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Abstract

Understanding complex systems such as the human brain requires characterization of the system’s 

architecture across multiple levels of organization – from neurons, to local circuits, to brain 

regions, and ultimately large-scale brain networks. Here we focus on characterizing the human 

brain’s large-scale network organization, as it provides an overall framework for the organization 

of all other levels. We developed a highly principled approach to identify cortical network 

communities at the level of functional systems, calibrating our community detection algorithm 

using extremely well-established sensory and motor systems as guides. Building on previous 

network partitions, we replicated and expanded upon well-known and recently-identified 

networks, including several higher-order cognitive networks such as a left-lateralized language 

network. We expanded these cortical networks to subcortex, revealing 358 highly-organized 

subcortical parcels that take part in forming whole-brain functional networks. Notably, the 

identified subcortical parcels are similar in number to a recent estimate of the number of cortical 

parcels (360). This whole-brain network atlas – released as an open resource for the neuroscience 

community – places all brain structure s across both cortex and subcortex into a single large-scale 

functional framework, with the potential to facilitate a variety of studies investigating large-scale 

functional networks in health and disease.
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INTRODUCTION

Understanding the highly distributed neural computations that underlie cognitive abilities in 

humans will require a framework that places neural events in the context of overall brain 

network organization. Several such frameworks have been introduced (Power et al., 2011; 

Yeo et al., 2011), based on the idea that the brain exhibits a modular functional architecture 

(Bullmore and Sporns, 2009). Consistent with this, distant brain regions are strongly 

functionally interconnected (showing high statistical association between time series), 

composing distinct functional networks. These functional networks can be detected using 

resting-state functional connectivity (RSFC) with functional MRI (fMRI), capitalizing on 

the phenomenon of spontaneous but coherent low-frequency fluctuations of the BOLD 

(blood-oxygen level dependent) signal. This phenomenon can give insight into the brain’s 

intrinsic functional network organization that likely underlies a host of computations, 

including higher-order cognition. This intrinsic organization is thought to be functionally 

relevant since brain activity patterns during rest and task have high overall correspondence 

(S. M. Smith et al., 2009). Moreover, task-evoked activity flow (the movement of task-

evoked activations between brain regions) can be accurately predicted using RSFC, 

suggesting that resting-state functional networks provide the pathways over which cognitive 

task activations flow (Cole et al., 2016a). It is likely also the case that a slower, Hebbian-like 

learning process allows coactivation patterns to shape RSFC (Harmelech et al., 2013). These 

hypotheses are additionally supported by findings of strong correspondence between resting-

state and task-state functional connectivity: Only subtle changes are observed in brain-wide 

functional connectivity organization during a wide variety of (functionally distinct) tasks and 

rest (Cole et al., 2014a; Krienen et al., 2014). These findings suggests that, although smaller 

task-specific changes in cortical organization occur during tasks, the main functional 

network architecture is already present during rest.

Based on this idea that intrinsic network organization largely reflects the brain’s functional 

network organization regardless of state, a number of network partitions have been 

developed (Doucet et al., 2011; Gordon et al., 2016; Laumann et al., 2015), with two of the 

most widely-utilized partitions developed by Power et al. (2011) and Yeo et al. (2011). Their 

widespread impact likely stems from their strong correspondence with well-established 

primary sensory-motor systems, as well as correspondence with well-replicated co-

activation patterns (e.g., frontoparietal co-activations during working memory tasks) in the 

task fMRI literature (S. M. Smith et al., 2009; Yeo et al., 2015). Both groups used clustering 

algorithms to identify functional networks based on distributed patterns of high RSFC 

between brain regions (for Power et al. (2011)) or a grid of cortical surface locations (for 

Yeo et al. (2011)). Together, they revealed a common brain network organization with 

bilaterally distributed visual, sensorimotor, default mode, and attention networks. 

Furthermore, both solutions revealed a task-positive system (the fronto-parietal, dorsal 

attention and cingulo-opercular networks) and a task-negative system consisting of the 

default mode network (Fox et al., 2005). These network partitions have proven to be 

remarkably valuable in elucidating functional brain organization and have provided an initial 

framework for functional network analyses in a variety of studies, both in health and disease, 

yielding important new insights in multiple fields of neuroscience (Sporns, 2014).
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Yet there are several outstanding issues with existing network partitions, which have limited 

our understanding of the human brain’s large-scale functional network organization. Most 

fundamentally, it has been unclear how to define network communities in a principled 

manner. This difficulty reflects the fact that RSFC values are continuous, with network 

identification requiring partitioning of these continuous values into labeled clusters. Yeo et 

al. (2011) were statistically principled in choosing to partition these continuous RSFC values 

based on the statistical stability of the partition solution at each clustering threshold. Despite 

this stability, however, there is a major problem with the resulting network partitions: The 

auditory system is merged with the somatomotor system. The separation of these two 

systems is a basic property of cortical network organization known for over a century 

(Fritsch and Hitzig, 1870), and thus serves to question the choice of network partition 

threshold. In contrast, the Power et al. (2011) partition (and others (Gordon et al., 2016)) has 

the auditory system separated from the somatomotor system. However, Power et al. (2011) 

reported nine partitions, with only the most strict cluster threshold yielding a separate 

auditory system. The nine Power et al. (2011) partitions were subsequently combined into a 

single partition (Cole et al., 2013; Power and Petersen, 2013) for use in subsequent studies – 

in a similar manner as a recent surface-based network partition by Gordon et al. (2016). 

Critically, consensus was achieved across the partitions by hand, raising potential issues with 

reproducibility. More fundamentally problematic, however, is the possibility that this 

consensus partition combined networks from distinct levels of organization, by merging 

network clusters across distinct cluster thresholds. This calls into question the equivalence of 

the networks in the Power et al. (Power et al., 2011) (and (Gordon et al., 2016)) partition, 

with potentially problematic implications for studies that utilize this partition (e.g., 

comparisons of functional systems with functional sub-systems).

In the present study – in light of the primary goal to develop and publicly release a network 

partition that would be useful to the neuroscience community – we sought to combine the 

statistically principled approach of Yeo et al. (2011) with the neurobiologically principled 

approach of Power et al. (2011) (in which the auditory system was separated from the 

somatomotor system). Specifically, we sought a single-threshold network partition that was 

statistically stable and that was calibrated to a neurobiologically and functionally meaningful 

level of organization – the large-scale functional systems level – based on emergence of 

large-scale sensory-motor systems during network community detection. We chose these 

systems (visual, auditory, somatomotor) – as opposed to any of a variety of potential 

networks in association cortex – because (unlike these other networks) the sensory-motor 

systems are established beyond question. We could thus focus on identification of these 

networks and be confident that we had identified a fundamental functional systems level of 

organization even in association cortex, where it remains unclear which networks are 

fundamental functional systems. Subsequent to identifying our initial network partition, we 

also used identification of networks reported in the recent RSFC and task activation 

literatures as supplementary evidence of network partition quality. However, given our 

principled approach to identifying the functional level of organization, any previously-

identified networks that were not identified here were considered likely to be at a distinct 

level of organization (e.g., the salience network (Seeley et al., 2007) could be a sub-system 

within a superordinate cingulo-opercular network (Dosenbach et al., 2007)).
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As a secondary goal to developing this statistically and neurobiologically principled 

approach to network detection, we sought to address several methodological limitations of 

earlier partitions. First, as a starting point, we leveraged a recently-developed surface-based 

cortical parcellation (Glasser et al., 2016), which combined multiple neuroimaging 

modalities (i.e., myelin mapping, cortical thickness, task fMRI, and RSFC) to improve 

confidence in cortical area assignment. Similar to another recent brain region parcellation 

(Fan et al., 2016), these improvements were driven by convergence across independent MRI-

based modalities, each with complementary strengths and weaknesses. Second, we used 

multiband fMRI data from the Human Connectome Project (Van Essen et al., 2013), 

allowing for higher spatio-temporal resolution (i.e., simultaneous acquisition of multiple 

slices at a small voxel size) relative to data used for most previous network partitions 

(Feinberg et al., 2010; Moeller et al., 2010). This increased the spatial and temporal detail of 

the RSFC estimates and the resulting network partition. Third, we increased the spatial 

specificity and anatomical fidelity of the group-level RSFC data by using a high-resolution 

surface-based analysis in combination with multimodal (functional and anatomical) 

alignment across subjects (Robinson et al., 2014). Such surface-based methods – especially 

in combination with multimodal alignment – yield improved cross-subject alignment of 

cortical geometry (Anticevic et al., 2008; Glasser et al., 2013; Robinson et al., 2014) 

(relative to volume-based methods). This collectively results in less spatial blurring across 

sulcal boundaries within an individual and superior cross-areal alignment across individuals 

(Uğurbil et al., 2013). Notably, several recent cortical network partitions made use of 

cortical surface data (Gordon et al., 2016; Laumann et al., 2015), demonstrating the utility of 

this approach for cortical network identification and facilitating the use of surface data in the 

present study.

Building on these methodological advances, a principled network partition should have a 

neurobiologically plausible number of networks, including well-known functional systems 

(Mesulam, 1998; Ryali et al., 2012; Stark et al., 2008) as well as subcortical components 

(Buckner et al., 2011; Choi et al., 2012). For example, although many known systems were 

already included in previous network partitions, many of these do not include clear 

assignment of a language network (e.g. Power et al., 2011). Furthermore, although a few 

parcellations (e.g. Yeo et al., 2011) have reported the presence of a language network, none 

have extensively characterized the representation in the subcortex, even though there is 

ample evidence in the literature for the existence of a distributed language system in humans 

(Broca, 1861; Hampson et al., 2002; Wernicke, 1874), and perhaps even a homologous 

network in non-human primates (Mantini et al., 2013). Indeed, this was a major knowledge 

gap that was partially addressed by the Glasser cortical parcellation – namely identification 

of putatively novel language-related cortical regions, with clear but heretofore undefined 

boundaries (Glasser et al., 2016). Therefore, we explicitly tested the hypothesis that a 

methodologically improved and neurobiologically-plausible network solution should yield a 

distributed language network based on RSFC graphs. In turn, such a language network 

should pass the test of mapping onto language-relevant computations based on independent 

overlap with task-evoked activity during language processing.

We additionally sought to overcome an unresolved technical limitation of previously-

developed network partitions whereby there was high uncertainty about the network 
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assignment of the ventral cortical surface. This uncertainty stems from sinus-related MRI 

dropout (due to magnetic field inhomogeneities) in these regions. The use of multiband 

fMRI data not only provides a higher signal-to-noise ratio (SNR) due to higher temporal 

resolution, but also affords less dropout due to higher spatial resolution (Merboldt et al., 

2000; Smith et al., 2013). We hypothesized that this would improve network assignments for 

regions in MRI dropout areas such as orbitofrontal cortex, for which no consensus network 

assignment currently exists.

Finally, a fundamental knowledge gap in the field is a lack of a unified whole-brain network 

partition, which includes all of cortex and subcortex. Prior work utilized the Yeo et al. 

(2011) cortical network assignment to delineate network partitions for the striatum (Choi et 

al., 2012) and the cerebellum (Buckner et al., 2011), which revealed a shared functional 

topography between these large anatomical structures (i.e., cortex, striatum, and the 

cerebellum). However, no study has extended this approach simultaneously across the 

striatum, cerebellum, thalamus and the brainstem in a common framework. More generally, 

there is currently no network partition of the entire human brain that capitalizes on the 

aforementioned cortical mapping advances and that concurrently provides a comprehensive 

subcortical network mapping. To address this knowledge gap, we derived a network 

assignment of all subcortical voxels, which we mapped using a connectivity-based clustering 

analysis building on our cortical network solution (similar to (Buckner et al., 2011; Choi et 

al., 2012), but including the entire subcortex). The obtained quantitative relationships 

between subcortical units (voxels) and cortical regions thus help clarify the functional 

organization of subcortical structures in the context of cortical brain systems.

In summary, the primary purpose of the present effort was to develop and publicly release a 

brain-wide network partition for the broader neuroscience community. Key innovations 

beyond prior work include: i) A highly neurobiologically principled definition of cortical 

network organization, based (in part) on identification of the extremely well-established 

sensory and motor systems. This criterion was used to calibrate the clustering threshold that 

identified the brain’s fundamental functional level of organization (i.e., sensory and motor 

systems). ii) Use of multimodal inter-subject alignment along with surface-based cortical 

analysis across hundreds of subjects for enhanced precision of the network partition, iii) Use 

of task and hemispheric lateralization tests to determine reassignment of the previously-

labeled “ventral attention” network (Power et al., 2011) as the language network, and iv) 

Extension of the cortical network assignments to the entire subcortex, providing a whole-

brain network solution that expands on prior work that focused on the striatum (Choi et al., 

2012) and cerebellum (Buckner et al., 2011). While future improvements of the reported 

Cole-Anticevic Brain-wide Network Partition version 1.0 (CAB-NP v1.0) are anticipated, 

this initial solution is shared with the neuroscience community to facilitate studies 

investigating large-scale functional networks in human health and disease.

METHODS

Experimental Model and Subject Details

Subjects and Dataset—The analyzed dataset consisted of 337 healthy volunteers from 

the publicly available Washington University – Minnesota (WU-Min) Human Connectome 
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Project (HCP) data (Van Essen et al., 2013). Complete details of all HCP acquisition can be 

found online (https://www.humanconnectome.org/storage/app/media/documentation/s900/

HCP_S900_Release_Reference_Manual.pdf). Further details about the dataset and 

preprocessing methods can be found in the Supplementary Materials.

Quantification and Statistical Analysis—The methodological workflows for creating 

cortical and subcortical network partitions are displayed in Fig. 2a and Fig. 4a. Specifically, 

for both partitions, data were first preprocessed via HCP convention, followed by calculation 

of an average FC matrix (parcel-to-parcel for cortical data or parcel-to-voxel for subcortical 

data). A cortical partition was then calculated using a clustering algorithm and several pre-

determined (hard and soft) criteria, followed by a quantitative evaluation of network 

solutions. The initial cortical assignment steps are described in detail in forthcoming 

sections. In turn, this cortical network partition was then used to calculate subcortical 

network assignment. Here the subcortical voxel was assigned to the cortical network with 

which is was most highly correlated on average, followed by several quality assurance steps 

described below.

Resting-State Cortical FC Matrices—To sample data at the regional level, we used a 

recently-developed cortical parcellation (Glasser et al., 2016), which contains 180 

symmetric cortical parcels per hemisphere. This parcellation is defined in terms of surface 

vertices and is thought to be more accurate than prior parcellations due to the consistency of 

areal borders between data from different modalities and an accurate representation of 

cortical geometry for each subject via the CIFTI file format (Glasser et al., 2016). Each 

parcel varied in size and shape based on alignment between functional and anatomical 

borders across multiple imaging modalities. See Glasser et al. (2016) for details regarding 

region size and shape. For each subject, BOLD time courses were extracted from the 360 

independently identified parcels using Workbench. An average BOLD time course for each 

parcel was calculated by averaging across all vertices/grayordinates within that region. 

Subsequently, RSFC between each pair of parcels was calculated for each subject using 

Pearson correlation. A functional connectivity matrix for N regions is defined as the N×N 

matrix M, where M(i, j) contains the Pearson correlation of the time courses between region 

i and region j. In this way, a 360 × 360 RSFC matrix was formed for each subject. Finally, a 

single group average RSFC matrix was formed by averaging across all subjects in the 

cohort, and setting the diagonal to zero.

Network Detection Using Clustering Algorithm: Louvain Clustering Algorithm
—We sought to establish a neurobiologically principled approach to community detection 

driven by minimal assumptions and excluding qualitative decisions. Our approach was based 

roughly on (Cole et al., 2014a), which was adapted from methods proposed by Power et al. 

(Power et al., 2011). We identified three “hard” criteria for what we considered a principled 

network partition solution, with two additional “soft” criteria.

The hard criteria, as described in the Introduction, included: i) separation of primary 

sensory-motor cortical networks (visual, auditory, and somatomotor) from all other 

networks. This criterion is based on unequivocal evidence supporting the existence of these 

as functionally distinct (and fundamentally functionally meaningful) sensory and motor 
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systems in the human brain. If a network partition is to be neurobiologically-grounded it 

should pass this standard. Note that previous functional network partitions of the human 

brain have had difficulty separating auditory cortex from somatomotor cortex (Yeo et al., 

2011). Consistent with these prior observations, auditory cortex tended to be merged with 

somatomotor cortex for most of the tested algorithms and algorithm parameters. Notably, 

because the auditory network emerged only at a high resolution parameter (after most other 

potential networks of interest emerged), using any of a wide variety of known large-scale 

networks (e.g., the DMN or FPN) as additional hard criteria would not have altered the 

results. Further, the ease of identifying primary sensory-motor networks (due to their 

extensive characterization from over a century of neuroscientific investigation) suggests that 

this criterion will be highly replicable in future studies. ii) high stability (similarity of 

network partitions) across nearby parameters in the network detection algorithm. This 

criterion served as a heuristic for detecting likely low-noise-influenced partition solutions. 

iii) High modularity (high within-network connectivity relative to between-network 

connectivity). This final criterion is implicit in community detection algorithms, which 

attempt to optimize network partitions for modularity. However, we included this as an 

additional explicit quantitative criterion to ensure that optimizing for other criteria did not 

reduce modularity substantially. A putative network solution had to meet the three “hard” 

criteria to even be considered.

The two “soft” criteria for network partition selection included: i) We optimized the network 

partition with the constraint that the number of large-scale functional networks should be 

roughly similar to the number of networks identified in previous functional network 

solutions using RSFC data (Power et al., 2011; Yeo et al., 2011). These ranged from 7 

networks to 17. Importantly, this number of networks is largely consistent with the number 

of networks typically described in the human fMRI task activation literature, as well as the 

number of large-scale systems described in the animal neuroscience literature. Put 

differently, while statistically possible, a network partition with an order of magnitude finer 

granularity (e.g. >100 sub-networks) would not be considered. ii) We sought a network 

partition with non-primary networks (other than primary sensory-motor cortical networks 

that were part of the “hard” criteria our partition, e.g., frontoparietal cognitive control 

network, default-mode network) qualitatively similar to those that were previously identified 

using RSFC and fMRI task activations (Power et al., 2011; S. M. Smith et al., 2009; Yeo et 

al., 2015, 2011). Critically, these two soft criteria had only minimal influence on the 

finalized partition, since only the hard criteria were used to identify that partition. Instead, 

these criteria were more important for assessing community detection algorithms, wherein 

we determined if a given algorithm was providing results (without full parameter 

optimization) largely consistent with the RSFC, fMRI task activation, and animal 

neuroscience literatures. Notably, RSFC, fMRI task activation, and animal neuroscience all 

have weaknesses that are largely non-overlapping (e.g., movement confounds RSFC more 

than fMRI task activations), such that considering constraints across these sources of 

evidence strengthens our conclusions.

We started by applying the described criteria across a variety of community detection 

algorithms. Among the different algorithms explored were OSLOM (Lancichinetti et al., 

2011), k-means, hierarchical clustering, SpeakEasy (Gaiteri et al., 2015), InfoMap (Rosvall 
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and Bergstrom, 2008), and the Louvain algorithm (Blondel et al., 2008). Ultimately, the 

Louvain clustering algorithm method was selected for its ability to easily adjust the 

resolution of community clustering (i.e., the tendency for smaller communities to be 

detected), which allowed for optimization of the community clustering based on the “hard” 

criteria described above. This algorithm was also selected because produced solutions 

exhibited evidence in support of the “soft” criteria – a number of communities that were 

broadly similar in number and configuration to what was found in previous RSFC studies 

and in meta-analyses of fMRI task data. Briefly, the Louvain algorithm works in the 

following way: First, it searches for small communities by optimizing local modularity. 

Second, it combines small communities into nodes and builds a new network. Finally, this 

process is iteratively repeated until modularity changes minimally. Note that we used a 

modified version of the Louvain algorithm that can accomodate weighted graphs with both 

positive and negative weights (Rubinov and Sporns, 2011), which allowed us to avoid 

thresholding the RSFC data used by the algorithm. Ultimately, as with other community 

detection algorithms, the Louvain algorithm attempts to optimize for the strength of within-

community connections relative to the strength of between-community connections (i.e., 

modularity) (Blondel et al., 2008).

Iterative Louvain Clustering and Cluster Consolidation—We started by using a 

gamma (partition resolution) parameter of 1.0, since this is used as a standard resolution for 

the Louvain algorithm (Blondel et al., 2008). Initially, this parameter yielded a network 

partition with the auditory network merged with the somatomotor network, violating one of 

our “hard” criteria. We therefore initiated a search over gamma values based on the hard 

criteria described above. As a randomly seeded algorithm dependent on optimization, it is 

possible that one iteration of Louvain would fail to identify the global (or a near-global) 

maximum for community modularity. To address this issue, we ran 1000 randomly-

initialized iterations of Louvain for each gamma value (range of 1.2 to 1.4 in increments of 

0.005), using the Rutgers-Newark supercomputing cluster (Newark Massive Memory 

Machine). We assessed partition quality by quantifying the stability of the partition solution 

at each gamma value. Stability estimates were computed as the z-rand partition similarity 

(Traud et al., 2011) averaged across all iterations for a given gamma value. Thus, if the same 

parcels were more consistently assigned to the same networks across randomly-initialized 

iterations for a given gamma value then there would be a higher z-rand score for that gamma 

value, indicating higher partition stability. The randomly-initialized iteration with the highest 

average z-rand (i.e., highest mean similarity with all other iterations) was selected as the 

representative partition solution for that gamma value. Z-rand scores and a calculated 

modularity score for each generated partition were subsequently examined in the gamma 

stability analysis described below.

Partition Stability Calculation—For each gamma value, z-rand scores and modularity 

scores across all iterations were averaged to find representative z-rand and modularity 

values. Next, each mean z-rand score (quantifying partition stability across 1000 iterations) 

was multiplied by its corresponding modularity score to find a modularity-weighted z-rand 

score. The gamma value corresponding to the peak of the modularity-weighted z-rand score 

plot was selected, constrained by the criterion of finding a plausible number of networks 
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including primary sensory/motor networks (see Fig. 2b). The partition corresponding to this 

gamma value was further evaluated for validity and stability across a number of metrics 

detailed below.

Functional Network Validation and Quality Assessment for the Cortical 
Network Partition—To test the reliability of our network partition (in a distinct manner 

from the gamma stability analysis), we conducted an independent split-half validation 

analysis across two randomly selected subsamples of participants. The network detection 

algorithm was repeated with the same gamma value (1.295) that provided the initial partition 

solution (based on separation of sensory-motor systems, optimal modularity, and gamma 

stability), but now with two separate subsets of the data (N=168 and N=169) consisting of 

demographically matched subjects (see Results section for details on these matched data 

subsets).

To further quantitatively assess the final cortical network partition and validate the parcel 

assignments, we used several additional measures. First, a network assignment confidence 

score was calculated for each region to express the certainty with which that region could be 

assigned to a particular network (Wang et al., 2015). This confidence score was computed as 

the difference between the assigned network’s correlation value and the out-of-network 

correlation values for a region i:

Ci =
∑rs i, j

n j
−

∑rs i, k
nk

where Ci is the network assignment confidence score for region i (one of 360 brain regions), 

rs i,j is the Spearman correlation coefficient between the RSFC patterns of region i and 

region j in the same network, nj is the total number of other regions in regions i’s network, 

rs i,k is the Spearman correlation coefficient between RSFC patterns of region i and region k 

outside of regions i’s network, and nk is the total number of regions outside region i’s 

network. If a region’s RSFC pattern is very similar to that of the other regions in its assigned 

network, the confidence score will be high, but if it is also similar to other networks, the 

confidence score will be lower.

Second, in addition to these network assignment confidence scores, we calculated signal-to-

noise ratio (SNR) and participation coefficient (Rubinov and Sporns, 2010) (https://

sites.google.com/site/bctnet/measures/list), and correlated these measures to assess whether 

our network assignment results were affected by SNR (i.e. lower functional connectivity in 

dropout regions) and/or by nodes with extensive between-network RSFC that violate the 

assumption of network modularity (as assessed by the participation coefficient).

Third, RSFC pattern asymmetry was calculated to see how similar a region’s or network’s 

RSFC pattern was to that region’s homologue on the other hemisphere. Based on decades of 

evidence suggesting strong symmetry across hemispheres in RSFC patterns (Biswal et al., 

1995; Power et al., 2011; Yeo et al., 2011), we reasoned that high network symmetry (with 

the likely exception of the language network) was an indicator of network partition quality. 

In light of the language network being a likely exception, we additionally used this measure 
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to test the hypothesis that there would be especially high (left-lateralized) asymmetry for the 

language network. For each subject, we correlated each region’s (unilateral) RSFC pattern 

with that of its homologue (as identified by (Glasser et al., 2016)), and subtracted this value 

from 1. We subsequently averaged these RSFC pattern asymmetries by network. Finally, 

scores were averaged across subjects.

Fourth, a measure of inter-subject connectivity variability was used to indicate how similar a 

region’s functional connectivity pattern is across subjects. To calculate a region’s inter-

subject connectivity variability, the rank correlation for each subject’s RSFC pattern for a 

given region with all other subjects was calculated, resulting in a 337 × 337 (number of 

subjects X number of subjects) connectivity matrix. Averaging all values in this matrix to 

generate a mean pairwise similarity score “S” for each region, and subtracting this score 

from 1, resulted in a region’s inter-subject connectivity variability score (1-S).

Once these quality metrics were calculated, each parcel was assessed for reassignment (i.e. 

assigning a parcel to a different network than the one resulting from the Louvain clustering 

algorithm, based on quantitative assessment of its original assignment). We reassigned 

parcels if the reassignment increased their confidence scores. Reassignment was applied for 

only three of the 360 cortical regions. Two left hemisphere DMN regions (regions 26 and 

75) were re-assigned to LAN, and one left hemisphere LAN region (region 135) was re-

assigned to VMM (due to this resulting in higher confidence scores for all three regions). 

The left hemisphere LAN region (region 135) also failed to replicate on the split-half test, 

further indicating a poor initial assignment. The reported quality metrics for the partition 

were recalculated after reassignment of those three regions.

Subcortical Network Assignment—Once the cortical network partition was finalized, 

the subcortical assignment was computed using the cortical partition as a reference. To 

assign subcortical voxels to networks, FC matrices were first created for each subject 

containing the correlations between the 360 cortical parcels and 31870 grayordinates 

covering the entire subcortical CIFTI space. The group FC matrix was then calculated by 

averaging Fisher’s z-transformed Pearson correlation values across subjects. Next, the FC of 

each subcortical grayordinate (i.e. gray-matter vertices or voxels) was averaged across all 

parcels in each cortical network. In turn, the grayordinate was assigned to the network with 

the highest mean Fisher’s z-transformed correlation. This approach was chosen to account 

for the differences in cortical network size, as an unweighted approach would result in a bias 

towards networks with more cortical parcels.

To account for any signal bleed-over from the adjacent cerebral cortex or partial volume 

effects in the cerebellum, we removed cerebellar voxels within 2mm of the cortex from the 

initial network assignment (Supplemental Fig. S1). These effects were not prominent in 

other subcortical structures. We additionally performed cleanup steps of the raw network 

assignment due to low confidence in making inferences from very small clusters in fMRI 

data. To achieve cleanup, we removed isolated single-voxel parcels that did not share a 

network assignment with any adjacent voxels, and parcels of size 2–4 voxels that did not 

have a counterpart with the same network assignment within a 2mm radius in the 

contralateral hemisphere. The total number of voxels removed by this process and the map 
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of removed voxels are given in Supplemental Fig. S2. We also searched for 5-voxel parcels 

that would be removed under the same criteria. The difference achieved with the 5-voxel 

criteria was minimal. An additional 5 voxels, or 0.016% of the total subcortex, was flagged 

in the 5-voxel version (Supplemental Fig. S2), suggesting that the 4-voxel version was 

already fairly stable. To provide a complete functional atlas of the entire subcortical space, 

we used nearest-neighbour interpolation to reassign the voxels removed from network 

assignment in the previous steps. Lastly, parcels which shared a corner and had a continuous 

contralateral counterpart were combined.

Subcortical Network Assignment of Data with and without Global Signal 
Regression—Given the well-known concerns surrounding artifact removal from BOLD 

data, we also computed two a solutions of the subcortical network assignment using BOLD 

signal with and without global signal regression (GSR) performed on top of the canonical 

HCP-style de-noising (i.e. minimal preprocessing + FIX ICA, (Glasser et al., 2016)). 

Specifically, GSR was performed by regressing the global mean gray matter signal from 

each resting-state BOLD time series for each subject. We then repeated the network 

assignment for subcortical voxels using the same procedure as described above (“Subcortical 

Network Assignment”). The similarity between the two versions was quantified by 

calculating the proportion of each network in the original partition that was stably replicated 

with the GSR version (see Supplemental Fig. S4). Chance overlap was calculated using the 

hypergeometric test, as described below above (“Evaluating the Subcortical Network 

Assignment”).

Evaluating the Subcortical Network Assignment—The stability of the subcortical 

network assignment was tested using a split-half validation analysis, similar to the procedure 

performed for the cortical network partition. The same network assignment steps described 

above were performed independently for two separate samples (N=168 and N=169) 

consisting of matched subjects (Fig. 4a-b). To quantitatively compare the discovery and 

replication solutions, the proportion of voxels which were assigned to the same network in 

both solutions was computed. This was done before and after the described cleanup steps 

were performed (Fig. 4e-d). The proportion of voxels expected to overlap by chance in both 

solutions was calculated for each network, by using the hypergeometric test for proportions 

given the total number of voxels in the network and the total number of all subcortical 

voxels. 95% confidence intervals for chance were calculated with the Clopper-Pearson 

method (Clopper and Pearson, 1934).

Additionally, the asymmetry of the subcortical partition was evaluated. Asymmetry was also 

computed voxelwise because the network assignment for the subcortex was computed on 

per-voxel level, rather than per-parcel level (as with the cortex). A homologous pair of 

subcortical voxels was defined such that they had to be equidistant along the x-axis relative 

to the midline (y-axis). Observed symmetry was computed as the proportion of voxels in 

each subcortical network for which the homologous voxel was assigned to a different 

network. Chance asymmetry was calculated as the proportion of voxels in each network that 

would be expected to overlap between left and right hemispheres if the voxels were 

randomly assigned, given the number of voxels in the network and the total number of 
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voxels in the subcortex. Additionally, the proportion of each subcortical network in the left 

and right hemispheres was computed. Because anatomical connections to and from the 

cerebellum cross the midline at the level of the pons (van Baarsen et al., 2016) and 

functional representation (e.g. of somatotopic maps) is mirrored relative to the rest of the 

brain, the left and right cerebellar hemispheres were exchanged in this analysis.

Task Activation fMRI Analyses—We evaluated the correspondence of the identified 

networks using task fMRI data from a language processing task and a motor task in the same 

sample of subjects. Briefly, the language processing task consisted of two runs, each with 4 

blocks of a ‘LANGUAGE’ processing task, which consisted of three components: (i) 

Auditory sentence presentation with detection of semantic, syntactic and pragmatic 

violations; (ii) auditory story presentation with comprehension questions; (iii) Math 

problems that involved sets of arithmetic problems and response periods. Both the ‘Story’ 

and ‘Math’ trials of the LANGUAGE task were presented auditorily and participants chose 

one of two answers by pushing a button. Further details concerning the LANGUAGE task 

have been previously described in full by Barch and colleagues (Barch et al., 2013; Binder et 

al., 2011). Notably, Glasser and colleagues (2016) demonstrated that Area 55b, defined 

through multi-modal parcellation, was robustly activated in the ‘Story versus Baseline’ task 

contrast from the HCP’s ‘LANGUAGE’ task. Here we leveraged that contrast to validate the 

language system. Specifically, task-evoked signal for the LANGUAGE task was computed 

by fitting a general linear model (GLM) to preprocessed BOLD time series data. Two 

predictors were included in the model, for the ‘Story’ and ‘Math’ blocks respectively. Each 

block was approximately 30s in length and the sustained activity across each block was 

modeled (using the Boynton hemodynamic response function (Boynton et al., 1996)). In 

turn, three unique contrasts were computed for the LANGUAGE task: i) Story versus 

Baseline, ii) Math versus Baseline, and iii) Story versus Math. Here we focused on the 

‘Story versus Baseline’ contrast, as reported by (Glasser et al., 2016). The motor task used in 

the HCP consisted of two runs, based on the task protocol used by (Power et al., 2011; Yeo 

et al., 2011) and (Buckner et al., 2011; Choi et al., 2012). Each run was composed of 13 

blocks: 3 fixation blocks, 2 blocks of tongue movements, 4 of hand movements (2 right and 

2 left), and 4 of foot movements (2 right and 2 left), with each block lasting 12 seconds (10 

movements). Participants were given a 3 second visual cue at the start of each block to 

signal which body part to move. Here, we computed the foot and hand versus tongue 

contrasts to suppress visual and attentional effects in the task-related activation. As reported 

in (Buckner et al., 2011; Choi et al., 2012), while the movement versus fixation contrasts 

produced similar activation maps, the comparison of two movements removed nonspecific 

responses in both cortex and subcortex. Data, software, and the network partition are 

available here: https://github.com/ColeLab/ColeAnticevicNetPartition and https://doi.org/

10.5281/zenodo.1455791.

RESULTS

Cortical Network Partition

The overarching objective of this study was to identify a brain-wide large-scale functional 

network organization based on clusters of multimodally-defined cortical regions – the likely 
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next-lowest level of organization from the large-scale functional network level (Felleman 

and Van Essen, 1991; Glasser et al., 2016; Van Essen and Glasser, 2014). Since higher levels 

of organization emerge from the units at lower levels, increased accuracy in mapping brain 

regions (lower level) may yield more accurate large-scale brain networks (higher level). We 

therefore quantified functional networks based on regions recently identified via 

convergence across multiple modalities via both functional and structural criteria (Glasser et 

al., 2016), increasing confidence of their spatial precision. This yielded a cortical network 

organization (Fig. 1a and Fig. 1c) largely consistent with known and recently-identified 

functional networks, along with several previously-unidentified but highly robust networks.

Briefly, we used graph community detection to identify clusters of highly interconnected 

cortical regions based on RSFC (Fig. 2a; see Methods for details). We used a standard 

community detection algorithm that identifies communities by optimizing for modularity 

(high within-network and low between-network connectivity strength) (Blondel et al., 2008). 

Several principles were used to calibrate the definition of network communities as we 

searched over different “resolution” (gamma) parameters in the community detection 

algorithm: i) We required that primary sensory-motor cortical regions (visual, auditory, 

somatomotor) – which have been known for over a century to be functionally distinct neural 

systems (Fritsch and Hitzig, 1870) – would be identified as separate functional networks. 

Such separation was clear at the default “resolution” setting of the community detection 

algorithm (gamma=1) for separation of visual and somatomotor networks, but the auditory 

network was merged with the somatomotor network. We therefore increased the community 

resolution parameter until auditory and somatomotor networks separated. ii) We optimized 

for stability (similarity of network partitions across neighboring parameter settings) and iii) 

we optimized for modularity (high within-network and low between-network connectivity 

strength) (Fig. 2b; Supplemental Fig. S5). Note that we had a “soft” requirement (see 

Methods) that the major networks identified in the fMRI task activation and RSFC 

literatures (DMN, FPN, DAN, and CON) would be present, but these networks emerged 

with the above criteria (no additional steps necessary). This approach revealed 12 networks 

consisting of well-known sensory-motor networks, previously-identified cognitive networks, 

and several novel networks.

Well-known networks included primary visual (VIS1), secondary visual (VIS2), auditory 

(AUD), and somatomotor (SMN) networks. Previously-identified cognitive networks – 

networks identified in the last few decades – included the c ingulo-opercular (CON), default-

mode (DMN), dorsal attention (DAN), and frontoparietal cognitive control (FPN) networks. 

Two primary functional network atlases were used to identify these previously-identified 

networks: Power et al. (2011) (which was updated by (Cole et al., 2013)) and Yeo et al. 

(2011). Novel networks included the posterior multimodal (PMM), ventral multimodal 

(VMM), and orbito-affective (ORA) networks. We include additional analyses below to 

better establish the robustness of these networks, given that they have not (to our knowledge) 

been previously described. Notably, we also identified a language network (LAN), which 

has been known for over a century (Broca, 1861; Wernicke, 1874), yet has been missing 

from most previous atlases of large-scale functional networks (e.g. Power et al., 2011) and 

never extensively characterized subcortically. We include additional analyses below to 
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establish that this network is involved in language functions and is likely equivalent to the 

previously-characterized left-lateralized language network consisting of Broca’s area and 

Wernicke’s a rea (among other language-related regions).

Assessing Quality of Cortical Network Partition

We used a split-half analysis to estimate the reliability of the cortical network partition (Fig. 

2c). The identical algorithm (with identical parameters) was applied to a pseudo-random set 

of 168 subjects (selected from the total set of 337 subjects), and then independently to the 

remaining 169 subjects. The split-half sets were matched on a variety of demographics in 

order to reduce the chance that observed differences were driven by group differences of 

potential interest (e.g. age or gender). The 168 subjects were selected by first creating a 

random list of subjects then exchanging subjects between the groups such the 168 subjects 

were matched, at the group level, with the remaining 169 subjects on the following 

demographics: age, gender, handedness, and education. This analysis revealed a highly 

similar network partition across the the two independent matched samples (Fig. 2c): adjusted 

z-rand (Traud et al., 2011) of z=190.2 (p<0.00001) and 92.5% of regions with identical 

network assignments. These results demonstrate high reliability of the main cortical network 

partition.

To further quantitatively evaluate the cortical partition, we calculated a network assignment 

confidence score (Fig. 3a & c), inter-subject connectivity variability (Fig. 3b), network-level 

split-half overlap (Fig. 3d), and network RSFC pattern asymmetry (Fig. 3e & Fig. 8d) for 

each parcel and network. As shown in Fig. 3a & c, most networks exhibited broadly similar 

confidence, with a mean score of 0.36 (SD=0.08), indicating higher RSFC pattern 

correlation between a region and its assigned network than with other networks. Only ORA 

had a substantially lower confidence score (mean=0.19, SD=0.1), possibly as a result of 

lower SNR in regions assigned to the ORA network (mean SNR=152 with range 143–194) 

compared to other networks (mean SNR all networks=228, range 79–371). Note that it is 

possible for confidence scores to be negative, which would indicate more confidence in an 

alternative assignment than the one provided by the network partition. Thus, the positive 

confidence values across all networks indicates accuracy of the network assignments.

A fundamental assumption of network partition analyses is that the brain’s functional 

network architecture is highly modular (i.e., that it has minimal between-network 

connectivity). We reasoned that confidence scores – which closely reflect this modularity 

assumption – would be lower as a function of how much this assumption is violated. Based 

on this, we hypothesized that low confidence could reflect three potential sources, each 

driving real or apparent between-network connectivity: low SNR, high participation 

(Guimerà et al., 2005), or high intersubject variability. First, we reasoned that low SNR 

would result in additional (though likely weak) random connections, reducing the apparent 

clustering/modularity of connections and therefore decreasing confidence scores. Second, 

we reasoned that the modularity assumption would be violated by between-network 

connector hubs – which would have high partition coefficients (Guimerà et al., 2005; Power 

et al., 2013, 2011) – since such nodes do not fit neatly into a single network partition. 

Finally, we reasoned that high inter-subject variability could result in apparent low 

Ji et al. Page 14

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modularity via averaging connectivity of distinct brain regions (with connectivity to 

potentially distinct networks), lowering confidence scores. Our primary strategy for testing 

these hypotheses was to assess the relationship between these three factors and confidence 

scores.

We evaluated these possibilities, as shown in Fig. 3f. SNR and confidence scores were not 

significantly correlated (r=0.06, p=.29), which is inconsistent with the possibility that low 

SNR strongly affected confidence scores in these data. Regions with higher participation 

coefficients, a measure indicating how distributed a node’s edges are across networks 

(potentially violating the assumption of a modular network organization), exhibited lower 

confidence scores (r=−0.25, p<0.00001). This suggests that low confidence might be 

explained by connector hubs (regions connecting to multiple networks). Note that 

participation coefficient was calculated on the single-subject level, ruling out the possibility 

that high inter-subject variability drove the participation results.

Together, these results suggest network assignment quality was primarily influenced by high 

participation coefficient (strong RSFC with multiple networks) rather than low SNR. This 

suggests that the human brain violates modularity to some extent, reducing assignment 

confidence because some regions are connected to multiple networks. Note, however, that 

connectivity of single regions with multiple networks is not entirely surprising since the 

brain must somehow integrate functionality between networks, which requires variable inter-

network connectivity. These results suggest the degree of multi-network connectivity may be 

small overall, however, since participation accounts for only 6.25% of the linear variance in 

confidence scores (participation-confidence r=−0.25; r2=0.0625).

We also expected that low confidence could be driven by high inter-subject connectivity 

variability, which we calculated as the mean dissimilarity of a given region’s cortex-wide 

RSFC pattern across subject. This could have been driven by the kinds of subject-to-subject 

variability in RSFC patterns shown in several recent studies (Braga and Buckner, 2017; 

Gordon et al., 2017). Inconsistent with this being a major factor, we found a relatively 

homogeneous level of inter-subject variability across the Glasser parcels (Fig. 3b), with a 

mean variability score of 0.42 (SD=0.13) for the networks. Overall, most networks exhibited 

low inter-subject connectivity variability, relative to a maximum value of 1.0 (in which every 

subject’s connectivity pattern would differ completely from every other). One network with 

higher inter-subject variability was the VMM network (mean=0.59, SD of 4 VMM 

regions=0.006), but this network’s high confidence score suggests its networks assignment 

are nonetheless accurate overall. The ORA network also showed numerically higher inter-

subject connectivity variability between subjects compared to the other networks (mean=0.7, 

SD of 6 ORA regions=0.15), in concordance with this network’s lower confidence score. 

Note that rather than true inter-subject variability this may have been driven by somewhat 

lower SNR (i.e., greater measurement noise) in ORA regions (Spearman correlation between 

ORA inter-subject variability and SNR: r=−0.25, p<0.00001), likely due to MRI signal 

dropout from nearby sinuses. These results suggest some details are lost by using group-

level RSFC (rather than individual-level RSFC) to identify networks, but that most network 

assignments are likely accurate.
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We additionally assessed partition quality by quantifying inter-hemispheric asymmetry, 

under the assumption that most networks would be highly symmetric across the 

hemispheres. This assumption is based on the well-established observation that most cortical 

regions have high RSFC with their homologue in the other hemisphere, despite overall 

higher within-hemisphere RSFC and some variability in inter-hemispheric symmetry (Stark 

et al., 2008). This metric served as a “proxy” test of reliability, since we did not constrain the 

network partition to be symmetric. Asymmetry scores were calculated as the dissimilarity of 

cortex-wide RSFC patterns across hemispheric homologues (see Methods). Asymmetry 

results in Fig. 3e show that for most regions/networks RSFC patterns were very similar to a 

region’s/network’s homologue on the contralateral hemisphere (network mean=0.05, 

SD=0.04; all far below complete asymmetry of 1.0). An exception to this, which was 

expected based on the language neuroscience literature, was the LAN network having the 

highest cortical asymmetry score. This reflects the left lateralization of this network (see 

also Fig. 8 and additional analyses for LAN below), with 14 LAN regions on the left 

hemisphere vs. 9 regions assigned to LAN by the Louvain algorithm on the right 

hemisphere. Overall, this result further demonstrates the quality of the network partition, 

given that all networks showed substantial inter-hemispheric symmetry with the expected 

exception of the LAN network.

Subcortical Extension of the Cortical Network Partition

Previous functional atlases of the human brain have focused primarily on cortical network 

assignments. However, it is well established that vital neural computations are also 

implemented by subcortical regions. Furthermore, many of the subcortical nuclei form 

functional loops, via the thalamus, with cortical territories. Thus, we expanded our network 

mapping to subcortical structures to develop a comprehensive whole-brain functional 

network atlas. We built on recent efforts to extend cortical network definitions into 

cerebellum (Buckner et al., 2011) and striatum (Choi et al., 2012), but extended our network 

assignment to all subcortical structures, additionally including: thalamus, hypothalamus, 

amygdala, hippocampus, brainstem, and all of basal ganglia, in addition to all other 

subcortical nuclei (Fig. 1b). Together with the cortical partition this yielded a whole-brain 

solution for large-scale functional networks whose raw covariance matrix we present in Fig. 

1d and Supplementary Fig. S6-S7.

Briefly, we assigned each voxel to the network with which it shared the highest mean 

connectivity (using Pearson correlation) across cortical parcels. We then implemented a 

number of quality control cleanup steps to eliminate small parcels that may be noise-driven, 

or that may have been driven by partial volume effects near the edge of cerebellum (Fig. 4a; 

see Methods and Supplementary Fig. S8 for details). Parcels were also constrained to 

anatomical boundaries between major subcortical structures, as defined by Freesurfer, to 

conform to the gross anatomy of the subcortex. We computed a subcortical network solution 

using both resting-state fMRI data with and without GSR (hereafter referred to as wGSR 

and woGSR, respectively), due to concerns that low SNR in the subcortex may lead to 

extensive assignment of voxels to the visual networks (see Methods). The wGSR 

subcortical parcellation produced a largely symmetric solution with 358 parcels, presented in 

Fig. 4. This solution was highly replicable across split-half samples, both qualitatively (Fig. 
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4b-c) and quantitatively (Fig. 4d-e, see Methods). The proportion of voxels that were 

assigned to the same network in both Discovery (N=168) and Replication (N=169) samples 

was highly significantly above chance for all networks (Fig. 4d). After quality control 

cleanup steps were performed for each of these split-half solutions, the proportion of 

replicated voxels increased for all networks (with the exception of VMM, Fig. 4e). 

Critically, we found that all 12 cortical networks, including higher-order associative 

networks (such as the FPN and CON), were represented in the subcortex with predominantly 

symmetrical and robustly replicable assignments.

The woGSR parcellation also resulted in a highly symmetric and replicable solution 

(Supplemental Fig. S3 and Supplemental Fig. S4), despite the possibility of more noise 

being present due to global signal artifact. Voxelwise network assignment and cleanup steps 

were performed identically to the wGSR version, as described above. The woGSR 

parcellation produced 288 distinct subcortical parcels after all cleanup steps, and showed 

more extensive assignment of the visual networks. The number of voxels with stable 

assignments was significantly above chance for all networks given the total number of 

voxels in the subcortex.

To additionally verify the subcortical network partition and evaluate the wGSR versus 

woGSR versions, we compared the network assignments to Motor task activation maps 

computed in the same sample of subjects. This task has previously been used for localizing 

motor regions in both the cortex and subcortex (Barch et al., 2013; Buckner et al., 2011; 

Cole et al., 2016a; Yeo et al., 2011) within the boundaries of the SMN. In the subcortex, 

while both the wGSR version (Fig. 5b) and the woGSR version (Fig. 5c) overlap with task-

activated regions, the congruence of motor task activation with the wGSR version is higher 

both qualitatively and quantitatively (Fig. 5d). This effect was notable even with single task-

related contrasts. As an exemplar, Fig. 5e highlights the task activation in the cortex of the 

left foot (LF) versus Cue contrast, which falls cleanly within the contralateral (right) SMN. 

In the subcortex, the wGSR version of the parcellation clearly delineates the task-activated 

area in the contralateral thalamus (Fig. 5f) and the ipsilateral (left) cerebellum (Fig. 5h). 

While the SMN in the woGSR version of the parcellation largely occupies the same areas, 

the overlap with task-activated regions is noticeably less clean (Fig. 5g, Fig. 5i). Due to this, 

we present results using the wGSR version of the subcortical parcellation for our remaining 

analyses, although the woGSR parcellation is also available as part of our public release. 

The high degree of convergence between our derived whole-brain networks and task-related 

activation patterns is a strong indication that these networks (even in the subcortex, where 

FC values were lower) are functionally relevant.

Importantly, prior subcortical network assignment attempts did not incorporate the thalamus 

and the brain stem in their reported solutions. As noted, thalamic subnuclei are well-known 

to form functional circuits with cortical networks (Barbas, 2000; Zhang et al., 2008) and 

have been shown to exhibit robust patterns of diffusion MRI-derived probabilistic 

tractography with cortical territories (Behrens et al., 2003). Therefore, it was vital to 

demonstrate that the subcortical network solution captures the well-established thalamic 

nuclei configuration. Two established thalamic structures are the lateral geniculate nucleus 

(LGN), which receives initial visual inputs from the retina via the optic nerve and projects in 

Ji et al. Page 17

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an organized anatomical fashion to V1 in the mammalian neocortex; and the medial 

geniculate nucleus (MGN), which relays auditory information from the inferior colliculus to 

the auditory cortex. Therefore, we tested whether our thalamic solution included the LGN 

and MGN (Fig. 6a). As expected, we observed that the LGN was assigned to the primary 

visual network (VIS1) and that the MGN was assigned to the auditory network (AUD). 

Notably, the MGN was not assigned to the auditory network in the woGSR version of the 

partition (Fig. 6b). Structural and functional connectivity of the LGN (Fig. 6d, f-j) and MGN 

(Fig. 6e, k-o) parcels defined by the partition reveal connectivity with expected visual (e.g. 

superior colliculi, primary visual cortex) and auditory (e.g. inferior colliculi, primary 

auditory cortex) processing regions respectively.

Identification of Novel Functional Networks: Posterior Multimodal, Ventral Multimodal, and 
Orbito-Affective Networks

Three networks emerged from the reported network detection approach that, to our 

knowledge, do not correspond to previously-described large-scale networks in the human 

brain (Fig. 7). These networks include PMM (posterior multimodal), VMM (ventral 

multimodal), and ORA (orbito-affective) networks. We found converging evidence to 

support the robustness of all three networks. First, all three networks were present for both 

groups of subjects in the cortical split-half analysis (Fig. 2c). Second, all three networks had 

subcortical representations which were statistically significant at p<0.05 (with the exception 

of VMM) in a split-half replication of those assignments (Fig. 4d-e, Fig. 7, Methods). Third, 

the PMM and VMM networks were within one standard deviation of the cross-network 

mean confidence scores, suggesting equivalent confidence in these networks as better-

established networks. While the ORA network exhibited the lowest confidence score, it was 

still well above chance, consistent with ORA regions having higher RSFC among 

themselves than with regions of other networks. Fourth, the inter-subject variability across 

the PMM network RSFC patterns was near the mean value across all networks (PMM inter-

subject variability=0.41, cross-network mean=0.42), suggesting that PPM inter-subject 

variability was not appreciably different. In contrast, the VMM and ORA networks had 

somewhat higher inter-subject variability than the cross-network mean. While it is not 

possible to assess statistical significance of this result (due to this statistic being calculated 

across all subjects simultaneously, precluding the ability to use, e.g., t-tests), the high 

symmetry and replicability of these networks suggest these networks are well-defined. 

While we cannot altogether exclude the possibility that some of the subcortical network 

assignments were partially influenced by data smoothing (particularly in the case of VMM), 

together these results suggest that the three novel network identified here are robust and are 

therefore likely to be of broad functional relevance. It will nonetheless be important for 

future studies to further validate the existence of these network and better determine their 

functional roles.

Characterizing the Laterality and Function of the Language Network

As mentioned above, the network identified as a language network (LAN, including well-

known language-related areas such as Broca’s and Wernicke’s areas) showed high 

asymmetry for its regions’ cortex-wide RSFC patterns. To further test the hypothesis that 

this network carries out language-related functionality, we first analyzed the LANGUAGE 
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task fMRI data provided by the HCP to map the amount of overlap of the derived whole-

brain LAN network with language-activated grayordinates (see Fig. 8a-b for cortical and 

subcortical maps). This overlap was significantly higher than expected by chance (Fig. 8c), 

suggesting that these areas are indeed largely overlapping with language processing areas 

(>85% observed overlap). Second, we quantified the network’s asymmetry (see Methods) 

by calculating asymmetry for each cortical parcel (Fig. 8d) and subcortical voxel (Fig. 8e-f). 

Compared to other networks, the LAN network was appreciably more asymmetric in cortex 

(LAN vs VMM: t(336)=3.38, p=0.0008, LAN vs. mean of all other networks: p<0.00001, 

also see Fig. 8e). Further, there were more LAN parcels identified in the left hemisphere (14 

parcels) than the right hemisphere (9 parcels) of cortex. Also in subcortex, LAN emerged as 

one of the most asymmetric networks, as can be seen when comparing the proportion of 

non-overlapping subcortical voxels in left and right hemispheres. Similar left lateralization 

as in cortex was observed in subcortex when quantifying the proportion of total voxels in left 

and right hemisphere (left and right reversed for cerebellum, as expected). This asymmetry 

far exceeded chance levels (chance proportion of voxels in left subcortex/right cerebellum 

for all networks=0.50; proportion of voxels in left subcortex/right cerebellum for 

LAN=0.71; =8.878, p=0.0029). In turn, we focused on a single asymmetric left-lateralized 

LAN region, area PSL. RSFC seed maps of left and right PSL (Fig. 8g-h) were strikingly 

different, with left PSL showing high LAN connectivity and low CON connectivity, but right 

PSL showing the opposite pattern. The LAN regions overlapping with language task 

activations, observed strong left-lateralized lateralization, and qualitatively-distinct 

connectivity patterns in asymmetric regions together strongly support the hypothesis that 

this network implements language functionality.

Improved Reproducibility and Statistics of Language-Related Activation Using the 
Cortical-Subcortical Network Partition

We next sought to demonstrate the practical utility of the network partition and its beneficial 

impact on actual data analysis. The partition could be applied in a variety of ways, such as 

interpreting task-evoked activations or functional connections in terms of a canonical set of 

functional networks. For this demonstration we focused on the identification of a putative 

“language” network. If this mapping is veridical in relation to the language system, then we 

hypothesized two effects to emerge: i) There should be high overlap between the language 

network and the task-evoked signal produced by the ‘Story versus Baseline’ LANGUAGE 

task (demonstrated in Fig. 8); ii) There should be an appreciable statistical improvement in 

the ‘Story versus Baseline’ LANGUAGE task contrast when going from a ‘dense’ 

grayordinate-level effect to a parcellated effect (as shown for several language-related local 

areas by Glasser et al. (2016)) in language network regions. Additionally, if the identified 

language network indeed maps onto independently-defined language-related task-evoked 

fMRI signal, then there should be even greater statistical improvement if computing the 

GLM-derived task-evoked signal across the entire language network. Showing such a 

statistical improvement would demonstrate a powerful and empirically useful application of 

the network partition for detecting neurocognitive effects in a more robust way.

To address the second hypothesis, we calculated statistics for the ‘Story versus Baseline’ 

LANGUAGE task contrast after separately fitting the task GLM to: dense grayordinate-level 
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time series data (Fig. 9a-b, identical to underlay in Fig. 8a), time series data averaged within 

a given parcel (Fig. 9c-d), and time series data averaged within a given whole-brain network 

(Fig. 9e-f). As hypothesized, the t-statistic across the whole-brain LAN network was 

markedly higher when data were first averaged at the network level before fitting the task 

GLM, compared to fitting the task GLM on the ‘dense’ grayordinate le vel or parcel-level 

time series and then averaging across LAN regions (network t=24.71; parcel mean t=12.38, 

SD=10.91; dense mean t=8.50, SD=6.98; Fig. 9g). This effect was robustly present within 

the cortex (network t=24.71; parcel mean t=10.93, SE=11.66; dense mean t=8.74, SD=7.00; 

Fig. 9h) and the subcortex (network t=24.71; parcel mean t=1.45, SD=3.86; dense mean 

t=3.37, SD=3.72; Fig. 9i). Overall, t-statistics for all three LANGUAGE task contrasts were 

markedly improved by fitting the task GLM to parcel-level time series, rather than fitting to 

dense time series and averaging across parcels afterwards (Fig. 9j, note sigmoidal deviation 

from diagonal). Importantly, t-statistics were further improved when the task GLM was fit 

on network-averaged time series, compared to parcellating by network after fitting on dense 

(Fig. 9i) or parcel time series (Fig. 9l). This result strongly supports that the signal-to-noise 

ratio was substantially improved by first averaging BOLD time series data within the 

identified LAN network. Of note, this result also reinforces the inference that the LAN 

asymmetry reflects true lateralization. Together, these task-evoked effects add confidence to 

the identified language network definition and demonstrate the practical utility of the 

network partition, which is released publicly as part of this study.

DISCUSSION

The human brain is a unified dynamical computational system that, ultimately, can only be 

understood as a whole. Simultaneously, understanding any dynamical system requires 

identifying its functional components and their interactions. We therefore sought to build on 

previously-developed network partitions to create a whole-brain network partition, 

identifying large-scale network communities of brain regions across both cortex and, for the 

first time, all subcortical areas. We created this whole-brain partition as a resource to aid 

neuroscience research generally, and we are therefore releasing the partition (along with the 

data and code that produced it) to the neuroscience community (available at https://

github.com/ColeLab/ColeAnticevicNetPartition).

As with all neuroscientific methods there are limitations to the approach used here (detailed 

below), but also several advantages. First, we used a large dataset relative to most 

neuroscientific studies to date (337 subjects), increasing the effective SNR and the 

likelihood that the results will generalize to new groups of individuals. Second, we used 

multiple quality control metrics to ensure stability and reliability of the network partition, 

which were found to be fairly high by all applied standards. Third, we used a principled 

approach to decide on the network partition algorithm and associated parameters, involving 

both stability optimization and calibration of parameters based on well-established 

neurobiologically-grounded constraints (e.g. the existence of primary sensory-motor 

networks). Fourth, we extended the cortical network partition to subcortical structures, 

resulting in a comprehensive map of brain-wide functional networks. Finally, we used task 

fMRI data to demonstrate a practical advantage of using this network partition: an increased 

ability to detect network-level functional activations.
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Notably, previously published large-scale network partitions have already made a substantial 

positive impact on neuroscientific investigations across health and disease. We expect the 

network partition developed here to also be useful across a variety of neuroscientific 

investigations. For instance, the network partition could be used to interpret possible 

functions of a region-level activation using fMRI, EEG, or local field potentials. 

Alternatively, the network partition could be used in studies of network dynamics, placing 

interactions in a larger functional context to aid in summarizing and interpreting results. 

Another use of the network partition could be as a data reduction approach, increasing data 

processing efficiency while maintaining functionally-meaningful large-scale network units. 

Finally, this partition makes it possible to test hypotheses about brain-wide functional 

network organization, spanning cortex, striatum, thalamus, amygdala, hippocampus, 

brainstem, the cerebellum, and other structures. It is also notable that unlike the brain region 

and brain network levels, lower levels of organization such as the neuron or local circuit are 

not expected to generalize across individuals. This is due to the very low likelihood of 

functionally-equivalent individual neurons aligning anatomically between individuals. Thus, 

like identifying brain regions, characterizing large-scale brain networks provides units of 

brain organization that can provide a testbed for the following question, “what does this 

brain structure do functionally across individuals?” – a key question for generalized 

understanding of human brain function.

Extending Prior Network Partitions to Converge on a Global Characterization of Human 
Brain Network Organization

The network partition identified here is, as expected, similar in many ways to previously-

identified network partitions. However, there are several differences that provide novel 

discoveries regarding the large-scale network architecture of the human brain. Similar to 

both the Power et al. (2011) and Yeo et al. (2011) cortical network partitions, a variety of 

well-known sensory-motor and previously-discovered cognitive large-scale functional 

networks were identified. Common to both of these network partitions, we identified FPN, 

CON, DMN, DAN, visual, and somatomotor networks. Unlike Yeo et al. but similar to 

Power et al., we identified a separate auditory network consistent with the primary auditory 

cortical system. Notably, this auditory network was merged with the somatomotor network 

at various parameter settings of our network detection algorithm, consistent with the Yeo et 

al. result. This illustrates the difficulty of identifying the correct “data-driven” metrics when 

using a clustering algorithm – auditory and somatomotor regions are known to perform 

highly distinct functions yet their RSFC patterns were difficult to separate without explicitly 

forcing this neurobiologically-established separation.

We identified three networks that, to our knowledge, have not been previously identified: 

PMM (posterior multimodal), VMM (ventral multimodal), and ORA (orbito-affective). 

Unlike the language network, we did not predict the existence of these networks based on 

the prior literature. Importantly, lack of pre-existing evidence of the VMM and ORA 

networks was likely driven by signal dropout in the proximity of these networks, due to 

magnetic field inhomogeneities from nearby sinuses (Deichmann et al., 2003). The 

multiband fMRI data used here (Uğurbil et al., 2013) appears to have reduced the signal 

dropout near sinuses. This is likely due to smaller voxels (2 mm cubic voxels used here 
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rather than the standard-to-date 3+ mm voxels), which can reduce MRI signal dropout 

(Merboldt et al., 2000; Smith et al., 2013). The increased precision from using a cortical 

surface analysis (Anticevic et al., 2008), averaging across vertices within each parcel, and 

averaging with a large sample size likely all contributed to an increased ability to map RSFC 

in these dropout areas. While we found some evidence for lower SNR in these regions 

relative to other cortical regions, we also identified strong reliability of the networks using 

split-half validation (Fig. 2c & Fig. 3d) and found a symmetric, replicable and robust 

subcortical contribution to these networks, further validating these networks. It will be 

important for future studies to corroborate the existence of these networks, identify their 

functional roles, and enumerate the factors (such as voxel size) that affect the ability to 

detect them.

It is unclear at this point what functions these networks might perform, given that they 

represent a novel discovery. While we appreciate this partially reflects reverse inference, we 

used observations of the constituent parts of the networks to infer possible functionality and 

provide a label. This is most evident in the case of the ORA network, which overlaps with 

portions of cortex associated with “reward processing” functionality in posterior 

orbitofrontal cortex (Kahnt et al., 2011; Schultz, 2006). Corroborating this interpretation, 

ORA connected strongly with known reward-related areas in subcortex. These included the 

ventral striatum (Delgado et al., 2000; Schultz et al., 1992), midbrain nuclei consistent with 

the substantia nigra / ventral tegmental area (which contain dopamine neurons) (Fiorillo et 

al., 2003), and the globus pallidus (Justin Rossi et al., 2017). Further, this portion of cortex 

was modulated differentially by rewarding stimuli (Camara et al., 2010). This is consistent 

with a strong role for reward-related dopamine projections to ORA, suggesting strong 

reward processing functionality for this network.

The VMM network consists of four cortical regions on the ventral surface of the temporal 

lobe. The VMM extends into subcortex only minimally, with a cluster in the right ventral 

striatum and small bilateral clusters in the hippocampus. One possible function of this 

network is to represent higher-order semantic categories, consistent with studies of anterior 

(Rogers et al., 2006) and inferior temporal lobe (De Baene and Vogels, 2010). The novelty 

of this network reduces our ability to identify its functionality, however, such that it will be 

important for future studies to better determine what the functional specializations of this 

network might be.

The PMM network consists of bilateral dorsomedial parietal lobe, bilateral temporal-

parietal-occipital junction, and right dorsocaudal temporal lobe. The PMM also extends into 

a variety of subcortical locations. These locations include: bilateral amygdala, portions of 

the brainstem, the putamen, multiple portions of cerebellum, a small portion of the caudate, 

a small portion of thalamus, and a portion of the diencephalon consistent with the basal 

forebrain. Most of these subcortical locations were assigned symmetrically across 

hemispheres and showed strong split-half replication. This demonstrates that while these 

assignments were widespread they were nonetheless robust, suggesting the existence of 

previously-unknown widespread PMM circuits. One possible function of this network could 

be spatial navigation, given the importance of dorsomedial parietal lobe for spatial 

navigation (Marchette et al., 2014). Additionally, PMM might be important for identifying 
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and representing event structure in narratives, given that PMM regions were recently shown 

to represent long narrative structures during movie watching (Baldassano et al., 2017). It 

will be important for future studies to carefully map the PMM as identified here to particular 

functions such as spatial navigation and representing situational/narrative structures.

Our ability to map the ventral surface of cortex presented a unique opportunity, since most 

previous network partitions omitted these territories due to MRI signal dropout. We not only 

identified two novel networks in these dropout zones, but were also able to test for 

expansion of previously-identified networks into an extensive portion of cortex for the first 

time. We found that orbitofrontal cortex (OFC) was split into thirds, with nearly equal 

assignment of OFC parcels to FPN, DMN, and ORA. It is notable that so much of OFC was 

assigned to FPN given that the FPN is classically described as primarily lateral prefrontal 

cortex and parietal cortex. This result suggests that the task-rule-oriented representations in 

lateral prefrontal cortex (Cole et al., 2011; Stokes et al., 2013) likely interact extensively 

with action-outcome and stimulus-reward associations in OFC (Kahnt et al., 2011). Indeed, 

some nonhuman primate studies have suggested such interactions occur during task 

performance (Wallis and Miller, 2003). The present study suggests these interactions occur 

as a part of a global system likely specialized for cognitive control and associated goal 

pursuit (Cole et al., 2014b, 2013; Duncan, 2010). It will be important for future studies to 

more fully characterize the relationships between classic portions of FPN and these portions 

of OFC previously unassigned due to MRI signal dropout.

Mapping a left-lateralized brain-wide language network in the human brain

Unlike many previous network partitions, we identified a whole-brain network highly 

consistent with language functionality. This was based on the proximity of its regions to the 

well-established Broca’s and Wernicke’s areas, its left lateralization being consistent with 

known left lateralization of language functionality (Gazzaniga, 2005; Gazzaniga et al., 

1962), as well as its activation during a language task. Additionally, several of the regions 

included in this network were thoroughly investigated by Glasser et al. (2016), establishing 

these regions as distinct functional entities with clear language functionality. Notably, the 

Power et al. (2011) partition (updated and visualized more fully by (Cole et al., 2013)) 

included a network consistent with this language network, but labeled the “ventral attention 

network”. The present results suggest this network was previously mislabeled, since its 

connectivity pattern, anatomical location, and task activations are most consistent with 

language functionality.

One key feature of the language network identified here is its left lateralization. We found 

that the cortical language network was the most lateralized network in terms of RSFC 

pattern asymmetry (Fig. 3e, 8g, & 8h), that the subcortical voxels assigned to the language 

network were more left-lateralized than expected by chance (Fig. 8e & 8f), and that the 

language network overlapped more with language task activations than chance (Fig. 8a, 8b 

& 8c). Lateralization of language functionality is one of the most well-established findings 

in the human brain (Mesulam, 1998), making it somewhat surprising that this has not been 

emphasized in previous RSFC literature. A recent study (McAvoy et al., 2015) found that 

left-lateralized language functionality only emerged in their RSFC analysis when global 
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signal regression was not included as a preprocessing step. Inconsistent with this, however, 

the Power et al. (2011) network similar to our identified language network was left 

lateralized (with dorsal and medial frontal network assignments being more extensive in the 

left hemisphere), despite use of global signal regression. Thus, while not performing global 

signal regression may have assisted our identification of the language network, it was 

unlikely that avoiding global signal regression was necessary to identify this network.

Beyond simply counting more language-assigned parcels in the left hemisphere (14 left, 9 

right), our use of pattern asymmetry was important for precisely quantifying lateralization. 

RSFC pattern asymmetry revealed that several language network regions had highly distinct 

global patterns of RSFC with their right-hemisphere homologues. This striking qualitative 

difference across homologous parcels is illustrated in detail in Fig. 8g & 8h. This parcel, 

which is consistent with Wernicke’s area on the left, was assigned with high confidence to 

the language network on the left but with high confidence to CON on the right. Consistent 

with this assignment difference, many regions with low RSFC for the left hemisphere parcel 

are high for the right hemisphere parcel, and vice versa. Together these results demonstrate 

the strength of left lateralization of the language network, both in terms of the number of 

left-lateralized parcels, asymmetry of global RSFC patterns, as well as its subcortical 

contributions.

Mapping the complex relationships between subcortical structures and cortical networks

We found that all 12 cortical functional networks, including higher-order associative 

networks (such as the FPN and CON), were reliably represented across the entire subcortex 

and the cerebellum. This is consistent with known functional loops between all portions of 

cortex and thalamus (Behrens et al., 2003), which in turn loop through basal ganglia 

(Middleton and Strick, 1994) and cerebellum (Kelly and Strick, 2003). Also consistent with 

the observed widespread connectivity between cortex and subcortical nuclei, various 

subcortical nuclei involving a variety of neurotransmitters (e.g., substantia nigra, basal 

forebrain, raphe nucleus) are known to project broadly throughout cortex (Herlenius and 

Lagercrantz, 2004). Finally, regions such as amygdala (Barbas, 2000; Jolkkonen and 

Pitkänen, 1998) and hippocampus (Eichenbaum et al., 2007) are thought to project to and 

from multiple cortical networks. Importantly, most of what is known about these subcortical 

structures comes from non-human animal studies or localized functional neuroimaging 

studies in humans, with relatively few focused RSFC studies (Buckner et al., 2011; Choi et 

al., 2012). The reported results represent the first comprehensive attempt to assign each 

subcortical voxel to a given cortical network. In turn, we establish the replicability, stability, 

symmetry and task-evoked relevance of such a subcortical functional network solution. 

Nevertheless, there were some unexpected findings that will be important to follow up on in 

future research. First, we found that the language network exhibits notable connectivity with 

the amygdala. Second, we identified a large and robust subcortical contribution to the 

primary visual network, perhaps reflecting a distributed ‘attentional system’, involved in 

overt attention and wakefulness. Of note, we did explicitly enforce a separate of the V1 and 

secondary visual cortical networks. Recent work suggests that there may be some residual 

artifact associated primarily with visual and somatomotor systems (respiration, sleep, 

movement) (Bijsterbosch et al., 2017; Glasser et al., 2017). It may be possible that 
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assignment of some subcortical structures to VIS1 is inflated due to this artifact (perhaps 

due to eyes open vs. closed correlating with sleep+respiration changes). This current 

limitation that can be improved in future iterations of the partition by leveraging recently 

proposed advances in temporal de-noising that circumvents global signal removal (Glasser et 

al., 2017).

Importantly, prior subcortical network assignment attempts did not incorporate the thalamus 

and the brain stem in their reported solutions. As noted, thalamic sub-nuclei are well-known 

to form functional circuits with cortical networks (Barbas, 2000; Zhang et al., 2008) and 

have been shown to exhibit robust patterns of diffusion MRI-derived probabilistic 

tractography with cortical territories (Behrens et al., 2003). Therefore, it was vital to 

demonstrate that the subcortical network solution captures the well-established thalamic 

nuclei configuration. A ubiquitously established thalamic structure is the lateral geniculate 

nucleus (LGN), which receives initial visual inputs from the retina via the optic nerve and 

projects in an organized anatomical fashion to V1 in the mammalian neocortex. Therefore, 

we established that our thalamic solution included LGN. We observed a well-preserved 

correspondence of the thalamic network assignment whereby the LGN was encompassed by 

the primary visual network (VIS1) (see Fig. 6).

Limitations and opportunities for further improvement of the network partition

There are several limitations to the approach used here that represent important opportunities 

for future improvements to understanding the large-scale functional organization of the 

human brain. For instance, any network partition necessarily oversimplifies brain 

organization by removing/downplaying inter-network interactions. Nonetheless, it is useful 

to know the overall network organization while acknowledging the smaller/rarer interactions 

between networks. Additionally, this is not a fully exhaustive search over all possible 

network organizations. Our partition was likely not fully optimal due to the need to use 

heuristics to identify network organization (for computational tractability) (Blondel et al., 

2008; Girvan and Newman, 2002). This leaves open the possibility of more accurate 

network organizations in the future. Nonetheless, we assessed multiple algorithms and ran a 

large-scale parameter search, achieving a highly optimal and reliable network partition as 

quantified by a variety of quality assessment metrics.

Despite covering the whole brain (unlike most previous network partitions), we nonetheless 

maintained a cortical-centric approach. Specifically, we began by creating a cortical network 

partition, which was then extended into subcortical voxels by quantifying the relationship 

between subcortex with the cortical networks. This may introduce a cortico-centric bias as 

the subcortical solution is explicitly driven by defining the cortex partition first. Nonetheless, 

we used this approach to aid in bridging the currently cortico-centric view of human brain 

function to subcortical structures. We also used this approach given the historical utility of 

understanding subcortical functions based on connectivity with specific cortical structures. 

For instance, mapping cerebellar connectivity with cortex in macaque monkeys has aided in 

understanding functional specialization in cerebellum (Kelly and Strick, 2003). Furthermore, 

this approach has proved highly productive and impactful in prior attempts at mapping 

striatum and cerebellum onto cortical networks (Buckner et al., 2011; Choi et al., 2012). We 
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nonetheless expect that future research will benefit from a more even-handed partitioning of 

cortical-subcortical gray matter. This would involve creating functional-defined three-

dimensional brain parcels in subcortical structures, just as was done as an initial step in 

cortex (Glasser et al., 2016). These parcels would then be included in a community detection 

algorithm along with the cortical parcels. This may reveal distinct subcortical parcels from 

what we identified here, in addition to potentially distinct networks. Notably, it is possible 

that two functional parcels that are neighbors in anatomical space could be merged in our 

current approach if they were both assigned to the same network. Nonetheless, we expect 

that our approach has advanced understanding of subcortical structures, putting them in the 

functional context defined by large-scale cortical networks.

Additional improvements on the present network partition could stem from even more 

precisely defining the cortical parcels. Presently used parcels were identified based on 

convergence across multiple neuroimaging modalities (e.g., fMRI and structural MRI), 

likely limiting biases from any one modality. Nevertheless, certain decisions were made 

when deriving this parcellation that may be reconsidered in future. For instance, the Glasser 

parcels force the face and non-face representations in the primary motor homunculus to be 

merged (since primary sensory and primary motor regions were defined in part based on 

cytoarchitecture), even though it is clear that these portions of the motor homunculus have 

distinct RSFC patterns (Power et al., 2011; Yeo et al., 2011). Despite such potential 

limitations the use of multiple modalities when defining parcels by Glasser and colleagues 

likely reduced biases present in any one modality (e.g., RSFC).

There is evidence that global signal removal (GSR) is important for reducing respiratory and 

motion artifacts that plague RSFC (Power et al., 2017b, 2014). GSR was not used for the 

primary analyses in the cortex of the current study because Glasser et al.(2016) reported that 

GSR appreciably shifts RSFC gradients (relative to other modalities only minimally affected 

by respiratory/motion artifacts) used for identifying the cortical parcels, which could 

invalidate use of these regions in the present study. However, we used GSR in the subcortical 

parcellation to test the hypothesis that GSR could reduce the extensive assignment of low-

SNR subcortical voxels to the visual networks (Supplemental Fig. S3). As expected, the 

visual networks were less extensively represented in the version with GSR, but all networks 

were replicated significantly above chance in both the wGSR and woGSR versions. Because 

the wGSR version of the subcortical partition revealed known neurobiological structures 

such as the MGN as well as higher convergence of SMN with motor task activation, we 

present this version of the subcortical parcellation in our primary analyses, although many of 

the analyses using the woGSR version revealed comparable results (Supplemental Fig. S3-

S4). Importantly, GSR may serve to reduce artifact-related noise in particular in the 

subcortex of these HCP data. Other studies in the literature have demonstrated that GSR 

helps to reduce noise even in data that has undergone ICA-FIX (Power et al., 2017a, 2017b, 

2014), suggesting a need for further improvements in methods for removing global noise. 

Simultaneous with the present study an approach involving temporal independent 

components analysis (ICA) has been developed to remove global noise while leaving global 

signal of neural origin (Glasser et al., 2017). This results in RSFC with global noise 

distortions removed without GSR-driven distortions such as RSFC gradient shifts. Future 
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work should generate a revised version of the partition after the parcellation has been re-

computed using this new temporal ICA de-noising method.

We identified several previously-unidentified networks, finding at they replicated across 

independent sets of subjects. A major limitation of these discoveries, however, is the 

possibility that noise properties particular to the MRI sequences and scanner biased the 

results, driving the observed replication. It would be helpful to use alternative MRI 

sequences and scanners (or even highly distinct methods such as magnetoencephalography) 

to rule out this possibility in order to better validate these new networks. Additionally, these 

networks would be better validated if they were found to match coactivation patterns using 

task fMRI, as was the case with the language network being active during the language task 

and the somatomotor network during the motor task here.

Another opportunity for future improvement is to better characterize the hierarchical nature 

of brain network organization. This reflects the fact that network organization is likely 

hierarchical in the sense that each large-scale brain network could be broken down into 

smaller and smaller components, eventually reaching the single-region level. Critically, 

however, we used a principled approach to define our target level of organization by setting 

parameters to detect well-established primary sensory-motor cortical systems. Thus, we 

created a whole-brain network partition intentionally defined as being at (or near) the same 

level of organization as these well-established brain systems. We therefore expect that the 

calibration of our community detection algorithm likely identified networks in association 

cortex that are at the same (or a similar) level of organization, and are therefore of similar 

importance for higher-level cognitive functions as primary sensory-motor systems are for 

perceptual-motor functions. Notably, this principled calibration may have led some 

previously-identified networks (such as the “salience” network (Power et al., 2011; Seeley et 

al., 2007)) to not be identified here, likely because they are at a lower level of organization 

(e.g., salience network being part of the cingulo-opercular network identified here) than the 

brain systems used for calibration. It will be important for future network partition efforts to 

characterize the hierarchical sets of networks at different levels of organization.

Conclusions

The results presented here describe the current version (v1.0) of a novel whole-brain 

functional network characterization of the human brain. The primary purpose of this study is 

to describe the network partition dataset, which is now publicly available. We additionally 

reported a series of quality assessments and validations of the provided network partition. 

We found evidence that the partition was of high quality and exhibited robust replicability 

across independent samples as well as across cortical and subcortical structures. While we 

propose a number of important future improvements of the provided version 1.0, this 

constitutes the most accurate estimate of whole-brain functional network organization in 

humans to date. We additionally demonstrated the existence of novel functional networks, 

such as the lateralized language network, providing additional understanding of human brain 

organization. The result was successfully applied to a language fMRI task, demonstrating 

strikingly improved statistical power to detect task-related activations when using the 

network partition. Collectively, this study demonstrates the value of this whole-brain 
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network partition for scientific inquiry into human brain organization as well as specific task 

functionality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Large-scale functional network map of the entire human brain

• Cortical networks based on multiband fMRI, recently-identified regions

• Subcortical extension of networks covering all subcortical structures

• Multiple quality assessments demonstrate robustness of functional networks

• Network atlas released as public resource, providing framework for future 

studies
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Figure 1. Cortical-subcortical network partition.
A) The cortical network partition, as calculated with cortical surface resting-state fMRI data 

using graph community detection. We focused on identifying the network level of 

organization based on interactions among the next-lowest level of organization – functional 

regions. Network detection was calibrated based on identification of the well-established 

primary sensory-motor cortical systems (visual, somatomotor, auditory). Identifying clusters 

of multimodally-defined cortical regions replicated many known and revealed several novel 

large-scale networks. B) The network partition identified in cortex was extended to all 

subcortical gray matter voxels. Briefly, each voxel was assigned to the cortical network with 

the strongest average resting-state functional connectivity (FC) with that voxel. C) The 

region-with-region FC matrix within cortex, sorted by network assignment. The block-like 

structure along the diagonal provides a visualization of the greater FC strength within 
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(relative to between) each network. The darker off-diagonal lines reflect stronger cross-

hemisphere FC within networks (since left hemisphere regions are listed first within each 

network). D) The parcel-toparcel FC (covariance) matrix, including both cortical and 

subcortical parcels. Covariance is a nonnormalized version of Pearson correlation, used here 

to account for higher standard deviation of time series in subcortical parcels. We previously 

validated covariance as a valid alternative to Pearson correlation for 15 FC estimation (Cole 

et al., 2016b).
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Figure 2. Cortical partition solution workflow and statistics.
A) Schematic workflow used to create cortical partition. Data were preprocessed for 337 

subjects, functional connectivity was calculated between all regions for each subject, and an 

FC matrix was constructed for each participant. After averaging across subjects, the Louvain 

clustering algorithm was run with 1000 iterations to detect communities of networks for a 

range of gamma-values. The final cortical partition was a result of two criteria; a plausible 

number of networks that included primary sensory/motor networks had to be present, and 

the most stable and modular partition solution was chosen. B) Plots presenting the 

modularity-weighted z-rand scores and number of networks in the partition for each gamma-

value. The dashed line indicates at which gamma-value the community detection gave the 

most stable and (neurobiologically) plausible results. C) Split-half validation results for the 

cortical partition. The original dataset was split in two smaller sets consisting of matched 

subjects’ data and the Louvain clustering algorithm was run with the same parameters as for 
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the original partition. The two resulting network partitions were both highly similar to each 

other (92.5% overlap in network assignments) and highly similar to the original one 

presented in Fig. 1a, indicating that our partition is reliable. See main text for more details.

Ji et al. Page 38

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Quantitative assessment of cortical network partition.
A) Cortical map with Network Assignment Confidence scores, reflecting a region’s fc 

pattern similarity (calculated using Spearman’s rank correlation) to its assigned network 

divided by similarity to all other networks. These scores are used as a measure of certainty 

that the network to which a parcel was assigned is the correct one. The mostly homogeneous 

map indicates similar confidence across regions. Inset shows the distribution of confidence 

scores across the 360 cortical regions. B) Cortical map displaying Inter-Subject Connectivity 

Variability, a measure comparing the connectivity patterns for each region across subjects. 

Similar to panel A, most cortical regions appear to have highly similar values. Inset shows 

the distribution of intersubject variability 19 across the 360 cortical regions. C) Network 

averages of the parcel-level network assignment confidence scores (in panel A) are 

displayed. Error bars indicate standard deviations. Highest confidence scores were found in 

DMN and lowest in the new orbito-affective network (but note the lower SNR in this area). 
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D) Split-half replication assignment overlap by network. This quantifies the amount of 

overlap between the split-halves in Fig. 2c. E) Group FC Pattern Asymmetry, reflecting 

similarity between a region’s (unilateral) functional connectivity pattern and that of its 

supposed homologue region on the opposite hemisphere. Note the relatively high asymmetry 

for the language network (LAN) resulting from the leftlateralized language parcels in our 

partition. F) Scatterplot showing the relationship between Network Assignment Confidence 

score, Participation Coefficient and SNR for each parcel. See main text for the logic behind 

this analysis. The non-significant correlation between Confidence and SNR indicates that 

Confidence scores were not substantially affected by SNR. However, a negative correlation 

between Confidence and Participation Coefficient could indicate that lower confidence 

regions partly consist of connector hubs that are shared between multiple networks 

(violating modularity).
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Figure 4. Subcortical partition solution workflow and statistics.
A) Schematic workflow used to create subcortical partition. B & C) Split-half replication of 

the subcortical partition. The subcortical network assignment procedure was performed 

independently on two smaller sets of subjects matched for 22 demographic variables. D) 
Proportion of voxels in each network with replicated assignments, before any cleanup steps. 

Gray bars show proportion of voxels expected to replicate by chance given the size of each 

network. Solid and dashed red lines indicate upper and lower 95% confidence interval for 

chance, respectively. E) Proportion of voxels in each network with replicated assignments, 

after cleanup steps were performed (see Methods). The proportion of voxels with identical 

network assignments in both Discovery and Replication samples was significantly above 

chance for 11 out of the 12 networks (p<0.05), suggesting that the subcortical solution is 

highly replicable.
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Figure 5. Convergence of cortical and subcortical network partition and motor task activation.
The motor network is shown as evidence for valid extension of cortical functional networks 

to subcortical regions. A) Combined motor task responses for comparisons between two 

movements [(left foot > tongue), (left hand > tongue), (right hand > tongue), (right foot > 

tongue), and (tongue > right foot)] in the cortex, with the SMN outlined in green. B) 
Combined motor task responses in the subcortex, with the SMN from the wGSR subcortical 

parcellation outlined in fuchsia. Arrows highlight regions of convergence between task 

activation and SMN. C) Same data as B but with the woGSR SMN. D) Comparison of 

overlap between subcortical task activation and subcortical SMN from the wGSR and 

woGSR partitions. Dashed lines indicate 95% confidence interval for chance. Because the 

degree of convergence is higher for the wGSR version, we use this for all subsequent 

subcortical analyses presented in this study. E) Map of the left foot (LF) > tongue (T) 

contrast in the cortex, with the SMN outlined in green. F) Map of the left hand 24 (LH) > 
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right hand (RH) contrast in the thalamus, with the SMN from the wGSR subcortical 

parcellation and G) the SMN from the woGSR subcortical parcellation outlined in fuchsia. 

H) Map of the LH > RH contrast in the cerebellum, with the SMN from the wGSR 

subcortical parcellation and I) the SMN from the woGSR subcortical parcellation outlined in 

fuchsia. Note the ipsilateral representation of the hand movements in the cerebellum and the 

higher convergence of the wGSR parcels relative to the woGSR parcels with task activation.
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Figure 6. Thalamic network assignment.
A) Network assignment of the thalamus and ventral diencephalon from the network partition 

described in the manuscript. Top row highlights the horizontal, sagittal, and coronal views of 

the lateral geniculate nucleus (LGN), indicated by green arrows, and the medial geniculate 

nucleus (MGN), indicated by pink arrows. White stars mark the voxel seeded for functional 

connectivity in D and E. Bottom row shows cross-sectional view of the parcellation at 

different slices. B) Network assignment of the thalamus and ventral diencephalon from the 

parcellation performed without GSR (woGSR). Without GSR, the auditory network 

assignment of the MGN was not distinguishable in the parcellation. C) Network assignment 

of thalamus and ventral diencephalon using cortical network parcellation from Yeo et al. 

(2011). Note the lack of an auditory network in the Yeo et al. (2011) partition limits the 

ability to map thalamus relative to the new partition reported here. D) Cortical functional 

connectivity of the bilateral LGN parcels. VIS1 parcels are outlined in blue. Right 
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hemisphere is 26 shown; similar results were seen in the left hemisphere. E) Cortical 

functional connectivity of the bilateral MGN parcels. AUD parcels are outlined in blue. 

Right hemisphere is shown; similar results were seen in the left hemisphere. F) Probabilistic 

tractography (i.e. ‘structural’ connectivity) of the right primary visual cortex (V1) shown in 

flat cortical map. Seed grayordinate is highlighted with green dot and arrow. Cortical VIS1 

network parcels are outlined in blue. Tractography results were computed from diffusion 

MRI data obtained from the same subjects and averaged over the entire group. G) Magnified 

view of V1 seed (green dot) in flat cortical map. H) Inflated cortical view of V1-seeded 

probabilistic tractography results. I) Right LGN identified using the Jülich atlas (Bürgel et 

al., 2006; Eickhoff et al., 2005), similar coordinates also reported in (Linzenbold et al., 

2011; Marx et al., 2004; A. T. Smith et al., 2009). J) Tractography of V1 seed to subcortex, 

including the right LGN (green arrows). White stars mark the right LGN voxel from which 

functional connectivity was seeded in D. Connectivity was strongest between V1, right 

LGN, and other visual processing regions, including the superior colliculus and brainstem 

nuclei (blue arrows). Results were similar for the left LGN. K) Probabilistic tractography of 

the right primary auditory cortex, displayed in flat cortical map. Seed grayordinate is 

highlighted with green dot and arrow. Cortical AUD network parcels are outlined in fuchsia. 

L) Magnified view of primary auditory seed (green dot) in flat cortical map. M) Inflated 

cortical view of auditory-seeded probabilistic tractography results. N) Right MGN identified 

using the Jülich atlas. O) Tractography of primary auditory seed to subcortex, including 

right MGN (purple arrows). White stars mark the right MGN voxel from which functional 

connectivity was seeded in E. Connectivity was strongest between right auditory cortex, 

right MGN, other thalamic nuclei, and auditory processing regions such as the inferior 

colliculi (blue arrow). Results were similar for the left MGN. Abbreviations: Lat., lateral; 

Med., medial; Ant., anterior; Pos., posterior.
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Figure 7. New posterior multimodal, orbito-affective, and ventral multimodal networks.
A) Cortical parcels that are part of the posterior multimodal (PMM) network as detected by 

the Louvain clustering algorithm. B) Subcortical areas that were identified as PMM based on 

correlation with cortical regions. C) Cortical seed map of the PMM network showing 

connectivity to all other parcels (within-network connectivity is 1 in all PMM parcels). D) 
Cortical parcels that make up the orbito-affective (ORA) network as detected by the Louvain 

clustering algorithm. E) Subcortical areas associated with the ORA network. F) Cortical 

seed map of the ORA network showing connectivity of this network to all other cortical 

parcels. G) Cortical parcels that are part of the ventral multimodal (VMM) network as 

detected by the Louvain clustering algorithm. H) Subcortical areas associated with the 

VMM network. I) Cortical seed map showing connectivity of the VMM network to all other 

parcels.
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Figure 8. Language network evaluation.
A & B) Overlap between the language network (LAN, teal outline) from our resting-state 

based network partition and activations from an independent language processing task 

(collected in the same sample of 337 subjects) in cortical and subcortical regions. Pink areas 

indicate overlap between LAN and task activation. Underlay shows task activation t-

statistics from 30 the ‘Story versus Baseline’ contrast of the LANGUAGE task, replicating 

the analysis conducted by Glasser and colleagues (2016). Note that t-scores are shown here 

because the high statistics resulted in infinity values when converting to Z-scores. C) 
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Percentage overlap between LAN and task activation in the language processing task 

expected by chance (gray bar) and actual observed overlap in panels A&B (pink bar). 

Dashed lines indicate 95% confidence intervals. D) Cortical map displaying the asymmetry 

of parcels. The teal outline indicates the language network, which is highly asymmetric 

compared to the other networks, with left hemisphere dominance. E & F) Network 

asymmetry in the subcortex. Colored bars in Panel E show the proportion of subcortical 

voxels in each network that do not overlap when comparing left and right hemispheres. 

Complete asymmetry (no overlap) is indicated by dotted line at 100% for reference. gray 

bars indicate chance asymmetry calculated given the size of each network. Solid and dashed 

red lines indicate 95% upper and lower confidence intervals for chance respectively. Panel F 

displays the proportion of total voxels in left and right hemispheres for each network. 

Chance level for this measure is 50% for all networks; confidence intervals are calculated 

given the total number of voxels in each network. Because functional representation of left 

and right is reversed in the cerebellum relative to the rest of the brain (due to the midline 

crossing of projecting fibers (van Baarsen et al., 2016)), left and right cerebellar hemispheres 

were exchanged in calculating this measure. Like the cortical networks, panel E&F show 

that subcortical networks are symmetric in general, with a left lateralized LAN. In subcortex, 

VMM is also significantly asymmetric. G & H) Functional connectivity seed maps for left 

and right perisylvian language areas (PSL) based on resting-state data in 337 subjects. Both 

the left and right language seed area show strongest connections to ipsilateral regions.
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Figure 9. Demonstration of improved reproducibility and statistics with new partition.
Panels A-F show task activations for a language processing (LANGUAGE task ‘Story versus 

Baseline’ contrast) task at three different levels. A) Cortical activation map of dense-level 

analysis. B) Subcortical activation map of dense-level analysis. C) Cortical activation map of 

parcel-level analysis. Task fMRI data were first parcellated at the parcel level before model 

fitting. D) Subcortical activation map of parcel-level analysis. E) Cortical activation map of 

network-level analysis. Task fMRI data were first parcellated at the network level before 

model fitting. F) Subcortical activation map of network-level analysis. Yellow arrows 

highlight subcortical regions with a high task-activated t-score, which overlap with parcels 

in the LAN network. G) t-statistics (LANGUAGE task ‘Story versus Baseline’ contrast) 

shown in panels A-F significantly improve for the parcel-level vs. dense-level analysis, and 

for the network-level vs. parcel-level analysis in a combined cortex and subcortex analysis. 

Error bars are inter-parcel standard deviations. H) tstatistics (LANGUAGE task ‘Story 
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versus Baseline’ contrast) in cortex alone again show significantly 33 better results for the 

network-level analysis compared to the dense- and parcel-level analyses. I) t-statistics 

(LANGUAGE task ‘Story versus Baseline’ contrast) in subcortex showed substantially 

better results for the network-level analysis compared to the dense- and parcel-level 

analyses. Note that – in contrast to the results for cortex – parcel-level analysis in subcortex 

does not give an advantage over dense-level analysis. J) An improvement in t-statistics was 

found when task designs were fit on parcellated time series instead of on dense time series 

and subsequently averaging for parcels. Blue dots represent 718 parcels × 3 LANGUAGE 

task contrasts (‘Story versus Baseline’; ‘Math versus Baseline’; ‘Story versus Math’). Insets 

show the 360 cortical parcels × 3 contrasts (top, green dots) and 358 subcortical parcels × 3 

contrasts (bottom, purple dots) separately. K) Improvement in t-statistics was also found 

when fitting task designs on network time series compared to fitting on dense time series and 

then averaging for networks. Blue dots represent 12 networks × 3 LANGUAGE task 

contrasts. Insets show the 12 cortical networks × 3 contrasts (top, green dots) and 12 

subcortical parcels × 3 contrasts (bottom, purple dots) separately. L) A further improvement 

in t-statistics was found when fitting on networks versus fitting on parcels and then 

averaging for networks. Blue dots represent 12 networks × 3 LANGUAGE task contrasts. 

Insets show the 12 cortical networks × 3 contrasts (top, green dots) and 12 subcortical 

parcels × 3 contrasts (bottom, purple dots) separately.
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