric functional connections are closely related to the integrity of the corpus callosum (Quigley et al., 
2003; Johnston et al., 2008; Putnam et al., 2008; Uddin et al., 2008), suggests that they may follow the 
underlying biological substrate; and that analysis of their presence can yield knowledge about the differences 
between subnetworks in patient groups. Additionally, our random matrix simulations and single-group normative 
pathway analysis suggest that different modalities may reveal different properties and effects in the underlying 
data, if they are present. This is supported by our cross-group comparison of normative pathways, which 
generally yielded different results depending on the modalities used, but revealed different subnetworks that 
were consistent with previous literature. 

Studies in functional connectivity that are concerned with the analysis of the connectome itself (rather than 
methods of deriving the connectome from raw fMRI data, which this article is largely unconcerned with) are 
often concerned with describing the general structure of the connectome (e.g. the small-world hypothesis 
(Bassett and Bullmore, 2006; Sporns, 2006; Salvador et al., 2005; Achard et al., 2006)), community partitions, 
or finding subnetworks such as the default mode(He et al., 2009; Smith et al., 2009; Betzel et al., 2016; Sporns 
and Betzel, 2016; Nicolini et al., 2017); or centrality, such as finding which parts of the brain play a central (i.e., 
more important) role in network dynamics(Sporns et al., 2007; Joyce et al., 2010; Zuo et al., 2011). However, 
initial work on functional pathways in the brain was limited due to the use of binarized networks (Bassett and 
Bullmore, 2006; Sporns et al., 2007; Wang et al., 2009; Lynall et al., 2010). 

Avena-Koenigsberger et al. (2017) preceded this article in the use of Yen's k shortest path algorithm, arguing 
against the importance of shortest pathways in connectivity by analysing path ensembles between brain 
regions in individual structural connectomes, relaxing the assumption that a shortest path must be taken. Our 
method, by selecting one common path among a group of participants, addresses stability and reproducibility 
problems unique to rsfMRI (Honey et al., 2009). While our methods do not exclude the hypothesis that signal 
communication may occur over an ensemble of pathways, they are more concerned with finding whether at 
least one viable pathway exists in the unstable topology of fMRI connectomes. 

In this study, we conducted several different tests concerning the composition of the normative pathways. The 
inverse relationship between the average efficiency and the global Jaccard Edge Index (seen in Figures 3 and 
4), and the use of lower-weighted, but statistically significant edges at K=20 (Figure 9) were largely predictable 
results, but were used to understand the properties of the Jaccard Edge Index Maximization Algorithm under 
controlled conditions, and to compare these values across different modalities. The most surprising aspect of 
this analysis was the differing variances in closeness centrality between the test (N=34) and the retest (N=30) 
groups; specifically, the variance increased between K=[1…20] for the test group but decreased for the retest 
group. 

We found that normalized mutual information had the highest Global Jaccard Edge Index, correlation had the 
second highest, and partial correlation the lowest. This could mean that normalized mutual information naturally 
produces more stable pathways in its topology, or it means that other factors, such as average path length and 
degree distribution, trivially lower the Global Jaccard Edge Index. The latter reason is most likely the case. In 
the test group, normalized mutual information’s average normative path length was smaller than that 
associated with other modalities (2.12 for normalized mutual information versus 3.48 and 3.93 for Pearson’s 
correlation and partial correlation, respectively). As there are fewer possible one- or two-edged pathways that 
may connect two nodes, it is more likely that the Jaccard Edge Index Maximization Algorithm would converge 
on one of these as a normative pathway, thus raising the Global Jaccard Edge Index. Likewise, a lower 
average degree distribution of edge lengths (as normalized mutual information displays; see the histograms in 
Figure 9) in proximity space would inflate edge values in distance space (after application of Equation 1), 



favouring the use of fewer edges in pathways. Within modalities, the degree distributions of correlation and 
partial correlation were similar, with the normative pathways using a wider variety of edges than their 
counterpart shortest pathways (see Figures 6 and 11). 

In the within-group analyses of the controls, the greatest evidence of the importance of the normative pathways 
is the greater use of edges along the cingulum, striatum, and the upper cerebellum, which we would expect to 
be a natural bottleneck of structural paths connecting the cerebral hemispheres and the cerebellum (this is 
particularly true of partial correlation, which is discussed below). This supports the idea that the functional 
connectome is constrained by major white matter pathways, and that normative paths consisting of a larger 
number of edges are able to be visualized as following these constraints more closely than shortest pathways 
(Figure 9). 

4.3 Modality differences 

An interesting question to address is why modalities behaved in such different ways in these analyses. It is 
common practice in connectivity studies to select a favoured modality without considering other possibilities. 
This is a likely reason for some discrepancies in findings between different studies in rs-fcMRI, that can 
influence subsequent meta-analyses. Connectivity measures include Pearson’s correlation(Eguiluz et al., 2005; 
Buckner et al., 2009; He et al., 2009; Wang et al., 2009), partial correlation(Liu et al., 2008; Nakamura et al., 
2009; Zhang et al., 2011), and mutual information(Salvador et al., 2008; Lynall et al., 2010; Eqlimi et al., 2013), 
as well as coherence(Bassett and Bullmore, 2006; Bassett et al., 2013), wavelet-based methods(Lynall et al., 
2010), and other original methods that explore relationships in the frequency domain (Salvador et al., 2008; 
Goelman et al., 2017). Different types of analyses may also produce different results; while Kaiser et al. (2015) 
used a multilevel kernel density analysis, for instance, Mulders et al. (2015) looked at studies that used both a 
seed-based correlation analysis and independent component analysis.  

We offer an explanation that partial correlation, by regressing out the global signal, is more focal in nature, and 
that correlation and normalized mutual information are more suited to detect global normative pathways and 
disruptions. Through fMRI simulations, Smith et al. (2011) found partial correlation to be among the most 
effective measures of connectivity, as it correctly detected connections in simulated data at a higher rate than 
most other modalities tested. Our findings, likewise, support the efficacy of partial correlation in three contexts.  

First, in our ground-truth simulations, partial correlation for locally-seeded edges detected seeded pathways 
more effectively than any other measurement (Figure 11). 

Second, the within-group analysis revealed a higher path usage that included the cingulum and other callosal 
areas bridging the cerebral hemispheres (Figure 9), while the cross-group analysis implicated many areas in 
the middle of the cerebellum and the corpus callosum. Previous studies have shown that the integrity of the 
corpus callosum is related to inter hemispheric resting-state functional connectivity (Quigley et al., 2003; 
Johnston et al., 2008; Putnam et al., 2008; Uddin et al., 2008). If white matter pathways bottleneck between the 
left and right brain in the corpus callosum, then the increased usage and emphasis of those areas is evidence 
that the normative pathways follow an underlying anatomical substrate that intersects these areas more 
frequently than the shortest pathways. 

The last place that supports the strength of partial correlation is in the cross-group analysis, in which more 
areas previously implicated in MDD-control group differences in Kaiser et al. (2015) were found by partial 
correlation than the other two other modalities (Table 3). The Kaiser et al. (2015) analysis, however, considered 
older age groups, so our analysis may only have found the areas implicated in the early stages of depression.  

While this indicates that partial correlation is a particularly effective means of modelling the data, we view 
correlation and normalized mutual information as simply alternate means of modelling the data. While partial 
correlation showed a clear dominance of areas adjacent to the corpus callosum, normalized mutual information 
also had a strong increase in usage of the left and right middle cinguli, while correlation showed increased use 
of edges in areas that connected either halves of the cerebellum to the rest of the brain (Figure 9).  

When making a practical choice of which modality to use, we would generally recommend the use of partial 
correlation for the above reasons. Nonetheless, Pearson's correlation remains the more prevalent metric of 
connectivity, and it’s use allows easier comparison  a wider variety of other studiest. Furthermore, partial 



correlation may be impractical on finer parcellations, or on datasets with fewer timepoints, since the number of 
time points cannot exceed the number of nodes in the parcellation. Normalized mutual information is 
advantageous sin avoiding the negative edge problem. 

4.4 Case-control differences in depression 

Many different methods have been developed to analyze functional connectivity (Li et al., 2009). This and other 
studies have found many different approaches of finding groupwise differences in brain images, and these 
different methods often offer different results. MDD has been studied extensively(Zhang et al., 2011; Bora et al., 
2013; Graham et al., 2013; Li et al., 2013; Roiser and Sahakian, 2013; Singh and Gotlib, 2014; Qiu et al., 
2015). Using different methodologies, different studies and meta-analyses have implicated case-control 
differences (both in terms of structure and function) in many different parts of the brain(Kaiser et al., 2015; 
Mulders et al., 2015), and others have shown only limited areas of difference (Bora et al., 2013). There are 
several possible explanations for this. The first is that MDD is a complex disorder and each methodology 
uniquely captures a different aspect of the disorder. The second is that many methods used potentially capture 
spurious differences in the data. The third is that MDD is a system-wide disorder and different methods 
implicate specific parts of the brain, each partially illuminating a deeper, more widespread effect. Another 
explanation for the dissimilarities is the slight differences in the datasets studied; for instance, here we studied 
adolescents, and so a comparison to studies on MDD in adults is not one-on-one; or, individual datasets may 
simply be too small to give statistically reliable results. This begs the question of whether normative pathway 
analysis is a comprehensive means of describing a system-wide disorder, or just another analysis method that 
offers its view of depression.  

4.5 Considerations in the interpretation of normative pathways 

There are several controversies surrounding the interpretation of pathways in functional connectomes, which 
partially stems from controversies with functional connectivity itself. First, there are functional connections that 
are not fully accounted for by the underlying structural connectivity (Honey et al., 2009; Meier et al., 2016), and 
which may not be explained by two-edged indirect pathways. Although there is evidence in time-lag-based 
analyses that information propogates, either directly or indirectly, across functional connections (Cole et al., 
2016; Mitra and Raichle, 2016; Ito et al., 2017), there remains concern that observed causality in the BOLD 
signal is due to the kinetics of neurovascular coupling (Handwerker et al., 2004; Friston, 2009).  

More fundamentally, the analysis of pathways in functional connectomes is complicated by the presence of 
relatively strong edges that may be the byproduct of the shared variance of an indirect pathway, rather than a 
true instance of information transfer. For instance, an indirect pathway B->A->C may introduce shared variance 
between B and C by their relationships with A that expresses as a strong edge B->C, despite the lack of any 
direct information transfer between regions B and C. 

There are means of calculating whether, for an indirect path, the shared variance between two areas is 
stronger than the calculated indirect pathway. Consider the three-node case, B->A->C. For Pearson's 
correlation, the following inequality holds: 

If corr(A,B) = c, corr(B,C) = a, and corr(C,A) = b, then a >= bc - √(1-c^2)√(1-b^2) 

And, if the following is true: 

1/(1 + ((1 - 1/b) + (1 - 1/c))) > a, 

then the indirect pathway is stronger than its shared variance, and, when calculating normative pathways, the 
indirect pathway would rank higher in the list of the k shortest pathways than the direct edge, making it more 
likely that the Jaccard Edge Index Maximization Algorithm would converge on the indirect pathway. 

To generalize this, of course, one must consider degree distributions (which, as we have shown, vary 
substantially between Pearson's correlation, partial correlation, and normalized mutual information), the 
transitivity qualities of the considered modality (i.e., the above equation for Pearson's correlation), the selected 
t-norm used to invert and sum edges, and the number of edges in a given path. 



In general, if the indirect pathway, calculated by Equation 3, is consistently stronger than the direct edge 
connecting two areas, it is more likely to be converged upon by the Jaccard Edge Index Maximization Algorithm 
and identified as a normative pathway. 

5  Conclusion 
In this study, we propose an alternative measurement to shortest pathways in weighted functional 
connectomes. We demonstrate that the composition of shortest pathways in functional connectomes is 
inconsistent and we propose a means of improving this by discovering the normative pathways. We show that 
the resulting pathways from this algorithm closely utilize key anatomical areas close to the corpus callosum, 
which have been shown to be key to inter hemispheric functional connectivity, especially when the connectome 
is modelled using partial correlation. We demonstrate, as well, that the areas in the functional connectome 
where these normative pathways converge differently in participants with MDD and controls correspond to 
findings in other studies of connectivity. This demonstrates the usefulness of the method. Future studies 
assessing the relationship between normative pathways and underlying white matter connectivity are of 
importance and may improve our understanding of the relationship between functional and structural 
connectomes. 
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Appendices 

A Necessity for edge inversions in pathfinding on proximity graphs 

In order to perform path finding in proximity space, it must be inverted from proximity space to distance space 
(Rocha, 2002; Simas and Rocha, 2014). The shortest path problem consists of finding the shortest path 
between two nodes in a graph; many algorithms, such as Dijkstra's algorithm (Dijkstra, 1959; Cormen et al., 
2009), have been designed to solve this problem. However, the shortest path problem, pursuant to its name, is 
a minimization problem. It can be applied to a binary graph by minimizing the number of edges connecting two 
nodes (Sporns et al., 2000; Stephan et al., 2000; Bassett and Bullmore, 2006; van den Heuvel et al., 2009), 
and it can be applied to a distance graph by minimizing the sum of the edges' values (Rocha, 2002; Simas and 
Rocha, 2014; Simas et al., 2015; Suckling et al., 2015). However, it cannot be applied to a weighted graph 
because the stronger edges have higher numerical values; thus, minimizing the sum of edge values would lead 
to a weak pathway; maximizing the sum would turn the shortest path problem into a form of the longest path 
problem; and minimizing the number of edges would not necessarily be the shortest path. The output, in all 
cases, is meaningless for our purposes. The only way to apply a shortest path algorithm to a proximity graph, 
therefore, is to invert its edge values and turn it into a distance graph. 

B  Participants and MRI Data 

BOLD-sensitive MRI were acquired on a Siemens 3T Tim Trio scanner located at the Wolfson Brain 
Imaging Centre, University of Cambridge, UK whilst participants were resting with eyes closed on 
datasets from the MR-IMPACT study (Hagan et al., 2013, 2015). Details of the MRI acquisition 
parameters as well as explanations for participant exclusions can be found in Chattopadhyay et al. 
(2017). Participants and their families gave written and informed consent, and ethical approval was 
provided by the Cambridgeshire Research Ethics Committee (Reference: 09-H0308-168). 

The control data were taken from a sample of 34 healthy adolescents (7 males and 27 females, aged 12 
to 18 years, mean age = 15.7, standard deviation = 1.45) with no family history of depression, who were 
recruited by advertisement from local schools. Forty (40) were initially recruited, with a total of 6 excluded. 
All of the participants were rescanned six months later as part of a longitudinal study, with four excluded. 

Patients with MDD were recruited from East Anglia and North London, United Kingdom. 109 participants 
were reported in the MR-IMPACT study (Hagan et al., 2015), of these 108 were used in Chattopadhyay et 
al. (2017), with exclusions for 26 participants on the basis of head motion, psychosis, withdrawals, 
parcellations, dropouts, and missing data, leaving 82 (18 males and 64 females, aged between 13 and 18 
years, mean = 15.6 years, standard deviation = 1.12 years) for inclusion in this study. 

C Code 

Code for the computations was written in Matlab, using functions from the Matlab BGL toolbox (https://
uk.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl), the Brain Connectivity Toolbox 
(Rubinov and Sporns, 2010), and functions in Matlab for computing the k shortest paths (https://uk. 
mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm) and the average 
mutual information (https://uk.mathworks.com/matlabcentral/fileexchange/10040-average-mutual-
informat). To speed up computation times, pathways were encoded as 64-bit integers, which limited the 
size of the pathways to ⌊log(264)/log(116)⌋ = 9 edges for a parcellation with 116 nodes. The computations 
were carried out in parallel, with each graph having its 20 shortest paths for each possible connection 
computed independently, followed by the Jaccard Edge Index Optimization for 1≤k≤20. Visualization 
functions were all written in Matlab, with the functions for reading in relevant NIFTI parcellations drawing 
on the Vistasoft library (https://github.com/vistalab/vistasoft).  

D Theoretical justification for 1/x-1 over 1/x for path inversions 

Any three nodes a, b, c with the direct correlations corr(a, b), corr(b, c), corr(c, a) between them are subject 



to the inequality corr(a, b) ≥ corr(b, c)2 + corr(c, a)2 − √︎(1 + corr(b, c)2) × ︎√(1 + corr(c, a)2). Thus, when negative 
correlations are set to zero, W(P) is subject to two intuitive constraints with regards to the direct correlation 
between end nodes s and e: (1) W(P) is 1 --- i.e., perfectly correlated and 0 in semimetric space --- if and 
only if all edge weights in P are 1, which also implies that corr(s,e) is 1 (W(P)=1 ⇔ ∀iϵn : Pi=1⇒ 
corr(s,e)=1), and (2) W(P) is zero if and only if at least one edge weight in P is zero, or ∞ in semimetric 
space (W(P)=0 ⇔ ∃iϵn : Pi=0). 

(Note that the above does not necessarily apply to normalized mutual information, which is analyzed in 
the results section.) 

These two constraints are important and stem from the fact that we use a t-norm 1/x-1 instead of a simple 
inverse, 1/x, when converting from the Pearson Correlational space to semimetric space; analysis performed 
using a simple inverse of the Pearson correlations (Cao et al., 2014), for example, are awed because each 
path has a minimum length of 1, making the path length arbitrarily dependent on the number of edges. 

E Relationship between the Jaccard Edge Index and the shortest path on the mean 
of a group of connectomes 

Why not just average a given group of connectomes in semimetric space and find the shortest paths of 
the result? And what is the relationship between a shortest path in this average connectome and the 
paths resulting from the optimization of the Jaccard Edge Index when considering K paths? 

For a given connection between nodes i and j, as the Jaccard Edge Index (Equation 7) approaches 1, all 
pathways between all N graphs being considered have the same edgewise composition. This set of paths 
making a Jaccard Edge Index of 1 is the shortest path of the average of N connectomes (i.e., when edges 
are averaged, such that N connectomes represented by N nxn matrices are averaged to a single nxn 
matrix). This tradeoff is illustrated in Figure E.1. The number of possible pathways connecting two nodes 
in a fully-connected graph increases faster than exponentially (Roberts and Kroese, 2007) with the 
number of nodes, so this would not be computationally feasible to compute with the Jaccard Edge Index 
Maximization Algorithm. Nonetheless, if the input k to our problem were, hypothetically, 1, and we did 
have a fully-connected graph, then the Jaccard Edge Index of the resulting path would be 1. 

On the other hand, if K=1 (i.e., only the shortest pathways were considered), then the Jaccard Edge Index 
would be as low as it possibly could be, while the average path length is as small as it could be (i.e., 
average efficiency is optimal). Thus, as K rises and more paths are considered in the Jaccard Edge Index 
Maximization Algorithm, there is a tradeoff between efficiency and path consistency. As Figure E.1 
illustrates, however, the shortest path of the average connectome may be arbitrarily higher than the 
shortest local paths in certain cases. 

The efficiency of connectomes when different statistical relationships (in our case, Pearson correlation, partial 
correlation, and normalized mutual information) are used to construct them can have very different scales. To 
compare the average efficiency of Pearson correlation, partial correlation, and normalized mutual information 
as K increases and the Jaccard Edge Index is optimized, we normalize the average efficiency to the range 
[0,1] by finding its maximum average efficiency (i.e., the efficiency when only the shortest pathways are 
considered) and the asymptotic minimum of the efficiency as the Jaccard Edge Index approaches 1 (i.e., 
all the same pathways are used), which is simply the efficiency of the averaged connectome (see Figure 
E.1 for a toy example). 



#  
Figure E.1: A toy example that shows the tradeoff between the optimal Jaccard Edge Index and 
the average path length on distance graphs. In the two fully-connected networks shown, there are five 
possible non-looping paths that connect the circled dots; the three shortest are displayed by the dotted 
lines. Shown is the optimal Jaccard Edge Index, as well as the resultant average path length, that can be 
achieved when the K shortest pathways are considered in the Optimization Algorithm (i.e., when K = {1, 2, 
3, 4, 5}). When all pathways across networks are the same (i.e., Jaccard Edge Index equals 1), the 
pathway selected is the shortest pathway in the mean of all networks. This example shows that, when 
only the shortest pathway is considered for individual graphs, they may be different and share no 
common edges (the Jaccard Edge Index equals zero). Conversely, when the maximum number of 
possible pathways are considered (which is the same as selecting the shortest pathway of the mean of all 
networks), the resultant path length may be suboptimal compared with the shortest paths found in each 
graph locally. Thus, the Jaccard Edge Index Maximization Algorithm represents a tradeoff between 
consistency and efficiency, depending on the selected K. As the number of nodes in a graph increases, 
the number of possible non-looping pathways connecting two nodes grows at an extremely fast rate, so in 
most real-world examples it is very unlikely that a perfect Jaccard Edge Index of 1 could be achieved.


