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ABSTRACT 

Functional networks obtained from magnetoencephalography (MEG) from different frequency 

bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG 

networks emerge given a single underlying structural network. Recent work has suggested that the 

eigenmodes of the structural network might serve as a basis set for functional network patterns in 

the case of functional MRI. Here, we take this notion further in the context of frequency band 

specific MEG networks. We show that a selected set of eigenmodes of the structural network can 

predict different frequency band specific networks in the resting state, ranging from delta (1-4Hz) to 

the high gamma band (40-70Hz). These predictions outperform predictions based from surrogate 

data, suggesting a genuine relationship between eigenmodes of the structural network and 

frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited 

in a network of neural mass models using linear stability analysis only by including delays. Excitation 

of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial 

pattern with a corresponding coherent temporal oscillation. Simulations verify the results from 

linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to 

the bifurcation. The delta and gamma bands in the resting state emerges further away from the 

bifurcation. These results show for the first time how delayed interactions can excite the relevant set 

of eigenmodes that give rise to frequency specific functional connectivity patterns.   

 

Keywords:  functional connectivity; magnetoencephalography, neural mass, neural mass bifurcation, 

eigenmodes, MEG 
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INTRODUCTION 

It has been argued for several years that neuronal synchronisation is crucial to uphold human 

cognition. Neuronal synchronisation is widely studied in the context of networks, which can be 

obtained from various imaging modalities, such as magnetoencephalography (MEG) or the 

electroencephalogram (EEG). Temporal modulations in MEG networks are assumed to underlie 

cognitive processing in the brain (Bassett and Sporns, 2017; Bassett et al., 2011), while perturbations 

to these networks are presumed to lead to cognitive disturbance and physical disability in several 

neuropsychiatric disorders (Stam, 2014; Stam et al., 2014). The integrity of neuronal networks has 

also been studied in the context of the emergence of consciousness (Amico et al., 2017; Cavanna et 

al., 2017). Taken together, there is ample evidence for the pivotal role of neuronal networks in the 

human brain, however, there is a need to progress from a purely phenomenological description to 

an understanding of how neuronal networks emerge and the mechanisms that lead to empirically 

observed perturbations to these networks. This is particularly important for the interpretation of 

resting-state MEG data where there is no cognitive or sensorimotor context (or locking) during 

which the oscillations occur. 

 

A conventional way to understand how functional networks are brought about is to assume that 

they emerge from the underlying structural network and dynamical properties of connected 

neuronal populations on top of this network (Ashwin et al., 2016; Coombes, 2010). Several 

approaches have been employed and the initial studies showed that functional networks are not 

merely a one-to-one reflection of the underlying structural network (Honey et al., 2009). Additional 

properties of the structural network that were important to explain this gap were the Euclidean 

distance between regions (Alexander-Bloch et al., 2012), the outer product of the structural degree 

sequence (Tewarie et al., 2014) and detours along the shortest paths in the structural network (Goñi 

et al., 2014). In recent years there has been a rise in studies aiming to formalise a mapping between 

structural and functional networks (Robinson, 2012; Meier et al., 2016; Saggio et al., 2016; Deco et 

al., 2014). Several groups have now independently demonstrated that functional networks can be 

understood in terms of a weighted sum of monosynaptic and polysynaptic walks in the underlying 

structural networks (Robinson, 2012; Meier et al., 2016; Bettinardi et al., 2017; Mehta-Pandejee et 

al., 2017). 

 

However, most of these structure-function studies have been conducted by making use of resting-

state fMRI data, whilst only a few have employed neurophysiological data (Garcés et al., 2016; Meier 

et al., 2016; Tewarie et al., 2014). Neurophysiological data boasts both a superior temporal and 

spectral resolution compared to fMRI data. However, this presents the added difficulty of explaining 

not one, but several frequency band specific, functional networks, which may also be evolving in 

time. The question that then arises, is how these different functional networks emerge from the 

same underlying structural network. A promising recent approach to understand the spatial features 

of resting state networks is to analyse them in terms of the eigenmodes of the structural 

connectivity (Atasoy et al., 2016; Gabay and Robinson, 2017; Robinson et al., 2016; Wang et al., 

2017; Visser et al., 2017).  

 

The aim of the current study is to analyse the role of the eigenmodes of the structural network in 

order to explain distinct frequency band specific networks. Using diffusion MRI and MEG data, we 

first analyse whether individual structural eigenmodes correspond to frequency specific MEG 
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networks and in addition whether they can be regarded as a basis set for MEG networks. We then 

develop a network model comprised of connected Wilson-Cowan oscillators and using linear stability 

analysis we show how the excitation of a certain set of structural eigenmodes can explain frequency 

band specific functional networks. This is analysed with and without the inclusion of axonal 

conduction delays. Results from linear stability analysis are subsequently supported by simulations 

of Wilson-Cowan oscillator networks.  
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METHODS 

MEG: data acquisition and pre-processing 

Resting-state MEG data were obtained from the Human Connectome Project (Van Essen et al., 2013) 

as part of the HCP MEG2 release. Briefly, data were collected on a whole-head Magnes 3600 scanner 

(4D Neuroimaging, San Diego, CA, USA) from 89 subjects (Larson-Prior et al., 2013; Van Essen et al., 

2013); 95 subjects were included in the release, but resting-state recordings that passed the quality 

control checks (which included tests for excessive SQUID jumps, sensible power spectra and 

correlations between sensors, and for sufficiently many well-behaved recording channels) were not 

available from six. All subjects were young (22–35 years of age) and healthy. Resting state 

measurements were taken in three consecutive sessions for each subject with little or no break in 

between, for 6 min each. The data have been provided pre-processed (Larson-Prior et al., 2013), 

after passing through a pipeline to remove any artefactual segments of time from the recordings, 

identify any recording channels that are faulty, and to regress out artefacts which appear as 

independent components in an ICA decomposition with clear artefactual temporal signatures (such 

as eye-blinks or cardiac interference). Sensor-space data were down-sampled from 509 Hz to 300 Hz 

to facilitate processing, with the application of a zero-phase anti-aliasing filter. 

 

MEG: Source Localisation 

We performed additional processing steps for source localization. An atlas-based beamforming 

approach was adopted to project MEG sensor level data into source-space (Hillebrand et al., 2012). 

The cortex was parcellated into 78 cortical regions according to the automated anatomical labelling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002). This was done by registering each subject’s anatomical 

MR image to an MNI template and labelling all cortical voxels according to the 78 cortical regions of 

interest (Gong et al., 2009). Subsequently, an inverse registration to anatomical subject space was 

performed and the centroid voxel for every region of interest was extracted to serve as 

representative voxel for every region (Hillebrand et al., 2016). Pre-computed single-shell source 

models are provided by the HCP at multiple resolutions (Nolte, 2003), registered into the standard 

co-ordinate space of the Montreal Neuroimaging Institute. Data were beamformed with depth 

normalisation onto centroid voxels using normalised lead fields and estimates of the data 

covariance. Covariance was computed within frequency specific bands (see below) with a time 

window spanning the whole experiment (Brookes et al., 2008). This resulted in in a separate 

timecourse for every frequency band. Regularisation was applied to the data covariance matrix using 

the Tikhonov method with a regularisation parameter equal to 5% of the maximum eigenvalue of 

the unregularised covariance matrix. Dipole orientation was determined using a non-linear search 

for optimum signal to noise ratio (Robinson, 1999). This complete process resulted in 78 

electrophysiological timecourses, each representative of a separate AAL region.  

 

MEG: Estimating functional networks 

Functional connectivity was estimated in the context of static connectivity. For static connectivity we 

employed the amplitude envelope correlation metric (Brookes et al., 2011; Hipp et al., 2012). 

Beamformed data was frequency filtered into five frequency bands: delta (1–4 Hz), theta (4–8 Hz), 

alpha (8–13 Hz), beta (13–30 Hz), gamma1 (30–48 Hz) and gamma2 (48–70Hz). This was followed by 

a symmetric orthogonalisation to reduce for signal leakage (Colclough et al., 2015). The Hilbert 

envelope was subsequently extracted from these leakage-reduced frequency-filtered timecourses 

followed by a computation of the Pearson’s correlation between envelopes. Functional connectivity 
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was computed within a window spanning the whole experiment and estimated between all possible 

pairs of timecourses forming a functional connectivity matrix. Functional connectivity matrices were 

subsequently averaged across subjects, resulting in one group averaged functional connectivity 

matrix for every frequency band.  

 

Diffusion MRI: data acquisition and pre-processing 

Diffusion MRI data were obtained from the Human Connectome Project (Van Essen et al, 2013). Full 

acquisition protocol details are described in (Sotiropoulos et al., 2013). Briefly, a monopolar Stejskal-

Tanner echo planar imaging sequence was used in a 3T Siemens Connectom Skyra to acquire data at 

(1.25 mm)3 isotropic resolution. Diffusion-sensitization was applied with 3 b values (b=1000, 2000 

and 3000 s/mm2) and along 90 directions per b-shell. Two repeats were obtained with blip-reversed 

phase encoding. The minimally processed data were used (Glasser et al, 2013), where susceptibility-

induced distortions, eddy currents and subject motion were all corrected simultaneously using a 

non-parametric framework (Andersson and Sotiropoulos, 2016) based on Gaussian processes 

(Andersson and Sotiropoulos, 2015).  

 

Diffusion MRI: estimation of structural connectomes 

Fibre orientations were estimated from the distortion-corrected data using a model-based 

deconvolution framework (Jbabdi et al., 2012; Sotiropoulos et al., 2016), implemented on GPUs 

(Hernández et al., 2013) and available through FSL’s bedpostx (model=3) (Hernández et al., 2013). 

Up to three fibre orientations and their uncertainty were estimated per voxel using a Bayesian 

framework and a shrinkage prior on the volume fractions. These estimates were subsequently used 

for probabilistic tractography in FSL to estimate a connectome. For each subject, the white/grey 

matter boundary surface was used as a seed, since this reduces biases observed using whole-brain 

seeding (Donahue et al., 2016; Smith et al., 2015). Streamlines were seeded from 60,000 standard-

space vertices (Glasser et al., 2013) on the boundary surface (10,000 streamlines per seed). 

Anatomical constraints were imposed to reduce false positives (Glasser et al., 2013). Specifically, we 

allowed streamlines to hit the white matter/grey matter boundary not more than twice, and also 

streamlines were allowed to enter subcortical volumes, propagate within them, but terminate upon 

exit. The pial surface was further used as a termination mask to ensure estimated paths do not 

“jump” between neighbouring gyri. The number of streamlines reaching each vertex in the WM/GM 

boundary was recorded, and this was normalised by the total number of valid streamlines 

propagated, giving a dense 60,000x60,000 structural “connectivity” matrix. Ten subjects were 

processed and their resulting dense connectomes were averaged. Using the AAL cortical 

parcellation, this average matrix was reduced to a 78 x 78 parcellated structural connectome, by 

computing for each pair of regions the mean structural connectivity between all pairs of vertices 

they were comprised of. The eigenmodes are then extracted by a standard eigenvalue 

decomposition (� = �Λ��), where the columns in V correspond to the eigenvectors and the 

diagonal elements in Λ to the eigenvalues). An eigenmode corresponds to an eigenvector and its 

corresponding eigenvalue. Note that the eigenmodes can be considered as basis set for the 

structural connectome or considered as patterns embedded in the structural connectome. Figure S1 

shows how a range of thresholds for the structural connectome affects eigenmodes.  
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Linear stability analysis of a network of neural mass models 

If structural eigenmodes can indeed be regarded as a basis set for MEG networks, we anticipate that 

an additional step is required to translate these eigenmodes to function. More specifically, we 

hypothesize that we require dynamics to excite or activate structural sub-networks described by the 

eigenmodes in the right proportion in order to be expressed at the functional network level. To test 

this hypothesis, we consider a network of neural mass models, each representing a grey matter 

region as defined by the AAL atlas and all coupled together using the AAL-parcellated structural 

connectome. We linearise the neural mass model around the steady state, so that we can 

analytically predict the eigenmodes that can be excited or activated, even in the presence of 

conduction delays.   

 

We refer to Appendix A for a full derivation of the linearised networks. Let us first consider a single 

neural mass model, whose dynamics are described by a state vector (���	 = 
����	, … , ����	�, 

where m corresponds to the dimension of the chosen model. For example, the Jansen-Rit model 

(Jansen and Rit, 1995) has 6 dimensions, whereas the Wilson-Cowan model (Wilson and Cowan, 

1972) only has 2. For the moment, we ignore delays and we consider a network of N neural masses, 

with identical neural masses placed on each node of the network.  

 
���
�� = ����	 + �
������ + ���,          (1) 

 

where � = 1,… ,�. Here, F describes the intrinsic dynamics of the node in the absence of coupling, 

and G the dynamics induced by synaptic coupling, from both local and network mediated 

interactions. The local (within node) connections are described by the matrix ���� and s represents 

the input from other nodes in the network, 

�� =  ∑ ��"#
�"�$"%�           (2) 

where H corresponds to the local component of the node which mediates the interactions between 

nodes, through the structural connectivity matrix W (with components wij) with coupling strength  . 

Remember that xi is itself a vector (����	 ∈ ℝ�).  For the moment, we suppress a discussion of time-

delays, though will return to this shortly. 

Let us assume that there exists a steady state �̅� = 
�̅��, … , �̅���, where  
���̅�	 + �
�����̅� + �̅�� =
0� with �̅� = ∑ ��"#
�̅"�$"%� . We apply a small perturbation of the form ����	 = �̅� + *���	 to obtain 

the following linearised system,  

 
�+�
�� = ,-���̅�	 + -�
�����̅� + �̅������.*� + ∑ -�
�����̅� + �̅��-#
�̅"�$"%� ��"*",  (3) 

where -�,-�, -#	 ∈ ℝ��� are Jacobians.  These equations can be block diagonalised to obtain a 

decoupled set of equations for determining linear stability, indexed by the eigenvalues of the 

structural connectivity matrix W. These in turn specify the eigenvalues of the linearised network 

dynamics according to the following spectral equation (see Appendix A for a full derivation) 

0�1; 3	 = det,17� − -�9: − ;:-�9:. = 0  with  3 = 1,… ,�.    (4) 
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Here, we have introduced the abbreviations -�9� = -���̅�	 + -�
�����̅� + �̅������ and -�9� =-�
�����̅� + �̅��-#
�̅"�. Furthermore, 7� refers to an <	 × 	<	identity matrix, 1 corresponds to the 

eigenvalues of the system (linearised network; equation 3), while ;: corresponds to the eigenvalue 

corresponding to the p-th eigenvector of the structural network W. The last expression enables us to 

analyse the stability of the system in terms of the eigenvectors of the structural network W. This 

general form can be applied to any network of neural masses.  

If we now consider a network of Wilson-Cowan models  

�
�� >?@A�?B7� C = − >A�7� C + D E�@@A� +�@B7� + F + ∑ ��"A"$"%�

�B@A� +�BB7� G,     (5)

        

where E and I refer to the firing rates of excitatory and inhibitory populations, ?H to the time 

constant determining the magnitude of the exponential decay, P an external input and D = ID@ 	DBJ�, 

where DH is a sigmoid function obeying DH = 1/�1 + exp	�N�� − OH			, with P ∈ QA, 7R.  We can now 

determine -�9: and -�9: for the Wilson-Cowan model 

-�9: = −>?@ 00 ?BC
T� ,7U − -D
�����̅� + �̅��.����, 

-�9: = >?@ 00 ?BC
T� ,7U −-D
�����̅� + �̅��. V1 00 0W.       (6) 

This allows us to rewrite the spectral equation (4) as  

0�1; 3	 = det X17U + >?@ 00 ?BC Y7U − -D
�����̅: + �̅:� X���� + >;: 0
0 0CZ[Z = 0.   (7)  

In the presence of axonal conduction delays, ����	 =  ∑ ��"# \�"
� − ?�"�]$"%� , and ;: now takes 

the form 

;:�1	 = ∑ ∑ ��" exp
−1?�"�^�: "̂:$�%�$�%� ,        (8) 

where ?�"  refers to the conduction delay between node i and j in the network and "̂: to the j-th 

element in the pth eigenvector of the structural network. This makes the spectral equation (4) and 

(7) a transcendental function, which can only be solved numerically. A solution to the spectral 

equation (4) and (7) is stable if _`�1	 < 0. A bifurcation occurs when an eigenvalue crossed through 

the imaginary axis _`�1	 = 0. Two types of instability can occur: 1) when a real eigenvalue crosses 

from the left hand complex plane to the right (7<�1	 = 0) (static bifurcation, i.e. a transition 

between fixed points) or when a complex conjugate pair of eigenvalues cross from the left hand 

complex plane to the right (7<�1	 ≠ 0) (dynamic bifurcation, i.e. a transition between a fixed point 

and limit cycles). The value of p for which bifurcation occurs allows us to determine which pattern of 

network activity will be excited. More specifically, we refer to ‘eigenmode-excitation’ as being 

associated to an instability of a network steady state, with the emergent network pattern associated 

to the first eigenvalue to cross the imaginary axis. This complex eigenvalue, from linear stability 

analysis, is itself parameterised by a real eigenvalue of the (symmetric) structural connectivity 

matrix, and thus can be used to determine the spatial pattern of excitation. Note that linear stability 

only holds in the vicinity of the bifurcation.  
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 Analysis Steps 

1. We address whether we can we predict frequency band specific MEG networks using the 

eigenvectors of the structural connectome. This is done in two steps. First, we predict 

whether the functional connectivity matrix Af (f = frequency band), can be explained in 

terms of a linear combination of the eigenvectors of the structural network: cde =
∑ f:e^:$:%� �^:	�, where cpf are constants that are estimated using a non-linear least 

squares fitting method. To assess whether this prediction could be obtained by chance or 

any random set of similarly structured eigenvectors we compared the resulting R2 from the 

prediction based on real data with a null distribution (10,000 realisations). The null 

distribution of R2 is obtained by fitting pseudo-eigenmodes to MEG connectivity matrices. 

Construction of the pseudo-eigenmodes is described in (Tewarie et al., 2016a) and recently 

applied in (Hunt et al., 2016). Briefly, the eigenvectors are treated as timeseries and Fourier 

transformed. A random number is added to the phases in Fourier domain, followed by an 

inverse Fourier transformation to construct a pseudo-eigenvector. This method ensures that 

the pseudo-eigenvectors have the same smoothness as the original eigenvectors. Second, 

we analyse the number of eigenvectors that significantly contribute to the prediction. We 

sequentially predict the frequency specific functional connectivity matrices using the 

eigenvectors of the structural network in sequential steps, i.e. first adding the first 

eigenvector to the prediction, then the second and so on.  We keep track whether the 

increase in R2 is larger than an increase in R2 based on pseudo-vectors after adding a new 

eigenvector to the prediction. Only the eigenvectors of the structural network that 

outperform the pseudo-eigenvectors are kept for the eventual prediction. This will 

eventually result in a set of eigenvectors of the structural network required for the 

prediction. 

2. We address whether we can excite the relevant set of eigenvectors of the structural network 

(see previous point) using linear stability analysis of Wilson-Cowan networks. We first 

numerically solve the spectral equation (7) in the absence of delays as a function of P 

(external input or drive to all populations) for all eigenvectors of the structural network. We 

then include equation (8) and solve equation (7) with delays. The delays are based on the 

Euclidean distances dij between regions in the AAL atlas divided by a conduction velocity v 

(10m/s assumed in this paper (Deco et al., 2009)) plus an additional onset delay τh, i.e. 

τij =	 klmn + τh. The onset delay can be interpreted as the time to synchronise in individual 

neuronal populations. An onset delay has been shown to lead to dynamics reminiscent of 

those seen in simulations of large-scale spiking networks (Roxin et al., 2005), and its 

physiological interpretation can be connected to the relaxation time-scale for which spiking 

networks can reasonably allow for a firing rate description.  

3. The parameter settings for P and τh as obtained from linear stability analysis for which the 

correct set of eigenmodes are excited (see analysis step 1) are fed into the simulations. We 

simulate a network of Wilson-Cowan oscillators using the same structural network as in the 

previous steps. We turn to simulations for two reasons: 1) to verify the results obtained 

from the previous section and 2) to analyse the regime further away from the bifurcation, 

where linear stability theory loses its validity. In this regime eigenmodes can interact in a 

nonlinear fashion which cannot be tracked using linear stability analysis. We numerically 

solve equation (5) in the presence of delays using a stochastic Heun integration scheme. The 

stochastic Heun was implemented to induce fluctuations for the steady state regime. The 

last term in the first row of equation (5) becomes ∑ ��"A"$"%� \� − klm
n + τh]. The amplitude 
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envelope correlation is subsequently computed between all possible region pairs forming a 

functional connectivity matrix. This matrix is then used for a prediction of empirically 

observed functional connectivity matrices, resulting in an R2 for every prediction. 

Parameters for the Wilson-Cowan network simulations were the same as in (Abeysuriya et 

al., 2018). 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

RESULTS 

Estimating frequency band specific networks based on structural eigenmodes 

Figure 1AB illustrates the structural connectome in terms of its weighted adjacency matrix and the 

variance of the structural connectome explained by the first n eigenmodes. For illustrational 

purposes, the first six eigenmodes of the structural network are projected to a brain to demonstrate 

the clear structure or patterns in these eigenmodes, such as a sensorimotor pattern, an occipital 

pattern, a frontal pattern or a pattern with dominant regions in the cingulate areas (Figure 1C). The 

group averaged functional connectivity matrices for the different frequency bands obtained from 

MEG data are shown in Figure 2A. The four blocks in the alpha band correspond to connections 

between posterior regions. These are also present in the theta, gamma1 and beta band. In addition, 

the beta, gamma1 and theta band connectivity matrices contain additional connectivity patterns, 

such as sensorimotor and frontal connections. We then predicted these frequency band specific 

functional connectivity matrices using a linear combination of all the eigenmodes of the structural 

network (cde = ∑ f:e^:$:%� �^:	�	, which is depicted in Figure 2B. The functional connections 

projected onto a brain show a clear frontal pattern of connections in estimation of the delta and 

gamma2 band networks, frontal and posterior connections in the theta band, posterior connections 

in the alpha band, posterior, sensorimotor and frontal connections in the beta band and a diffuse 

pattern of connectivity in the gamma bands. The best estimation for functional networks based on 

the eigenmodes was obtained for the alpha band network (see R2 in Figure 2E). To analyse whether 

the estimation of the functional connectivity matrices from the eigenmodes of the structural 

network could be obtained by chance, we repeated the prediction from the eigenmodes to function 

with pseudo-eigenmodes of the structural connectome (surrogate data). Results show clearly that 

the prediction with the real structural connectivity matrices outperform the prediction with 

surrogate data (Figure S2), suggesting that the eigenmodes from the structural network may form a 

genuine basis for the empirical functional networks. Lastly, we analysed whether an increase in R2 

after addition of individual eigenmodes to the prediction could outperform the addition of a pseudo 

eigenmode. Results show that only the first 6 eigenmodes were contributing significantly to the 

prediction of the frequency band specific MEG networks. Results are shown in Figure S3 and in 

Figure 2D. The latter shows the estimated coefficients for the first six eigenmodes in the eigenmode 

prediction of the empirical frequency specific connectivity matrices.   
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Figure 1 Structural connectome: (A) The weighted adjacency matrix of the structural connectome with a link 

density of 0.37. (B) The variance of structural connectome (R
2
) explained by the first n structural eigenmodes. 

The variance explained for n number of eigenmodes in the graph corresponds to the set from the first 

eigenmode on to the n
th

 eigenmode.  (C) As an illustration, the first six eigenvectors of the structural 

connectome are depicted from left to right in an ascending order.  
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Figure 2 Prediction of frequency band specific networks based on the eigenmodes: (A) Frequency band 

specific functional connectivity matrices based on AEC and MEG data. (B) Predicted functional connectivity 

matrices based on a linear weighted sum of the first six eigenmodes of the structural connectome. Colours in A 

and B correspond to connectivity strength (C) Predicted functional connections using a linear weighted sum of 

the structural eigenmodes, illustrated in glass brain plots. (D) shows the estimated coeffiicients for the first six 

eigenmodes, i.e. it shows how much each eigenmode contributes to a frequency band specific prediction. Error 

bars correspond to the confidence intervals of the estimated coefficients. (E) shows how much of the variance 

(R
2
) of the empirical functional connectivity matrices can be explained by a linear combination of the 

eigenmodes for each frequency band separately.  
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Linear stability analysis of a network of neural mass models 

The previous analysis suggests that frequency band specific networks can to some extent be 

represented using the eigenmodes of the structural network. In this section, we demonstrate how 

the right set of eigenmodes can be excited using linear stability analysis of the time independent 

steady state of a network of neural masses. We remind the reader that bifurcation occurs when an 

eigenvalue (1) of the system defined by equation (4) crosses the imaginary axis _`�1	 = 0. As 

mentioned in the Methods section, equations (4) and (7) allow us to analyse the stability of the 

system in terms of ;�.  
 

We first chose to ignore delays and tune the external drive to the individual nodes P, to determine 

where bifurcation occurs. We found that bifurcation occurs at P=0.26 (Figure 3A and B), and as P is 

increased further more eigenmodes become unstable (Figure 3B). Note that the 1st eigenmode is 

always the one to go unstable at the bifurcation (Figure 3A). Analysis was carried out for several runs 

of the same numerical analysis (hence the rate of occurence). As the structural connectivity matrix 

W is symmetric, the eigenvalues are all real and we can order them such that ;� > ;U > ⋯ > ;$. 

When solving equation (7) in the case of no delays, this ordering of the eigenmodes will be reflected 

in the ordering of the eigenvalues of the system. Figure 3C shows the eigenspectrum of the system 

close to the bifurcation in the case for no delays (solution to equation (7)). Figure 3D shows the 

eigenspectrum as P is increased past the bifurcation point. A bifurcation occurs when the 

eigenvalues cross the imaginary axis from the left.  The unstable eigenvalues are highlighted in red, it 

is clear to see that there are a number of unstable eigenvalues for this choice of P (P = 0.28). It is 

important to note that linear stability analysis only holds provided we are sufficiently close to the 

bifurcation point. 

 

 

 

Figure 3 Linear stability analysis of a network of neural mass models in the absence of delays: (A) the 

eigenmodes that become unstable at the bifurcation. It is always the first eigenmode in the absence of delays 

that crosses the bifurcation and thus loses stability. This bifurcation occurs for P = 0.26 (B), i.e. this is the value 

for P when an eigenmode loses stability. By increasing P further, other eigenmodes also lose their stability (B). 

(E) shows the eigenspectrum of the system right after the bifurcation in the absence of delays. Here only the 

first eigenmode loses stability (complex conjugate pair) (F) shows an example of the spectrum in the absence of 

delays further away from the bifurcation when multiple eigenmodes lose their stability. Blue dots in (C-D) 

correspond to 1 that are stable, while red dots correspond to 1 that are unstable and thus excited.   

 

If we now include delays plus an additional delay off-set (τh), eigenmodes other than the first 

eigenmode can lose their stability at the bifurcation (Figure 4A). In other words, inclusion of delays 

allows for reordering of the eigenmodes that can be excited first. The expression of these various 

other eigenmodes also allows for a richer repertoire of connectivity patterns at the functional level. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

Figure 4B is the equivalent of Figure 3B, but now in the presence of delays and shows the number of 

unstable of eigenmodes when both P and τh are tuned (the non-smoothness in Figure 4B is due to 

discretness). A bifurcation occurs when the real part of the system eigenvalues cross the imaginary 

axis, from left to right, in the complex plane. Figure 4C shows an example of the eigenspectrum just 

after the bifurcation for a small off-set delay. Here again the first eigenmode is the first one that 

crosses the imaginary axis from the left and thus loses stability at the bifurcation (complex conjugate 

pair in this case). However, other choices for off-set delays allow to excite other eigenmodes and 

furthermore allow to excite eigenmodes nearly simultaneously (see Figure 4D-H). If delays cause the 

simultaneous excitation of two modes, then the resulting temporal pattern will mix their 

frequencies. Figure 4E is an example that shows the correct set of eigenmodes obtained in the 

previous section to explain empirical MEG networks.   

 

 
Figure 4 Linear stability analysis of a network of neural mass models in the presence of delays: (A) the 

eigenmodes that lose their stability at the bifurcation. Delays allow other eigenmodes than the first one to lose 

their stability at the bifurcation. A bifurcation occurs in (B) when the real part of the system eigenvalues cross 

the imaginary axis in the complex plane. Both P and ?h are tuned in (B). (C-F) show different eigenspectra for 

different values for the offset delay (?h), and demonstrate how various other eigenmodes can be excited at the 

bifurcation. It also demonstrates how the presence of delays allows to excite eigenmodes nearly 

simultaneously. (E) shows the eigenspectra where the correct eigenmodes (Figure 2D) are excited nearly 

simultaneously. Blue dots in (C-H) correspond to 1 that are stable, while red dots correspond to 1 that are 

unstable and thus excited.   

 

Predicting frequency band specific networks from a simulated network of neural mass models 

In the last section we have demonstrated that the correct set of eigenmodes can be excited in the 

presence of delays using linear stability analysis. We now turn to simulations to verify the results 

obtained by linear stability analysis and also analyse the regime further away from the bifurcation, 

i.e. further away from the stable regime. We would like to remind the reader that by definition, the 

bifurcation separates the steady state from an oscillatory regime. Furthermore, linear stability 

analysis does not predict in which proportion the eigenmodes will be excited or how they interact 
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once the bifurcation is crossed. We simulate equation 5 with the offset delay from the previous 

section (Figure 4E) and vary P with an initial value before the bifurcation and a final value well after 

the bifurcation. Figure 5A shows the goodness of fit (R2) of the model output with empirical MEG 

functional networks for the different frequency bands. The best fit for the alpha and theta band 

networks was after the bifurcation (P = 0.28), while the beta band network has the optimal fit even 

further away from the bifurcation. The delta (dark blue curve), gamma1 (green curve) and gamma2 

band (light blue curve) networks are consistent with simulations well after the bifurcation. The best 

fits of the model in the presence of delays for the different frequency bands (i.e. maxima of Figure 

5A) are illustrated in Figure 5D. Figure 5B shows the goodness of fit for different values of P in the 

absence of delays. It can be observed that the goodness of fit values are lower than for the 

simulations with delays. This seems to be related to the observation that with simulations with no 

delays, the first eigenmode is most of the time strongly dominating the emergent functional 

connectivity pattern. Figure 5C shows the correlation of the simulated functional connectivity matrix 

with the first eigenmode of the structural connectome. The correlation values in the case for no 

delays are stronger than the case for delays, where other eigenmodes are also expressed. From 

Figure 4, we can see that the complex part of subsequent crossing eigenvalues are very similar, 

hence the mixing of frequencies will happen in a restricted range. This can be seen in Figure S4, 

which shows the power spectra presented from the simulations in Figure 5 and shows peak 

broadening with subsequent eigenmode excitations.    

 

Figure 5 Simulations of a network of neural masses in the presence and absence of delays: (A) shows the 

goodness of fit in terms of the R
2
 between simulated functional connectivity matrices and MEG connectivity 

matrices for different values for P, for different frequency bands in the presence of delays. (B) shows the 

equivalent of (A) in the absence of delays. (C) shows the correlation between simulated functional connectivity 

matrices and the first eigenmode of the structural connectome in the absence (blue) and presence (red) of 

delays for various values for P. (D) shows the best fits for the model output with empirical MEG data. The 

matrices correspond to values for P for which the curves in (A) are maximal. 
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DISCUSSION 

We aimed to explain how different frequency specific MEG networks emerge from one underlying 

structural network. Our results show that different frequency band specific MEG networks can be 

predicted by a set of eigenmodes of the structural network. We demonstrated using linear stability 

analysis that we require the inclusion of conduction delays in a system of neural masses to excite the 

correct set of eigenmodes in order to be consistent with the empirical MEG data. Simulations with 

the Wilson-Cowan model showed that near the bifurcation where the modes become unstable, 

functional connectivity patterns emerge that are most consistent with the alpha, theta and beta 

MEG networks, while the gamma and delta bands are consistent with simulated networks well after 

the bifurcation.  

We predicted frequency specific MEG networks using a linear combination of the eigenmodes of the 

structural network. Statistical testing with surrogate data showed that these predictions could not 

be obtained by chance, emphasizing the genuine plausibility of these predictions. A crucial aspect 

with respect to the discussion is the interpretation of the eigenmodes in the context of 

neurophysiology. Apart from the fact that they form a basis set for the structural network, they can 

also be regarded as a set of patterns of activity. If we regard the structural network as a 

transformation of this pattern of activity, then only the magnitude of the activities change, but not 

the pattern. Thus, we could also interpret these structural eigenmodes as dominant patterns that 

are supported by the structural network. Previous work on eigenmodes has mostly focused on fMRI 

networks, where predictions from both the eigenmodes of the cortical surface (Robinson et al., 

2016) as well as the eigenmodes of the structural network (Atasoy et al., 2016) were consistent with 

resting state fMRI networks. In our previous paper on MEG networks, we decomposed the 

connectivity matrices of the functional networks in terms of eigenmodes of function and 

demonstrated that frequency band specific networks were characterised by a common mode 

superimposed by a frequency band specific mode (Tewarie et al., 2016b). The current work 

approaches this topic from a different angle by analysing a structure-function relationship instead. 

Despite this different angle, the current findings could explain that this previously found common 

mode might be a product of excitation of the eigenmodes of the structural network. Lastly, only a 

limited set of eigenmodes contributed significantly to the prediction of the MEG networks 

(eigenmodes 1-6). However, it cannot be excluded that the limited set could be due to inaccuracies 

in the estimation of structural connections (tractography pipeline) or due to inaccuracies in the 

estimation of functional connections (Sotiropoulos and Zalesky, 2017). 

Despite surviving statistical testing, the statistical prediction of frequency specific MEG network 

based on the eigenmodes of the structural network does not explain how the eigenmodes are 

translated into function or functional networks. In order to understand how these eigenmodes are 

translated into MEG networks we show using linear stability analysis how these eigenmodes become 

unstable in a network of neural masses and hence how they project to functional networks. In order 

to excite the relevant set of eigenmodes the system requires the inclusion of conduction delays. 

Without delays, it is hard to see how the real part of the eigenvalues can cross the imaginary axis 

simultaneously or in a different order. Note, however that this is not the first computational 

neuroscience analysis that supports the notion of delays in a network of neural masses to be 

consistent with empirical networks. A crucial role for the inclusion of delays has also been stressed in 

the context of temporally evolving networks (Deco et al., 2009; Cabral et al., 2014; O’Neill et al., 

2017). However, to our knowledge, this is the first time that the importance of delays between 

neuronal populations is stressed in the context of frequency specific networks. Frequency specific 

networks could be explained near a working point of the network of neural masses around the 

bifurcation (for alpha, beta and theta), and further away from the bifurcation for the delta, gamma1 
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and gamma2 networks. It remains to be elucidated whether the generators for neuronal oscillations 

in the different frequency bands might correspond to different working points from a bifurcation.  

A few points with respect to the methodology and findings deserves to be mentioned. A limitation 

from the current linear stability analysis is that the complex part of the system eigenvalues for a 

given eigenmode does not correspond one to one with the MEG frequency bands (see Figure 4C-H). 

In recent work we demonstrate how this could be improved by analysing beyond fixed point 

instabilities. We show how to construct periodic (synchronous) network oscillations and determine 

their stability (Coombes et al., 2018). Future work will need to extend this into other phase-locked 

states and demonstrate a better match with the natural occurring frequencies in empirical data. 

Secondly, the nodes in the Wilson Cowan network all had identical dynamics, future work could 

incorporate a heterogenous network of Wilson Cowan nodes as a further more realistic extension, or 

the use of next generation neural mass models (Byrne et al., 2017; Coombes and Byrne, 2019). 

Thirdly, an alternative explanation for the emergence of frequency band specific networks is that 

their spatial structure is merely the result of spatial topography of signal to noise (SNR) ratio across 

the brain. However, our previous study suggests that modulations in amplitude envelopes 

themselves (thus fluctuations in SNR) might be a consequence of long range connectivity (Tewarie et 

al., 2018). Fourthly, we used Euclidean distances to estimate interregional conduction delays 

(Abeysuriya et al., 2018; Cabral et al., 2014; Ghosh et al., 2008; Hellyer et al., 2015; Tewarie et al., 

2016b) rather than curved streamline distance, which would be the more realistic case. Fifthly, there 

is no unique classification of the MEG frequency bands, although we used a quite common 

classification also used by several other groups (Coquelet et al., 2017; Demuru et al., 2017; Engels et 

al., 2017; López et al., 2017; Ranasinghe et al., 2017; Seymour et al., 2018). Lastly, our analysis were 

limited by the fact that we merely employed amplitude envelope correlation as connectivity metric. 

However, note that amplitude envelope correlation and phase based metric show high correlation in 

predominantly resting state connectivity data (Colclough et al., 2016; Tewarie et al., 2014). 

In summary, we have demonstrated how frequency band specific networks can emerge in a system 

of neural masses with conduction delays, where different frequency band specific networks were 

shown to emerge at slightly different working points of the system. For different working points 

away from the bifurcation a selected set of structural eigenmodes can become excited to coherently 

emerge as frequency specific network structure.    
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