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Abstract 

 

The significance of shape and surface information for face perception is well 

established, yet their relative contribution to recognition and their neural underpinnings await 

clarification. Here, we employ image reconstruction to retrieve, assess and visualize such 

information using behavioral, electroencephalography and functional magnetic resonance 

imaging data.  

Our results indicate that both shape and surface information can be successfully 

recovered from each modality but that the latter is better recovered than the former, 

consistent with its key role for face representations. Further, shape and surface information 

exhibit similar spatiotemporal profiles, rely on the extraction of specific visual features, such 

as eye shape or skin tone, and reveal a systematic representational structure, albeit with more 

cross-modal consistency for shape than surface. 

Thus, the present results help elucidate the representational basis of individual face 

recognition while, methodologically, they showcase the utility of image reconstruction and 

clarify its reliance on diagnostic visual information. 
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Introduction 

The segregation of shape and surface information defines a fundamental aspect of 

visual processing and cortical organization (Livingstone & Hubel, 1988; Van Essen & Deyoe, 

1995) both in the human (Cant, Large, McCall, & Goodale, 2008; Lafer-Sousa, Conway, & 

Kanwisher, 2016; Vinberg & Grill-Spector, 2008) and the monkey brain (Conway, Moeller, 

& Tsao, 2007). Accordingly, this distinction has played a prominent role in accounts of face 

recognition (Bruce & Young, 1998). Extensive research has documented the importance of 

both types of information in face perception (Biederman & Kalocsai, 1997, Jiang, Blanz, & 

O'Toole, 2006; O’Toole, Vetter, & Blanz, 1999; Russell et al., 2007; Russell & Sinha, 2007; 

Vuong, Peissig, Harrison, & Tarr, 2005), but the relative weight of shape and surface 

properties has been heavily debated, with either the former (Jiang, Blanz, & Rossion, 2011; 

Lai, Oruc & Barton, 2013) or the latter (Bruce et al., 1991; Bruce & Langton, 1994; Hole, 

George, Eaves, & Rasek, 2002; Kaufmann & Schweinberger, 2008; Russell, Sinha, 

Biederman & Nederhouser, 2006) considered dominant. Arguably, this debate arises from a 

lack of specificity in identifying the shape and surface features critical for individual face 

processing (Burton et al., 2015).  Thus, the current research aims to uncover the nature of the 

information involved in individual face processing along with its accompanying neural 

profile. 

To address the challenge above, here, we appeal to neural-based image reconstruction 

(Shen, Dwivedi, Majima, Horikawa & Kamitani, 2018; Miyawaki et al., 2008; Naselaris et 

al., 2009, Nishimoto et al., 2011; Thirion et al., 2006), namely, the endeavor of reconstructing 

the appearance of visual objects from neural activity prompted by their processing. While this 

endeavor has relied primarily on functional magnetic resonance imaging (fMRI), more 

recently, additional modalities have been used successfully as well. For instance, facial image 
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reconstruction has been carried out using single-cell recordings (Chang & Tsao, 2017), 

electroencephalography (EEG) data (Nemrodov et al., 2018) and behavioral data (Chang et 

al., 2017; Zhan et al., 2017), in addition to fMRI (Cowen, Chun, & Kuhl, 2014; Lee & Kuhl, 

2016; Nestor, Plaut, & Behrmann, 2016). Thus, in theory, image reconstruction can provide a 

powerful platform for investigating shape/surface processing in face individuation via 

multiple behavioral and neuroimaging modalities. Concretely, image reconstruction can be 

used to uncover, assess and compare facial shape and surface information recovered from 

distinct modalities. 

To this end, we rely on data assessing individual face processing gleaned from 

behavioral (Nestor, Plaut & Behrmann, 2013), EEG (Nemrodov et al, 2018) and fMRI data 

(Nestor, Plaut & Behrmann, 2016). Specifically, for each modality, we aim to recover the 

shape and surface content of a common set of face stimuli as perceived by human observers 

(see Figure 1). In addition, the same procedure is conducted with an image-based theoretical 

observer (TO) allowing us to compare the informational content of multiple empirical and 

TO reconstructions. 

Accordingly, we appeal here to an influential approach for analyzing face images into 

shape and surface properties (Craw & Cameron, 1991; Kramer, Jenkins & Burton, 2016; 

Tiddemann, Burt & Perrett, 2001; Vetter & Troje, 1995). Specifically, this approach involves 

marking the positions of a set of fiducial points (e.g., the corners of the eyes or the tip of the 

nose) that deliver shape information. Then, faces are warped to a standard shape (i.e., a preset 

configuration of fiducial points) yielding ‘shape-free’ images that deliver surface 

information. To be clear, shape derived in this manner encompasses two sources of 

information: configural information, conceived as metric distances between different face 

parts (Maurer et al., 2002; Tanaka & Gordon, 2011), and local information associated with 

the geometric structure of specific face parts such as eye shape or mouth shape (Cabeza & 
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Kato, 2000; Gold, Mundy & Tjan, 2012; Rakover, 2002). In contrast, surface contains 

information about the reflectance properties of a face (e.g., hue, specularity, albedo) that also 

play a role in individual face recognition (Hancock, Burton & Bruce, 1996; Russell et al., 

2007; Taschereau-Dumouchel et al., 2010) – such information is alternatively referred to as 

‘texture’, ‘pigmentation’ or ‘surface reflectance’. 

 

Figure 1. Schematic illustration of the reconstruction procedure. Behavioral, fMRI, EEG and TO data 

associated with viewing face stimuli support, separately, the estimation of a multidimensional face space (for 

convenience, a single example based on EEG data, indicated by the dark blue arrow, is shown, but similar 

results can be achieved from other modalities). Shape information and surface information are derived from the 

structure of this space and combined into facial image reconstructions (only a representative subset of fiducial 

points are displayed; L*, a* and b* correspond to the lightness, red-green and yellow-blue channels of color 

vision as encoded in CIEL*a*b*). Due to copyright restrictions all identifiable stimulus images were replaced 

with computer-generated images not used during experimental testing. 

 

The appeal to shape-surface decomposition allows us to address a number of related 

questions. First, can image reconstruction separately recover facial shape and surface 

information from different modalities and, if so, how well? Second, what is the 

spatiotemporal profile of shape and surface processing? Third, what specific shape/surface 
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features are recovered through reconstruction? And forth, do different modalities reveal 

similar or complementary information about face representations? More generally, the 

present work evaluates and confirms the ability of a novel methodological paradigm to 

exploit multimodal evidence in the effort to elucidate the representational content of 

individual face processing. 

In summary, the current work embarks on a comprehensive investigation of facial 

shape and surface processing by appeal to powerful and novel image-reconstruction 

methodology as applied to multimodal data. Accordingly, this work serves a twofold purpose 

by shedding light on the psychological and neural profile of facial shape/surface processing 

and by clarifying the informational content responsible for the success of image 

reconstruction. 

Results 

Our investigation relies on the representational structure underlying facial processing 

as revealed by multiple modalities for a common set of stimuli. This structure allows us to 

relate the outcome of different modalities to each other as well as to derive shape and surface 

estimates of face representations. Such estimates can be assessed in terms of their 

reconstruction success and of their spatiotemporal neural profile. Further, such estimates can 

be recombined into image reconstructions approximating the visual appearance of the 

percepts associated with viewing specific face stimuli. 

Representational similarity 

Estimates of pairwise face similarity were computed across 108 images (54 identities 

x 2 expressions, neutral and happy) for each of four data types: (i) behavioral, based on 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/299933doi: bioRxiv preprint 

https://doi.org/10.1101/299933
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

similarity ratings; (ii) EEG, based on neural discriminability across occipitotemporal (OT) 

electrodes; (iii) fMRI, based on neural discriminability across multiple fusiform gyrus (FG) 

areas, and (iv) TO, based on pixelwise image similarity. In particular, we note that fMRI 

estimates relied jointly on patterns of activation from four distinct FG areas (see Materials 

and Methods, Representational similarity analysis) - these areas were selected due to their 

ability to support face decoding in previous work (Nestor et al, 2016). For clarity, stimulus-

specific multivoxel patterns were concatenated here across the four areas and subjected to 

pattern classification.  

Next, Spearman rank correlations were computed for each pair of modalities across 

corresponding similarity estimates (i.e., 1431 pairwise estimates for 54 identities, averaged 

across expressions).  Overall, we found that all data types correlated with each other (p<0.01, 

Bonferroni-corrected) providing initial evidence for common representational structure across 

modalities (Figure 2a).  

 

Figure 2. Correlations between different data types were based on: (a) pairwise face 

similarity/discriminability estimates (Spearman correlation across 1431 facial identity pairs); (b) shape and (c) 

surface reconstruction accuracy (Pearson correlation across 54 facial identities). All modalities are correlated 

with each other in terms of face similarity but only some in terms of shape and surface information (** p<0.01, 

*** p<0.001; Bonferroni correction across comparisons). 
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Shape and surface reconstruction 

Accuracy estimates of shape and surface reconstruction were separately computed for 

each data type (Figure 3). Critically, we found that all estimates were above chance for both 

facial expressions (permutation test, p<0.05, Bonferroni correction for 24 comparisons). 

Overall, for empirical modalities, surface reconstructions were more accurate than shape 

reconstructions (paired-comparison permutation test, p<0.01) with the exception of fMRI 

results for happy faces where the difference was only marginally significant (p=0.085). In 

contrast, TO results showed no difference in accuracy between shape and surface (p>0.151), 

suggesting that the reconstruction method can, in theory, retrieve the two types of 

information with equal success from the current stimulus sets. Further, no difference was 

found between neutral and happy faces for either shape or surface for any data type (p>0.104 

for all other than fMRI-based shapes, in which case happy faces yielded marginally more 

accurate reconstructions than neutral ones, p=0.079). 
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Figure 3 with 1 supplement. Shape and surface reconstruction accuracies for four modalities. All 

accuracy estimates are above chance (all p’s<0.01, Bonferroni-corrected; two-tailed permutation tests; 

confidence intervals based on 104 shuffles of identity labels in the corresponding face space). Surface 

information was retrieved more accurately than shape information for empirical modalities (two-tailed paired-

comparison permutation tests; * p<0.05; ** p<0.01) but not for TO. 

Figure 3 – Figure supplement 1. Accuracy estimates of surface reconstruction for each color channel. 

Results are shown for each modality collapsed across emotional expression. All estimates are above chance (all 

p’s<0.01, Bonferroni-corrected; two-tailed permutation tests; confidence intervals based on 104 shuffles of 

identity labels in the corresponding face space). No difference was noticed across color channels for any 

modality (all p’s>0.05; two-tailed paired-comparison permutation tests). 

 

Given the systematic advantage of surface over shape reconstructions, we proceeded 

to assess reconstruction accuracy separately for each color channel. This assessment is 

particularly relevant since informative shape-from-shading cues may be present as lightness 

patterns in what we refer to as ‘facial surfaces’ (Attick, Griffin & Redlich, 1996). Hence, the 

surface advantage noticed above could be due to another source of shape information rather 

than to genuinely ‘shape-free’ surface information. To evaluate this possibility, we estimated 

reconstruction accuracy for each color channel: we averaged such estimates across 

expression, given the absence of an expression effect above, and we compared them with 

each other separately for each modality. This analysis revealed that color components and 

lightness support equivalent levels of reconstruction accuracy for every modality (Figure 1 – 

figure supplement 1). More precisely, no difference was noticed between any two 

components (two-tailed paired-comparison permutation tests; p>0.05, uncorrected) ruling out 

the shape-from-shading hypothesis above.  

Next, regarding the relative performance of different modalities, we note that fMRI 

seemed to perform more poorly than other data types. However, a direct comparison of 

different modalities in terms of accuracy may be misleading in that the corresponding 
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experiments followed different protocols suitable for the corresponding modalities (e.g., 

different experimental tasks, different numbers of trials, different numbers of participants). At 

the same time, we note though that representational similarity analysis confirmed the 

presence of corresponding structure across data types. To further explore this correspondence 

in terms of shape and surface information, reconstruction accuracy, averaged across 

expressions, was correlated for each pair of data types (Figure 2b, c). This analysis found, in 

the case of shape, that empirical modalities all correlated with each other with the exception 

of fMRI and TO. However, in the case of surface properties, behavioral reconstructions were 

correlated with EEG and TO, but not with fMRI, pointing to potentially different surface 

information available in fMRI data. 

To clarify the results above in the context of the relationship between brain and 

behavior, multiple linear regression was employed to account for behavioral accuracy based 

on all other data types. Separate analyses for shape and surface information both yielded 

significant models (shape: R2
adj=0.55, p<0.001; surface: R2

adj=0.47, p<0.001). In more detail, 

for shape information, EEG (β=0.41, p<0.001), fMRI (β=0.14, p=0.01) and TO (β=0.39, 

p<0.001) all provided significant independent contributions in accounting for behavior. In 

contrast, for surface information, only TO (β=0.64, p<0.001) and, marginally, EEG (β=0.14, 

p=0.075), were significant predictors of behavioral accuracy. Thus, different modalities 

appear to contain only partly overlapping information and to make distinct contributions in 

accounting for behavioral performance. 

Next, to pinpoint the source of recovered information, accuracy was locally computed 

for each fiducial point, in the case of shape, and for each pixel and color channel, in the case 

of surface properties. Specifically, the coordinates of each fiducial point within a 

reconstructed image were compared relative to the corresponding point in the stimulus 

images and point-specific accuracy was estimated as the percentage of instances for which 
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the Euclidean distance to the corresponding point in the target stimulus was smaller than to 

that in any other stimulus. Accuracy heatmaps averaged across all reconstructed shapes are 

displayed in Figure 4. This analysis revealed that the shape of the eyes was better recovered 

than other information for all empirical modalities. The same appeared to be the case for TO 

reconstructions; however, additional information regarding the shape of the mouth and the 

eyes was also recovered relatively well here. 

 

Figure 4. Accuracy heatmaps for shape reconstruction across fiducial points overlaid on average neutral 

and happy faces. The size of the circles is proportional with position variance across the face (i.e., larger circles 

indicate more variability in fiducial point position across different individual faces) while color indicates 

average reconstruction accuracy across 54 facial identities. Shape information is best approximated across the 

eyes though differences in both global and local accuracy can be noticed across modalities.  

 

A similar procedure was followed for deriving surface heatmaps except that pixel 

intensity values (e.g., lightness as coded in the L* channel), rather than geometrical 

coordinates, were considered in this case (see Figure 5 and Figure 5 – supplement figure 1 for 
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neutral and happy faces, respectively). Overall, information from multiple areas of the face 

and multiple color channels appeared to contribute to reconstruction success. For instance, 

the lightness of the cheeks along with the color of the forehead, especially as encoded in the 

red-green channel, appeared to be correctly recovered. As expected, and in agreement with 

the correlation results above, fMRI heatmaps evinced lower levels of accuracy while TO 

heatmaps evinced the highest overall accuracy. 

 

Figure 5 with 1 supplement. Accuracy heatmaps of surface reconstruction for neutral faces across 

pixels and color channels. Color indicates average reconstruction accuracy across 54 facial identities. Multiple 

areas of the face and multiple color channels provide accurate information for reconstruction purposes; 

differences in both global and local accuracy can be noticed across modalities. 

Figure 5 – Figure supplement 1. Accuracy heatmaps of surface reconstruction for happy faces across 

pixels and color channels.  
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Facial image reconstruction 

Shape and surface information, as retrieved separately from each data type, was 

combined into recomposed image reconstructions – for examples see Figure 6. 

Reconstructions appeared to capture, for any given modality, visual properties indicative of 

facial identity.  

 

Figure 6. Examples of face image reconstructions (numbers in the upper left indicate experimental-

based estimates of reconstruction accuracy; other image-based accuracy estimates are displayed for recomposed 

faces in the top right, for shape in the bottom left and for surface in the bottom right corners).* 

*Images of face stimuli could not be reproduced due to copyright restrictions 

 

To evaluate this claim, empirical data were collected from a novel group of naïve 

observers who matched reconstructions against corresponding stimuli. Performance (Figure 

7) was well above chance for all modalities and expressions (p’s<0.001; one-sample two-

tailed t-test against 50% chance performance in a 2AFC task; Bonferroni correction across 

comparisons). A two-way repeated measures analysis (4 modalities x 2 expressions) found, as 

expected, a main effect of modality (F(3,75)=18.30, p<0.001, η2=0.196) but no effect of 

expression (p=0.140) and no interaction (p=0.333). While a direct comparison of empirical 

modalities in terms of accuracy may be misleading, as discussed above, it is of interest to 
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assess how closely empirical modalities can approach the level of TO performance. Planned 

comparisons between TO and each empirical modality, collapsed across expressions, showed 

that TO surpassed fMRI (p<0.001), but not EEG (p>0.556) or behavioral data, which 

provided marginally better results (p=0.067). 

 

Figure 7. Reconstruction accuracy based on (a) experimental estimates and (b) image-based estimates. 

The outcome of planned comparisons is shown (a) between TO and other modalities as well as (b) between 

recomposed faces and other types of reconstruction (*** p<0.001). Error bars indicate ±1SE (a) across 

participants and (b) across items. 

 

Next, we assessed whether the combination of shape and surface provides any 

advantage over reconstructed shapes and surface in isolation, as well as over a previous 

version of reconstruction that does not appeal to shape-surface decomposition (Nestor et al, 

2016), for short here ‘intact reconstructions’. To this end, we considered objective estimates 

of reconstruction accuracy (Figure 7b): for recomposed faces this was computed across pixel 

intensities in the same manner in which surface accuracy was derived. Since permutation 

tests were not feasible for reconstructed faces, as they rely on the manual combination of 
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shape and surface information (see Materials and Methods), parametric tests were conducted 

here across items (e.g., 54 facial identities). We note that while parametric tests are less 

conservative than the permutation tests above, their goal here is not to assess performance 

against chance but, rather, to explore differences across different types of reconstruction. A 

three-way analysis of variance (4 data types X 4 reconstruction types X 2 expressions) found, 

as expected, a main effect of data type (F(3,159)=44.00, p<0.001, η2=0.160), a main effect of 

reconstruction type (F(3,159)=25.82, p<0.001, η2=0.054) along with an interaction between 

data type and reconstruction type (F(9,477)=3.36, p=0.016, η2=0.008). No significant effect 

or interactions were found for expression (p>0.05). Further pairwise comparisons found that 

recomposed faces were reconstructed more accurately than shape in all instances (p’s<0.001) 

(Figure 7b) but only surpassed surface in the case of TO (p<0.001). Last, recomposed 

reconstructions were systematically more accurate than intact reconstructions (Nestor et al, 

2016; Nemrodov et al, 2018); however, the difference did not reach significance for any 

modality (p’s>0.139). 

Thus, the benefit of combining shape and surface reconstruction for reconstruction 

purposes is clearly apparent only for TO. This result is consistent with the less efficient 

retrieval of shape information from behavioral and neural data noted above and suggests 

comparatively higher reliance on surface information in visual face processing. 

The spatiotemporal profile of shape and surface processing 

To investigate in further detail the temporal dynamics of shape and surface 

processing, reconstruction accuracy was computed for both types of information across 

occipitotemporal (OT) electrodes using a ~10ms sliding window - the time course of 

reconstruction averaged across facial identities is displayed in Figure 8 and an example of 

recomposed reconstruction over time is shown in Movie 1. Overall, we found that surface 
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information was more accurately retrieved than shape information, yet both evinced multiple 

intervals of above-chance reconstruction (two-tailed permutation test; FDR correction over 

time). Specifically, they both reached significance around 150ms after stimulus onset and 

gradually declined after 300ms. 

 

Figure 8. The time course of EEG-based reconstruction accuracy for shape and surface information 

estimated with a sliding ~10ms temporal window. Accuracy for both types of information was above chance 

across multiple intervals as indicated by corresponding segments at the top of the plot (permutation test; FDR-

correction across time, q<0.01).  

 

To further clarify the neural locus of relevant information, reconstruction results were 

computed across fMRI patterns in bilateral pairs of FG areas. Specifically, to evaluate the 

posterior-to-anterior progression of information, reconstruction results were recomputed 

separately for bilateral posterior FG areas, for anterior FG areas as well as for inferior frontal 
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gyrus areas capable of supporting face decoding (Nestor et al, 2016). Reconstruction results 

(Figure 9) pointed to above-chance accuracy for both shape and surface information in 

posterior as well as in anterior FG areas, with equivalent levels of accuracy across regions, 

but not in IFG areas (two-tailed permutation test; Bonferroni correction). 

 

Figure 9. Reconstruction accuracy for three bilateral ROIs. Fusiform gyrus areas but not inferior frontal 

gyrus areas supported above-chance reconstruction of shape and surface (*** p<0.001, two-tailed permutation 

tests; Bonferroni correction). 

 

Last, to relate the temporal and the spatial profile of reconstruction-relevant 

information, accuracy estimates from EEG and fMRI were correlated across time intervals 

and regions separately for shape and surface properties (Pearson correlation; FDR-correction 

across time points). In the case of shape, the results found a significant correlation between 

posterior FG-based estimates and EEG estimates around 180 ms after stimulus onset (Figure 

10). Multiple time points around 170 ms, but also for subsequent intervals evinced significant 

correlations with anterior FG estimates but not with IFG ones. A similar investigation of 

surface information revealed smaller correlation values and no significant correlation with 

any ROI (Figure 10 – Figure supplement 1) in agreement with the results reported above 

(e.g., Fig. 2c). 
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Figure 10 with 1 supplement. Correlation of reconstruction accuracy for shape based on fMRI data 

from three ROIs and from EEG data across ~10ms temporal intervals. Results are shown for shape. Intervals of 

significance are marked by corresponding segments at the top of the plot (Pearson correlation; FDR correction 

across time, q<0.01).  

Figure 10 – supplement figure 1. Correlation of surface reconstruction accuracy for surface based on 

fMRI data from three ROIs and from EEG data across ~10ms temporal intervals. No interval reaches 

significance (Pearson correlation; FDR correction across time, q<0.01).  

 

Discussion 

The present study examined the representational basis of shape and surface 

information underlying individual face processing. This investigation capitalized on a robust 

approach to image reconstruction to uncover and relate relevant representational structures 

captured by distinct modalities. The ability to retrieve such information successfully and 

consistently enabled us to address a number of key questions as follows. 

First, we examined the possibility of reconstructing both shape and surface 

information from each of four data types: behavioral, EEG, fMRI and TO. Our results 
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confirmed that this is indeed possible while also revealing the advantage of surface over 

shape for face representations. Specifically, surface information was reconstructed more 

accurately than shape information for each of the empirical modalities but not for an image-

based TO that yielded equivalent estimates of reconstruction accuracy for the two. Also, 

surface information was recovered with equivalent levels of success across different color 

channels, speaking to the role of chromatic information in face representations. The relative 

contribution of shape and surface properties continues to be contested. For example, the 

dominant role of surface properties in face recognition has been extensively documented for 

familiar faces (Burton et al., 2005; Calder et al., 2001; Hancock, Burton, & Bruce, 1996; 

Kaufmann & Schweinberger, 2008; Russell et al., 2006; Vuong et al., 2005) while such a role 

has been assumed by shape properties in the case of unfamiliar faces (Jiang, Blanz, & 

Rossion, 2011; Lai, Oruc, & Barton, 2013). The importance of shape is also consistent with 

the value of configural information for holistic face perception (Leder, & Carbon, 2006; 

Maurer, Le Grand, & Mondloch, 2002; McKone & Yovel, 2009; Piepers & Robbins, 2012; 

Richler et al., 2009; Tanaka & Gordon, 2011). Yet, other evidence suggests that even for 

unfamiliar faces, surface could provide dominant cues (Itz, Golle et al., 2017; Russell, Sinha, 

Biederman, & Nederhouser, 2006) and that configural shape information is of limited use 

(Taschereau-Dumouchel, Rossion, Schyns, & Gosselin, 2010).  In agreement with such 

evidence, we find that shape information is relatively underrepresented compared to its 

surface counterpart for unfamiliar faces. As a caveat to this conclusion, we note that the 

present investigation did not consider three-dimensional face shape (Jiang, Blanz & O’Toole, 

2009) but only two-dimensional information – additional 3D cues may facilitate the recovery 

of overall shape information and lead to more precise representations (at least as accurately as 

that of surface properties). Such an outcome would be especially relevant for face perception 

in more naturalistic settings. 
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Second, we aimed to characterize the spatiotemporal profile of shape and surface 

processing. With regard to temporal dynamics, previous work targeting specific ERP 

components has yielded rather inconsistent results. For instance, sensitivity to the shape of 

unfamiliar faces has been found at the latency of the N170 ERP component (Caharel, Jiang, 

Blanz, & Rossion, 2009) but also earlier, for P1 (Itz, Schweinberger, & Kaufmann, 2016), 

and, in the case of familiar faces, later for P200 (Itz, Schweinberger, Schulz, & Kaufmann, 

2014). Similarly, surface processing is apparent first at the latency of the N250 component 

for both familiar and unfamiliar faces (Caharel et al., 2009; Itz, Schweinberger, Schulz, & 

Kaufmann, 2014), yet other studies have also found N170 sensitivity to facial surface (Balas 

& Nelson, 2010; Brebner et al, 2011; Minami, Nakajima, Changvisommid, & Nakauch, 

2015). Unlike previous work, the present investigation used pattern analysis applied to entire 

epochs rather than univariate analyses targeting specific ERP components. Following this 

approach, we found that reconstruction accuracy reaches significance for both shape and 

surface around 150ms and exhibits an extended interval of above-chance performance. From 

a theoretical standpoint, we note that a similar time course for shape and surface processing 

could prove advantageous for the efficient integration of this information into unified face 

percepts. Also, the present results are in broad agreement with the presence of facial identity 

information at the latency of N170 (Caharel et al., 2009; Itier & Taylor, 2002; Nemrodov et 

al., 2016). 

Regarding the cortical locus of shape and surface processing, previous work has found 

sensitivity to shape (Gao & Wilson, 2013; Gilaie-Dotan, Gelbard-Sagiv, & Malach, 2010) 

and surface (Harris, Young, & Andrews, 2014; Jiang et al., 2009) information within the 

fusiform face area (FFA), consistent with the notion that this region contains unified 

representations of faces (Liu, Harris, & Kanwisher, 2010). Also, recent research has found 

equivalent adaptation effects to shape and surface information in the occipital face area 
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(OFA) and in the FFA (Andrews et al., 2016). While our investigation targeted regions 

localized through pattern analysis rather than face-selective regions per se, our results also 

support the idea of shape and surface integration within common regions subserving facial 

identity representations. Specifically, shape and surface information was recovered from 

posterior and anterior fusiform areas able to discriminate different facial identities. In 

contrast, another IFG region capable of such discrimination was unable to support either 

shape or surface reconstruction.  Interestingly, a frontal area involved in face processing has 

been found in the human and monkey brain (Axelrod & Yovel, 2015; Rajimehr, Young & 

Tootell, 2009; Tsao et al., 2008). Recent work has argued that this area hosts higher-level, 

view-invariant facial representations (Guntupalli, Wheeler & Gobbini, 2017) facilitating 

access to person knowledge through the extended system for face perception (Collins & 

Olson, 2014; Haxby et al, 2000). This possibility accounts for the inability of the IFG to 

support image reconstruction, as reported above, while also pointing to the need to 

characterize more precisely the transformation of visual information across a hierarchy of 

face processing regions. 

Third, we assessed the correspondence of facial information retrieved by different 

modalities. A widely influential approach, representational similarity analysis (Kriegeskorte, 

Mur & Bandettini, 2008), has been instrumental in relating representational structures 

captured by different neuroimaging modalities and computational models (Carlin & 

Kriegeskorte, 2017; Carlson et al., 2013; Cichy, Pantazis, & Oliva, 2016; Olander et al., 

2017). Overall, this approach has uncovered both commonalities and complementarity in the 

visual information retrieved by different modalities (Cichy, Pantazis & Oliva, 2016). Our 

results agree with this conclusion while further analyzing the source of common/distinct 

visual information in terms of shape and surface. Specifically, RSA revealed overall 

similarity of representational structure for faces across different modalities. However, a more 
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detailed investigation of reconstructed information showed that shape is more consistently 

recovered across modalities relative to surface dimensions. For instance, fMRI yielded 

surface reconstructions that did not match well their behavioral and EEG counterparts. Yet, 

this finding could be due to the fact that the fMRI signal considered reflects different 

processing stages of facial information relative to other modalities. 

To address this possibility, reconstruction accuracy was systematically related across 

different intervals and areas. Interestingly, in the case of shape, this analysis revealed 

significant correlations between EEG-based results and their fMRI counterpart. Specifically, 

such correlations were noted as early as 170ms after stimulus onset for both posterior and 

anterior FG areas. However, these correlations only persisted at later latencies for aFG areas 

consistent with a spatiotemporal hierarchy of processing steps in face perception. In contrast, 

in the case of surface, EEG and fMRI yielded lower, non-significant correlations suggesting 

partly different representations recovered by these two neuroimaging modalities. 

At a finer-grained level, the issues discussed above emphasize the need to elucidate 

the specific features underlying face processing and their neural representations. An 

evaluation of reconstruction heatmaps show that eye shape and color information is 

especially well retrieved in agreement with the role of such information for face recognition 

(Ince et al., 2016; Issa & DiCarlo, 2012; Nestor, Vettel & Tarr, 2008). Additional information 

regarding nose and mouth shape could also be retrieved (Abudarham & Yovel, 2016) while 

forehead and cheek colors were recovered with various degrees of accuracy across different 

color channels. Importantly, such cues appeared to reflect objective information content as 

revealed by TO reconstructions. Further, heatmaps of lighting and color channels exhibited 

different spatial patterns suggesting that chromatic information supplements lighting-based 

representations of facial identity (Nestor et al, 2013). Chromatic information stored in high-
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level visual areas may facilitate such representations and account for the proximity of these 

areas to face-processing cortex (Lafer-Souza et al, 2016).   

While the present investigation targets the representational basis of shape and surface 

processing via image reconstruction, we also note here the converse aspect of this 

investigation. Specifically, we inquire into the benefit of shape and surface decomposition for 

image reconstruction purposes. Previous work has relied on the coarse alignment of facial 

features to minimize the need for such decomposition (Cowen, Chun, & Kuhl, 2014; Nestor, 

Plaut, & Behrmann, 2016; but see Chang & Tsao, 2017; Zhan et al., 2017). Hence, it is useful 

to assess, in the context of the present investigation, whether recomposed faces are more 

accurately reconstructed than intact ones. Interestingly, decomposition appeared to provide a 

systematic advantage to reconstruction across modalities, yet this advantage did not reach 

significance in any given case. Clearly, shape-surface decomposition would be required when 

dealing with pronounced image variability such as that due to viewpoint. However, if such 

variability is controlled across stimuli and if feature alignment is successfully carried out in 

advance it appears that shape-surface decomposition confers, at most, a minimum advantage 

to reconstruction.  

Of relevance here, we note that shape-surface manipulations introduce a systematic 

loss of information due to image (re)warping and that this loss is likely to limit reconstruction 

success (see Materials and Methods, Stimulus shape-surface re/re-composition). To address 

this and, also, to allow the extension of current work to a wider, more diverse class of face 

images, state-of-the-art algorithms for fiducial point detection and shape analysis could be 

employed (Ahdid, Taifi, Safi & Manaut, 2016). Such methods would confer robustness to 

shape-surface decomposition and facilitate the integration of reconstruction results with 

algorithms for face recognition that rely on elaborate schemas for shape/surface analysis 

(Zhao, Chellappa, Phillips & Rosenfeld, 2003) – such integration could serve specific goals 
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for translational research (e.g., the automatic identification of a face image reconstructed 

from eyewitness memory). 

At the other end, we note certain theoretical limitations associated with the use of 

naturalistic stimuli. Of specific relevance here is the covariation of different types of 

information conveyed by shape and surface properties. For instance, shading as captured by 

surfaces can provide cues to 3D shape (Kramer, Jenkins, & Burton, 2016). Such covariation 

constraints the interpretation of our results in important ways. Concretely, in the context of 

empirical modalities, we found no advantage to combining shape and surface information 

over using surface information in isolation (though such an advantage was noticed for TO). 

The lack of this advantage could simply reflect the covariation of shape and surface 

properties in natural images. Thus, to better disentangle the distinct contribution of such 

properties to face representations, one may be better served by artificial stimuli that 

manipulate orthogonally distinct types of information and, also, by image processing 

techniques that ascribe 3D cues exclusively to shape (O’Toole et al, 1999; Paysan, Knothe, 

Amberg, Romdhani, Vetter, 2009).  

In summary, the present work seeks to uncover the representational underpinnings of 

shape and surface processing in face perception through the use of novel image-

reconstruction methodology. Our results show that such information can be reliably extracted 

from multiple modalities, that its representational structure is partly shared across modalities 

and that its spatiotemporal profile speaks to the close integration of shape and surface cues in 

face processing. More generally, the present findings showcase the value of image 

reconstruction methodology in elucidating the content and the neural profile of visual 

representations. 
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Materials and methods 

Stimuli 

A common subset of 108 stimulus images was identified across three different studies 

investigating empirical and computational aspects of unfamiliar face recognition (see 

Experimental procedures). Images of 54 individuals displaying neutral and happy facial 

expressions were selected from three databases: AR (Martinez & Benavente, 1998), FEI 

(Thomaz & Giraldi, 2010) and Radboud (Langner et al., 2010). All images featured young 

adult Caucasian males with frontal view, gaze and illumination. The stimuli were selected so 

that no facial accessories, hair or makeup obscured the internal features of the face and so 

that all happy expressions displayed an open-mouth smile. These images were: (a) scaled 

uniformly and aligned with roughly the same position of the eyes and the nose; (b) cropped to 

eliminate background; (c) normalized with the same mean and root mean square (RMS) 

contrast values separately for each color channel in CIEL*a*b* color space, and (d) reduced 

to the same size (95 X 64 pixels). Note that this procedure did not change the aspect ratio of 

the images though the position of the eyes and the nose was roughly the same across stimuli. 

Thus, every effort was made to homogenize the stimulus set both in terms of low-level and 

high-level face properties preventing the potential contribution of such factors to image 

reconstruction. 

Participants 

All participants (age range across studies: 18-34 years; 21 males, 22 females) were 

Caucasian adults with normal or corrected-to-normal vision and no history of cognitive or 

neurological disorder. All participants provided informed consent and all experimental 
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procedures were approved by the Research Ethics Board at University of Toronto and/or the 

Institutional Review Board at Carnegie Mellon University. 

 

Experimental procedures 

Data used for reconstruction purposes were selected from three previous studies as 

follows. 

Behavioral data consisted of similarity ratings with pairs of faces acquired from 22 

participants (reported in Nestor et al, 2013, Experiment 1). Briefly, on each trial, participants 

were presented with two facial identities, one neutral and one happy, side by side, for 400ms, 

and were asked to judge their visual similarity on a 5-point scale. Each participant rated all 

possible 1431 facial pairs, corresponding to 54 facial identities - for clarity, only a subset of 

the original data were considered here (i.e., 6 additional facial identities were not used in the 

EEG study summarized below and, hence, were excluded from further analyses of behavioral 

data). 

EEG data were previously acquired from 13 participants who performed a go/no-go 

gender categorization task (Nemrodov et al, 2018). On ‘no-go’ trials, participants viewed the 

stimuli described above while, on ‘go’ trials, they were asked to press a designated key in 

response to the appearance of a female face. Each of the 108 main stimuli was presented for 

300 ms and repeated across 64 trials for each participant. 

fMRI data were acquired from 8 participants who performed a continuous one-back 

identity task (Nestor et al, 2016). Briefly, on each trial, participants viewed a stimulus for 900 

ms and responded whether the current stimulus displayed the same individual as that 

presented on the previous trial, irrespective of emotional expression. The experiment used a 

wide-spaced design (8s trials) and allowed for the repetition of each stimulus for a minimum 

of 10 trials across five 1-hr sessions for each participant. Again, only a subset of the stimuli 
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used in the original study is considered here to enable direct comparison with data from the 

other modalities.  

To be clear, we note that the neuroimaging studies above (Nemrodov et al, 2018; 

Nestor, Plaut & Behrmann, 2016) did not separate shape and surface cues for reconstruction 

purposes nor did they assess the contribution of such cues to visual face representations. 

Further, the behavioral study above (Nestor et al, 2013) did not target any form of image 

reconstruction and, thus, it provides a new testing ground for reconstruction endeavors. 

 

Representational similarity analyses 

Our reconstruction procedure fundamentally relies on the structure of representational 

(dis)similarity matrices (Kriegeskorte, Mur, & Bandettini, 2008) to derive facial image 

features and to use such features for reconstruction purposes. Hence, the first step of our 

investigation is to construct such matrices separately for each data type. 

Specifically, for each modality and for each participant, a similarity matrix was 

designed to store pairwise similarity estimates across 54 facial identities. In the case of 

behavioral data, these estimates were readily available in the form of similarity ratings. In the 

case of EEG and fMRI data such estimates were derived through one-against-one pattern 

classification of different identities, separately for each expression, using linear support 

vector machines (SVM). Briefly, pairwise classification was applied across EEG 

spatiotemporal patterns recorded across at 12 occipitotemporal (OT) electrodes (left: P5, P7, 

P9, PO3, PO7, O1; right: P6, P8, P10, PO4, PO8, O2) during an interval spanning 50-650ms 

after stimulus onset – these spatiotemporal patterns were selected based on their ability to 

support face decoding (Nemrodov et al, 2018). Analogously, for fMRI, classification was 

applied across multivoxel patterns within areas supporting above-chance face discrimination 
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as identified through prior searchlight mapping. Such areas were previously identified 

(Nestor et al, 2016) bilaterally in the posterior fusiform gyrus (group-map Talairach 

coordinates: left FG, –39, –49, –16; right posterior FG, 39, –69, –4), the anterior fusiform 

gyrus (left FG, –34, –36, –14; right anterior FG/parahippocampal gyrus, 31, -19, -9) and the 

inferior frontal gyrus (left IFG, –36, 24, –9; right IFG, 46, 11, –1). Thus, discrimination 

accuracy computed across neural patterns in these regions was used to estimate the similarity 

of the stimuli eliciting such patterns – a more detailed account of data preprocessing and 

pattern analyses can be found in the studies above.  

In addition, objective measures of image similarity in CIEL*a*b* color space were 

computed for the purpose of constructing a theoretical observer (TO) exploiting low-level 

visual similarity. To this end, pixelwise Euclidean distances were computed across all pairs 

of facial identities separately for each expression and the results were stored in corresponding 

similarity matrices. Of note, while more elaborate models of face similarity are of interest 

(e.g., Carlin & Kriegeskorte, 2017), the TO above is particularly relevant given that pixelwise 

similarity is also one of the main criteria for assessing reconstruction quality. Thus, a TO 

matching typical criteria for result assessment is particularly well-suited for estimating an 

upper limit of reconstruction success. 

Last, similarity estimates were averaged across participants and across expressions to 

deliver a single similarity matrix for each modality: behavioral, EEG, fMRI and TO. These 

resulting estimates were related across modalities via Spearman correlation to estimate the 

presence of a common representational structure.  

 

Stimulus shape-surface de/re-composition 

All stimuli were tested for their ability to undergo reliable shape-surface 

decomposition and recomposition. Specifically, for reconstruction purposes, all stimuli were 
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analyzed into shapes (i.e., configurations of fiducial points, such as the corners of the eyes 

and the tip of the nose, labeled with their geometric coordinates) and shape-free surfaces (i.e., 

facial images warped to a common shape template). To this end, fiducial points were 

manually marked for each stimulus using the Interface toolbox (Kramer, Jenkins, & Burton, 

2016) and, then, the marked stimulus was warped to a preset shape template. Thus, the shape 

of each stimulus is represented as a vector of fiducial point coordinates (82 points x 2 in-

plane coordinates) while its surface is represented by a template-warped image. 

The process above was then reversed by recombining shapes and surfaces into 

approximations of the original stimuli. This procedure was carried out to estimate 

information loss inherent to de/re-composition due to image (re)warping and, thus, to assess, 

the objective cost of shape/surface manipulations for reconstruction. To this end, rewarped 

versions of the stimuli obtained through recomposition were compared against actual stimuli. 

Concretely, for each rewarped stimulus we computed the ratio between the pixelwise 

Euclidean distance relative to its original version and the distance to every other stimulus, 

one at a time; hence, ratios larger than 1 would render rewarped stimuli more similar to other 

facial identities.  The outcome of these computations (mean ± 1SD across 54 identities) 

yielded ratios of 0.333 (±0.054) and 0.329 (±0.052) for neutral and happy faces, respectively. 

Thus, shape-surface de/re-composition generally preserves identity information but it does 

introduce systematic image distortions likely to limit reconstruction success. 

 

Reconstruction procedure 

The current procedure builds upon previous work (Nestor et al, 2016; Nemrodov et al, 

2018) aimed at deriving pictorial features directly from the structure of empirical data and to 

use them for facial image reconstruction. Here, we further develop this procedure to derive 
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separate sets of shape and surface features from multiple data types and we assess their 

relative contribution to face representations as revealed by image reconstruction. 

For each modality, the reconstruction procedure was separately conducted following a 

sequence of steps (Figure 1). Concisely, in order to reconstruct the appearance of any given 

target, the procedure involved: (i) selecting a similarity submatrix containing the pairwise 

similarity of all faces other than the target; (ii) estimating the dimensions that structure face 

space by applying multidimensional scaling (MDS) to the resulting submatrix; (iii) deriving, 

for each dimension, shape and surface features through a strategy akin to reverse correlation; 

(iv) assessing feature significance and selecting a subset of informative features; (v) 

projecting the target face into the existing face space based on its similarity with the other 

faces; (vi) reconstructing the shape and the surface of the target face through a linear 

combination of informative features, and (vii) combining the resulting shape and surface into 

a single image reconstruction of the target face. 

In more detail, the leave-one-out procedure enforces non-circularity by excluding the 

reconstruction target from the estimation of face space and its underlying features. 

Specifically, a face space construct was derived from the pairwise similarity of 53 facial 

identities and, then, its corresponding features were used in the reconstruction of the target 

face. To this end, a 20-dimensional face space was estimated through metric MDS, given that 

this number of dimensions accounted for more than 90% of data variance for any modality 

and, also, that it agrees with previous estimates of face space dimensionality in human 

recognition (i.e., 15-22) (Lewis, 2004). Then, a corresponding number of shape and surface 

features were computed for each dimension through an approach akin to reverse 

correlation/image classification (see (Murray, 2011) for a review). Notably, this approach 

aims to synthesize facial features responsible for face space topography through a linear 

combination of face properties (i.e., shape vectors or surface images). This combination was 
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computed as a sum of shapes and surfaces for all faces weighted by the z-scored coordinates 

of the corresponding faces on any given dimension. Thus, the outcome of these computations 

delivers, for each dimension, one shape feature, or ‘classification vector’ (CV), and one 

surface feature, or ‘classification image’ (CIM) – for clarity, each surface feature consists in a 

triplet of images, one for each color channel in CIEL*a*b*. 

Further, we considered the possibility that not all face space dimensions encode visual 

information (e.g., as opposed to higher-level semantic information or just noise). Also, it is 

possible that sources of shape and surface information are differently distributed across 

dimensions and their corresponding features. Hence, it is important to identify relevant 

subsets of features that can contribute meaningful information to reconstruction. To this end, 

each feature was assessed for the presence of significant information. Specifically, all face 

space identities were randomly shuffled with respect to their coordinates on each dimension 

and a corresponding feature was recomputed for a total of 103 permutations. Then, each true 

feature was compared to all permutation-based features, fiducial point by fiducial point, in 

the case of shape, or pixel by pixel, for each CIEL*a*b* color channel, in the case of surface 

(two-tailed permutation test; FDR correction across points and pixels, respectively; q < 0.1). 

Following this procedure, only features that contained significant shape or surface 

information were selected for reconstruction purposes. 

Next, the target face was projected into the existing face space. To this end, a new 

MDS solution was constructed for all 54 identities and aligned with the original one via 

Procrustes analysis using the 53 common identities between the two spaces. The resulting 

alignment provides us with a mapping between the two spaces that allows us to project the 

target face and to retrieve its coordinates in the original space. Then, informative features 

were linearly combined proportionally to the coordinates of the target face on each 

corresponding dimension and their sum was added to the average shape and surface of the 53 
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faces used for feature derivation. We note that face space was uniformly scaled under the 

constraint that all reconstructed surfaces should have the same RMS contrast and mean value 

in each color channel as the surfaces of the experimental stimuli – these values were equated 

across experimental stimuli in an effort to minimize the contribution of low-level images 

differences to perception (see Stimuli above). A similar manipulation was also conducted for 

shape reconstructions to ensure that the variance of fiducial point coordinates matched that of 

the stimulus shapes. Last, the shape and surface thus computed were manually combined 

using the Interface toolbox into a single reconstruction to which we refer as a ‘recomposed 

face’. 

For clarity, face space is constructed here across facial identities irrespective of 

emotional expression (e.g., by averaging similarity matrices for the two expressions). 

However, reconstruction proceeds by deriving and combining features separately for neutral 

and happy faces (i.e., a neutral face is reconstructed from features derived from other neutral 

faces while a happy face is reconstructed from features derived from other happy faces).  

Another possibility would be to consider separate spaces for each expression; however, 

previous investigations evaluated and confirmed the invariance of neural-based face space 

across these two emotions (Nemrodov et al, 2018). 

Finally, to evaluate the benefit of considering separately shape and surface 

information for reconstruction purposes, another set of image reconstructions were computed 

without appeal to this decomposition. Specifically, face stimuli were treated in the same 

manner as shape-free surfaces above. We refer to the outcome of this procedure as ‘intact 

reconstructions’. 
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Estimation of reconstruction accuracy 

The accuracy of reconstruction results was assessed in two different ways: by 

objective image-based measures and experimentally, by additional behavioral testing.    

In detail, each reconstructed shape was compared to its target via the Euclidean 

distance computed across corresponding fiducial point coordinates. Then, the accuracy of its 

reconstruction was measured as the proportion of instances for which that distance was 

smaller than the distance between the reconstruction and any stimulus shape other than the 

target. This procedure was conducted for all reconstructions, separately for each expression 

and each modality. 

Reconstructed surface accuracy was measured similarly, except that Euclidean 

distances were computed across pixel values in CIEL*a*b* space. The same procedure was 

also followed for recomposed and intact reconstructions. 

Statistical significance was then assessed through permutation tests. Specifically, the 

shape and the surface of each target was recomputed based on the random shuffling of 

identity labels across all points in face space (for a total of 104 permutations). Then, the 

accuracy of the true reconstructions was related to that of permutation-based reconstructions 

(two-tailed permutation tests). 

However, this procedure was not feasible in the case of recomposed faces (since that 

would require the manual recombination of shape and surface for a prohibitively high number 

of permutation-based reconstructions). For this reason, and, also, to provide a complementary 

evaluation of reconstruction results, additional behavioral testing was conducted as follows. 

  Reconstructed images consisting of 432 recomposed faces (54 identities X 2 

expressions X 4 modalities: behavioral, EEG, fMRI, and TO) were judged in terms of their 

relative similarity to the actual stimuli. To this end, 27 new participants (seven males and 

twenty females, age range: 18-25) were asked to match image reconstructions to their targets 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/299933doi: bioRxiv preprint 

https://doi.org/10.1101/299933
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

in a two-alternative forced choice (2AFC) task. Specifically, each reconstruction was 

displayed in the presence of two stimuli, one of which was the actual target and the other 

another face image. Thus, on each trial, a display was shown containing a reconstructed 

image, at the top, and two stimuli side by side, at the bottom, all of which had the same 

expression and the same size (see Stimuli). Each display was presented until participants 

indicated which stimulus was more similar to the top image by pressing a designated 

left/right key. For each participant, any reconstructed image was presented 4 times along with 

different foils so that, across participants, each reconstruction was presented together with 

every possible foil. Stimulus order was pseudorandomized so that no reconstruction appeared 

twice on consecutive trials and target stimuli appeared equally often on the left/right side. 

Each participant completed 1728 trials divided equally across 9 blocks. Experimental testing 

was conducted within a single 1.5-hr session. 

Parametric statistical analyses were next conducted to assess reconstruction success 

against chance (one-sample two-tailed t-tests against 50% chance-level participant 

performance) as well as the relative success of reconstruction across modalities and 

expressions (2-way factorial analysis of variance: 4 modalities X 2 expressions). 

To further compare and account for the outcome of different types of reconstruction, 

additional analyses were conducted as detailed below. 

Evaluation of reconstruction results 

First, parametric tests across items (i.e., across facial identities) were carried out to 

estimate the relative success of reconstruction results. Specifically, we conducted a three-way 

factorial analysis of variance (4 modalities X 2 expressions X 4 reconstruction types: shape, 

surface, recomposed and intact reconstructions) along with planned comparisons – accuracies 

were collapsed across expressions given the lack of evidence for a corresponding effect from 
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prior analyses. Of note, parametric analyses across items provide a liberal way to estimate 

reconstruction success (e.g., compared to the permutation tests above); however, the goal of 

the current analysis was not to estimate significance against a preset chance level but rather to 

evaluate differences in reconstruction success across modalities and reconstruction types. 

We note that comparing modalities in terms of overall reconstruction accuracy can be 

informative, by answering, for instance, how closely empirical modalities can approach TO-

level performance. However, such an analysis provides an incomplete and potentially 

misleading picture of the relationship across empirical modalities since any difference, or 

lack thereof, can be the outcome of differences in experimental designs separately optimized 

for each modality (e.g., stimulus duration, number of stimulus presentations, task, number of 

participants). 

Second, and aiming to address the concern above, reconstruction results were related 

with each other via correlation across facial identities for each pair of modalities. 

Specifically, image-based accuracies were related to each other across modalities, separately 

for shape and surface, via Pearson correlation. We note that this investigation parallels 

representational similarity analysis with the difference that, here, we correlate item-specific 

reconstruction accuracies as opposed to pairwise item similarity estimates. In addition, to 

clarify the relationship between behavioral and neural-based results, linear regression was 

used to account for behavioral reconstruction accuracies in terms of their EEG and fMRI 

counterparts separately for shape and surface reconstructions. 

Third, to clarify the spatiotemporal profile of the information supporting shape and 

surface reconstruction, additional analyses were conducted across time, for EEG, and across 

different ROIs, for fMRI. Specifically, for the former, reconstruction was conducted across 

smaller 10ms temporal intervals between -100 and 700ms (i.e., across 60-dimensional 

vectors; 12 OT electrodes x 5 consecutive time points) providing us with the time course of 
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reconstruction accuracy. In the case of fMRI, reconstruction was conducted for distinct pairs 

of bilateral ROIs in the posterior FG, the anterior FG and the IFG. Image-based accuracy was 

then estimated for each temporal interval and for each ROI pair and significance was 

estimated by two-tailed permutation tests. 
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Supplementary figures 

 

 

Figure 3 – Figure supplement 1. Accuracy estimates of surface reconstruction for each color channel. 

Results are shown for each modality collapsed across emotional expression. All estimates are above chance (all 

p’s<0.01, Bonferroni-corrected; two-tailed permutation tests; confidence intervals based on 104 shuffles of 

identity labels in the corresponding face space). No difference was noticed across color channels for any 

modality (all p’s>0.05; two-tailed paired-comparison permutation tests). 
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Figure 5 – Figure supplement 1. Accuracy heatmaps of surface reconstruction for happy faces across 

pixels and color channels. Color indicates average reconstruction accuracy across 54 facial identities. Multiple 

areas of the face and multiple color channels provide accurate information for reconstruction purposes; 

differences in both global and local accuracy can be noticed across modalities. 
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Figure 10 – supplement figure 1. Correlation of reconstruction accuracy for surface based on fMRI data from 

three ROIs and from EEG data across ~10ms temporal intervals. No interval reaches significance (Pearson 

correlation; FDR correction across time, q<0.01). 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/299933doi: bioRxiv preprint 

https://doi.org/10.1101/299933
http://creativecommons.org/licenses/by-nc-nd/4.0/

