
Temporal Multiple Kernel Learning (tMKL) model for
predicting resting state FC via characterizing fMRI

connectivity dynamics

Sriniwas Govinda Surampudi1∗, Joyneel Misra1∗,
Gustavo Deco4,5, Raju Bapi Surampudi2†, Avinash Sharma1†, Dipanjan Roy3†

1Center for Visual Information Technology, Kohli Center on Intelligent
Systems, International Institute of Information Technology Hyderabad,

Hyderabad, 500032, India
2School of Computer and Information Sciences, UoH, Hyderabad - 500046,

India
3Cognitive Brain Dynamics Lab, NBRC, Manesar, Gurgaon, Haryana -

122051, India
4Center for Brain and Cognition, Dept. of Technology and Information,

Universitat Pompeu Fabra, Carrer Tanger, 122-140, 08018, Barcelona, Spain
5Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona,

Passeig Lluís Companys 23, 08010 Barcelona, Spain

Abstract

Over the last decade there has been growing interest in understanding the brain

activity in the absence of any task or stimulus captured by the resting-state func-

tional magnetic resonance imaging (rsfMRI). These resting state patterns are

not static, but exhibit complex spatio-temporal dynamics. In the recent years

substantial effort has been put to characterize different FC configurations while

brain states makes transitions over time. The dynamics governing this tran-

sitions and their relationship with stationary functional connectivity remains

elusive. Over the last years a multitude of methods has been proposed to dis-

cover and characterize FC dynamics and one of the most accepted method is

sliding window approach. Moreover, as these FC configurations are observed to

be cyclically repeating in time there was further motivation to use of a generic

clustering scheme to identify latent states of dynamics. We discover the un-

derlying lower-dimensional manifold of the temporal structure which is further

parameterized as a set of local density distributions, or latent transient states.

We propose an innovative method that learns parameters specific to these la-

tent states using a graph-theoretic model (temporal Multiple Kernel Learning,
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tMKL) and finally predicts the grand average functional connectivity (FC) of

the unseen subjects by leveraging a state transition Markov model. tMKL thus

learns a mapping between the underlying anatomical network and the temporal

structure. Training and testing were done using the rs-fMRI data of 46 healthy

participants and the results establish the viability of the proposed solution. Pa-

rameters of the model are learned via state-specific optimization formulations

and yet the model performs at par or better than state-of-the-art models for

predicting the grand average FC. Moreover, the model shows sensitivity towards

subject-specific anatomy. The proposed model performs significantly better than

the established models of predicting resting state functional connectivity based

on whole-brain dynamic mean-field model, single diffusion kernel model and

another version of multiple kernel learning model. In summary, We provide a

novel solution that does not make strong assumption about underlying data

and is generally applicable to resting or task data to learn subject specific state

transitions and successful characterization of SC-dFC-FC relationship through

an unifying framework.
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1. Introduction1

Since its discovery over two decades ago, there has been a keen interest in2

investigating the spontaneous intrinsic activity of the human brain. This ac-3

tivity is measured via slow fluctuations in the functional magnetic resonance4

images (fMRI) when subjects are at rest and not engaged in any task [1]. These5

fluctuations are highly correlated and discovery of meaningful large-scale func-6

tional networks within these correlations led to the use of resting-state fMRI7

(rsfMRI) to discover human brain function(s) [2, 3]. The resulting matrix of8

pairwise correlations between regions of interest (ROIs) is termed the functio-9

nal connectivity (FC) matrix. Many studies of FC have discovered distinct sets10

of functionally related regions exhibiting temporal correlation in their activities,11

commonly known as resting state networks (RSNs) [4, 5, 6, 7].12

1. Authors with ∗ have equally contributed to this research work.
2. †Corresponding authors

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276


Diffusion tensor imaging (DTI), complementing fMRI, captures the white13

matter streamlines that form the anatomical pathways along which neural acti-14

vity spreads over the brain [8, 9]. The topography of the brain anatomy, called15

the structural connectivity (SC), is estimated by counting the number of stream-16

lines connecting a pair of ROIs. Over the last decade, understanding the link bet-17

ween anatomical topology and neural activity has been an important question18

in neuroscience. How the relatively static SC sculpts the FC over the entire scan19

duration has been a challenging open research problem in the brain connectome20

research domain. Initial studies provide evidence that the underlying structu-21

ral topology largely explains the grand-average functional connectivity [10], the22

missing link being dynamics. Whole brain computational models aid study and23

simulation of the temporal dynamics over the structure.24

Extant whole-brain models advancing our understanding of the SC-FC link25

can be broadly categorized as follows : (i) models incorporating non-linear dy-26

namics [11, 12], (ii) graph theoretic models [13, 14, 15], (iii) models at the27

boundary of biophysics and graph-theoretic abstractions [16, 17, 18]. Becker et28

al. [15] mapped spectral signatures of the structural and functional topologies29

based on indirect structural walks of the neural activity. Abdelnour et al. [16]30

proposed a graph-diffusion framework relating linear diffusion equation of the31

neural activity over the structural topology to random walks of the activity over32

the structure. Surampudi et al. [17] proposed abstraction of non-linear diffusion33

equation into combinations of multi-scale diffusion to map a subject’s SC-FC.34

Over the last decade, several studies of rsfMRI revealed fluctuating spa-35

tial patterns which appear and dissolve with time, highlighting the spatiotem-36

poral repertoire of spontaneous brain activity [19, 20]. Attempts at discove-37

ring temporal dynamics of rsfMRI can be broadly categorized in the following38

terms : (i) dynamic functional connectivity (dFC) studies using sliding window39

approaches providing sequence of windowed FC (wFC) matrices that in turn40

identify stable transient patterns of functional connectivity fluctuations, called41

latent states, [21, 22, 23, 24], and (ii) Bayesian approaches applied on the time-42

series themselves [25, 26, 27] which discover latent states in terms of multivariate43

Gaussian density distributions of the temporal signals. A general perspective is44

that the neural activity during a task, although being in a high-dimensional45
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space, follows trajectories in a lower-dimensional task-specific manifold during46

the functional dynamics [28]. This sufficiently motivates the presence of a lower-47

dimensional manifold for rsfMRI as well.48

Moreover, the question of how a relatively fixed anatomical structure sup-49

ports the rich spatiotemporal dynamics is still elusive. Abdelnour et al. [18]50

have extended their graph-diffusion framework for characterizing SC-dFC rela-51

tionships. However, theoretical models incorporating principled amalgamation52

of structural topology and dynamics of rsfMRI are essential. Here, we propose53

an innovative solution for characterizing the SC-dFC-FC relationship. This is54

achieved by proposing two novel constructs : (i) discovery of a lower-dimensional55

manifold that represents the latent structure of the temporal dynamics, (ii) tem-56

poral multiple kernel learning (tMKL) model that learns the SC-dFC mapping,57

and (iii) generation of latent time series for dFC-FC mapping. The proposed58

solution estimates grand average FC (gFC or FC) from SC by predicting dFC59

along with capturing the temporal evolution. Temporal evolution is characteri-60

zed by using a first-order Markov model between consecutive state transitions.61

This model is used for generating a long state sequence using the steady state62

distribution of the Markov random walk. This state sequence is further replaced63

by sequence of corresponding state-specific FCs generated by the tMKL model.64

Finally, these state-specific FCs are factorized to recover a latent time-series65

sequence. gFC is then computed on the reconstructed latent time-series and66

compared with the empirical FC. The proposed model recovers the FCs that67

are very close to empirical FCs as the state-specific FCs recovered with the68

tMKL model enable realization of subject-specific functional dynamics. Fur-69

ther, various perturbation experiments demonstrate the robustness and validity70

of the proposed scheme. This state sequence is further replaced by sequence of71

corresponding state-specific FCs generated by the tMKL model. Finally, these72

state-specific FCs are factorized to recover a latent time-series sequence. gFC is73

then computed on the reconstructed time series and compared with the empirical74

FC. The proposed model recovers the gFCs that are very close to empirical FCs75

as the state-specific FCs recovered with the tMKL model enable realization of76

subject-specific functional dynamics. Further, various perturbation experiments77

demonstrate the robustness and validity of the proposed scheme.78
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The specific contributions of the work are the following :79

1. Novel approach for learning the SC-FC mapping through characterizing80

the dynamic functional connectivity (dFC) over time windows.81

2. Proposal of a novel multiple diffusion kernel model that learns to predict82

state-specific FCs from SC (tMKL model).83

3. Estimating the latent fMRI time series by using the Markov transition84

probability matrix in conjunction with the tMKL model.85

The rest of the paper is organized as follows. In the next section we present the86

details of the proposed solution. In the subsequent sections we present the de-87

tails of the neuroimaging data set used, qualitative and quantitative evaluation88

results along with explanation for the choice of model parameters. Finally, we89

conclude by pointing out limitations and future research directions.90

2. Materials and methods91

2.1. Dataset92

Resting state fMRI as well as corresponding diffusion weighted imaging93

(DWI) data were collected at the Berlin Center for Advanced Imaging, Cha-94

rité University, Berlin, Germany. The dataset consisted of structural connecti-95

vity - functional connectivity (SC-FC) pairs of total 46 subjects used in this96

study. In summary, all the participants underwent resting state functional ima-97

ging (no task condition) with eyes closed for 22 minutes, using a 3T Siemens98

Trim Trio scanner and 12 channel siemens head coil (voxel size 3× 3× 3 mm).99

Each fMRI resting state data amount to a total of 661 whole brain scans (time100

points recorded at TR=2s)were obtained during the resting state functional101

magnetic resonance imaging (rs-fMRI) session. Thus the blood oxygen level102

dependent (BOLD) time-series signal available for each participant has 661103

time points aggregated across 68 regions of interest (ROIs) as per the Desikan-104

Killiany brain atlas [29]. The diffusion weighted tensors (TR=750 ms, voxel size105

2.3 × 2.3 × 2.3 mm) computed from the dwMRI data recorded with 64 gra-106

dient directions were subjected to probabilistic tractography as implemented107

in MRTrix [29] in order to obtain subject specific sturctural connectivity (SC)108

matrices. Masks derived from high-resolution T1-images were used to detremine109
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Figure 1: Outline for temporal Multiple Kernel Learning (tMKL) model. Figure

shows the entire pipeline for predicting grand FC for a testing subject. The model incorpo-

rates subject specificity along with temporal variation characterization. Part (I) of the model,

training phase, consists of three blocks. The first one, learns temporal variations in terms of

distinct states via GMM clustering over the underlying manifold of wFCs (steps 1. and 2). The

second block utilizes the empirical transitions between these distinct states and captures dyna-

mics in the first order Markov chain (steps 3. and 4). The third block learns subject-specificity

by modeling each state by its MKL model [17] (step 5.). Part (II) of the model validates its

generalizability on unseen subjects. Importantly, only SC of a testing subject is required (step

6). Each state for the testing subject is characterized in step 7. Each state-specific predicted

FC is decomposed into a latent time series which are then concatenated using the steady state

distribution of the Markov chain (steps 4. and 8). Finally, grand average FC, static FC, is

predicted for that subject (step 9).

seed-and target-locations for fibers in the grey/white matter-interface (GWI).110

SC matrices contains connection streamlines obtained based on the fiber tra-111

cking algorithm with various assumptions based on known limitations imposed112

by anatomy, notably the size of the GWI of each region. Further image acqui-113

sition, choice of scan parameter details and data pre-processing methodology114

adopted are all available in [30].115

2.2. Proposed model116

In this section we describe in detail the whole pipeline of the proposed117

parametric-model to map the relation between SC and FC using resting state118

fMRI data. The proposed model considers the importance of the underlying119

anatomical constraints to generate the temporal richness as well as to charac-120
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terize and assess whole-brain FC dynamics. Figure 1 shows a flowchart of the121

essential elements of the whole pipeline. Proposed model partitions aspects of122

the whole-brain dynamics essentially into two parts : characterizing temporal123

dynamics through identification of latent transient states and linking them to124

the underlying structural geometry. These two aspects are parameterized using125

a novel combination of unique methods. The model utilizes wFCs (steps 1.−2.)126

for identifying states and from the resultant SC-wFC pairs, the relationship127

between the structure and functional dynamics is learned (steps 3.− 5.). Once128

these two parts successfully characterize the above mentioned aspects by tuning129

respective parameters, the model is tested for its generalizability using unseen130

test subjects (steps 6.− 9.).131

For identifying latent states within the dynamics, we discover the underlying132

globally non-linear manifold that spans all the wFCs (step 2.a), thus recovering133

the lower-dimensional space for meaningful characterization. We employ a pro-134

babilistic framework for estimating the number of states and the shape of each135

state in the lower-dimensional space, ensuring soft assignments of wFCs to its136

neighboring states (step 2.b). These soft assignments are further used to esti-137

mate the transition dynamics between these states (step 3.− 4.). With respect138

to second aspect of the model, we adapt the multiple kernel learning (MKL)139

framework [17] for parameterizing the dependence of SC on wFCs for each state140

(step 5.). We observe that the parameters to be learned form a non-convex com-141

bination, necessitating an iterative algorithm. Thus we formulate the learning142

objective into an optimization formulation and adapt an iterative algorithm for143

solving this non-convex combinations of parameters.144

The model predicts state-specific FCs (sFCs) for a test subject (step 6.).145

These sFCs are decomposed into a latent time-series (step 7.) which is concate-146

nated using the relative frequency of occurrence of states to generate a global147

time-series for calculating the static FC of a subject (step 8.). Thus, for a new148

subject, given the SC, static FC along with its state-specific FCs are predicted149

by the proposed model (step 9.).150

In the subsequent subsections we elaborate each part of the proposed model.151

From now on, let D = {F1
w, · · · ,F

s
w, · · · ,F

p
w} be the set of all wFC matrices152

obtained by sliding a window of fixed size ω over the n-dimensional fMRI time-153
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series belonging to all the training subjects.154

2.2.1. Spectral Embedding, step 2.a155

We propose to soft-cluster these wFC matrices into K states, first by vec-156

torizing the lower triangular part of a wFC matrix into a column vector of size157

n(n−1)
2 × 1. These wFCs may be sparsely spaced in a higher-dimensional space,158

but might originally lie on an intrinsic globally non-linear manifold [31]. Spec-159

tral embedding method is employed to reduce the dimensionality of the data,160

by finding a mapping to a lower dimensional manifold over which these wFCs161

reside [32]. The graph constructed over the vectorized wFCs provides a discrete162

approximation of the continuous manifold. The solution embedding is provided163

from the eigenmaps (eigenvectors) of the Laplacian operator over the graph,164

which approximates a natural mapping onto the entire manifold. The Laplacian165

eigenmaps preserve the local structure in the graph, thus keeping the solution166

embedding robust to outliers and noise.167

The spectral embedding method is applied as follows. Firstly, an affinity ma-168

trix is created by applying a radial basis function over the L1 distance between169

every pair of wFCs. This matrix captures pairwise relationship between wFCs170

in a relational graph. Next, we form the corresponding normalized graph Lapla-171

cian matrix and use the eigenvectors corresponding to its lowest K eigenvalues172

to define the basis vectors of embedding space [33, 34, 35]. The value of these173

eigenvectors against each wFC represent its resulting transformation into the174

embedding space. Finally these K-dimensional embedded wFCs are clustered175

using Gaussian Mixture Model (GMM), as explained in the next subsection.176

2.2.2. GMM Clustering, step 2.b177

Following the discovery of an approximation to the continuous lower-dimensional178

manifold, we now parameterize the local density distribution of wFCs over the179

manifold using a probabilistic framework, Gaussian mixture model (GMM) [36].180

Gaussian mixture model is a factor analysis model that represents the proba-181

bility density of a sample as a weighted combination of component Gaussians.182

Such a representation facilitates GMM to represent a large class of sample dis-183

tributions. Specifically, distribution of wFCs over the manifold are modeled as184

a GMM.185
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Let the density of Fsw be a linear combination of K component Gaussian

densities, represented as follows :

P(Fsw; Θ) =
K∑

k=1

Ψk(s)N (Fsw;µk,Σk)

K∑

k=1

Ψk(s) = 1,∀s = 1, · · · , p

(1)

where P denotes the probability density of a wFC. Each component Gaussian

is a K-variate Gaussian probability density function of the form :

N (Fsw;µk,Σk)

=
1

(2π)
K/2 det (Σk)

1/2
exp

{
(Fsw − µk)>Σk−1(Fsw − µk)

}
.

GMM thus represents the manifold as a set of Gaussian densities and para-

meterizes it in terms of Θ :

Θ =
{

Ψk(·), µk,Σk
}
, k = 1, · · · ,K. (2)

As the collection of these component Gaussians forms the manifold, the com-186

ponent Gaussians can be interpreted as a latent transient state visited by the187

brain. Each state is a Gaussian but at different locations and with different188

shapes governed by µk and Σk, respectively in the manifold.189

2.2.3. State Transition Markov Model, step 3.190

As described in the previous section, the wFCs are quantized into finite191

states S = {s1, · · · sK} by GMM clustering. Each wFC sequence now corres-192

ponds to a cluster-label (state) sequence and transitions between these states193

is representative of the dynamics in the BOLD rsfMRI time series. We assume194

first-order dependence among these transitions and learn the Markov transition195

probability matrix, TK×K by estimating the state transitions from the training196

data.197

Figure 2 shows a depiction of Markov model forK = 5 and the corresponding198

transition probability matrix. Each edge ti,j captures the probability of transi-199

tion from state i to state j. Similarly, self-loop edges ti,i depict the probability200

of remaining in the same state. For each state i we compute ti,j by counting201

the number of first-order transitions to state j in the state sequence. Finally, we202
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Figure 2: Graphical depiction of proposed Markov state transition model. An illus-

tration of the first-order Markov chain used as a part of the proposed tMKL model. Each state

has its unique distribution of FCs, represented as a Gaussian in the embedding space, from

which subject-specific FCs can be sampled. The corresponding transition matrix (for K=5)

and an example state sequence generated with a Markov random walk over the transition

matrix is also depicted.

normalize each row of T to make it a valid transition probability matrix. In the203

testing phase, the Markov matrix learned on training wFCs is used to generate a204

random state sequence, to eventually construct the latent time-series for testing205

subjects. As any Markov chain converges to its steady state distribution with206

time regardless of its initial distribution, we find the steady state distribution207

over the transition matrix and use this distribution as frequency of occurrence208

of states over the time course. This gives us a state transition sequence for a test209

subject. Along with the state transition model which captures the dynamics of210

the latent states, a model that relates anatomical structure to these states is211

required. In the next section, we propose a temporal multiple kernel learning212

(tMKL) model that learns this mapping.213

2.2.4. tMKL Model, step 5.214

Mean regional activities of all regions are assumed to be in a random walk215

over the SC graph. This phenomenon is represented by a linear differential equa-216

tion whose analytical solution is the diffusion kernel over the graph defined by217

SC which is hypothesized to be representing FC [16]. [14] discovered that physi-218
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cal diffusion over such large scale graphs exhibits multi-scale relationships with219

FC, thus a linear combination of multiple diffusion kernels is considered more re-220

presentative of FC (this model is referred to as MKL_NIPS from now on). The221

linear combination coefficients are scalar values which equally weigh all regional222

activities at each diffusion-scale. But it may so happen that activities of non-223

physically connected regions may be modulated by other regions. To represent224

this phenomenon we introduce the variables πi’s of size n×n, that capture the225

inter-regional co-activation patterns at diffusion-scale i, ∀i = 1, · · · ,m, m being226

the number of diffusion-scales [17].227

Let a diffusion kernel defined at scale i be denoted by Hi.

Hi = e−τiL (3)

Here, τi is the spatio-temporal scale of heat diffusion and L is the Laplacian

matrix corresponding to the SC. We propose that a wFC matrix can be decom-

posed into a set of diffusion kernels multiplied with their co-activation pattern :

Cf =
m∑

i=1

Hiπi, (4)

Here, Cf denotes predicted wFC. We hypothesize that co-activation patterns

are distinctly different for each state and hence we add a superscript index k

(k = 1 · · ·K) to obtain πki . As the parameters πki ’s are state dependent, state-

specific predicted functional connectivity, Cs,k
f , will be as follows :

Cs,k
f =

m∑

i=1

Hs,k
i πki =

m∑

i=1

e−τ
k
i Ls

πki (5)

Here Ls is the Laplacian matrix of the SC corresponding to wFCs. This results

in the following optimization problem for Πk and τ k :

minimize
Πk,τk

p∑

s=1

∥∥∥Ψk(s)
(
Fsw −Cs,k

f

)∥∥∥
2

F

+ λ1

m∑

i=1

‖πki ‖1 + λ2

m∑

i=1

‖πki ‖2

subject to Cs,k
f =

m∑

i=1

e−τ
k
i Ls

πki

πki ∈ Sn+, i = 1, · · · ,m, k = 1, · · · ,K

τ k � 0.

(6)
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Here, Sn+ is the convex set of positive semi-definite matrices. The objective func-228

tion takes the form well known in regression analysis as least absolute shrinkage229

and selection operator (LASSO) that performs both variable selection and re-230

gularization. We arrived at the model parameters experimentally, for example,231

the number of scales m is empirically chosen (see Subsection 3.2).232

Finally, the model consists of m distinct πki ’s which are learned for each of233

the K states.234

2.2.5. Generation of latent time-series for testing subjects, steps 4., 6.−235

9.236

As described in the previous section, we predict the state-specific FC matrix237

for each of the states using the input SC matrix of the testing subject and the238

learned tMKL model (step 6.). Based on the learned Markov chain state transi-239

tion matrix, a sequence of states is generated using the steady state distribution240

of the transition matrix (step 4.). Each of the state-specific FCs in the resulting241

sequence is factorized into state-specific latent time-series and concatenate to242

obtain the latent time-series for the testing subject.243

In the training phase, wFCs are obtained by computing Pearson correlation

coefficients of the windowed BOLD rsfMRI time-series over various regions.

We know that Pearson correlation between two time-series A, B is ρ(A,B) =

cov(A,B)
σAσB

. Hence the state-specific wFC matrix works out to be the covariance of

its state-specific latent times-series Ẑn×ω. Thus we can factorize a state-specific

wFC as follows :

Cs,k
f = UΛU>

= (
√

ΛU>)>(
√

ΛU>)

Ẑ =
√

ΛU>.

(7)

Thus, using Eq. 7, we recover latent time-series matrix Ẑ that can be taken as244

approximated time-series used for obtaining wFC (step 7.). For a testing sub-245

ject, each cluster-specific wFC is decomposed into latent time-series and these246

are concatenated into a grand time-series (step 8.). The latent time series are247

concatenated by considering the steady state distribution of the Markov chain.248

Steady state distribution is the probability of being in a state which remains249

the same throughout transitions. Every random walk over the transition matrix250
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approximates this distribution after infinitely long time. Finally, as Pearson cor-251

relation is order-agnostic, calculating Pearson correlation matrix of the grand252

time-series generates the predicted grand-average FC (gFC) for the testing sub-253

ject (step 9.).254

3. Experiments & Results255

Performance of the proposed model was evaluated in the following setup. A256

randomly chosen set of half of the cohort (23 participants) was used for training257

and the other half (23 participants) for testing. We used Pearson correlation co-258

efficient between empirical and predicted functional connectivities (FC) as the259

measure of model performance in order to keep the measure of model perfor-260

mance consistent with the extant literature. We first compare the performance261

of the proposed model against several extant methods that provide SC-FC map-262

ping followed by explaining the rationale behind the choice of optimal model263

parameters. We also conduct k-fold cross validation results and perturbation264

experiments, the results of which support generalizability of our model to other265

data splits. The proposed model predicts state-specific FCs which are thereby266

used to product the gFC. The quality of the gFC prediction is highly dependent267

upon the reproducibility of states and their transition patterns across multiple268

train-test splits. Obtaining different set of states in different splits shall attest269

the robustness of the proposed model at question. Finally, we analyze the states270

discovered from our model by observing the state-specificity property of the271

model and compare it with the states learned using k-means algorithm in Allen272

et al. [21].273

3.1. Grand average FC (gFC) prediction274

We compare the performance of the proposed model with several existing275

approaches : single diffusion kernel (SDK) model [16], the non-linear dynamic276

mean field (DMF) model [12] and multiple kernel learning (MKL) model [17].277

To our knowledge, ours is the only model that incorporates structural infor-278

mation along with temporal dynamics for predicting grand average FC. DMF279

and SDK models do not incorporate learning in their formulation and tune the280
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parameters for each subject separately. DMF model inherently captures non-281

stationarity, therefore it is directly used for gFC prediction without computing282

wFCs. We estimated the optimal parameters of the DMF and SDK models from283

the training wFCs and predicted the gFCs of testing subjects using these op-284

timal parameters. The mode of the performance distribution histogram for the285

training set was used to select the optimal model parameters. Figure 3 shows286

that tMKL has superior performance compared to the others.287

To validate the generalizability of the tMKL model over unseen testing288

data, we performed k-fold cross-validation experiment whose results are listed289

in Table 1. These results suggest that performance of our solution is consistent290

across various splits, hence supporting our claim of generalizability of our model291

on unseen data.

k fold-1 fold-2 fold-3 fold-4 fold-5 mean

2 0.757 0.732 - - - 0.745

3 0.771 0.811 0.778 - - 0.787

5 0.785 0.809 0.813 0.809 0.808 0.805

Table 1: Cross-validation experiments suggesting generalizability of tMKL model.

Mean k-fold cross-validation results for k = 2, 3, 5 are shown in the corresponding rows for

k-values. As the number of training samples increases with the number of folds, the mean

performance also increases suggesting that the model is learning well with increased samples

ans is able to replicate the same for testing subjects.

292

Now, the choice of various model parameters is explained in the next sub-293

section.294

3.2. Parameter Selection295

1. Choice of size of sliding-window, ω :Within the extant literature, the296

choice of a suitable sliding window size is an open problem with respect297

to the analysis of temporal dynamics in rs-fMRI [20]. The sliding window298

size should be small enough so as not to miss the state transitions and299

should be large enough to capture the state transitions reliably. Keeping300

this in mind, we followed Allen et al. [21] by using a sliding window of301

ω = 22 TRs. The window was tapered at the ends by convolving it with302
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Figure 3: Model performance comparison between tMKL and existing models.

Pearson correlation between the empirical and predicted gFCs for all the testing subjects is

shown for all models. As can be seen, MKL model outperforms other two models, and tMKL

model is at par or better than MKL for all but one testing subjects. Even though there is

marginal gain in the overall prediction quality, tMKL provides rich insights into the temporal

dynamics thus gaining its superiority over extant models.

a Gaussian of σ = 3 TRs and was slid with a stride of 5 TRs to create303

wFCs.304

2. Choice of GMM parameters : Each latent transient state in which305

the wFCs lie is represented using a component Gaussian of the GMM. In306

order to choose the optimal number of these states, K, we selected the307

GMM model corresponding to a minimum BIC score. Bayesian informa-308

tion criterion (BIC) is a statistical measure based on the log-likelihood309

function used for selecting a model amongst a finite set of alternatives,310

where the model corresponding to the lowest BIC score is chosen. The311

plot in Figure 4 shows BIC scores for the models obtained by fitting GMM312

for a large range of K (2 to 19), where the minimum value was obtained313

for K = 12. For each K, we ran GMM 100 times and noted the minimum314

BIC score, these BIC scores were used in the figure. To retain generality315

of the component Gaussians, we ran our experiments by considering a316

unique full covariance matrix for each component Gaussian.317

3. Choice of number of diffusion scales for tMKL, m : The scale318

values were sorted in ascending order, where lower values correspond319

to local diffusion phenomenon and higher values correspond to global320

diffusion phenomenon. Scale values lying in-between correspond to in-321

termediate diffusion phenomena. We ran several experiments by varying322
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Figure 4: Bayesian information criterion (BIC) score for selecting the number

of components in Gaussian mixture model. The GMM is fit over the training wFCs

lying in the lower dimensional manifold. The BIC score is reported by varying the number

of component Gaussians (K) from 2 till 19. The Gaussian mixture model corresponding to

K = 12 (shown in red) has the lowest BIC score among others and is therefore preferred. The

plot shows local minima at K = 4, 7, and 15 which may mislead the user while selecting the

optimum model. This local minima suggests the choice of number of components in Allen et

al. [21].

m at powers of 2 from 2 to 32. While the performance for all the scales323

was reasonable, however in order to carry out comparative analysis with324

the MKL model, we chose the number of scales as m = 16 for all the325

experiments.326

3.3. Robustness of the model327

In order to validate the robustness of our model we performed various experi-328

ments to assess whether our solution overfits the training data and also whether329

the prediction of the grand average FC is agnostic to the particular SC matrix.330

1. Reproducibility of states : As mentioned in Section 2.2.2, GMM yields331

K soft assignment vectors for the training wFCs. We validated reprodu-332

cibility of this clustering by ensuring replication of the same for wFCs of333

the testing subjects. We generated wFCs for all the testing subjects using334

the sliding window approach. Soft assignment vectors were generated for335

these testing wFCs using the GMM employed on the training data, which336

is then used to compute the Markov transition matrix and the correspon-337

ding steady state distribution. Figure 5 shows an example of the steady338

state distribution for our proposed method. We evaluated the similarity339
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Figure 5: Markov chain steady state distribution. After the states are retrieved using

GMM, the Markov chain transition matrix was learned over the resulting state-sequences

of the wFCs of the training subjects. The figure shows the steady state distribution of the

transition matrix, which represents the probability distribution of occurrence of a state after

infinite amount of time.

between the Markov transition matrix and steady state distributions of340

the training and testing wFCs by finding the Pearson correlation coef-341

ficients. Table 2 shows that the states are highly replicable for multiple342

train-test splits of the data.343

2. Perturbation experiments : Each testing subject SC was perturbed344

N = 150 times and using the learned model we predict the grand average345

FC.We perturbed every SC by randomly generating it from the power law346

distribution followed by its elements. The generated state-specific wFCs347

may have non-positive eigenvalues. Here we considered only the real part348

of the generated time series in order to estimate (predict) grand average349

FC. Figure 6 shows this observation over all the 23 testing subjects. Box350

plots for each subject depict the range of correlation values for random351

SCs. Here we observe less correlations between empirical and predicted352

gFCs using the perturbed SC, validating that our model respects the353

topology of input SC. This suggests that the model is not overfitting the354

data and is sensitive to perturbation in SC.355

3.4. State-specificity of the tMKL model356

In the previous section, we successfully investigated whether the estimated357

state transition matrix is general enough in the sense of being reproducible with358

several train-test splits of the data (refer Table. 2). Other critical questions are359
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Run Index ρTM ρSSD eTM eSSD

1 0.9947 0.9509 0.1337 0.0564

2 0.8683 0.8546 0.7379 0.2703

3 0.9440 0.8839 0.5120 0.1433

4 0.9035 0.9809 0.7154 0.1004

5 0.8624 0.9604 0.7094 0.1332

6 0.9665 0.8337 0.3824 0.1119

7 0.9131 0.8563 0.6263 0.1107

8 0.9746 0.6824 0.3381 0.1521

9 0.9275 0.8691 0.6671 0.0950

10 0.8623 0.9599 0.7299 0.1608

11 0.9777 0.9596 0.3250 0.0482

mean 0.9301 0.8692 0.5068 0.1358

stdev 0.0501 0.1155 0.2093 0.0636

Table 2: Comparison of Markov chain transition matrix (TM) and its steady

state distribution (SSD) between training and testing subjects. Comparison is done

computing the Pearson correlation coefficient (ρ) and the L2 distance (e) between the training-

TM, testing-TM and training-SSD, testing-SSD respectively. This experiment is repeated for

11 train-test splits of the data. Consistent high values of ρ and low values of e across multiple

splits show similarity of the states and their transition behavior across train-test subjects,

therefore establishing the reproducibility of states.
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Figure 6: Effect on performance of tMKL model due to perturbation of SC ma-

trices of test subjects. Shown here are the box plots (blue) of Pearson correlation between

empirical and predicted grand FCs when SCs are perturbed for all the testing subjects.

whether different model components such as the Πk’s as well as the predicted360

FCs are distinct for different states or not. If they are not distinct, the resulting361

MKL models for different states become redundant. In order to verify the state-362

specificity of the model, we performed three simulation experiments : i) to show363

that the learned state-specific model parameters on the training data are distinct364

for different states, ii) to show that the predicted state-specific FCs during365

testing phase are also distinct from one another and, iii) to evaluate the accuracy366

of state-specific assignments of the model prediction using precision and recall367

measures.368

As summarized in Section 2.2.4, the full model consists of estimating m = 16369

πki ’s for all the K = 12 states (i ranging from 1 to 16 and k ranging from 1370

to 12). We perform a comparison experiment to see whether, for a fixed i, πki ’s371

are dissimilar from each other. The results of the first experiment are depicted372

as m = 16 similarity matrices in Figure 7. It appears that the learned πki ’s373

are indeed different for different states, especially in the similarity matrices for374

global scales (see the top row of Figure 7).375

In the second experiment, we verified whether the predicted state-specific376

FCs during the testing phase are distinct from one another. For a test subject,377
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Figure 7: Distinctness of πk
i ’s. After state-specific MKL models are learned, we check

the distinctness of πk
i ’s for every scale value ranging from i = 1, · · · ,m(= 16) using Pearson

correlation coefficient between every pair of states. Each of these m matrices is a K(= 12)×K

similarity matrix. Distinctness of πk
i ’s would ideally result in a K × K identity matrix and

any deviation would indicate lack of distinctness of the learned πk
i ’s. As observed in most of

these m similarity matrices, majority of the off-diagonal entries in these pairwise correlation

matrices are zero, indicating the distinctness πk
i ’s. They are significantly distinct for global

scales (scale indices i = 1, · · · , 8 in the top row) in comparison to local scales (scale indices

i = 9, · · · , 16 in the bottom row), where they appear to be similar.

there are K state-specific FCs predicted based on the SC of the subject (see378

step 6. of Figure 1). In the previous experiment, as the Πk’s have been demons-379

trated to be distinct from each other, given a fixed test SC, the state-specific380

predictions are also expected to be distinct. Consequently, we computed pair-381

wise correlations between the K predicted FCs leading to a K × K similarity382

matrix for each test subject. We then calculated the element-wise mean ( 8(a))383

and standard deviation ( 8(b)) across the 23 similarity matrices. As shown in384

the figure, the dominant identity matrix pattern observed in the mean matrix385

combined with low values in the standard deviation matrix, verifies that the386

predictions are indeed distinct from one another.387

In the third experiment, we evaluated the accuracy of the predicted state-388

specific assignments of the proposed model. A wFC in the training phase is389

assigned to a state which it belongs to with the maximum probability of be-390

longingness as described in 1 in section 2.2.2. The cluster assignments of wFCs391

to states should obey the principle of maximum intra-state similarity as well392

as maximum inter-state dissimilarity. Therefore the predicted FC for a state393

in the testing phase should have maximum similarity with the training wFCs394

belonging to the same state and also minimum similarity with training wFCs395

belonging to other states. For each predicted state-specific FC, a set of trai-396
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Figure 8: Quantitative state specificity of the model. Pearson correlation between

all the possible pairs of the K state-specific FCs for a subject was calculated and stored in

a K × K matrix. Element-wise mean and standard deviation across all the subject-specific

matrices is shown in (a) and (b) respectively. The confusion matrix in (c) can be used for

measuring the overall accuracy of state-specific predictions, and precision and recall for each

state. For each testing subject there are K number of state-specific FCs. The state label

against which a state-specific FC is predicted from tMKL model serves as the ground truth

for this experiment. Empirically, each state-specific FC must be nearer to the training wFCs

belonging to that state than from the training wFCs belonging to other states, thus attesting

the accuracy of model prediction. As the manifold was constructed based on L1 similarity,

we found the neighbors of the predicted FCs in the original space (of size n(n−1)/2). For this

purpose, we searched for 25 nearest neighbors for each state-specific prediction and voted for

the empirical state-belongingness. Rows (columns) in the confusion matrix depict the actual

(predicted) states. Overall accuracy of tMKL model prediction for all the test subjects is

87.68%. It can be seen that non-zero off-diagonal entries result in reduced accuracy. To get a

subject-specific measure of the state-specificity, we ran the same experiment for all the testing

subjects independently. Noticeably, mean matrix is similar to the confusion matrix with very

less standard deviation.

ning wFCs is computed which lie in its proximity in the original space (of size397

n(n−1)/2). The mode of the wFC state-labels of this set of neighbouring trai-398

ning wFCs would indicate the estimated state label for the predicted FC. Recall399

from step 6. of Figure 1 that the tMKL model implicitly assigns a state-label to400

the predicted FCs. In this experiment, our aim is to compare the implicit label401

with the estimated label. The concurrence is measured through a confusion ma-402

trix aggregated over all the test subjects (see Figure 8(c)). The accuracy of the403

predicted state-specific assignment measures the number of instances for which404

this estimated state label matches the implicit state label. The confusion ma-405

trix (Figure 8(c)) has a dominant main diagonal and low off-diagonal elements,406

indicating that the implicit assignments seem to be valid. Overall accuracy of407

the state-specific assignments for the test subjects works out to be 87.68%.408
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In summary, the above-mentioned experiments establish the ‘distinctness’ of409

states and their corresponding predictions.410

4. Discussion411

Besides understanding the relationship between the anatomical architecture412

and the functional dependencies, over the last decade, characterization of the413

temporal richness of the resting state functional MRI signal also has been a414

major trend in the field of cognitive neuroscience. Several approaches have415

been proposed to understand the inherent richness observed in the sponta-416

neous spatio-temporal BOLD activity. Operator-based formulations of neural417

dynamics [11, 12] propose a generative model to predict functional connecti-418

vity from the structural connectivity via incorporating temporal dynamics into419

the model. Another class of techniques introducing spectral graph theoretic me-420

thods [16, 14, 18, 17] primarily focus on mapping the eigen-spectrum of SC and421

FC of individual subjects, but with minimal focus on the temporal richness.422

Here, we have proposed an innovative method which combines both anatomical423

constraints as well as incorporating temporal richness present in the endoge-424

nous activity. More specifically, our proposed model learns parameters specific425

to these latent states using a temporal Multiple Kernel Learning (tMKL) and426

finally predicts the grand average functional connectivity (FC) of the unseen427

subjects by employing a state transition Markov model. One of the interesting428

proposal in the framework is that tMKL learns a mapping between the under-429

lying anatomical network and the temporal structure present in the empirical430

data to quantify gFC. Further, we have introduced a learning framework to find431

model specific parameters via state-specific optimization formulations and yet432

the model performs at par or better than state-of-the-art models for predicting433

the gFC. Moreover, our proposed model shows sensitivity towards individual434

subject’s SC as we have clearly demonstrated here with perturbation experi-435

ments. However, before we can clearly appreciate the novelty in the proposed436

techniques we need to understand the existing methods of relating underlying437

SC with windowed FC.438
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Figure 9: Qualitative state specificity State specific FCs predicted for every subject

are averaged across all testing subjects. (a) Visually distinct FC matrices are shown for all

the 12 states. (b) Communities are identified for these mean FCs using Louvian algorithm

available in brain-connectivity-toolbox [37] and Brain-net-viewer [38] was used for visualization

of these communities. The distinct community structures clearly suggest that transient states

are modeling different brain dynamics.
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4.1. Relating underlying structural connectivity to Windowed FC439

A different line of study by Allen et al. [21] and subsequent works by these440

and other authors have focused on the temporal structure of the windowed441

FCs (wFCs) and were able to successfully characterize state transitions, but442

without specifically relating the temporal dynamics to the underlying structure443

[39, 40, 41, 20]. Allen et al. collected all the wFCs from the training subjects and444

learned a k-means clustering model to discover distinct latent states (common445

to the cohort) that are visited by the brain.Our preliminary attempts at fusing446

SC using MKL model [17] with the temporal structure learned with k-means447

did not give satisfactory results (summarized in Figure S1 in Supplementary448

materials and the description therein). The proposed temporal multiple kernel449

learning (tMKL) model in this paper belongs to the class of spectral graph theo-450

retic methods [16, 14, 18, 17]. The model attempts both at improving upon the451

quality of SC-FC mapping and also aims to characterize the temporal richness452

of the signal while incorporating the structural information in a principled way.453

The proposed temporal multiple kernel learning (tMKL) model is an attempt454

towards generating BOLD time series of a subject using only the SC. As sum-455

marized in Figure 1, the proposed pipeline partitions the BOLD time series of a456

subject into windows yielding wFCs. The underlying structure of the wFCs was457

learned via a manifold whose structure was further parameterized using GMM.458

The GMM components were hypothesized to be the states whose temporal evo-459

lution was succinctly captured in a Markov chain transition matrix. For each460

state, MKL model was learned to capture the SC-dFC relationship. The learned461

model was utilized to predict state-specific FCs for a test subject. These pre-462

dicted FCs were further factored into latent time series and concatenated using463

the steady-state properties of the transition matrix. Pearson correlation of this464

final time series generates the predicted FC for a subject.465

4.2. Rationale for t-MKL pipeline to discover latent temporal struc-466

ture467

In the following we will explain the rationale for various steps in the proposed468

pipeline. It appears that while modeling dFC using unsupervised techniques469

for clustering wFCs into states, one faces the curse of dimensionality problem470
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head-on. During clustering, wFCs ought to be assigned to the same state as471

that of their neighbors because they are temporally contiguous and might share472

similarities. As we can see, wFCs lie in a high dimensional space, but based473

on their similarity with respect to their neighbors, they may lie on an intrinsic474

lower-dimensional manifold. This lower dimensional manifold becomes the space475

over which temporal structure could be precisely identified. Spectral embedding476

techniques utilize the similarity between the neighboring wFCs to discover the477

underlying manifold. After representing the temporal structure as a manifold,478

the next task is to parameterize the lower-dimensional structure. Once we obtain479

a lower-dimensional embedding, we need to cluster the wFCs to discover the480

discrete state space. Unsupervised approaches such as K-means clustering would481

yield spherical clusters, limiting the shape and size of states, whereas GMM482

clustering is a generalized clustering scheme. We parameterize the local density-483

distribution of wFCs over the manifold to a factor analysis model that further484

represents the manifold as a set of component Gaussians at various locations485

whose shape, orientation, and size depend on the local densities of the wFCs.486

The proposed model is cohort-based and hence the underlying assumption487

is of the generalizability of the model to unseen test subjects. We have learned488

the Markov transition probability matrix on training wFCs and used this to489

generate long sequences of time series for test subjects eventually yielding a490

good approximation of the grand average FC with a maximum of 0.8 (see491

Figure 3).492

4.3. Reproducibility of latent states and FC configurations493

After presenting the rationale behind designing the proposed model that is494

shown to be successful at mapping SC-dFC-FC tripartite relationship, several495

expectations arise such as reproducibility of discovered states and their corres-496

ponding predicted FCs, sensitivity of the model to the underlying anatomical497

structure, state-specificity of the tMKL model and importantly verifying that498

the model does not overfit the training data. Several experiments were conducted499

in order to verify that the model satisfies these claims and the results presented500

in Section 3 point to the robustness of the performance of the model. Further,501

in order to verify whether the state-specific FCs predicted for a subject are502

distinct, we performed community detection over the mean state-specific FCs503
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of the test cohort (see Figure 9). As can be clearly seen in the figure, regions504

in each state show distinct interaction patterns among themselves. The states505

seem to characterize the transient relationship among the ROIs which appear506

and disappear across the duration of the resting state scan. The markov chain507

state transition model further allows the characterization of the temporal fluc-508

tuations of the states that approximates latent temporal structure. Significantly,509

the MKL models were learned only over the individual states without any glo-510

bal error measure governing the learning process. Yet, the grand average FC511

prediction is at par or better than that of the MKL model and superior to the512

other competing approaches.513

4.4. Conclusion514

As part of future work, it will be interesting to explore the biophysical mea-515

ning of the model parameters. Other direction could be to characterize the516

dynamics better by predicting the time series itself rather than working with517

correlation matrices. An immediate investigation would be to explore the rela-518

tionship between the latent time-series and the actual BOLD time-series. Ano-519

ther line of work would be to apply the proposed model to characterize dFC520

in various conditions such as neurodegenrative and psychiatric disease, healthy521

and pathological aging etc.522

5. Acknowledgements523

The authors would like to thank Arpan Banerjee for his insightful feed-524

back and proofreading the manuscript. DR is supported by the Ramalingas-525

wami Fellowship (BT/RLF/Re-entry/07/2014) from Department of Biotechno-526

logy (DBT), Ministry of Science & Technology, Government of India.527

Références528

[1] B. Biswal, F. Z. Yetkin, V. M. Haughton, J. S. Hyde, Functional connec-529

tivity in the motor cortex of resting human brain using echo-planar MRI,530

Magnetic Resonance in Medicine 34 (4) (1995) 537–541.531

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276


[2] B. B. Biswal, M. Mennes, X.-N. Zuo, S. Gohel, C. Kelly, S. M. Smith, C. F.532

Beckmann, J. S. Adelstein, R. L. Buckner, S. Colcombe, et al., Toward533

discovery science of human brain function, Proceedings of the National534

Academy of Sciences 107 (10) (2010) 4734–4739.535

[3] M. P. Van Den Heuvel, H. E. H. Pol, Exploring the brain network : a review536

on resting-state fmri functional connectivity, European neuropsychophar-537

macology 20 (8) (2010) 519–534.538

[4] C. F. Beckmann, M. DeLuca, J. T. Devlin, S. M. Smith, Investigations into539

resting-state connectivity using independent component analysis, Philoso-540

phical Transactions of the Royal Society B : Biological Sciences 360 (1457)541

(2005) 1001–1013.542

[5] J. Damoiseaux, S. Rombouts, F. Barkhof, P. Scheltens, C. Stam, S. M.543

Smith, C. Beckmann, Consistent resting-state networks across healthy sub-544

jects, Proceedings of the national academy of sciences 103 (37) (2006)545

13848–13853.546

[6] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A.547

Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar, et al.,548

Functional network organization of the human brain, Neuron 72 (4) (2011)549

665–678.550

[7] B. Thomas Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari,551

M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni,552

et al., The organization of the human cerebral cortex estimated by intrinsic553

functional connectivity, Journal of neurophysiology 106 (3) (2011) 1125–554

1165.555

[8] S. Mori, P. van Zijl, Fiber tracking : principles and strategies–a technical556

review, NMR in Biomedicine 15 (7-8) (2002) 468–480.557

[9] G. Gong, Y. He, L. Concha, C. Lebel, D. W. Gross, A. C. Evans, C. Beau-558

lieu, Mapping anatomical connectivity patterns of human cerebral cortex559

using in vivo diffusion tensor imaging tractography, Cerebral cortex 19 (3)560

(2008) 524–536.561

27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276


[10] J. L. Vincent, G. H. Patel, M. D. Fox, A. Z. Snyder, J. T. Baker, D. C.562

Van Essen, J. M. Zempel, L. H. Snyder, M. Corbetta, M. E. Raichle, In-563

trinsic functional architecture in the anaesthetized monkey brain, Nature564

447 (7140) (2007) 83.565

[11] P. Robinson, Interrelating anatomical, effective, and functional brain566

connectivity using propagators and neural field theory, Physical Review567

E 85 (1) (2012) 011912.568

[12] G. Deco, A. Ponce-Alvarez, D. Mantini, G. L. Romani, P. Hagmann,569

M. Corbetta, Resting-state functional connectivity emerges from structu-570

rally and dynamically shaped slow linear fluctuations, Journal of Neuros-571

cience 33 (27) (2013) 11239–11252.572

[13] V. Pernice, B. Staude, S. Cardanobile, S. Rotter, How structure determines573

correlations in neuronal networks, PLoS computational biology 7 (5) (2011)574

e1002059.575

[14] S. G. Surampudi, S. Naik, A. Shrama, R. S. Bapi, D. Roy, Combining576

multiscale diffusion kernels for learning the structural and functional brain577

connectivity, bioRxiv (2016) 078766.578

[15] C. O. Becker, S. Pequito, G. J. Pappas, M. B. Miller, S. T. Grafton, D. S.579

Bassett, V. M. Preciado, Spectral mapping of brain functional connectivity580

from diffusion imaging, Scientific reports 8 (1) (2018) 1411.581

[16] F. Abdelnour, H. U. Voss, A. Raj, Network diffusion accurately models the582

relationship between structural and functional brain connectivity networks,583

Neuroimage 90 (2014) 335–347.584

[17] S. G. Surampudi, S. Naik, R. B. Surampudi, V. K. Jirsa, A. Sharma,585

D. Roy, Multiple kernel learning model for relating structural and func-586

tional connectivity in the brain, Scientific reports 8 (1) (2018) 3265.587

[18] F. Abdelnour, M. Dayan, O. Devinsky, T. Thesen, A. Raj, Functional588

brain connectivity is predictable from anatomic network’s laplacian eigen-589

structure, NeuroImage 172 (2018) 728–739.590

28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276


[19] C. Chang, G. H. Glover, Time–frequency dynamics of resting-state brain591

connectivity measured with fmri, Neuroimage 50 (1) (2010) 81–98.592

[20] M. G. Preti, T. A. Bolton, D. Van De Ville, The dynamic functional connec-593

tome : State-of-the-art and perspectives, NeuroImage 160 (2017) 41–54.594

[21] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, V. D.595

Calhoun, Tracking whole-brain connectivity dynamics in the resting state,596

Cerebral cortex 24 (3) (2014) 663–676.597

[22] V. Kiviniemi, T. Vire, J. Remes, A. A. Elseoud, T. Starck, O. Tervonen,598

J. Nikkinen, A sliding time-window ica reveals spatial variability of the599

default mode network in time, Brain connectivity 1 (4) (2011) 339–347.600

[23] G. Deco, M. L. Kringelbach, V. K. Jirsa, P. Ritter, The dynamics of resting601

fluctuations in the brain : metastability and its dynamical cortical core,602

Scientific Reports 7 (3095).603

[24] K. Vemuri, B. R. Surampudi, An exploratory investigation of functional604

network connectivity of empathy and default mode networks in a free-605

viewing task, Brain Connectivity 5 (6) (2015) 384–400.606

[25] A. P. Baker, M. J. Brookes, I. A. Rezek, S. M. Smith, T. Behrens, P. J. P.607

Smith, M. Woolrich, Fast transient networks in spontaneous human brain608

activity, Elife 3.609

[26] S. Ryali, K. Supekar, T. Chen, J. Kochalka, W. Cai, J. Nicholas, A. Pad-610

manabhan, V. Menon, Temporal dynamics and developmental maturation611

of salience, default and central-executive network interactions revealed by612

variational bayes hidden markov modeling, PLoS Computational Biology613

12 (12) (2016) e1005138.614

[27] D. Vidaurre, S. M. Smith, M. W. Woolrich, Brain network dynamics are615

hierarchically organized in time, Proceedings of the National Academy of616

Sciences 114 (48) (2017) 12827–12832.617

[28] A. S. Pillai, V. K. Jirsa, Symmetry breaking in space-time hierarchies618

shapes brain dynamics and behavior, Neuron 94 (5) (2017) 1010–1026.619

29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276


[29] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Bla-620

cker, R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, et al., An621

automated labeling system for subdividing the human cerebral cortex on622

mri scans into gyral based regions of interest, Neuroimage 31 (3) (2006)623

968–980.624

[30] M. Schirner, S. Rothmeier, V. K. Jirsa, A. R. McIntosh, P. Ritter, An625

automated pipeline for constructing personalized virtual brains from mul-626

timodal neuroimaging data, Neuroimage 117 (2015) 343–357.627

[31] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for em-628

bedding and clustering, in : Advances in neural information processing sys-629

tems, 2002, pp. 585–591.630

[32] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and631

data representation, Neural computation 15 (6) (2003) 1373–1396.632

[33] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing633

17 (4) (2007) 395–416.634

[34] A. Y. Ng, M. I. Jordan, Y. Weiss, On spectral clustering : Analysis and an635

algorithm, in : Advances in neural information processing systems, 2002,636

pp. 849–856.637

[35] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transac-638

tions on pattern analysis and machine intelligence 22 (8) (2000) 888–905.639

[36] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag640

New York, 2016.641

[37] M. Rubinov, O. Sporns, Complex network measures of brain connectivity :642

uses and interpretations, Neuroimage 52 (3) (2010) 1059–1069.643

[38] M. Xia, J. Wang, Y. He, Brainnet viewer : a network visualization tool for644

human brain connectomics, PloS one 8 (7) (2013) e68910.645

[39] E. Damaraju, E. A. Allen, A. Belger, J. Ford, S. McEwen, D. Mathalon,646

B. Mueller, G. Pearlson, S. Potkin, A. Preda, et al., Dynamic functional647

connectivity analysis reveals transient states of dysconnectivity in schizo-648

phrenia, NeuroImage : Clinical 5 (2014) 298–308.649

30

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276


[40] B. Rashid, E. Damaraju, G. D. Pearlson, V. D. Calhoun, Dynamic connec-650

tivity states estimated from resting fmri identify differences among schizo-651

phrenia, bipolar disorder, and healthy control subjects, Frontiers in human652

neuroscience 8 (2014) 897.653

[41] R. Hindriks, M. H. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini, N. K.654

Logothetis, G. Deco, Can sliding-window correlations reveal dynamic func-655

tional connectivity in resting-state fmri ?, Neuroimage 127 (2016) 242–256.656

31

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2018. ; https://doi.org/10.1101/367276doi: bioRxiv preprint 

https://doi.org/10.1101/367276

	Introduction
	Materials and methods
	Dataset
	Proposed model
	Spectral Embedding, step 2.a
	GMM Clustering, step 2.b
	State Transition Markov Model, step 3.
	tMKL Model, step 5.
	Generation of latent time-series for testing subjects, steps 4., 6. - 9.


	Experiments & Results
	Grand average FC (gFC) prediction
	Parameter Selection
	Robustness of the model
	State-specificity of the tMKL model

	Discussion
	Relating underlying structural connectivity to Windowed FC
	Rationale for t-MKL pipeline to discover latent temporal structure
	Reproducibility of latent states and FC configurations
	Conclusion

	Acknowledgements

