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Abstract

The adolescent brain undergoes profound structural changes which is influenced by many factors. 

Screen media activity (SMA; e.g., watching television or videos, playing video games, or using 

social media) is a common recreational activity in children and adolescents; however, its effect on 

brain structure is not well understood. A multivariate approach with the first cross-sectional data 

release from the Adolescent Brain Cognitive Development (ABCD) study was used to test the 

maturational coupling hypothesis, i.e. the notion that coordinated patterns of structural change 

related to specific behaviors. Moreover, the utility of this approach was tested by determining the 

association between these structural correlation networks and psychopathology or cognition. 

ABCD participants with usable structural imaging and SMA data (N=4277 of 4524) were 

subjected to a Group Factor Analysis (GFA) to identify latent variables that relate SMA to cortical 

thickness, sulcal depth, and gray matter volume. Subject scores from these latent variables were 

used in generalized linear mixed-effect models to investigate associations between SMA and 

internalizing and externalizing psychopathology, as well as fluid and crystalized intelligence. Four 

SMA-related GFAs explained 37% of the variance between SMA and structural brain indices. 

SMA-related GFAs correlated with brain areas that support homologous functions. Some but not 

all SMA-related factors corresponded with higher externalizing (Cohen’s d effect size (ES) 0.06–

0.1) but not internalizing psychopathology and lower crystalized (ES: 0.08–0.1) and fluid 

intelligence (ES: 0.04–0.09). Taken together, these findings support the notion of SMA related 
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maturational coupling or structural correlation networks in the brain and provides evidence that 

individual differences of these networks have mixed consequences for psychopathology and 

cognitive performance.

1. Introduction

Brain structure undergoes remarkable changes in the second decade of life (Pfefferbaum et 

al., 2016), characterized by a reduction of gray matter and an increase in white matter 

(Giedd et al., 2015), with enduring impacts on cognition (Walhovd et al., 2016). Specifically, 

coordinated cortical thinning (Ducharme et al., 2016) is governed by evolutionary novelty 

and functional specialization (Sotiras et al., 2017), showing regional and temporal specificity 

with development (Houston et al., 2014). Evidence from several recent studies is consistent 

with the hypothesis that changes of brain structure are correlated across areas with similar 

function that recapitulate functional networks (Geng et al., 2017), which has been termed 

maturational coupling or structural correlation networks (SCNs), and has been proposed as a 

putative region-specific biomarker for developmental psychopathology (Saggar et al., 2015). 

Thus, brain regions that change together, i.e. increase or decrease in volume at the same rate 

over the course of years in the same individual, show structural covariance (Vandekar et al., 

2015) or anatomical connectivity across individuals, reflecting synchronized developmental 

change in distributed cortical regions (Alexander-Bloch et al., 2013). For example, 

developmental changes in maturational coupling within the default-mode network (DMN) 

align with developmental changes in structural and functional DMN connectivity 

(Khundrakpam et al., 2017). These structural changes can also be affected by environmental 

characteristics, such as childhood abuse (Gold et al., 2016) or urban upbringing (Besteher et 

al., 2017), and have direct implications for brain functions such as general cognitive ability 

(Vuoksimaa et al., 2016), behavioral inhibition (Sylvester et al., 2016), and subjective ratings 

of empathy (Bernhardt et al., 2014). Finally, these maturational differences seem to be 

triggered by regional variation of gene expression having a direct impact on cortical 

thickness (Fjell et al., 2015). Together, structural brain changes are a consequence of a 

coordinated process that reflects an interaction between environment and genes that impact 

specific neural functions.

Screen media activity (SMA) (e.g., watching television or videos, playing video games, or 

using social media) is among the most common recreational activity in children and 

adolescents (Kenney and Gortmaker, 2017; Loprinzi and Davis, 2016). As many as 99% of 

adolescents use the internet, approximately 85% engage in electronic gaming (Rikkers et al., 

2016), and nearly 97% of US youth have at least one electronic item in their bedroom (Hale 

and Guan, 2015). Relatively few studies have examined the relationship between SMA and 

brain structure or function. In one study with 18 year-old college students, individuals with 

internet gaming addiction showed less gray matter volume in bilateral anterior cingulate 

cortex, precuneus, supplementary motor area, superior parietal cortex, left dorsal lateral 

prefrontal cortex, left insula, and bilateral cerebellum (Wang et al., 2015) than matched 

controls. Among young adult female habitual internet users, more gray matter volume of 

bilateral putamen and right nucleus accumbens and lower gray matter volume of 

orbitofrontal cortex were associated with more frequent use (Altbacker et al., 2016). 
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Functional neuroimaging studies have provided some evidence that those with internet 

addiction fail to recruit frontal-basal pathways that are important in inhibiting unwanted 

actions (Li et al., 2014). However, there are no large studies in youth in general, and 

prepubescent adolescents in particular, focused on SMA and structural or functional brain 

characteristics.

There is some controversy about whether excessive SMA is associated with problematic 

outcomes among youth and adolescents. Whereas some have reported that frequent SMA is 

associated with internalizing psychopathology including depression (Goldfield et al., 2016) 

and anxiety (Holfeld and Sukhawathanakul, 2017), externalizing psychopathology 

(Cerniglia et al., 2016), greater risk behaviors (Fischer et al., 2011), and even suicide 

(Twenge et al., 2017), others have not found evidence for an association between SMA and 

problematic outcomes (Ferguson, 2015, 2017). Even fewer studies have examined the 

relationship between different types of SMA and brain structure in healthy youth. In a recent 

cross-sectional study of healthy children ages 8–12, time spent reading was positively 

correlated with higher functional connectivity between the Brodmann Area 37 and left-sided 

language, visual, and cognitive control regions, but screen time was related to lower 

connectivity between the left visual word form area and regions related to language and 

cognitive control (Horowitz-Kraus and Hutton, 2017). However, this study had a small 

number of participants. The goal of this investigation was to determine whether SMA is 

related to specific SCN, i.e. whether exposure to SMA correlates to specific brain areas 

across cortical thickness, volume, and sulcal depth. Moreover, the second goal was to 

determine whether such SCN can be related to individual differences in psychopathology 

and cognition. Based on the maturational coupling hypothesis (Alexander-Bloch et al., 2013; 

Raznahan et al., 2011), i.e. coordinated patterns of structural change related to specific 

behaviors, we hypothesized that those individuals engaged in significant SMA relative to 

those with less SMA exposure would show greater maturity in sensorimotor areas, i.e. lower 

cortical thickness associated with SMA in primary sensory and motor areas. Moreover, 

based on the emerging findings of disorganized SCNs in psychiatric populations (Wang et 

al., 2016; Xia et al., 2018), we hypothesized that SMA-related SCNs related to mismatch 

between sensorimotor and executive and value-based processing areas are associated with 

psychopathology or cognitive performance.

2. Materials and Methods

The Adolescent Brain and Cognitive Development Study (ABCD) is a multi-site, 

longitudinal neuroimaging study following 9–10 year-old youth through adolescence. The 

ABCD study team employed a rigorous epidemiologically informed school-based 

recruitment strategy, designed with consideration of the demographic composition of the 21 

ABCD sites and the US as a whole (Volkow et al., 2017). The total sample size for the 

ABCD Study is projected to be 11,500; the first data release (February 2018) included 4,524 

youth who completed the baseline protocol before September 2017, and is the basis for these 

analyses (https://ndar.nih.gov/study.html?id=500, dx.doi.org/10.15154/1412097, accessed 

3/22/2018).
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2.1. Screen Media Activity (youth-report):

Youth were asked to indicate how long they were engaged in the following SMA activities 

during the weekday and weekend: (1) Watch TV shows or movies? (2) Watch videos (such 

as YouTube)? (3) Play video games on a computer, console, phone or other device (Xbox, 

Play Station, iPad)? (4) Text on a cell phone, tablet, or computer (e.g. GChat, WhatsApp, 

etc.)? (5) Visit social networking sites like Facebook, Twitter, Instagram, etc.? (6) Video chat 

(Skype, FaceTime, etc.)? Seven potential answer choices included: none, < 30 minutes, 30 

minutes, 1 hour, 2 hours, 3 hours, and 4+ hours. In addition, two questions that were 

included in the analyses focused on specific types of videos and games: (1) How often do 

you play mature-rated video games (e.g., Call of Duty, Grand Theft Auto, Assassin’s Creed, 

etc.)? (2) How often do you watch R-rated movies? Four potential answer choices included: 

(1) never, (2) once in a while, (3) regularly, and (4) all the time. The youth report was used 

in the multivariate analyses to characterize and quantify SMA.

2.2. Mental Health Symptoms (parent report):

Youth’s behavior was assessed using the Child Behavior Checklist (CBCL) (Achenbach, 

2009). The CBCL’s syndrome scales t-scores of externalizing, and internalizing 

psychopathologies were used for the analyses.

2.3. Cognition (youth performance):

The neurocognitive assessment included the NIH Toolbox (Luciana et al., 2018). For this 

report, measures of fluid intelligence (Li et al., 2004) (i.e., those abilities that rely on solving 

problems, thinking, acting quickly, and encoding new episodic memories) comprised of the 

Toolbox Pattern Comparison Processing Speed Test, List Sorting Working Memory Test, 

Picture Sequence Memory Test, Flanker Task, and Dimensional Change Card Sort Task. 

Crystalized intelligence (i.e., those abilities that are more dependent on experience, 

representing accumulated store of verbal knowledge or skills and rely more heavily on 

education and cultural exposure) was measured with the Toolbox Picture Vocabulary Task 

and Oral Reading Recognition Task (Akshoomoff et al., 2013).

2.4. Structural Image Processing:

All structural neuroimaging processing was completed using FreeSurfer version 5.3.0 

according to standardized processing pipelines (Casey et al., 2018). Subjects that did not 

pass FreeSurfer Quality Control measure were excluded from further analyses (n= 247; 5% 

of total sample), which left n=4,277 participants. Cortical reconstruction and volumetric 

segmentation was performed by the ABCD Data Acquisition and Integration Core using the 

FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/, accessed 3/22/2018). 

Details of these procedures are described in prior publications (Dale et al., 1999; Fischl et 

al., 1999). Briefly, this process includes removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure (Segonne et al., 2004), automated Talairach 

transformation, segmentation of the subcortical white matter and deep gray matter 

volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles) 

(Fischl et al., 2002), intensity normalization, tessellation of the gray/white matter boundary, 

automated topology correction (Fischl et al., 2001), and surface deformation following 
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intensity gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at 

the location where the greatest shift in intensity defines the transition to the other tissue class 

(Fischl and Dale, 2000). Images were registered to a spherical atlas, which is based on 

individual cortical folding patterns to match cortical geometry across subjects and the 

cerebral cortex was parcellated into 34 regions per hemisphere based on the gyral and sulcal 

structure (Desikan et al., 2006). Cortical thickness was measured as the shortest distance 

between the pial and the white matter tessellated surfaces (Dale et al., 1999). For sulcal 

depth, regions that moved outward during inflation were positive and represent the depths of 

sulci, and regions that moved inward were negative and represent the height of gyri (Fischl 

et al., 1999). FreeSurfer morphometric measures are related to histological measurements 

(Cardinale et al., 2014) and demonstrate good test-retest reliability (Han et al., 2006; Iscan et 

al., 2015).

2.5. Statistical Analysis:

All statistical analyses were conducted in R 3.4.0 (2017–04-21)(2010) using RStudio (Team, 

2016b) and RMarkdown (Team, 2016a). Descriptive statistics were obtained using the 

tableone package in R (Yoshida and Bohn., 2017). Group Factor Analyses (GFA) were 

conducted using the R package GFA (Leppäaho et al., 2017). Mixed-effects model analyses 

were conducted using the R package gamm4 (Wood, 2017). Missing data were imputed 

during the GFA; however, all mixed model analyses were conducted with complete cases 

only. All R and R Markdown scripts are available as html documents in the supplemental 

materials.

2.6. Group Factor Analysis:

Group factor analysis (Klami et al., 2015) identified latent variables (LVs) related to SMA, 

cortical thickness, sulcal depth, and gray matter volume. The goal of GFA is to find factors 

that separate relationships within groups of variables from those between groups. Thus, 

given a collection X1,...,XM of M groups of variables of dimension D1,...,DM, the task is to 

find K < D1+ … + Dm factors that describe dependencies between multiple groups Xm, 

while allowing for within-group factors that account for covariance unique to each group. 

The GFA solution differs from canonical correlation analysis or standard exploratory factor 

analysis (EFA) by utilizing a Bayesian inferential framework to place an Automatic 

Relevance Determination (ARD) prior on the factor solution (Tipping, 2001). The ARD 

prior assumes a low-rank representation of the factor loadings. The main advantages of GFA 

are that (i) it is conceptually simple, essentially a Bayesian EFA model which differentiates 

within-group from between-group associations, and (ii) it enables factor analysis in 

scenarios with two or more groups of data, giving factor solutions not driven by method 

variance particular to one variable grouping. The solution comprises as a set of factors that 

contain a projection vector for each of the variable groups having non-zero weights for that 

factor. The number of factors presented here were chosen based on SMA loadings with brain 

structure variables and accounting for at least 1% of the variance across all variable 

groupings.
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2.7. Generalized Linear Mixed Models:

Subsequent association analyses were conducted within a Generalized Linear Mixed Models 

(GLMM) framework. Specifically, GFAs that accounted for at least 1% of the variance 

across SMA and structural brain imaging estimates were used as independent variables to 

predict the dependent variables (CBCL-Internalizing, CBCL-Externalizing, Cognition-Fluid 

Intelligence, Cognition-Crystallized Intelligence). All variables were standardized to zero 

mean and unit variance to be able to calculate coefficients that correspond to Cohen’s d 

effect sizes. We used the R gamm4 library (Wood, 2017), estimating the parameters of the 

mixed model using Maximum Likelihood Estimation (MLE). Site and family nested within 

site were used as random effects and age, sex, race/ethnicity, parental education, marital 

status, parental income, parental age, and body mass index were used as covariates. Model 

comparisons were conducted using the anova function in R and the Akaike’s Information 

Criterion (AIC).

3. Results

3.1. Demographics and sample characteristics.

Table 1 shows general demographics of the sample by quartiles of youth-reported total 

SMA. First, there was no difference in average age across the quartiles of screen time. 

Second, males were more frequently in the higher quartiles. Third, youth in the higher 

quartile had a higher BMI. Fourth, Black and Hispanic youth reported significantly more 

screen time use than White and Asian youth. Fifth, parents of youth in the higher quartiles 

were slightly younger, less well educated, were less likely to be married, and had lower 

household income.

3.2. Group factor analysis (GFA) relating SMA to structural estimates.

Cortical thickness (Supp. Figure 1), sulcal depth (Supp. Figure 2), and gray matter volume 

(Supp. Figure 3) distributions did not show excessive extreme values and were similar to 

those previously reported (Tamnes et al., 2017; Vandekar et al., 2015). Examining the 

correlational structure between SMA variables, cortical thickness, sulcal depth, and gray 

matter volume revealed that variables are relatively strongly correlated within variable 

groupings, i.e. within a particular measurement domain, but weakly correlated across groups 

with sulcal depth being the exception showing relatively weak correlation within the group 

(Suppl. Figure 4). The GFA extracted 132 factors accounting for 58% of the variance (Suppl. 

Figure 5a) of which 10 factors (each of which accounted for > 1% of the variance) 

accounted for a total of 37% of the variance between SMA and structural brain indices 

(Supp. Figure 5b) that were strongly orthogonal (Supp. Figure 6). Only the four SMA-

related GFAs that accounted for >1% of the variance across all groups were used in 

subsequent analyses (i.e., GFAs 1–3, 5, which will now be referred to as the 4th GFA).

The first SMA-related factor, which accounted for about 16% percent of the variance (Figure 

1), loaded positively on SMA and negatively on both cortical thickness (most negative for 

occipital areas and least for anterior cingulate) and GMV (most negative for orbitofrontal 

areas and least for entorhinal and anterior cingulate) with a mixed loading on sulcal depth 

(most positive on posterior cingulate, most negative for medial orbitofrontal and temporal 
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pole). The second SMA-related factor, which accounted for 9% of the variance loaded most 

strongly on gaming with a negative loading on thickness (most negative for superior frontal 

areas and least for visual cortical areas) but a positive loading on GMV (most positive for 

orbitofrontal areas and least temporal pole) and a mixed loading on sulcal depth (most 

positive on superior frontal cortex, most negative for posterior cingulate) (Figure 2). The 

third SMA-related factor, which accounted for 2% of the variance, loaded strongly on all 

SMA with mixed and selective loadings on cortical thickness (most negative for visual areas 

and most positive for temporal and orbitofrontal areas), sulcal depth (most posterior parietal 

areas, most negative for primary visual cortex), and volumes (most positive for posterior 

cingulate and temporal cortex, most negative for primary visual cortices) (Figure 3). The 

fourth SMA-related factor, which accounted for 2% of the variance, also loaded positively 

on SMA (relatively more on social media activity) and selectively on some areas for cortical 

thickness (most negative for hippocampus and most positive for visual cortices), sulcal depth 

(most negative for fusiform area and most positive for visual areas) and volumes (most 

negative for inferior temporal cortex, most positive for primary visual cortices) (Figure 4).

3.3. Generalized mixed models predicting psychopathology and cognition.

Mixed model analysis showed that the SMA-related GFA model for predicting overall 

internalizing behaviors (df=25, AIC: 11726, 2.53% accounted covariance(AC)) did not 

significantly improve over the base model (df=21, AIC=11727, 2.35% AC) (Chî2 = 9.2492, 

p=0.05516), that comprised age, sex, BMI, race/ethnicity, parental education, parental 

marital status, parental age, and parental income (Figure 5). In comparison, the SMA-related 

GFA model (AIC=11705, df=25, 4.36% AC) for predicting overall externalizing behaviors 

significantly improved (Chî2 = 48.081, p= 9.076e-10) the base model (df=21, AIC=11746, 

3.29% AC). Specifically, those individuals with higher SMA-related GFA 1 (β=0.059) and 

GFA 4 (β=0.095) scores had significantly higher externalization scores (see Figure 6). The 

SMA-related GFA model for predicting fluid intelligence (df = 25, AIC=10333, 10% AC) 

significantly (Chî2 = 34.181, p= 6.842e-07) improved over the base model (df=21, 

AIC=10359, 9.2% AC). Specifically, those individuals with higher SMA-related GFA 2 

(β=0.043) had higher fluid abilities whereas those with higher SMA-related GFA 4 (β=

−0.086) scored lower on fluid abilities (Figure 7). Lastly, the SMA-related GFA model for 

predicting crystalized intelligence (df = 25, AIC: 9878.6, 19.1% AC) significantly (Chî2 = 

87.655, p= 2.2e-16) improved the base model (df=21, AIC: 9958.3, 17.2% AC). Specifically, 

those individuals with higher SMA-related GFA 1 (β=−0.109) and higher SMA-related GFA 

4 (β=−0.080) had lower crystalized abilities whereas those with higher SMA-related GFA 2 

(β=0.0871) showed better performance on crystalized abilities (Figure 8).

4. Discussion

This investigation applied a multivariate exploratory approach to the first data release of the 

ABCD study (1) to parse the relationship between SMA and structural brain indices (i.e., 

cortical thickness, sulcal depth, and gray matter volume) and (2) to evaluate its impact on 

psychopathology and overall cognitive functioning. First, the Group Factor Analysis 

extracted four SMA-related factors that integrated across cortical thickness, sulcal depth, 

and gray matter volume. Second, these factors revealed that different brain regions 
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supporting similar functions were correlated with SMA. Third, some but not all of the 

factors related to SMA were related to greater externalizing as opposed to internalizing 

psychopathology and were predominately related to crystalized intelligence and, to a lesser 

extent, fluid intelligence. Taken together, this brain behavior investigation shows that SMA 

is significantly related to brain structure with mixed consequences for psychopathology and 

cognitive performance.

4.1. Screen Media Activity and Brain Structure

The SMA-related GFAs linking to brain structure showed the greatest effect size and the 

most consistent loadings across factors for visual areas including occipital cortex, calcarine 

areas, and other primary visual cortices. Thus, those individuals with significant exposure to 

activities that engage the visual system (TV or video watching, gaming, and social network 

activities) show structural patterns suggestive of greater maturation in the visual system (i.e., 

thinner cortex, reduced volume, and a more complex pattern of changes in sulcal depth). 

Several studies have shown that maturational patterns show a strong covariance across brain 

areas of similar function (Alexander-Bloch et al., 2013; Geng et al., 2017; Sotiras et al., 

2017). Specifically, several investigations have suggested that homologous brain areas 

(Khundrakpam et al., 2017) undergo coordinated cortical thinning guided by evolutionary 

novelty and functional specialization (Sotiras et al., 2017). Moreover, these structural brain-

related changes have been related to individual differences for specific brain areas, e.g. the 

anterior cingulate to behavioral inhibition (Sylvester et al., 2016), insula to empathy 

(Bernhardt et al., 2014), ventromedial prefrontal cortex to anxiety (Newman et al., 2016), 

prefrontal cortex to levels of depression (Vijayakumar et al., 2017), and general cortical 

thinning to personality characteristics (Ferschmann et al., 2018). Other investigators reported 

altered resting state connectivity patterns between sensorimotor and cognitive control 

regions as function of screen-based media use and suggested that excessive screen time may 

adversely affect cognitive control (Horowitz-Kraus and Hutton, 2017). The current 

investigation adds an important new element to these prior studies. Specifically, SMA is 

related across subjects to areas that are important for sensory processing but also for higher 

order cortical functions, i.e. the prefrontal cortex and posterior cingulate. However, it is 

important to point out that SMA is related to several correlated brain structural patterns that 

are orthogonal, i.e. the latent variables describing the relationship between brain structure 

and SMA are not correlated. Thus, screen media activity cannot be reduced to a 

unidimensional impact on brain structure. Taken together, although there is some evidence 

that SMA-related latent variables are associated with more psychopathology and poorer 

performance on cognitive tests, there are other latent variables that show no such 

relationship. Thus, it is difficult to conclude that SMA related brain structural characteristics 

have uniformly negative consequences.

4.2. Psychopathology, Cognition, and SMA Related Brain Structures

The complex relationship between SMA and brain structure is further supported by 

examining its psychopathological and cognitive correlates. There was little evidence that 

SMA related brain structure differences were associated with internalizing pathology, i.e. 

increase in anxiety, depression, or other avoidance or withdrawal behaviors. Some have 

suggested that reduced volume and cortical thickness in frontolimbic regions may serve as a 
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neurobiological predictors of emergent internalizing psychopathology in adolescence (Jones 

et al., 2017). However, others have observed delayed thinning in the ventromedial prefrontal 

cortex in high anxious children (Newman et al., 2016). Thus, internalizing psychopathology 

may play a role in the development of cortical structures during adolescence; however, the 

current ABCD sample provides little evidence that SMA contributes to brain structure 

characteristics that can be related to internalizing behaviors. In comparison, we did find a 

strong relationship to externalizing psychopathology. Specifically, those youth who had 

higher scores on GFA 1 and 4, i.e. had thinner occipital cortices and smaller volume in 

orbitofrontal areas as well as thinner hippocampi and smaller inferior-temporal cortical 

volumes, showed greater levels of externalizing psychopathology. Some investigators have 

reported, among other areas, increased externalizing in individuals with thinner 

parahippocampal gyrus (Gold et al., 2016), whereas others showed that youths with conduct 

disorder had reduced cortical thickness in the superior temporal gyrus and sulcal pathology 

in orbitofrontal cortex, as well as increased cortical folding in the insula (Fairchild et al., 

2015). The current study adds to these findings that some of these effects may also be related 

to SMA.

The complexity of SMA associated structural brain characteristics extends to the 

relationship with cognitive performance. In particular, for both fluid and crystalized 

intelligence, some GFAs were related to better performance whereas others related to poorer 

performance on these tests. For fluid intelligence, GFA2, which loaded on gaming activities 

and greater cortical thinning in prefrontal areas and increased orbitofrontal volume, showed 

a positive relationship, whereas GFA4 which loaded on social media and reduced 

hippocampal thickness and lower inferior-temporal cortical gray matter volume, showed a 

strong negative relationship. Others have shown a relationship between cognitive abilities 

and structural variability in medial frontal lobes and paracingulate (Fornito et al., 2008). 

Moreover, a series of investigations have examined the relationship between brain structures 

and cognitive control in the context of internet gaming disorder. Some of the investigators 

found widespread reduction of cortical volume (Lin et al., 2015; Wang et al., 2015; Yuan et 

al., 2013), whereas others have found more circumscribed cortical thickness and gray matter 

volume reduction most notably within the orbitofrontal cortex (Altbacker et al., 2016; Park 

et al., 2017; Zhou et al., 2017), but also in frontal pole volume (Kuhn and Gallinat, 2015). 

The diversity of these findings underscores that SMA does not have a simple effect on fluid 

intelligence but rather exerts differential effects via different brain networks. The SMA 

associated structural brain characteristics were most strongly related to crystalized 

intelligence, which are more dependent on experience, represent accumulated store of verbal 

knowledge and skills, and are influenced by education and cultural exposure (Akshoomoff et 

al., 2013). Here, GFA 1 and 4, which were general and social media related SMA that 

loaded strongly on occipital and orbitofrontal areas, showed the strongest negative 

relationship to crystallized intelligence. In contrast, GFA2, which loaded strongly gaming 

and was associated with thinner prefrontal cortices but greater orbitofrontal cortical volume 

had a positive relationship to this ability. Since crystallized cognitive abilities have a strong 

cultural and educational component and it should not be surprising that these GFAs are also 

related to parental education, race/ethnicity, and parental income (Suppl. Table 1). Thus, 

future investigations will need to further delineate the complex relationship between SMA, 
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structural brain characteristics, and other moderating influences. Nevertheless, these results 

support the general conclusion that SMA associated brain characteristics are not uniformly 

related to better or poorer cognitive performance. Instead, specific components that affect 

particular brain areas contribute differentially to cognition.

4.3. Limitations

First, this is a cross-sectional assessment, which enables establishment of associations but 

does not allow drawing causal inferences. Although multivariate methods such as GFA 

enable differential examination of the impact of SMA and structural brain characteristics on 

outcome variables, they cannot address the “chicken and egg” question. Therefore, the 

longitudinal component of ABCD is essential to begin to delineate causal longitudinal 

pathways. Second, the current analysis pathway used the standard FreeSurfer regions 

(Desikan et al., 2006); however, others have utilized a higher resolution approach (Vandekar 

et al., 2015) or have even suggested a connection-based approach, which may be more 

anatomically meaningful than the traditional lobar structure (Kruggel, 2018). Third, 

although we have focused on the relationship between SMA and brain structure, others have 

pointed out that developmental trajectories of structural brain changes are influenced in 

complex ways by multiple factors (Foulkes and Blakemore, 2018) and that better control for 

these variables may yield more precise results (LeWinn et al., 2017). Fourth, subcortical 

structures, which also undergo significant development, were not available from the official 

ABCD data release, thus it was not possible to relate SMA to striatal characteristics, which 

could be highly informative. Therefore, future investigations may need to employ complex 

machine learning approaches aimed at identifying individual-level patterns that 

meaningfully relate variables across levels of analyses, i.e. examine cognitively relevant 

brain structures to specific SMA in socio-demographically select individuals exposed to 

particular environmental characteristics. Fifth, the SMA-related factors provide a latent 

variable approach to examine media related structural brain correlation networks with 

respect to other youth activities. Currently, we did not take into account the engagement of 

youth in other recreational activities. Moreover, school-related screen media activity was no 

considered in the screen media assessment, which may ultimately under-estimate the time 

spent on SMA. However, it will be important to determine whether these factors can be used 

to predict other recreational activities.

4.4. Conclusions

This investigation of the ABCD cohort aimed at relating an important youth behavior, i.e. 

screen media activity, to structural characteristics of the brain and revealed that there are 

significant associations but that they are complex. Whereas some SMA associated brain 

structures have relevance for externalizing psychopathology, fluid and crystallized 

intelligence, others do not. Moreover, whereas some SMA associated brain structures are 

related to poorer cognitive performance, others are related to better cognitive performance. 

This diversity of findings provides an important public health message, i.e. screen media 

activity is not simply “bad for the brain” or “bad for brain related functioning”. Instead, 

future investigations will need to examine how various forms of screen media activity 

influence specific psychopathology and cognitive functions, and how this influences changes 

throughout development.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General factor analysis of screen media activity, cortical thickness, sulcal depth and gray 

matter volume related loadings for GFA 1 with 95% credible interval. The median factor 

loadings and the 95% credible interval drawn from the posterior distribution of the GFA W 

matrix are shown for cortical thickness, sulcal depth, and gray matter volume.
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Figure 2. 
General factor analysis of screen media activity, cortical thickness, sulcal depth and gray 

matter volume related loadings for GFA 2 with 95% credible interval. Panels analogous to 

Figure 1.
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Figure 3. 
General factor analysis of screen media activity, cortical thickness, sulcal depth and gray 

matter volume related loadings for GFA 3 with 95% credible interval. Panels analogous to 

Figure 1.

Paulus et al. Page 18

Neuroimage. Author manuscript; available in PMC 2019 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
General factor analysis of screen media activity, cortical thickness, sulcal depth and gray 

matter volume related loadings for GFA 5 with 95% credible interval. Panels analogous to 

Figure 1.
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Figure 5. 
Mixed model results for internalizing pathology. (a) median coefficients and 95% confidence 

interval, (b) marginal effect plots separated by sex.
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Figure 6. 
Mixed model results for externalizing pathology, panels analogous to Figure 5.
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Figure 7. 
Mixed model results for fluid intelligence, panels analogous to Figure 5.

Paulus et al. Page 22

Neuroimage. Author manuscript; available in PMC 2019 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Mixed model results for crystallized intelligence, panels analogous to Figure 5.
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Table 1:

Quartile table showing the relationship between youth-reported total screen activity and socio-demographic 

variables.

Total Week Screen Media 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Activity (hours) [youth report] 0–11 11–19.5 19.5–33.8 33.8–163 p

n 1076 1085 1034 1062

Average Screen Time (hours/week) 6.94 (2.76) 15.25 (2.48) 26.08 (4.05) 54.01 (19.13) <0.001

Age in Months (mean (sd)) 119.38 (7.23) 120.32 (7.26) 120.38 (7.57) 120.04 (7.26) 0.006

Height (in) (mean (sd)) 55.26 (2.92) 55.43 (3.12) 55.49 (3.15) 55.56 (3.41) 0.147

Weight (lbs) (mean (sd)) 77.71 (19.23) 81.09 (21.32) 82.58 (23.02) 87.65 (25.89) <0.001

Body Mass Index (mean (sd)) 17.75 (3.45) 18.40 (3.75) 18.67 (4.04) 19.72 (4.39) <0.001

Gender (female) (%) 625 (58.1) 520 (47.9) 453 (43.8) 421 (39.6) <0.001

Race/ Ethnicity (%) <0.001

White 745 (69.3) 700 (64.5) 587 (56.8) 487 (45.9)

Black 43 (4.0) 55 (5.1) 99 (9.6) 202 (19.0)

Hispanic 149 (13.9) 210 (19.4) 222 (21.5) 246 (23.2)

Asian 36 (3.3) 30 (2.8) 21 (2.0) 10 (0.9)

Other 102 (9.5) 90 (8.3) 105 (10.2) 116 (10.9)

Parental Education (%) <0.001

<= 12 grades 87 (8.1) 117 (10.8) 152 (14.7) 172 (16.2)

HS Degree 25 (2.3) 38 (3.5) 46 (4.4) 50 (4.7)

Some College 160 (14.9) 221 (20.4) 300 (29.0) 406 (38.2)

Bachelor 363 (33.7) 400 (36.9) 290 (28.0) 263 (24.8)

Higher 441 (41.0) 308 (28.4) 246 (23.8) 168 (15.8)

Not known 0 (0.0) 1 (0.1) 0 (0.0) 3 (0.3)

Parents married (yes) (%) 872 (81.0) 829 (76.4) 719 (69.5) 615 (57.9) <0.001

Parental Income (%) <0.001

[<50K] 144 (13.4) 171 (15.8) 252 (24.4) 399 (37.6)

[>=50K & <100K] 243 (22.6) 313 (28.8) 327 (31.6) 310 (29.2)

[>=100K] 610 (56.7) 517 (47.6) 378 (36.6) 262 (24.7)

Refused to state 79 (7.3) 84 (7.7) 77 (7.4) 91 (8.6)

Parental Age (mean (sd)) 41.55 (6.09) 41.03 (6.31) 40.16 (7.16) 39.16 (7.19) <0.001
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