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Abstract 

Existing data indicate that cortical speech processing is hierarchically organized.  Numerous studies have 

shown that early auditory areas encode fine acoustic details while later areas encode abstracted speech 

patterns.  However, it remains unclear precisely what speech information is encoded across these 

hierarchical levels.  Estimation of speech-driven spectrotemporal receptive fields (STRFs) provides a 

means to explore cortical speech processing in terms of acoustic or linguistic information associated with 

characteristic spectrotemporal patterns.  Here, we estimate STRFs from cortical responses to continuous 

speech in fMRI.  Using a novel approach based on filtering randomly-selected spectrotemporal 

modulations (STMs) from aurally-presented sentences, STRFs were estimated for a group of listeners and 

categorized using a data-driven clustering algorithm.  ‘Behavioral STRFs’ highlighting STMs crucial for 

speech recognition were derived from intelligibility judgments.  Clustering revealed that STRFs in the 

supratemporal plane represented a broad range of STMs, while STRFs in the lateral temporal lobe 

represented circumscribed STM patterns important to intelligibility.  Detailed analysis recovered a 

bilateral organization with posterior-lateral regions preferentially processing STMs associated with 

phonological information and anterior-lateral regions preferentially processing STMs associated with 

word- and phrase-level information.  Regions in lateral Heschl’s gyrus preferentially processed STMs 

associated with vocalic information (pitch). 
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Highlights 

• A new method, “auditory bubbles”, is developed to estimate speech-driven spectrotemporal 

receptive fields (STRFs) using fMRI 

• STRFs are estimated at locations throughout the auditory cortex 

• Groups of STRFs with similar functional properties are identified using an unsupervised 

clustering algorithm 

• Results support an interpretation in which STRFs are hierarchically organized and specialized 

within hierarchical levels 

• Early auditory areas encode vocalic information (pitch) 

• Posterior and anterior superior-temporal regions encode phonetic information on temporal scales 

associated with phonemes/syllables and words/phrases, respectively  



1. Introduction  

Current functional neuroanatomical models (de la Mothe et al., 2006; Hackett, 2011; Hackett et 

al., 2014; Hackett et al., 1998; Kaas and Hackett, 1998, 2000) suggest that primate auditory cortex is 

organized as a regional hierarchy in which information flows along two major anatomical axes: (1) from 

core to belt to parabelt regions; and (2) from caudal to rostral regions.  The hierarchical nature of this 

organization has been confirmed by physiological data, which show that temporal integration windows, 

frequency tuning bandwidth, response latency, and stimulus selectivity (i.e., receptive field complexity) 

tend to increase along these axes (Bendor and Wang, 2008a; Brugge and Merzenich, 1973; Camalier et 

al., 2012; Kikuchi et al., 2010; Kuśmierek and Rauschecker, 2009; Lakatos et al., 2005; Rauschecker, 

1998; Rauschecker and Tian, 2004; Rauschecker et al., 1995; Rauschecker et al., 1997; Recanzone et al., 

2000; Scott et al., 2011).  Response patterns in human auditory cortex measured using 

electrocorticography (ECoG) and functional magnetic resonance imaging (fMRI) largely mirror this 

pattern (Bitterman et al., 2008; Brugge et al., 2009; Brugge et al., 2008; Chevillet et al., 2011; Howard et 

al., 2000; Leaver and Rauschecker, 2010; Liegeois-Chauvel et al., 1994; Liegeois-Chauvel et al., 1991; 

Nourski et al., 2013; Nourski et al., 2014; Nourski et al., 2012; Wessinger et al., 2001; Woods et al., 

2010).  Some exceptions have been noted including short latency responses in human posterolateral 

superior temporal gyrus (STG; Nourski et al., 2014) and sensitivity to complex features of synthetic 

speech sounds in the primary auditory cortex of ferrets (Bizley et al., 2009; Town and Bizley, 2013), 

although these findings remain interpretable within a hierarchical framework (Bizley and Cohen, 2013; 

Nourski et al., 2014). 

Taking note of these data and, indeed, of the general trend for sensory cortices to analyze and 

represent complex inputs via hierarchical, feedforward processing (Felleman and Van Essen, 1991; Foxe 

and Schroeder, 2005; Griffiths and Warren, 2004; Hilgetag et al., 2000; Riesenhuber and Poggio, 2002; 

Serre et al., 2007), many speech researchers have embraced the notion that cortical analysis of speech 

sounds proceeds in a hierarchical fashion (Bornkessel-Schlesewsky et al., 2015; Peelle et al., 2010; 

Poeppel et al., 2012; Okada et al., 2010; Rauschecker and Scott, 2009).  Early work in human auditory 



neuroimaging demonstrated that lower-level (core-like) regions of the auditory cortex respond well to 

simple stimuli such as tones or unmodulated broadband noise, while belt-like regions in the 

supratemporal plane anterior and posterior to the auditory core respond more strongly to temporally-

modulated signals, and parabelt-like regions in the lateral STG and superior temporal sulcus (STS) 

respond best to spectrotemporally-complex stimuli such as speech (Binder et al., 2000; Hickok and 

Poeppel, 2004; Scott and Johnsrude, 2003; Scott and Wise, 2003; Zatorre et al., 2002).  Moreover, a 

subset of these later auditory regions respond preferentially to intelligible speech compared to 

unintelligible sounds with similar spectrotemporal complexity, e.g., noise-vocoded speech or spectrally 

rotated speech (Davis and Johnsrude, 2003; Narain et al., 2003; Scott et al., 2000). 

 While there is broad agreement that the human auditory cortex is hierarchically organized for 

speech, it remains unclear exactly what speech information is being encoded within different levels of the 

hierarchy. Several recent imaging studies using multivariate analysis methods have shown that early 

auditory regions in and around Heschl’s gyrus are able to distinguish intelligible speech from acoustically 

complex control stimuli including spectrally rotated speech (Evans et al., 2014; McGettigan et al., 2012; 

Okada et al., 2010).  In line with hierarchical interpretations, these and other studies demonstrated that 

such discriminative capacity is likely driven by the exquisite sensitivity of early auditory areas to slight 

variation in acoustic form, while higher-level speech-selective regions are relatively invariant to 

superficial acoustic variation (Evans, 2017; Evans and Davis, 2015; Okada et al., 2010).  However, work 

by Poeppel and others (Boemio et al., 2005; Overath et al., 2015) suggests that both early and late regions 

are sensitive to acoustic form, where the distinction between hierarchical levels concerns their tuning to 

temporal patterns on different time scales, with later regions such as the STS generally preferring longer 

time scales.  A lack of data regarding the details of acoustic vs. abstract speech encoding at different 

cortical levels leads to at least two outstanding questions: (a) whether processing at higher levels of the 

hierarchy is bilaterally organized or left-lateralized; and (b) whether the processing hierarchy proceeds 

along posterior or anterior pathways (or both). 



A promising technique to probe the detailed information encoded in cortical responses to natural 

sounds is the estimation of spectrotemporal receptive fields (STRFs).  A STRF is a linear filter in the 

time-frequency domain showing the spectrotemporal patterns that best drive an individual neuron or 

neuronal population.  Though STRF analysis was initially developed to characterize single-unit responses 

in animal models (cf., Theunissen and Elie, 2014), speech-driven STRFs have recently been derived from 

human electroencephalography (EEG), magnetoencephalography (MEG), and ECoG data (Ding and 

Simon, 2012; Lalor and Foxe, 2010; Mesgarani and Chang, 2012).  At the cortical level, it has proven 

useful to characterize STRFs in the spectrotemporal modulation (STM) domain (Hullett et al., 2016; 

Kowalski et al., 1996; Shamma, 2001).  An STM is a fluctuation in acoustic energy at a given rate (i.e., 

over time) and scale (i.e., over frequency).  In the context of speech, different STM patterns are associated 

with different levels of acoustic or linguistic analysis, e.g., formant vs. harmonic structure (Elliott and 

Theunissen, 2009) or phonemes vs. syllables/words (Hullett et al., 2016).  Recent ECoG studies 

demonstrate that speech-selective regions of the STG exhibit spatially organized tuning to a range of 

STMs (Hullett et al., 2016), that speech signals can be reconstructed from patterns of activity in the STG 

using STM-based STRF models (Pasley et al., 2012), and that shifts in STM tuning within the auditory 

cortex underlie cortical plasticity associated with priming-induced changes in speech intelligibility 

(Holdgraf et al., 2016).  However, ECoG is inherently limited due to its invasive nature and relatively 

limited coverage of auditory cortical areas in the supratemporal plane (Reddy et al., 2010), and related 

non-invasive techniques (EEG/MEG) are limited by relatively poor spatial resolution.  As a result, 

following pioneering work by Schönwiesner and Zatorre (2009) who used (synthetic) dynamic spectral 

ripple stimuli to derive voxel-wise STRFs in fMRI, several recent studies have developed fMRI encoding 

(Naselaris et al., 2011) paradigms for measuring STRFs throughout the auditory cortex using speech and 

other natural sounds as driving stimuli (de Heer et al., 2017; Santoro et al., 2014; Santoro et al., 2017).  A 

limitation of these encoding methods for studying speech is that there may not be sufficient long-term 

acoustic variability in natural speech signals to allow derivation of good-fitting STRFs with fMRI, which 

has relatively poor temporal resolution.  This may be particularly true in the STM domain (de Heer et al., 



2017), where long-term patterns of acoustic energy in the speech modulation power spectrum (MPS) are 

quite stable across utterances (Elliott and Theunissen, 2009; Fig. 1A). 

 

Figure 1. (A) Speech Modulation Power Spectrum.  Left: Average MPS of 452 sentences spoken by a single female talker.  The 
MPS describes speech as a weighted sum of spectrotemporal ripples containing energy at a unique combination of temporal (Hz; 
abscissa) and spectral (cycles/kHz; ordinate) modulation rate.  Modulation energy (dB, arb. ref; color scale) clusters into two 
discrete regions: a high-spectral-modulation-rate region corresponding to finely spaced harmonics of the fundamental (a “pitch 
region”) and a low-spectral-modulation-rate region corresponding to coarsely spaced resonant frequencies of the vocal tract (a 
“formant region”).  The black contour line indicates the modulations accounting for 80% of the total modulation power.  A 
spectrogram of an example spectrotemporal ripple (2 Hz, 4 cyc/kHz) is shown beneath. Right: Coefficient of variation across the 
452 sentences (sd/mean), expressed as a percentage (color scale).  Plotted on the same axes as the MPS.  There is relatively little 
variation across utterances (maximum CV ~7%). (B) Bubbles Procedure.  Bubbles (middle) are applied to an image of a face (left) 
and the MPS of an individual sentence (right). In either case, bubbles reduce the information in the stimulus.  Different random 
bubble patterns are applied across trials of an experiment. For auditory bubbles, we in practice use a binary masker with 
bubbles that are larger than those shown in the example. 

 

In the present fMRI study, we induce random variation in the speech MPS to derive speech-

driven STRFs using a classification image technique known as “bubbles” (Gosselin and Schyns, 2001).  



Used frequently in vision research, the bubbles procedure involves masking randomly-selected regions of 

an image (e.g., a face; Fig. 1B, left) and relating the masker patterns to behavior (e.g., emotion 

identification) using reverse correlation to identify task-relevant features of the stimulus (i.e., a 

‘perceptual receptive field’).  We recently extended the bubbles procedure to the auditory domain by 

applying bubbles-like filters to the MPS of auditory sentences (Fig. 1B, right) and deriving behavioral 

classification images describing the relative contributions of different STMs to intelligibility (Venezia et 

al., 2016).  Here, we apply the auditory bubbles procedure to fMRI by using single-trial blood-oxygen-

level dependent (BOLD) response magnitudes (cf., Smith et al., 2008) to derive speech-driven STRFs in 

the STM domain (Fig. 2).  We then apply an unsupervised clustering algorithm to reveal the large-scale 

organization of STRF patterns in the human auditory cortex.  The broad goal of this data-driven approach 

was to reveal the precise speech information encoded in different regions of the auditory cortex.  The 

specific goals were three-fold: (1) to estimate speech-driven STRFs throughout the auditory cortex; (2) to 

probe for characteristic patterns of STRF organization at different levels of cortical processing as they 

relate to different levels of acoustic or linguistic analysis of speech; and (3) to compare behavioral 

classification images for intelligibility (perceptual receptive fields) to BOLD-based measures (STRFs).  

Here and throughout, it is assumed that cortical analysis of speech sounds proceeds hierarchically in terms 

of increasing functional complexity (e.g., spectrotemporal featuresphonemessyllableswords), and 

that STRF patterns correlated with these different levels of analysis can be used to capture the 

computational roles of different stages in the feedforward cortical speech network.  Therefore, we did not 

aim to explicitly test for a hierarchical organization, but rather to probe the detailed organization of 

different levels of the presumed cortical speech hierarchy. 



 

Figure 2.  Bubbles Analysis Schematic.  A BOLD activation time-course from a single voxel in left Heschl’s gyrus of a 
representative subject is shown (blue line).  The time-course plots the z-scored time-series of single-trial activation magnitudes 
(beta; ordinate) evoked by “bubble-ized” sentences (Sentence No., abscissa).  Example bubble patterns (black-and-white panels) 
associated with sentences that evoked relatively large (top) and small (bottom) activations are plotted and identified by their 
sentence number.  Z-scored activation magnitudes associated with these examples are shown next to the corresponding point in 
the activation time-course.  Bubbles are applied to the MPS of each sentence as shown in Fig. 1.  White pixels show regions of 
the MPS that are transmitted to the listener, while black pixels show regions of the MPS that are removed.  Each bubble pattern 
is multiplied by its associated z-score, and the series of bubble patterns is summed pixel-by-pixel.  The resulting summed image 
is then blurred (Gaussian filter with sigma = 5 pixels) and scaled by the across-pixel standard deviation (sdpx).  The result is a 
STRF (top right) showing which regions of the MPS best activated this voxel.  The STRF color scale is in across-pixel standard 
deviation units, where large positive values (yellow-red) correspond to regions of the MPS that evoked relatively large 
activations. 

 

The results showed that all reliably-tuned STRFs were located in the auditory cortex and lateral 

superior temporal lobe.  Data-driven clustering identified four groups of STRF patterns: (1) broad 

responses covering most of the speech MPS; (2) responses preferring high temporal modulation rates; and 

(3)/(4) responses closely matched to behavioral classification images for intelligibility.  Group 1 was 

primarily located in the supratemporal plane including Heschl’s gyrus/sulcus and the posterior STG, 

Group 2 was located primarily in medial supratemporal regions, and Groups 3/4 were located in the 

lateral STG and STS.  The latter groups split anatomically and functionally along an STG-STS division 

with Group 3, which preferred slightly higher temporal modulation rates, located in more prominently in 

the STG, while Group 4 was located more prominently in the STS.  Within each cluster group, there were 



specialized STRF patterns including a high-spectral-modulation-rate response on part of Heschl’s gyrus, 

and a low-temporal-modulation-rate response in the anterior temporal lobe.  Together, these results 

characterize the cortical speech hierarchy in acoustic-informational terms and reveal processing 

specializations within and across levels of the hierarchy that relate directly to perception of intelligible 

speech. 

 

2. Materials and Methods 

2.1 Participants 

Ten participants (mean age = 26, range = 20-33, 2 females) took part in the experiment.  All 

participants were right-handed, native speakers of American English with self-reported normal hearing 

and normal or corrected-to-normal vision.  All participants provided informed consent in accordance with 

the University of California, Irvine Institutional Review Board guidelines.  No statistical methods were 

used to predetermine sample size; rather, our sample size was set to match that used in our previous 

psychophysical study using the same experimental paradigm (Venezia et al., 2016). 

2.2 Bubbles Stimuli 

The stimuli used in this study have been described in detail in our previous paper on auditory 

bubbles (refer to the “uncompressed” or UC stimuli; Venezia et al., 2016).  Briefly, the speech source 

signals were recordings of 452 sentences from the Institute of Electrical and Electronics Engineers (IEEE) 

sentence corpus (IEEE, 1969) spoken by a single female talker.  Each sentence was stored as a separate 

.wav file digitized at 22050 Hz with 16-bit quantization.  The sound files were zero-padded to an equal 

duration of 3.29 s.  To create the bubbles stimuli, the sentence audio files were filtered to remove 

randomly-selected patterns of energy in the spectrotemporal modulation domain.  For each sentence, a 

log-power (dB) spectrogram was obtained using Gaussian windows with a 4.75 ms-33.5 Hz time-

frequency scale.  The 2D modulation spectrum was then obtained as the modulus of the 2D Fourier 



transform of the spectrogram.  The modulation spectrum was restricted to temporal modulation rates less 

than 20 Hz and spectral modulation rates less than 6 cyc/kHz, a region containing approximately 90-95% 

of speech energy (Elliott and Theunissen, 2009).  A 2D filter of the same dimensions as the modulation 

spectrum was created by generating an identically-sized image with a set number of randomly-chosen 

pixel locations assigned the value 1 and the remainder of pixels assigned the value 0.  A symmetric 

Gaussian blur (sigma = 7 pixels) was applied to the image and all resultant values above 0.1 were set to 1 

while the remaining values were set to 0.  This produced a binary image with a number of randomly-

located contiguous regions with value 1.  A second Gaussian blur (sigma = 1 pixel) was applied to smooth 

the edges between 0- and 1-valued regions, producing the final 2D filter.  The number of pixels originally 

assigned a value of 1 (i.e., prior to any blurring) corresponds to the number of “bubbles” in the filter.  The 

modulation spectrum was then multiplied by the filter, thus removing randomly-selected sections of 

modulation energy from the signal.  The multiplication procedure was performed identically for upward- 

and downward-sweeping spectrotemporal modulations, effectively collapsing over these representations 

in subsequent analyses (see Venezia et al., 2016 for a discussion).  A filtered speech waveform was 

obtained from the degraded modulation spectrum by performing an inverse 2D Fourier transform 

followed by iterative spectrogram inversion (Griffin and Lim, 1984).  For each of the 452 sentences, 

filtered versions were created using independent, randomly-generated filter patterns.  This renders some 

filtered items unintelligible while others remain intelligible depending on the filter pattern. Separate sets 

of filtered stimuli were created using different numbers of bubbles (20-100 in steps of five).  This 

produced a total of 7684 filtered sentences.  All stimuli were generated offline and stored prior to the 

experiment.  For reference, the average proportion of the STM spectrum revealed to the listener is ~ 0.25 

for 20 bubbles and ~ 0.7 for 100 bubbles, and the relation between number of bubbles and proportion of 

the STM spectrum revealed is exponential. 

 

 



2.3 Procedure 

Participants listened to filtered sentences during sparse acquisition fMRI scanning.  On each trial 

of the experiment, a single filtered sentence was presented in the silent period (4 s) between image 

acquisitions (2 s).  Stimulus presentation was triggered 400 ms into the silent period and sentence 

duration ranged from 1.57-3.29 s (mean = 3.02 s).  At the end of sentence presentation, participants were 

visually cued to make a subjective yes-no judgment indicating whether the sentence was intelligible or 

not. The number of bubbles was adjusted trial-by-trial using an up-down staircase procedure such that 

participants rated sentences as intelligible on ~ 50% of trials.  Equilibrium for the staircase procedure was 

reached after ~ 10-20 trials, and the adaptive track was maintained continuously across scan runs.  It 

should be noted that performance increases systematically with number of bubbles only in the long run, 

since performance depends not only on the number of bubbles (total information transmitted) but on the 

pattern of bubbles (particular information transmitted).  Therefore, in practice the equilibrium number of 

bubbles varies over a range.  Our previous behavioral work (Venezia et al., 2016) shows that performance 

nonetheless converges to the expected average response rate of 50% over a large enough number of trials 

(consistent with the number of trials performed here).   

A total of 45 experimental trials were performed per scan run.  An additional 5 baseline trials 

were also presented on quasi-randomly chosen trials during each scan run.  On these trials, participants 

viewed short clips (3.33 s duration, 15 fps) from the video game “Snake” in which a moving object 

navigates though a 2D bordered grid.  Video onsets occurred 400 ms into the silent period between image 

acquisitions.  At the end of each video clip participants were visually cued to make a yes-no judgment 

indicating whether the moving object made at least one left-hand turn.  All participants performed well on 

the baseline task (mean = 91% correct, sd = 6%, min = 82%).  At the beginning of each trial, participants 

were visually cued to “listen” (experimental trials) or “watch” (baseline trials). 

Behavioral responses were generated by button-press on an MR-compatible response box.  

Button-presses in the experimental and baseline tasks were generated during the subsequent MR image 

acquisition.  Prior to scanning, participants completed a short behavioral session outside the scanner to 



familiarize themselves with the stimuli and tasks.  Two participants completed a total of 9 scan runs (405 

experimental trials) and the remaining eight participants completed a total of 10 scan runs (450 

experimental trials).  For each participant, sentences were selected from the list of 452 source sentences 

without replacement in randomly permuted order.  On any trial, the stimulus was drawn from the pool of 

7684 filtered sentences based on the selected sentence number and the number of bubbles (adjusted 

adaptively).  Thus, it was possible for particular filtered sentences to be repeated across participants.  In 

practice, filtered sentences were repeated on average only 1.39 times across participants (i.e., most items 

were not repeated).  Auditory stimuli were amplified using a Dayton DTA-1 model portable amplifier and 

presented diotically over Sensimetrics S14 piezoelectric earphones.  Participants were asked to adjust the 

volume to a comfortable level slightly above that of conversational speech (~75-80 dB SPL). Visual 

stimuli were back-projected via a Christie DLV1400-DX DLP projector onto a screen at the head end of 

the magnet bore (spatial resolution: 1024x768 pixels; refresh rate: 60 Hz).  Participants viewed the 

display on an angled front surface mirror mounted on the head coil with a viewing distance of ~ 70 cm.  

Stimulus presentation was controlled using the Psychophysics Toolbox Version 3 (Kleiner et al., 2007).  

A single high-resolution T1 anatomical image was acquired for each participant at the end of fMRI 

scanning. 

2.4 Image acquisition 

Images were acquired on a Philips Achieva 3T MRI scanner with a 32-channel sensitivity 

encoding (SENSE) head coil located at the University of California, Irvine Neuroscience Imaging Center.  

T2*-weighted images (gradient-echo EPI) were acquired using a sparse acquisition sequence (35 axial 

slices, interleaved slice order, TR = 6 s, TA = 2 s, TE = 30 ms, flip = 90°, SENSE factor = 1.7, 

reconstructed voxel size = 1.875 x 1.875 x 3 mm, matrix = 128 x 128, no gap).  Fifty-two EPI volumes 

were collected per scan run.  A single high-resolution, T1-weighted anatomical image was collected for 

each participant using a magnetization prepared rapid gradient echo (MPRAGE) sequence (160 axial 



slices, TR = 8.4 ms, TE = 3.7 ms, flip = 8°, SENSE factor = 2.4, 1 mm isotropic voxels, matrix = 256 x 

256). 

2.5 Behavioral Analysis 

For the experimental task, the goal was to calculate a behavioral classification image based on 

participants’ yes-no responses indicating whether each filtered sentence was judged to be intelligible or 

not.  To accomplish this, the 2D bubbles filter patterns associated with each sentence were treated as 

predictors of yes-no intelligibility judgments.  Specifically, for each participant, a weighted sum of the 2D 

bubbles filters across trials was performed in which “no” trials received a negative weight equal to the 

proportion of “yes” trials, pyes, and “yes” trials received a positive weight equal to the complement of  pyes: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵 =  � 𝑤𝑤𝑖𝑖 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 

where i is the trial index, wi is the weight associated with the response on a given trial (pyes or its 

complement), Bubi is the 2D bubbles filter applied on a given trial, and CImgB is the resulting behavioral 

classification image showing which regions of the speech modulation spectrum predict a “yes” judgment 

(i.e., support intelligibility).  Trials in which no button press was recorded were excluded from analysis. 

To form a group-level classification image, the behavioral classification images from each participant 

were summed, smoothed with a symmetric Gaussian filter (sigma = 5 pixels), and z-scored (Venezia et 

al., 2016). 

2.6 MR Image Preprocessing. 

Automated cortical surface reconstruction based on the T1-weighted anatomical images was 

performed in Freesurfer v5.3 (Fischl, 2012).  For each participant, the inflated surface mesh and white 

matter segmentation volume were manually checked to ensure no large-scale errors occurred during 

automated tissue segmentation.  Right and left hemisphere cortical surface meshes were then converted to 



AFNI/SUMA format, co-registered to the participant’s native-space anatomical volume, resampled to a 

standard topology via linear icosahedral tessellation with 128 edge divides, and merged into a single 

surface containing 327684 nodes using the prep_afni_surf.py function of Oosterhof’s “surfing” toolbox 

v0.6 (https://github.com/nno/surfing; Oosterhof et al., 2011). The standard-topology mesh is nearly 

identical in geometry (i.e., cortical folding patterns) to the original surface but has been re-aligned to a 

template such that each surface node represents the same cortical location across participants (Saad and 

Reynolds, 2012).  Group-level results are plotted on a surface mesh generated from the Colin 27 template 

brain after resampling to the same standard topology. 

Preprocessing of the functional data was performed using AFNI v17.0.05 (Cox, 2012).  

Functional images were slice-timing corrected based on slice time offsets extracted from the Philips PAR 

files, followed by realignment (motion correction) and coregistration to the T1-weighted anatomical 

image.  The functional data were then mapped to the merged, standard-topology surface mesh and 

smoothed to a target level of 4 mm full width at half maximum.  An iterative procedure (AFNI 

SurfSmooth) was implemented in which the level of smoothness in the data (~ 2.5 mm intrinsic 

smoothness at the outset) was estimated from the residual time series after high-order detrending, and 

additional smoothing was applied in small increments until the target level was reached.  Finally, the data 

from each scan run were scaled to have a mean of 100 across time points subject to a range of 0-200. 

2.7 fMRI Beta Time Series Estimation 

The onset and offset of sound energy for each experimental-stimulus sound file were identified 

based on the windowed root-mean-square amplitude of the signal (silence threshold = 0.0035).  These 

measurements were used to generate a series of stimulus onsets and durations that defined the event 

timing of the experiment for each participant.  The resulting event timing was entered as an input to the 

3dDeconvolve function in AFNI using the stim_times_IM option with a duration-modulated BLOCK 

hemodynamic response function.  This call to 3dDeconvolve produced a predicted activation time-course 

separately for each experimental trial. These predicted time-courses were at first sampled with a temporal 



resolution of 0.1 s, but were subsequently down-sampled by averaging together the values occurring 

during periods of image acquisition (i.e., the 2 s TA within each 6 s TR).  This produced a final set of 

predicted activation time-courses with a temporal resolution of 2 s, accounting for temporal 

discontinuities introduced by sparse sampling (Perrachione and Ghosh, 2013).  This set of predictors 

along with additional baseline and third-order polynomial drift terms, and six regressors of no interest 

corresponding to motion parameters estimated during the realignment stage of preprocessing, all 

appropriately down-sampled, were combined to create an experimental design matrix.  Baseline-task 

events were not modeled explicitly and were thus captured by the baseline term of the design matrix.  The 

3dLSS function in AFNI was then used to perform “least squares-separate” (Mumford et al., 2012) 

regression on the preprocessed fMRI data using the aforementioned design matrix.  The output from 

3dLSS was a beta time-series at each voxel representing the overall magnitude of activation for each 

experimental trial over the duration of the experiment.  Extreme (outlier) beta values were excluded based 

on the following formula for outlier detection: 

𝐶𝐶 =  𝛼𝛼 ∗ �𝜋𝜋 2� ∗ 𝑀𝑀𝑀𝑀𝑀𝑀;  𝛼𝛼 =  Φ−1�1− 0.001
𝑁𝑁� � 

where C is the outlier cutoff, MAD is the median absolute deviation, Φ is the cumulative normal 

distribution function, and N is the number of time points.  Beta values for which the absolute deviation 

from the median exceeded C were excluded. 

2.8 Spectrotemporal Receptive Field Estimation 

Neural classification images (STRFs) were calculated just as behavioral classification images 

except that bubbles filter patterns were used to predict the estimated fMRI beta time series at each cortical 

surface node rather than participant behavior (see Fig. 2).  That is, for each surface node (voxel-like unit) 

in each participant, a weighted sum of the 2D bubbles filters across trials was performed such that each 

trial received a weight equal to the z-scored activation magnitude on that trial: 



𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  � 𝑧𝑧𝑖𝑖 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖=1

 

where i is the trial index, 𝑧𝑧 i is the magnitude of neural activation on a given trial (taken from the z-scored 

beta time series), Bubi is the 2D bubbles filter applied on a given trial, and STRF is the resulting neural 

classification image showing which regions of the speech modulation spectrum best activated a given 

cortical surface node1.  Trials in which no behavioral response was given were excluded from analysis.    

To create a group-level STRF, individual-participant STRFs were smoothed with a symmetric Gaussian 

filter (sigma = 5 pixels), scaled by their across-pixel standard deviation, averaged across subjects, and 

scaled pixel-wise by the between-subject standard error to produce a t-score image.  This was performed 

separately for each node in the standard-topology cortical surface mesh. 

 The STRFs estimated in this manner may contain an intelligibility bias – that is, if the magnitude 

or variance of the neural signal at a given surface node is influenced by the intelligibility of the speech 

signal, then relatively more weight could be placed on intelligible compared to unintelligible trials or vice 

versa.  In short, the STRF could reflect a global effect of intelligibility.  Therefore, in addition to the 

primary STRF analysis, we estimated STRFs separately for intelligible and unintelligible trials as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  � 𝑧𝑧𝑖𝑖 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖

𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1

 

where n_intel is the number of trials judged as intelligible by the listener, i is the trial index, 𝑧𝑧 i is the 

magnitude of neural activation on a given intelligible trial, Bubi is the 2D bubbles filter applied on a given 

intelligible trial, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is the resulting neural classification image for intelligible trials; and 

                                                           
1 Note that the average number bubbles at behavioral threshold (50% “yes” responses) can vary across participants, 
but this is not expected to bias STRF estimates given the number of trials performed in this study.  Bias of this sort 
could only occur if the number of trials was too few to allow a comprehensive random sampling of the stimulus 
domain at a given average number of bubbles.  The typical average number of bubbles in this study was ~ 50, at 
which point ~ 50% of the stimulus space was revealed on each trial (i.e., optimum sampling of the stimulus space). 



𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙 =  � 𝑧𝑧𝑖𝑖 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖

𝑛𝑛_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑖𝑖=1

 

where n_unintel is the number of trials judged as unintelligible by the listener, i is the trial index, 𝑧𝑧 i is the 

magnitude of neural activation on a given unintelligible trial, Bubi is the 2D bubbles filter applied on a 

given unintelligible trial, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 is the resulting neural classification image for unintelligible 

trials.  Crucially, neural beta time series were z-scored separately for intelligible and unintelligible trials, 

thus removing any differences in the mean and variance of the neural signal due to intelligibility alone.  

An unbiased STRF estimate was then generated as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
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where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 is a neural classification image with the global effect of intelligibility removed.  An 

unweighted average is used because the number of intelligible trials is kept equal to the number of 

unintelligible trials by the up-down staircase implemented on yes-no intelligibility judgments (2.3).  The 

procedure for calculating 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 is thus equivalent to separately z-scoring the beta time series for 

intelligible and unintelligible trials, recombining those time series in the original order, and performing a 

weighted sum of bubbles filters across all trials as described above for uncorrected STRFs.  A similar 

approach is often taken in the context of multivariate pattern analysis (MVPA), where the neural signal is 

normalized across voxels at each time point – and thus implicitly normalized across conditions or classes 

– in order to prevent decoding algorithms from predicting trial types based on condition-mean differences 

in signal amplitude as opposed to differences in multi-voxel patterns (Coutanche, 2013).  Note that 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 is still biased in the more straightforward sense that only (intelligible and unintelligible) 

speech, and no other class of sounds, was used as a driving stimulus.  Group-level (t-scored) versions of 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 were calculated as described above for uncorrected STRFs.  The subsequently-described 



analyses were performed only on the uncorrected STRFs, as  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 was calculated primarily as a 

basis for comparison to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 

2.9 Quantification of Modulation Tuning 

To determine whether a given cortical surface node displayed significant modulation tuning 

across participants, we tested whether the group-level STRF at that surface node demonstrated a 

statistically significant non-zero response.  Specifically, a p-value was calculated for each pixel in the 

STRF based on the group-level t-score at each pixel location (i.e., a p-value image was generated), and 

the p-values were then adjusted for multiple comparisons across pixels using the false discovery rate 

(FDR) procedure (Benjamini and Hochberg, 1995).  Multiple comparisons across cortical surface nodes 

were then adjusted for multiple comparisons via the ‘wild bootstrap,’ a nonparametric technique that has 

been shown to provide appropriate control of false positives in most situations (Eklund et al., 2016).  

Specifically, each participant’s first-level STRF was multiplied by 1 or -1, first-level STRFs were 

combined across participants (t-scoring), and this was repeated for different permuted sign-flip vectors.  

For each permutation order, the minimum FDR-corrected p-value was computed for each second-level (t-

scored) STRF, and the size of the maximum cluster of nodes (surface area in mm2) with a minimum p-

value satisfying FDR < 0.05 was calculated and placed in a null distribution of maximum cluster sizes.  

Since we had 10 subjects, we were able to perform all possible sign-flip permutations (210) to form a null 

distribution of 1024 maximum cluster sizes.  The 95th percentile of this distribution (node-level corrected 

p < 0.05) was 116 mm2.  This surface area threshold was implemented separately for positively tuned 

(peak t-score is positive) and negatively tuned (peak t-score is negative) surface nodes.  Note that the null 

distribution of maximum cluster sizes is identical for positive and negative t-scores due to the symmetry 

of the sign-flip orders across all possible permutations. 

For each significantly tuned surface node surviving the area threshold, the best temporal 

modulation frequency (tBMF) and best spectral modulation frequency (sBMF) were calculated for each 

of the individual-participant STRFs at that surface node.  That is, the pixel with the largest response 



magnitude was identified and the temporal modulation rate (Hz) and spectral modulation rate (cyc/kHz) 

represented by that pixel location were recorded.  Similarly, the temporal peak modulation frequency 

(tPMF) and spectral peak modulation frequency (sPMF) were calculated from the group-level (t-score) 

neural STRF.  We distinguish between BMF at the individual participant level and PMF at the group level 

because the BMF reflects the highest magnitude response per participant while the PMF reflects the most 

reliable response across participants. 

2.10 Unsupervised Clustering of STRFs 

Two large sets of positively tuned cortical surface nodes were identified in the left and right 

auditory cortices.  To explore whether different groups of auditory-cortical surface nodes systematically 

represented different patterns of speech modulation energy, we performed unsupervised clustering using a 

Gaussian mixture model (GMM) analysis.  The group-level STRFs at each significantly tuned auditory-

cortical surface node were first down-sampled to 4 x 8 pixels and re-scaled to the range [0 1].  This re-

scaling was performed because we were interested in identifying differences related to the pattern of 

tuning rather than the overall magnitude of the tuned response.  The re-scaled neural STRFs were then 

vectorized to produce a length-32 feature vector at each cortical surface node.  The feature vectors across 

all significantly tuned surface nodes served as the input to GMM analysis.  Briefly, in the GMM analysis 

the distribution of each observation is specified by a probability density function through a finite mixture 

of K 32-dimensional Gaussian distributions: 

𝑓𝑓(𝑥𝑥𝑖𝑖;  Ψ) =  �𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖;  Θ𝑘𝑘),
𝐾𝐾

𝑘𝑘=1

 

where Ψ = 𝜋𝜋1, … ,𝜋𝜋𝐾𝐾−1,𝜃𝜃1, … ,𝜃𝜃𝐾𝐾 are the model parameters; 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖;  Θ𝑘𝑘) is the kth Gaussian distribution 

for observation 𝑥𝑥𝑖𝑖 with parameter vector Θ𝑘𝑘; 𝜋𝜋1, … ,𝜋𝜋𝐾𝐾−1 are the mixing weights such that ∑ 𝜋𝜋𝑘𝑘 = 1𝐾𝐾
𝑘𝑘=1 ; 

and K is the number of mixture components.  For each component, 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖;  Θ𝑘𝑘) ~ 𝑁𝑁(𝜇𝜇𝑘𝑘 , Σ𝑘𝑘) where 𝜇𝜇𝑘𝑘 is 

the vector of means (i.e., representing that component’s average feature vector) and Σ𝑘𝑘 is the covariance 



matrix.  The GMM was fit in R v3.3.2 using the package mclust v5.3 (Scrucca et al., 2016).  In mclust, 

the GMM parameters are estimated by maximization of the log-likelihood function using the expectation-

maximization (EM) algorithm (McLachlan and Peel, 2004).  The EM algorithm is initialized by a model-

based agglomerative clustering routine.  The mclust package allows for specification of covariance 

structures of varying complexity such that the volume, shape, and orientation of the covariance matrix, 

Σ𝑘𝑘, can be equal (E) or variable (V) across the K components (e.g., a model with equal volume, equal 

shape, and variable orientation would be coded EEV).  The volume, shape, and orientation can also be set 

to identity (I) to generate simpler (non-ellipsoidal) GMMs. We implemented a model selection procedure 

in mclust where the best fitting GMM was selected from a set of models in which K varied from 2 to 40 

and ten possible covariance structures were explored for each K.   

The final number of components, K, and the best-fitting covariance parameterization were 

selected by choosing the model with the largest Bayesian Information Criterion (BIC), defined in mclust 

as: 

𝐵𝐵𝐵𝐵𝐵𝐵 =  2 ∗ ℓ(Ψ; 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) − 𝑑𝑑𝑑𝑑 ∗ log (𝑛𝑛), 

where ℓ(Ψ; 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is the log-likelihood, df is the number of model parameters, and n is the number of 

observations.  The initial agglomerative clustering was carried out on a subset of observations consisting 

of every other cortical surface node.  A conjugate prior on the means and covariance matrices of the 

components was specified using the default options in mclust.  The model selection procedure ultimately 

identified a GMM with K = 18 and a VVV covariance structure.  Each cortical surface node was assigned 

to the component (cluster) with the maximum mixing weight, 𝜋𝜋𝐾𝐾 .  Cluster labels were then reassigned 

such that the correlation between 𝜇𝜇𝑘𝑘 at adjacent cluster labels was maximized.  This was done by 

reordering the correlation matrix of 𝜇𝜇𝑘𝑘’s such that large values were shifted toward the diagonal; 

reordering was performed using hierarchical clustering based on Ward’s distance.  After label 

reassignment, it was clear from visual inspection that STRFs could be assigned to one of four “cluster 

groups” with similar response properties. 



2.11 Intelligibility Maps 

To facilitate comparison with previous work on cortical speech processing, we obtained surface-

node-wise maps of the brain regions that responded significantly to intelligible speech.  This was 

performed in two ways.  First, following the classic cognitive subtraction approach (Petersen et al., 1989), 

we performed a traditional whole-brain general linear model analysis using a design matrix identical to 

that described above for beta time series estimation with the following exception: only two predictors of 

interest were included, one coding the predicted activation time-course for experimental trials in which 

the participant indicated that the sentence presented on that trial was intelligible, and a second coding 

experimental trials for which the participant responded unintelligible.  For each participant, a contrast 

coefficient was calculated by comparing the response on intelligible vs. unintelligible trials at each 

cortical surface node.  Second-level maps were computed by performing one-sample t-tests on the 

contrast coefficients at each cortical surface node.  Multiple comparisons were corrected for via the ‘wild 

bootstrap’: second-level t-tests were repeated after flipping the sign of first-level contrast coefficients in 

different permuted orders across participants.  For each permutation order, the maximum cluster of nodes 

with one-tailed (intelligible > unintelligible) p < 0.005 was calculated and placed in a null distribution of 

maximum cluster sizes.  We again performed all possible sign-flip permutations (210) to form a null 

distribution of 1024 maximum cluster sizes.  The 95th percentile of this distribution was 117 mm2.  

For the second approach, intelligibility maps were obtained by examining the correlation between 

behavioral classification images and STRFs.  Specifically, for each participant at each surface node, the 

pixel-by-pixel Pearson correlation of the behavioral classification image and the STRF at that node was 

calculated.  The correlation values were then subjected to Fisher’s z transformation and the resulting z-

maps were entered into a second-level analysis (one sample t-test).  A second-level z-score was 

considered significant if the node-wise p < 0.005 (one-tailed, positive z) and the cluster size exceeded 130 

mm2 as determined by the ‘wild bootstrap’ implemented as described above for the intelligibility contrast 

coefficients. 



2.12 Linear Mixed Effects Modeling 

There are two significant concerns regarding the application of GMM clustering (2.10) to group-

level STRFs: (1) cluster-level (i.e., aggregate) STRFs may not strongly reflect the patterns of individual 

STRFs at the constituent cortical surface nodes within a given cluster; and (2) group-level STRFs may not 

strongly reflect the patterns of the individual-participant STRFs from which the group-level data were 

derived.  That is, aggregate STRF patterns are not guaranteed to be representative of the individual STRFs 

entered into the aggregate (Joosten & Neri, 2012).  Therefore, individual-participant estimates of STRF-

summary scalar metrics –  tBMF, sBMF, and behavioral-neural intelligibility correlation (z) – were 

entered as the dependent variables in separate linear mixed effects (LME) models to evaluate their 

distribution across the cortical regions defined by data-driven STRF clustering (i.e., regions defined by 

cluster group membership).  For comparison, we also examined the distribution of these scalar metrics 

across anatomically defined regions.  The LME models included two fixed effects (hemisphere and 

cluster/anatomical region) and their interaction.  The models also included random effects parameterized 

in such a way as to approximate traditional repeated measures ANOVA – namely, random intercepts were 

included for each within-participant error stratum implied by the fixed effects design.  Models were fit in 

the R statistical computing environment using the ‘mixed’ function included in the afex package 

(Singmann and Kellen, 2017) version 0.18-0.  The R model formulae were specified as follows: 

𝐷𝐷𝐷𝐷 ~ ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 + ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (1 | 𝑠𝑠𝑠𝑠𝑠𝑠) + (1 | ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑠𝑠𝑠𝑠𝑠𝑠) + (1 | 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝑠𝑠𝑠𝑠𝑠𝑠)

+ (1 | ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝑠𝑠𝑠𝑠𝑠𝑠), 

 

where DV is the dependent variable (tBMF, sBMF, or z), sub is a factor variable representing the identity 

of each participant, ‘:’ represents an interaction, and (1 | …) represents the random intercept for a given 

error stratum as specified by the variables to the right of the vertical bar.  Crucially, models were fit to un-

aggregated data such that each participant contributed 6403 observations, one for each significantly tuned 

auditory-cortical surface node.  A significant difference in the distribution of tBMF, sBMF, or behavioral-



neural intelligibility correlation (z) across cluster groups would provide evidence for the reliability of 

STRF patterns across the cortical surface nodes within a cluster group and across individual participants.   

To test for a tradeoff in spectral and temporal resolution across significantly tuned STRFs, an 

additional model examining the node-by-node relationship between tBMF and sBMF was estimated using 

the following formula: 

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ~ ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 | 𝑠𝑠𝑠𝑠𝑠𝑠) + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 | ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑠𝑠𝑠𝑠𝑠𝑠), 

 

where tBMF is the dependent variable, sBMF is a continuous covariate, and (sBMF | …) represents a 

random intercept plus random slope of sBMF within the error stratum specified by the variables to the 

right of the vertical bar.  An analogous model with sBMF as the dependent variable and tBMF as the 

continuous covariate was also estimated.  For all models, categorical independent variables were coded 

using a weighted-sum-to-zero approach such that the mean contrast weight was equal to zero after 

accounting for imbalances in the number of observations coming from each hemisphere and/or cortical 

region.  Continuous covariates were centered on zero.  Statistical significance of the fixed effects was 

evaluated by F-test with Satterthwaite approximation of the denominator degrees of freedom (Luke, 2017) 

and type III sums of squares.  Observations for which the z-scored STRF peak magnitude was less than 2 

were excluded from model fitting (4.2% of the total observations across participants). 

 

3. Results 

3.1 Cluster analysis reveals four groups of distinct STRF patterns in human auditory cortex 

During fMRI scanning, participants listened to 400-450 “bubble-ized” sentences and made yes-no 

intelligibility judgments for each sentence by button press.  A behavioral classification image (Fig. 3C) 

showing which STMs were important for intelligibility was calculated from the button-press data and 

neural classification images (STRFs) in the STM domain were calculated for each node (roughly a voxel-



like unit) in a standard-topology cortical surface model (essentially a group-level template brain that 

respects the gray matter folding patterns of each individual participant; see 2.6).  Positively tuned STRFs 

(particular STMs produce an increased BOLD response, n = 6403) were considered separately from 

negatively tuned STRFs (particular STMs produce a decreased BOLD response, no significant nodes 

detected).  Using these criteria, 100% of positively tuned surface nodes were located in the auditory 

cortex including the supratemporal plane and lateral superior temporal lobe.  Of these, 58.8% were 

located in the left hemisphere; 97.3% were located in either Heschl’s gyrus/sulcus, STG, STS, or 

posterior Sylvian cortex, based on the Destrieux (Destrieux et al., 2010) anatomical atlas in Freesurfer 

v5.3 (Fischl, 2012).  For subsequent reporting of anatomical locations, the STG and STS were split into 

posterior and anterior segments by marking the midpoint of Heschl’s gyrus and drawing a plane 

perpendicular to the Sylvian fissure. 

To determine whether STRF patterns were organized within the auditory cortex, we applied an 

unsupervised Gaussian mixture model (GMM) clustering algorithm.  The GMM essentially grouped 

STRFs according to their functional patterns within the STM domain.  Crucially, clusters were not 

constrained to include STRFs from neighboring anatomical locations.  The best-fitting GMM identified 

18 STRF clusters within the auditory cortex (Fig. 3B).  These clusters were then sorted to maximize the 

correlation between neighboring cluster-level STRFs and merged into four distinct “cluster groups” (Fig. 

3A) by visual inspection.  The cluster groups can be described as follows: Cluster Group 1 was located 

primarily within the supratemporal plane and posterior STG and responded to STMs throughout the entire 

range of the speech MPS including “pitch” and “formant” regions (see Fig. 1); Cluster Group 2 was 

located primarily in the posterior Sylvian region and medial supratemporal regions and responded to 

STMs with low spectral modulation rates and relatively high temporal modulation rates; Cluster Groups 3 

and 4 were located primarily in the lateral STG and STS and responded to STMs important for 

intelligibility, based on comparison to the group-level behavioral classification image for intelligibility 

(Fig. 3C).  Cluster Group 3 responded most reliably to temporal modulations about one-half octave higher 

than Cluster Group 4.  To summarize, an STRF was derived empirically for each node. We then defined 



18 clusters of nodes based on STRF similarity, each with its own cluster-level STRF. Finally, groups of 

clusters were formed by sorting the cluster-level STRFs to maximize the similarity between neighboring 

STRFs, and then manually identifying groups based on visually apparent, characteristic STRF profiles. 

 

 

Figure 3. (A) Maps of STRF Cluster Groups in Auditory Cortex.  Cluster Groups are plotted by color on cortical surface renderings 
of the left and right hemispheres.  Zoomed renderings of the temporal lobe are shown beneath whole-brain plots.  Cluster Group 
1 (CG1, blue) is located primarily in the supratemporal plane and posterior STG.  Cluster Group 2 (CG2, cyan) is located primarily 
in medial supratemporal reigons.  Cluster Groups 3 and 4 (CG3/4, yellow/red) are located primarily in the posterior and anterior 
STG/STS. (B) STRF-Cluster Patterns.  For each of the 18 STRF clusters identified by GMM analysis, the cluster-average group-
level (t-score) STRF is plotted.  STRF magnitudes have been normalized to the range [0, 1].  Larger values are associated with 
STMs that produced relatively more BOLD activation.  STRFs are organized by Cluster Group (CG1-4) in columns running from left 
to right.  STRFs associated with CG1 respond to a broad range of STMs.  STRFs associated with CG2 respond especially to high 
temporal modulation rates.  STRFs associated with CG3/4 respond to STMs important for intelligibility (see C). (C) Behavioral 
Classification Image for Intelligibility Judgments.  This plot is essentially a ‘behavioral STRF’, derived entirely from button-press 
responses (yes-no intelligibility judgments) rather than neural activity.  The z-scored group-level behavioral classification image 



is shown.  Larger values are associated with STMs that contribute relatively more to intelligibility.  Temporal modulations from 
2-7 Hz and spectral modulations less than 1 cyc/kHZ contribute maximally. (D) Distribution of Cluster Groups within 
Anatomically Defined Regions.  The proportion of cortical surface nodes belonging to CG1-4 is plotted for six anatomical regions 
of interest in the left (LH) and right (RH) hemispheres: Heschl = Heschl’s gyrus/sulcus, pSTG/S = posterior STG/S, aSTG/S = 
anterior STG/S, pSyl = posterior Sylvian cortex.  Colored boxes beneath region labels correspond to the colors of the anatomical 
regions plotted on zoomed cortical surface renderings at right.  Only significantly tuned cortical surface nodes are labeled. 

 

 The exact distribution of the four cluster groups within different anatomical regions, defined 

using the Destrieux atlas (Destrieux et al., 2010) as described above, is shown in Fig. 3D.  A multinomial 

regression model showed significant main effects of hemisphere (analysis of deviance, type III SS; 𝜒𝜒2(3) 

= 174.6, p < 0.001) and anatomical region (𝜒𝜒2(15) = 1528.1, p < 0.001), and a significant two-way 

interaction (𝜒𝜒2(15) = 229.6, p < 0.001).  The simple main effect of anatomical region remained significant 

within each hemisphere (left: 𝜒𝜒2(15) = 1528.1, p < 0.001; right: 𝜒𝜒2(15) = 1429.8, p < 0.001).  In both 

hemispheres, a majority of the nodes in Heschl’s gyrus/sulcus belonged to Cluster Group 1 (Fig. 3D, 

‘Heschl’), while the other three cluster groups each accounted for about 5-20% of the nodes.  A similar 

pattern was observed in the left hemisphere posterior STG (Fig. 3D, ‘pSTG’) with Cluster Group 1 

dominating (> 60%), while in the right hemisphere Cluster Groups 1-3 each accounted for 20-40% of 

nodes.  The posterior STS (Fig. 3D, ‘pSTS’) had a mixed profile in the left hemisphere, with Cluster 

Groups 3 and 4 together accounting 65% of the nodes, and Cluster Group 1 accounting for 25% of the 

nodes.  Most nodes on the dorsal bank of the pSTS bordering the STG belonged to Cluster Groups 1 and 

2, though a small group of nodes in the dorsal mid-posterior STS belonged to Cluster Group 4.  A group 

of nodes in the ventral pSTS bordering the middle temporal gyrus belonged to Cluster Groups 3 and 4.  In 

other words, the anatomically-defined pSTS in the left hemisphere seemed to encompass multiple 

functionally distinct subregions.  In the right hemisphere, the pSTS was dominated by Cluster Groups 3 

and 4 (~ 70%), but there were very few significantly tuned nodes in the right pSTS overall.  The anterior 

STG (Fig. 3D, ‘aSTG’) in the left hemisphere was dominated by Cluster Group 3 (~ 55%), followed by 

Cluster Groups 1 (~ 35%) and 4 (~ 10%).  A similar pattern was observed in the right aSTG.  The anterior 

STS was dominated by Cluster Groups 3 and 4 in both hemispheres, though both hemispheres also had a 



non-trivial contribution from Cluster Group 1.  The posterior Sylvian region was dominated by Cluster 

Group 2 in both hemispheres (Fig. 3D, ‘pSyl’).   

To summarize, Cluster Groups 1 and 2 were located in supratemporal regions and the 

posterodorsal lateral temporal lobe, and a transition to Cluster Groups 3 and 4 occurred moving laterally 

(e.g., STG to STS) and anteriorly (e.g., pSTG to aSTG).  The posterior- and anterior-most regions of the 

ventral STS were dominated by Cluster Groups 3 and 4, and thus likely represent the highest levels of 

processing in the auditory cortex.  It is important to note, again, that clusters and cluster groups were 

defined entirely on a functional basis – that is, the assignment of surface nodes to a cluster or cluster 

group was made entirely based on STRF patterns, with no restrictions based on anatomical location.  The 

anatomical organization of clusters and cluster groups emerged naturally from their functional similarity.  

Though some amount of spatial correlation is expected due to both intrinsic and extrinsic spatial 

smoothing of the fMRI data (Hagler Jr. et al., 2006) – which increases the likelihood that neighboring 

nodes will demonstrate similar STRF profiles – the level of smoothness in our data (4 mm FWHM) does 

not account for the large-scale functional-anatomic organization of STRFs observed.   

3.2 Effect of intelligibility on STRFs 

 As described in the Methods (2.8), it is possible that STRFs estimated from the full dataset 

(intelligible and unintelligible trials) were biased due to a global effect of intelligibility (see, e.g., Fig. 8A 

below).  Therefore, we obtained STRFs with the effect of intelligibility removed (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) by 

calculating separate STRFs for intelligible (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) and unintelligible (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) trials and 

averaging them.  Crucially, the neural signal was normalized prior to this calculation to remove 

differences in the trial-by-trial mean and variance of intelligible and unintelligible trials, respectively (as 

is commonly done in pre-processing for MVPA; Coutanche, 2013).  For each of the 18 STRF clusters 

identified by GMM clustering (3.1), we calculated cluster-level estimates of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.  The overall 

patterns of cluster-level STRFs estimated from the full dataset (Fig. 3B) were maintained for cluster-level 

estimates of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (Fig. 4).  Indeed, the mean cluster-by-cluster correlation between the original 



cluster-level STRFs and the cluster-level estimates of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 was r = 0.89 (± 0.01 SEM).  

However, the mean cluster-by-cluster correlation between the original cluster-level STRFs and the 

behavioral classification image for intelligibility (Fig. 3C) was r = 0.72 (± 0.05 SEM), while the mean 

value of this correlation was only r = 0.39 (± 0.05 SEM) for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑠𝑠𝑒𝑒𝑒𝑒, and the difference between 

these correlations was significant (t17 =14.1, p < 0.001).  This suggests that the global effect of 

intelligibility was effectively removed from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.  The primary difference between the original 

STRFs and the unbiased STRFs was a relatively enhanced representation of pitch-related STMs compared 

intelligibility-related STMs in the unbiased STRFs (compare Fig. 4 to Fig. 3B).  Of note, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 were not examined individually because the stimulus space was not randomly sampled by 

bubbles within each class of trials (intelligible, unintelligible; Fig. 3C). 

 

Figure 4. Cluster level STRFs with the global effect of intelligibility removed (STRFUnbiased).  For each of the 18 STRF clusters 
identified by GMM analysis, the cluster-average group-level (t-score) STRFUnbiased is plotted.  STRF magnitudes have been 
normalized to the range [0, 1].  Larger values are associated with STMs that produced relatively more BOLD activation.  STRFs 
are organized by Cluster Group (CG1-4) in columns running from left to right. Compare to Fig. 3B. 

 

 



3.3 STRF peak modulation tuning 

Cluster-level STRFs represent the mean response across all cortical surface nodes included in that 

cluster.  Because clusters and cluster groups are defined based on the similarity of responses among their 

constituent nodes, we might expect little variability in STM tuning within a given cluster group.  On the 

other hand, it is possible that STRFs within a cluster group are bound by some general feature but still 

vary in terms of the specific information encoded at each cortical node.  To examine STRF variability 

within and between cluster groups, we estimated temporal and spectral peak modulation frequencies 

(tPMF and sPMF, respectively) from the group-level STRF of each positively tuned auditory-cortical 

surface node.  The predominant tPMFs were between ~2-8 Hz and this range was distributed throughout 

the auditory cortex (Fig. 5A, tPMF).  There was no clear evidence of spatially organized topographic 

gradients of tPMF within individual cortical regions.  However, a clear pattern emerged that respected the 

defining characteristics of the cluster group STRFs as observed in Fig. 3B – i.e., a broad range of tPMFs 

was represented in Cluster Group 1, high-rate tPMFs (> 6 Hz) were preferentially represented in Cluster 

Group 2, and Cluster Groups 3 and 4 were distinguished by a relative shift toward higher tPMFs in 

Cluster Group 3 (Fig. 5B, top; see interquartile ranges). This pattern was similar across the left and right 

hemispheres.  The range of spectral modulations represented was more restricted, with predominantly low 

sPMFs (< 1.5 cyc/kHz) found throughout the auditory cortex (Fig. 5A, sPMF).  High sPMFs (4-6 

cyc/kHz, vocal pitch range) were restricted primarily to the supratemporal plane and Heschl’s gyrus.  

Indeed, the distribution of sPMFs (Fig 5B, bottom) was overwhelmingly weighted toward low sPMFs in 

Cluster Groups 2-4, but the distribution in Cluster Group 1 had considerably more weight on higher 

sPMFs (Fig. 5B, bottom; see interquartile ranges) .  This again paralleled the pattern of cluster group 

STRFs observed in Fig. 3B.  The left and right hemispheres were again similar.  Overall, STRFs within 

each cluster group responded to a range of STMs, but the groups were clearly distinguishable based on 

the distributions of STMs represented. 



 

Figure 5. (A) Cortical Maps of Peak Modulation Frequencies.  Node-wise maps of temporal peak modulation frequency (tPMF, 
Hz) and spectral peak modulation frequency (sPMF, cyc/kHz) are displayed on inflated cortical surface renderings of the left and 
right temporal lobes.  The renderings have been zoomed in as indicated by the red boxes at the top of the figure.  Color scales 
are logarithmic.  (B) Probability Density of tPMF and sPMF Within Cluster Groups.  Empirical cumulative distribution functions 
(eCDFs; Kaplan-Meier method) for tPMF (Hz, top) and sPMF (cyc/kHz, bottom) were generated.  Empirical probability density 
functions (ePDFs) were obtained by taking the derivative of the eCDFs.  The ePDFs are plotted for each cluster group (colored 
lines, see legend) separately for the left (LH) and right (RH) hemispheres.  The interquartile ranges (25th percentile - 75th 
percentile) of each distribution are indicated at the top right of each panel (IQR).  The ordinate is the estimated probability 
density. 

 

In addition to qualitatively describing the distribution of group-level PMFs, we wanted to test 

quantitatively whether STRF peak modulation frequencies were reliably organized by cluster group 

across subjects and cortical surface nodes, and whether such organization varied by hemisphere.  To 

accomplish this, we calculated the best temporal and spectral modulation frequencies (tBMF and sBMF, 

respectively) of individual-participant STRFs at each significantly tuned auditory-cortical surface node.  

For a given participant, the tBMF and sBMF at a given cortical surface node were selected jointly by 

identifying the 2D peak of the individual-participant STRF.  The un-aggregated estimates of tBMF and 

sBMF across all surface nodes and all participants were transformed to an octave scale and entered as the 

dependent variables in separate linear mixed effects (LME) analyses with hemisphere (left, right), cluster 

group (1-4, as defined on the group data), and their interaction included as fixed factors, and participant 



included as a random factor (see 2.12 for a comprehensive description of the random effects structure).  

For tBMF, there was a significant main effect of cluster group (F3,26.7 = 9.98, p < 0.001) but no significant 

main effect of hemisphere (F1,9.0 = 2.29, p = 0.16) and no significant interaction (F3,25.1 = 1.49, p = 0.24).  

Crucially, the pattern of cluster-group differences matched the characteristics of the aggregate STRFs for 

each cluster group (see 2.12 and 4.2 for a discussion of the importance of this finding): the highest tBMFs 

were found in Cluster Group 2, followed by Cluster Group 3, and Cluster Groups 1 and 4 had the lowest 

tBMFs (Figure 5A, top).  The right hemisphere had higher tBMFs overall, particularly in Cluster Group 2, 

although this effect was not statistically significant.  For sBMF, there was a significant main effect of 

cluster group (F3,26.8 = 3.72, p < 0.05) and a significant cluster group x hemisphere interaction (F3,26.0 = 

4.99, p < 0.01), but no significant effect of hemisphere (F1,9.1 = 0.55, p = 0.48).  The simple main effect of 

cluster group remained significant in the right hemisphere (F3,26.7 = 5.37, p < 0.01) and at the trend level 

in the left hemisphere (F3,26.6 = 2.73, p = 0.06).  Again, the pattern of cluster-group differences matched 

the characteristics of the aggregate STRFs for each cluster group (see 2.12 and 4.2 for a discussion of 

importance): the highest sBMFs were found in Cluster Group 1 (Fig. 5A, bottom).  In the left hemisphere, 

sBMFs decreased progressively from Cluster Group 2 to 4, but in the right hemisphere sBMFs were 

relatively higher in Cluster Groups 3 and 4 compared to Cluster Group 2. 

 



 

Figure 6. Linear Mixed Effects Models: Best Modulation Frequency. (A) Effect of Cluster Region.  The mean of the fitted values 
produced by the LME model for temporal (tBMF, top) and spectral (sBMF, bottom) best modulation frequencies (octave scale, 
ordinate) are plotted for Cluster Groups 1-4 (abscissa) in the left (blue) and right (red) hemispheres.  Error bars reflect ± 1 SEM.  
Spectral BMFs are negative because nodes with an sBMF of 0, of which there were many, were set to 0.01 (-6.6 on the octave 
scale). (B) Covariation between tBMF and sBMF.  Results of linear mixed effects regression of sBMF on tBMF (top) and tBMF on 
sBMF (bottom) by hemisphere are plotted as fitted lines (bold blue) with 95% confidence regions (light blue shading).  BMFs 
have been mean-centered and transformed to the octave scale (i.e., axes show distance from the mean t/sBMF in octaves).  
Ticks above the abscissa indicate the values of the covariate at which data were actually observed. 

 

To test for a systematic relationship between tBMF and sBMF across cortical surface node 

locations and hemispheres, we conducted an additional LME analysis with tBMF as the dependent 

variable and fixed effects of hemisphere, sBMF (continuous covariate), and the interaction of sBMF by 

hemisphere.  Participant was included as a random factor including a within-participant random slope 

term for sBMF (see 2.12 for a comprehensive description of the random effects structure).  An analogous 

model with sBMF as the dependent variable and tBMF as the covariate was also estimated.  BMFs were 

again transformed to an octave scale prior to analysis.  Prominent models of speech processing advocated 

by Zatorre (Zatorre et al., 2002) and Poeppel (2003) predict: (i) a tradeoff in spectral and temporal 

resolution such that fast temporal modulations are encoded by neural populations that with poor spectral 

resolution and vice versa (i.e., a negative relationship between tBMF and sBMF); and (ii) a hemispheric 



asymmetry in which greater temporal resolution is achieved by the left hemisphere (i.e., higher tBMFs are 

encoded in the left hemisphere and, by extension, higher sBMFs are encoded in the right hemisphere).  In 

fact, with tBMF as the dependent variable, we observed a trend-level linear relation with sBMF in which 

a one-octave increase in sBMF predicted a 0.09 octave decrease in tBMF (beta = -0.09; F1,9.0 = 4.83, p = 

0.06).  We also found a trend-level effect of hemisphere in which tBMFs were, on average, 0.54 of an 

octave higher in the right hemisphere (beta = 0.54, F1,9.0 = 4.84, p = 0.06), but no significant interaction in 

the effect of sBMF by hemisphere (F1,9.0 = 1.05, p = 0.33).  With sBMF as the dependent variable, there 

was a significant negative linear relation with tBMF (beta = -0.15, F1,9.0 = 5.14, p < 0.05), but there was 

no significant effect of hemisphere (beta = 0.25, F1,9.0 = 0.87, p = 0.37) and no interaction in the effect of 

tBMF by hemisphere (F1,9.0 = 1.28, p = 0.29).  We then restricted the analysis to surface nodes belonging 

to Cluster Group 1 (Fig. 6B) because this cluster encompasses the lowest levels of auditory processing 

and represents the greatest range of BMFs.  Within Cluster Group 1 (Fig. 6B), the negative linear relation 

between tBMF and sBMF was significant and became stronger (DV = tBMF: beta = -0.14, F1,9.0 = 6.0, p 

< 0.05; DV = sBMF: beta = -0.25, F1,8.8 = 13.3, p < 0.01).  The effect of hemisphere (DV = tBMF: beta = 

0.53, F1,16.0 = 4.61, p < 0.05; DV = sBMF: beta = 0.27, F1,9.0 = 0.63, p = 0.45) and the two-way interaction 

(DV = tBMF: F1,10.7 = 0.04, p = 0.85; DV = sBMF: F1,8.5 = 0.01, p = 0.91) patterned just as with the full 

dataset.  Overall, we observed a significant negative relation between tBMF and sBMF as predicted, but 

this relation was not driven by hemispheric asymmetries.  In fact, both tBMF and sBMF were, if 

anything, higher in the right hemisphere on average.  Therefore, finer temporal resolution was not 

observed in the left hemisphere and no interhemispheric tradeoff in spectral and temporal resolution was 

revealed. 

3.4 Processing specializations within cluster groups 

The preceding sections 3.1 and 3.3 have shown that: (a) speech-driven STRFs in the auditory 

cortex are organized in a manner consistent with a hierarchical interpretation, as revealed by data-driven 

clustering; (b) cluster groups can be distinguished based on broad differences in their STM tuning; and (c) 



significant variability in peak STM tuning is nonetheless present within each cluster group.  This raises 

the possibility that subsets of STRFs within a given level of the cortical hierarchy are specialized for 

processing specific speech information.  Indeed, Fig. 3B demonstrates that individual clusters within a 

given cluster group can vary considerably even while maintaining the defining characteristics of that 

cluster group.  Here, we focus on three individual clusters from within the cluster groups plotted in Fig. 

3B that are strongly suggestive of processing specializations within levels of the functionally defined 

cortical speech hierarchy. 

 

Figure 7. Evidence of STRF Specializations Within Cluster Groups.  Individual clusters of interest (A-C) are plotted on inflated 
cortical surface renderings of the left and right hemispheres (figure left).  Zoomed surface renderings of the temporal lobes are 
shown beneath the whole-brain plots.  The cluster-average group-level (t-score) STRFs are also plotted with magnitudes 
normalized to the range [0, 1] (figure right).  (A, blue) From Cluster Group 1, this cluster on lateral Heschl’s Gyrus and the 
neighboring STG responds best to STMs at high cyc/kHz (“pitch” STMs). (B, Green) From Cluster Group 2, this cluster located 
entirely in the right auditory cortex responds best to STMS at high temporal modulation rates (Hz). (C, Red) From Cluster Group 
4, this cluster located prominently in the left anterior temporal lobe responds best to STMs important for intelligibility, 
particularly at very low temporal modulation rates (<= 3 Hz). 

 

Within Cluster Group 1, the defining feature of STRFs was a broad response spanning both pitch 

and formant regions of the speech MPS.  However, certain clusters within Group 1 were tuned relatively 

more selectively to pitch STMs compared to formant STMs.  The single cluster with the largest relative 

pitch response (i.e., largest relative t-score for STMs above 4 cyc/kHz) was located primarily in lateral 

Heschl’s gyrus and the immediately neighboring STG, bilaterally (Fig. 7A).  This region has been 



implicated previously in human pitch processing (Griffiths, 2003).  Within Cluster Group 2, the defining 

feature of STRFs was an increased response to high temporal modulation rates (> 6 Hz).  One cluster 

among these showed a relatively selective response to these high rates.  This cluster was located 

exclusively in regions of the right auditory cortex (Fig. 7B).  This suggests some degree of hemispheric 

lateralization for temporal processing (Poeppel, 2003).  Finally, within Cluster Group 4, the defining 

feature of STRFs was a very strong correlation with the behavioral classification image for intelligibility 

(per-cluster Pearson r of 0.83-0.96).   However, among these, one cluster responded particularly well to 

low temporal modulation rates (essentially low pass in the temporal modulation domain).  This cluster 

was located primarily in the anterior STS bilaterally, with particularly strong representation in the left 

hemisphere (Fig. 7C).  The anterior temporal lobe has been implicated in several functions relevant to the 

analysis of intelligible speech at long time scales including prosodic, syntactic, and combinatorial 

semantic analysis (Humphries et al., 2005; Rogalsky and Hickok, 2008; Wilson et al., 2014).  Overall, 

these results suggest that processing specializations occur within levels of the auditory cortical hierarchy.  

Crucially, the hierarchy is described presently in terms of neural tuning within an acoustic domain (i.e., 

the STM domain), and such tuning appears to underlie processing specializations within low (e.g. Cluster 

Groups 1 and 2) and high (e.g., Cluster Group 4) levels of the hierarchy. 

3.5 Cortical Maps of Speech Intelligibility 

To determine the extent to which different brain regions were involved in processing intelligible 

speech, correlations between behavioral classification images and neural STRFs were calculated at each 

cortical surface node separately for each participant.  These correlations described the degree to which a 

cortical surface node was activated most strongly when the speech information most important to 

behavioral intelligibility was present in the stimulus.  In addition, to facilitate direct comparison to 

previous studies using standard subtraction contrast methods, trials were sorted according to button press 

responses in the yes-no intelligibility judgment task (i.e., into “intelligible” and “unintelligible” trials) and 

a mean activation contrast value (intelligible vs. unintelligible) was calculated at each node.  Second-level 



correlation and contrast intelligibility maps were calculated (one-sample t-test; corrected p < 0.05) and 

compared. 

 

Figure 8. (A) Contrast Map of Speech Intelligibility.  The group mean contrast beta (intelligible trials vs. unintelligible trials) is 
plotted on cortical surface renderings of the left and right hemispheres.  Whole-brain analysis, wild-bootstrap-corrected p < 
0.05. (B) Correlation Map of Speech Intelligibility.  The group mean Fisher z-transformed correlation, z(r), between behavioral 
classification images for intelligibility and neural STRFs is plotted on cortical surface renderings of the left and right hemispheres. 
Whole-brain analysis, wild-bootstrap-corrected p < 0.05. (C) Linear Mixed Effects Analysis of Intelligibility Correlation Values.  
The mean of the LME-fitted values of the Fisher z-transformed correlation, z(r), between behavioral classification images for 
intelligibility and neural STRFs is plotted across cluster regions (top) and anatomical regions (bottom) in the left (blue) and right 
(red) hemispheres.  Error bars reflect ± 1 SEM. 

 

Cortical maps of intelligibility based on activation contrast (Fig. 8A) and STRF-based correlation 

(Fig. 8B) were broadly similar.  Each map primarily emphasized the STG/STS and Heschl’s sulcus 

bilaterally.  In the contrast maps, the largest differences were observed in Heschl’s sulcus and the mid-

anterior STG/S, and the magnitude of activation differences was similar across the left and right 

hemispheres.  In the correlation maps, the largest correlations were observed in Heschl’s sulcus, all along 

the STG, and in the anterior STS; the magnitude of correlations was larger in the left hemisphere.  There 

were 5465 significant nodes in the contrast map (48.0% left hemisphere) and 5225 significant nodes in 

the correlation map (54.1% left hemisphere).  The correlation map overlapped 63.4% with the contrast 

map.  The contrast map overlapped 65.6%, and the correlation map overlapped 74.6%, with the map of 



significantly tuned STRFs in the auditory cortex.  Neither the contrast nor the correlation map contained 

nodes outside the temporal lobe. 

In general, the correlation procedure yields a value that is more easily interpretable than the 

contrast procedure – i.e., rather than a mean difference in activation magnitude between two conditions, 

the correlation map shows the degree to which a cortical surface node responds selectively to acoustic 

patterns that are relevant to behavioral intelligibility.  Thus, to examine how the representation of 

intelligible speech relates to STRF-cluster-based vs. anatomically-based organization of the auditory 

cortex, correlations measured at individual cortical surface nodes within individual participants were 

entered as the dependent variable in two second-level LME models: (1) a cluster group model with 

hemisphere (left, right) and cluster group (1-4, as defined on the group data), and their interaction as fixed 

effects, and participant as a random effect (see 2.12 for comprehensive random effects structure); and (2) 

an anatomical model with hemisphere (left, right) and anatomical region (Heschl’s gyrus/sulcus, 

posterior STG, posterior STS, anterior STG, anterior STS, and posterior Sylvian cortex), and their 

interaction as fixed effects, and participant as a random effect (see 2.12 for comprehensive random 

effects structure). The LME analysis was restricted to auditory-cortical nodes with that were significantly 

tuned in the group-level STRF analysis.  Correlation values were not aggregated across cortical surface 

nodes within a given region. 

For the cluster group model, there was a significant main effect of cluster group (F3,27.0 = 4.55, p 

< 0.05), but no significant main effect of hemisphere (F1,9.0 = 1.09, p = 0.32) and no significant interaction 

(F3,26.6 = 0.19, p = 0.90).  Like the LMEs carried out on tBMF and sBMF, the pattern of cluster-group 

differences matched the characteristics of the aggregate STRFs for each cluster group (see 2.12 and 4.2 

for a discussion of importance): intelligibility correlations were largest in Cluster Group 4, followed by 

Cluster Groups 3, 1 and 2 in that order (Fig. 8C, top).  There appeared to be a trend toward larger 

correlations in the left hemisphere, although this effect was not statistically significant.  For the 

anatomical model, there was no significant effect of region (F5,44.9 = 1.71, p = 0.15), hemisphere (F1,9.0 = 

1.20, p = 0.30) or their interaction (F5,44.8 = 0.69, p = 0.63).  The pattern of correlations across anatomical 



regions (Fig. 8C, bottom) should be interpreted with caution due to the lack of a significant effect.  

Indeed, organization by cluster group appeared to provide a better characterization of the data than 

organization by anatomical region.  A post-hoc LME model containing fixed and random effects of both 

cluster group and anatomical region showed that removal of the fixed effect of cluster group had a greater 

effect on model fit (likelihood ratio = 9.13) than removal of the fixed effect of anatomical region 

(likelihood ratio = 6.14), despite the fixed effect of cluster group accounting for fewer degrees of freedom 

(3 df) than the fixed effect of anatomical region (5 df).  This demonstrates that, although the cluster 

groups are significantly associated with particular anatomical regions (Fig. 3D), this association is not 

perfect.  In other words, certain anatomical regions (e.g., the left pSTS) are mixed with respect to the 

distribution of cluster groups, and these regions therefore encompass multiple hierarchical levels of 

processing or, at least, process a broader range of speech information.   

 

4. Discussion 

In the present fMRI study, a classification image procedure (“bubbles”) was used to estimate 

speech-driven STRFs in the modulation-power-spectrum domain from single-trial BOLD response 

amplitudes.  These STRFs were estimated for a group of healthy, normal-hearing participants at each 

node in a standard-topology cortical surface model.  Data-driven clustering was used to define groups of 

STRFs with similar response properties.  The clustering procedure recovered an organization consistent 

with hierarchical interpretations of cortical speech processing.  Specifically, STRF clusters representing a 

broad range of spectrotemporal features were located in early auditory regions of the supratemporal plane, 

while STRF clusters representing the spectrotemporal features most important for intelligibility were 

located in later auditory regions of the lateral temporal lobe.  Although clusters were defined at the group-

level using a “t-score” approach, an LME analysis of individual-participant STRF scalar metrics (Joosten 

and Neri, 2012), e.g., best modulation frequency, showed that the STRF-tuning patterns of group-defined 

clusters were reliable across individual participants and cortical surface nodes.   



The notion of a cortical hierarchy for processing auditory speech is not new, but our method is 

unique in that it reveals precisely what acoustic information is processed within and between levels of the 

hierarchy.  For example, we find that among later (intelligibility-focused) regions, faster temporal 

modulations corresponding roughly to syllable or phoneme length units are processed primarily in the 

anterior STG and posterior STS, while slower temporal modulations corresponding roughly to 

suprasegmental units are processed primarily in the anterior STS.  Moreover, we find specializations for 

processing pitch in lateral Heschl’s gyrus, and at least a qualitative hemispheric preference for processing 

fast temporal modulation rates in the right hemisphere and slow temporal modulations essential for 

intelligibility in the left hemisphere.  Overall, these results provide a much more nuanced characterization 

of the cortical speech hierarchy compared to existing data.  In the sections below (4.1-4.5), we discuss 

these and other major findings and their theoretical implications. 

4.1 Hierarchical organization of speech-driven STRFs in the auditory cortex 

Data-driven analysis identified four groups of STRF clusters defined by their similar within-

group functional properties.  We envision these cluster groups as capturing different levels of processing 

within a feed-forward cortical speech hierarchy that progresses from detailed spectrotemporal processing 

(Cluster Groups 1 and 2) to more abstracted processing of acoustic patterns specific to speech (Cluster 

Groups 3 and 4).  As we will describe, different STRF patterns corresponding to different acoustic (vocal 

harmonics vs. formants; transient vs. sustained events) or linguistic (phonemes vs. syllables/words) 

speech cues are represented separately within different hierarchical levels. 

The lowest-level group of STRF clusters, Cluster Group 1, represented a broad range of 

spectrotemporal modulations spanning both the “pitch” and “formant” regions of the speech MPS (Fig. 

1A).  Cluster Group 1 was located primarily in Heschl’s gyrus/sulcus and the immediately neighboring 

posterior STG (Fig. 3A/D).  In the aggregate, the STRFs in Cluster Group 1 appeared to behave as a 

simple “energy detector” (Fig. 3B, CG1), i.e., they responded to modulation energy in the speech signal 

regardless of the particular pattern presented to the listener (see also, Santoro et al., 2017).  However, 



examination of node-wise peak modulation frequencies revealed that STRFs in Cluster Group 1 were 

individually tuned to particular temporal and spectral modulation rates spanning a wide range (Fig. 5B).  

Moreover, certain individual STRF clusters within Cluster Group 1 were tuned relatively more selectively 

to the pitch or formant regions of the MPS.  Therefore, the data suggest that the broad representation of 

spectrotemporal features in Cluster Group 1 reflects the integrated activity of neuronal subpopulations 

tuned to relatively narrow patterns within the speech MPS.  Indeed, bandpass modulation tuning across a 

range of best modulation frequencies has been observed in early auditory-cortical regions in a number of 

species, particularly for temporal modulations (Bieser and Müller-Preuss, 1996; Liang et al., 2002; Miller 

et al., 2002; Schreiner and Urbas, 1988; Scott et al., 2011; Woolley et al., 2005). Thus, our finding is 

consistent with the view that early auditory cortex is essentially an STM filterbank (Chi et al., 1999; Chi 

et al., 2005). 

The next, perhaps intermediate, group of STRF clusters was Cluster Group 2, which was defined 

primarily by an increased response to high temporal modulation rates (Fig. 3B, CG2; Fig. 5B).  Cluster 

Group 2 was located primarily in posteromedial aspects of the supratemporal plane bordering the outer 

edges of Cluster Group 1 (Fig. 3A).  The vast majority of cortical surface nodes in the posterior Sylvian 

region were contained in Cluster Group 2 (Fig. 3D).  Both human and animal data support the notion of a 

posterior to anterior temporal processing gradient in which cells with the shortest temporal integration 

windows are located in the posterior temporal lobe (Bendor and Wang, 2008a; Hullett et al., 2016).  The 

posterior Sylvian region, in particular, has been implicated in the processing of temporal order and in 

sound sequencing (Bernasconi et al., 2010; Bernasconi et al., 2011; Hickok et al., 2011), potentially 

necessitating a need to represent speech features on a relatively short time scale. This may be particularly 

important for extracting information relevant for accessing the phonological form of the speech signal at a 

relatively fine temporal scale.  

Cluster Groups 3 and 4 correspond to the highest level of the presumed cortical speech hierarchy.  

The STRF clusters in these groups responded selectively to the MPS region most important for speech 

intelligibility (Fig. 3B/C).  Cluster Groups 3 and 4 accounted for a majority of the cortical surface nodes 



in the posterior STS, anterior STG, and anterior STS (Fig. 3D), regions implicated previously in high-

level processing of intelligible speech (Evans et al., 2014; Narain et al., 2003; Okada et al., 2010; Scott et 

al., 2000).  Functionally, Cluster Groups 3 and 4 were distinguished by a fairly substantial difference in 

STRF tuning in the left hemisphere – namely, the temporal modulation tuning of STRFs in Cluster Group 

3 was shifted up roughly an octave compared to STRFs in Cluster Group 4 (median = 3.0 vs. 6.1, 

respectively; interquartile range = 1.6 - 4.4 vs. 4.4 - 7.0, respectively); the shift was also present in the 

right hemisphere but was somewhat more modest (median: 4.0 vs. 5.8, interquartile range: 2.3 – 5.1 vs. 

4.4 – 8.0).  Translated to speech units, the shift in the left hemisphere corresponds roughly to the 

timescale of phonemes versus syllables/words or even short phrases.  It is tempting to hypothesize a 

correspondence between Cluster Group 3 STRFs as playing a role in processing shorter duration 

phonological information on the order of phonemes to syllables and a correspondence between Cluster 

Group 4 and processing higher-order linguistic chunks from words to phrases.  Anatomically, in the left 

hemisphere Cluster Group 3 was represented most prominently in the anterior dorsal STG and posterior 

STS while Cluster Group 4 was represented most prominently in the anterior STS and ventral posterior 

STS.  In the right hemisphere, Cluster Group 3 was represented in the anterior and posterior dorsal and 

lateral STG; Cluster Group 4 was represented in the both anterior and posterior STS.  This result may 

account for differences in existing hierarchical models of speech processing that place relatively more 

emphasis on posterior versus anterior temporal lobe regions, or vice versa (Bernstein and Liebenthal, 

2014; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009).  That is, both anterior and posterior 

STG/STS regions play an important role in extracting intelligible information from speech, but at 

different levels of analysis.  The STRFs in Cluster Group 4 correlated most strongly with the group-level 

behavioral classification image for intelligibility and were located most prominently in the anterior 

temporal lobe and the ventral-most aspect of the left posterior STS (i.e., abutting the middle temporal 

gyrus); this makes sense if Cluster Group 4 represents the top of the processing hierarchy either 

acoustically or linguistically. 



In addition to evidence suggesting a hierarchical organization of cluster groups, there was 

evidence for processing specializations (i.e., differences in STRF patterns) within each cluster group (Fig. 

7).  As mentioned, STRFs in Cluster Group 1 showed varying degrees of selectivity for spectrotemporal 

modulations in the pitch region of the MPS, with a cluster in lateral Heschl’s gyrus/STG demonstrating 

maximum selectivity for pitch.  Both animal and human studies have identified a similar “pitch region” 

just lateral to primary auditory cortex (Bendor and Wang, 2006; Griffiths, 2003; Penagos et al., 2004).  In 

Cluster Group 2, STRFs showed varying amounts of selectivity for high temporal modulation rates, with 

a cluster in the right auditory cortex demonstrating this selectivity most clearly.  In general, we observed a 

tendency for right hemisphere regions to respond to slightly higher temporal modulation rates (Fig. 6A, 

top).  

We cannot be certain whether the observed STRF properties reflect sensitivity to particular 

acoustic patterns or the higher-level processing of information extracted from those patterns.  For 

example, we would expect the operation of linguistic computations (e.g., syntax and semantics) to be 

correlated with the acoustic patterns feeding into those mechanisms.  This is particularly true in the 

context of the bubbles technique where linguistic processes fail to engage when the acoustic patterns that 

support intelligibility are filtered from the signal.  A recent study (de Heer et al., 2017) compared fMRI-

encoding models based on spectrotemporal, articulartory-phonological, and semantic features using a 

variance partitioning scheme to estimate which model best accounted for activation patterns during 

continuous listening to narrative speech.  In fact, the spectrotemporal model best accounted for activation 

patterns only in a restricted region of the early auditory cortex, which would be circumscribed by Cluster 

Group 1 as measured here.  Activity in later regions comparable to Cluster Groups 3 and 4 was best 

described by the articulatory-phonological and semantic models.  This finding is in agreement with 

Schönwiesner and Zatorre’s (2009) data, which show that only regions in the primary and secondary 

auditory cortices respond to synthetic STM stimuli.  However, there is reason to believe that, even at high 

levels of processing, tuning to particular spectrotemporal patterns remains an important organizational 

principle of the auditory cortex.  Recent work by Chang and colleagues shows that high-level information 



about phonetic features, pitch contour, and talker identity is encoded and intermixed within neuronal 

populations of the STG that are also topographically organized in terms of spectrotemporal modulation 

tuning (Hullett et al., 2016; Mesgarani et al., 2014; Tang et al., 2017).  Work by Poeppel and colleagues 

shows that temporal lobe regions up to and including the STS respond to speech-specific temporal 

patterns even when stimuli are unintelligible (Boemio et al., 2005; Overath et al., 2015).  In the present 

study, we observed a range of spectrotemporal modulation tuning patterns even at the highest levels of the 

presumed auditory cortical hierarchy (Cluster Groups 3 and 4; Figs. 3B/5B), which suggests that a 

partially abstracted “acoustic trace” is maintained at these later processing stages.  We also found similar 

STRF patterns after correcting for global effects of intelligibility (Fig. 4).  Together, these findings 

suggest that the organization observed here for speech may also apply to cortical-acoustic analysis of 

other (non-speech) sounds, a notion supported by recent fMRI encoding studies showing similar patterns 

of organization – broad responses in early auditory regions, sensitivity to specific features in STG/S, pitch 

regions in lateral HG, etc. – for non-speech natural sounds (De Angelis et al., 2017; Moerel et al., 2012; 

Santoro et al., 2017).  However, Santoro et al. (2017) show that STRFs estimated from a wide range of 

natural sounds including speech are different when speech stimuli are left out of the STRF computation.  

This suggests that cortical-acoustic analyses shift when processing occurs in a linguistic context, but even 

if one were inclined to argue that higher-order STRFs were driven by linguistic computation, the fact that 

particular ranges of STMs are represented in different groups of STRFs would provide rather compelling 

evidence regarding the level of linguistic computation being carried out by each group.   

4.2 Consistency of STRF Cluster Organization Across Participants and Surface Nodes 

Clustering analysis was performed on auditory-cortical STRFs after averaging across participants 

at each node of a standard topology cortical surface model.  Moreover, the STRFs representing each 

cluster (Fig. 3) reflect an aggregate pattern across many constituent cortical surface nodes.  Some degree 

of inter-participant and inter-node variability should be expected, so it was important to determine 

whether the group-level data were representative of the STRF patterns observed at individual cortical 



surface nodes in individual participants.  Neri and colleagues (Joosten and Neri, 2012; Neri, 2010; Neri 

and Levi, 2008) caution against drawing strong conclusions from qualitative inspection of aggregate 

classification images (e.g., STRFs) because, in cases where significant individual variability is present, 

the aggregate patterns may not be representative of any given individual.  Rather, they suggest 

conclusions should be drawn from quantitative analysis of individual classification images, namely by 

extracting a scalar metric that summarizes the shape of the classification image and analyzing the metric 

statistically.  This approach is what motivated our decision to analyze STRFs at the group level by 

calculating a “t-score” version of the STRF at each cortical surface node.  The t-scoring procedure 

allowed us to identify aggregate STRFs for which at least a subset of STRF features was consistent across 

participants.  Only such STRFs were entered in the GMM clustering analysis.   

However, the t-scoring procedure alone did not ensure that wholesale STRF patterns observed at 

the cluster-group level (Fig. 3) would reflect the underlying STRF patterns in individual participants or 

surface nodes.  Therefore, we adopted Neri and colleagues’ approach of extracting scalar metrics from 

individual STRFs and analyzing them quantitatively.  Linear mixed effects (LME) models were 

constructed with individual-participant STRF scalar metrics – tBMF, sBMF, and behavioral-neural 

intelligibility correlation – as the dependent variables to determine if these metrics would pattern 

according to the definitional features of Cluster Groups 1-4 as defined at the group level.  In fact, all three 

scalar metrics behaved as predicted: tBMF was highest in Cluster Group 2 (Fig. 5A), sBMF was highest 

in Cluster Group 1 (Fig. 5A), and the behavioral-neural intelligibility correlation was highest in Cluster 

Group 4 (Fig. 8C).  Cluster group 3 was intermediate in terms of tBMF and the behavioral-neural 

intelligibility correlation.  The difference across cluster groups was statistically significant in all cases.  

Crucially, the inputs to the LME models were the un-aggregated scalar metrics from every auditory-

cortical node across every participant, and participant-level variance was explicitly accounted for by 

including the appropriate random effects terms in the LME models (2.12).  Thus, we can be reasonably 

confident in the reliability of STRF patterns across participants and cortical surface nodes.  While this 

does not guarantee or even suggest that similar clusters of STRFs would be identified if we analyzed the 



data of each participant separately, it provides evidence that the large-scale STRF organization 

determined from the group data did not arise spuriously from the aggregation of highly-variable and/or 

disorganized STRFs across participants and surface nodes.  However, since STRF clusters were identified 

from the same data used in LME modeling, we cannot make strong claims regarding the likelihood of 

these findings to generalize beyond the present study. 

To examine whether analyzing each participant separately would produce qualitatively similar 

results to analysis of the group data, we repeated the clustering analysis on each individual participant 

using the cluster model that provided the best description of the group data (K = 18 clusters, “VVV” 

covariance structure; see 2.10).  Since cluster labels are arbitrarily assigned, the individual participant 

clusters were relabeled to maximize the cluster-by-cluster correlation with the group data (Kuhn, 1955), 

and then partitioned into four cluster groups using the same mapping as for the group data.  Crucially, this 

procedure did not ensure that a similar number of cortical surface nodes would be assigned to each cluster 

group in individual participants compared to the group, nor did it ensure that the cluster groups would be 

assigned to similar anatomical regions in individual participants compared to the group.  Yet, we found a 

remarkably similar anatomical distribution of Cluster Groups 1-4 when defined on individual participant 

data (Fig. 9) compared to the group data (Fig. 3).  The average node-by-node percent agreement of cluster 

group assignments when comparing individual participants to the group was 49.1 % (± 2.0 % SEM). 



 

Figure 9. (A) Cluster-Group Maps at the Group Level and in Representative Individual Participants. Cluster Groups are plotted 
by color on cortical surface renderings of the left and right hemispheres.  Separate maps are shown for the group-level data 
(GRP), and for the two individual participants with the lowest (S2) and highest (S3) percent agreement with the group. (B) 
Distribution of Individual-Participant Cluster Groups within Anatomically Defined Regions.  The across-participant average 
proportion of cortical surface nodes belonging to Cluster Group 1-4 is plotted for six anatomical regions of interest in the left 
(LH) and right (RH) hemispheres: Heschl = Heschl’s gyrus/sulcus, pSTG/S = posterior STG/S, aSTG/S = anterior STG/S, pSyl = 
posterior Sylvian cortex.  Error bars = ± 1 SEM.  Compare to Fig. 3D for group-level distributions. 

 

4.3 Cortical Maps of STRF Peak Modulation Frequencies 

We observed a broad trend in which STRFs tuned to relatively fast temporal modulation rates (6-

10 Hz) were located in posteromedial auditory regions (Cluster Group 2), while STRFs tuned to relatively 

slow temporal modulation rates (1-4 Hz) were located in anterolateral auditory regions (Cluster Group 4).  

However, examination of node-wise cortical maps of tPMF (Fig. 5A, top) did not reveal an organized 

high-to-low gradient moving from posterior to anterior regions.  Rather, there was a range of tPMFs 

within each cluster group (Fig. 5B, top), with hierarchical distinctions suggested by differing distributions 

of temporal modulations by cluster group.  The lack of a within-hierarchical-level spatial gradient stands 

in apparent contrast to a previous finding (Barton et al., 2012), although in that work identification of 

topographic mapping was performed for core and belt subfields using individual-participant data and 



multiple maps were identified. We simply may not have the spatial resolution to resolve such internal 

structure. 

In contrast to the temporal modulation maps, we found a clear organization for spectral 

modulations in which high spectral modulation rates (4-6 cyc/kHz) were represented most prominently in 

early regions of the supratemporal plane, and later auditory regions became increasingly “low-pass” (< 2 

cyc/kHz) in their representation of spectral modulations (Fig. 5B, bottom).  This pattern was essentially 

born out in node-wise maps of sBMF (Fig. 5A, bottom), although there was evidence for some additional 

representation of high spectral modulation rates in the mid and posterior STG. 

Together, these results agree strongly with data based on responses to synthetic STM sounds 

(Schönwiesner & Zatorre, 2009), and they broadly comport with an existing model of auditory cortical 

organization based on non-human primate data in which temporal integration windows increase along a 

gradient from caudal to rostral auditory areas, and spectral integration windows increase along a gradient 

from medial to lateral auditory areas (Bendor and Wang, 2008b).  A similar organization was revealed by 

a recent fMRI study of human natural sound processing, which, using a modulation-based encoding 

model, characterized the organization of auditory cortex in terms of a tradeoff between spectral and 

temporal resolution – namely, regions posterior and lateral to Heschl’s gyrus encoded relatively coarse 

spectral information (low spectral modulation rates) and fine temporal information (high temporal 

modulation rates), while regions located on and immediately anteroventral to Heschl’s gyrus encoded fine 

spectral information with and coarse temporal information (Santoro et al., 2014).  Indeed, we found a 

strong negative correlation between the best temporal modulation rate and best spectral modulation rate of 

cortical nodes in these early auditory regions (Fig. 6; but, see 4.4 below).  A recent human ECoG study 

derived speech-driven STRFs from electrodes placed throughout the STG and found that electrodes in the 

posterior STG responded best to high temporal modulation rates and low spectral modulation rates, while 

electrodes in the anterior STG responded best to high spectral modulation rates and low temporal 

modulation rates (Hullett et al., 2016).   



4.4 Relation to Hemispheric Lateralization of Cortical Speech Processing: The Spectral-Temporal and 

Asymmetric Sampling in Time Models 

There is a fairly entrenched notion that speech is processed preferentially in the left hemisphere 

while pitch and prosody (e.g., music) are processed preferentially in the right hemisphere (cf., Price et al., 

2005).  Zatorre and colleagues (Zatorre and Belin, 2001; Zatorre et al., 2002) suggest that such 

asymmetries arise from differences in early spectrotemporal processing of sound features in the auditory 

cortex.  Their spectral-temporal model asserts that temporal features are processed predominantly in the 

left hemisphere, while spectral features are processed predominantly in the right hemisphere.  A related 

speech-centric model – Poeppel’s asymmetric sampling in time (AST) model (Poeppel, 2003) – suggests 

that hemispheric asymmetries arise as a consequence of the way auditory representations are analyzed in 

the time domain.  According to AST, the left hemisphere extracts information preferentially from a short 

time window (25-50 ms or 20-40 Hz), lending itself to analysis on a scale appropriate for detecting rapid 

formant transitions, while the right hemisphere extracts information from a longer time window (125-300 

ms or 3-8 Hz), lending itself to analysis on a syllabic scale.  Poeppel further suggests that right 

hemisphere specializations for processing spectral information can be explained in terms of that 

hemisphere’s longer analysis window – that is, greater spectral resolution is achieved with an increasing 

integration time constant.  Thus, both the spectral-temporal and AST models provide two predictions in 

the context of the present study: (1) speech-driven STRFs tuned to high temporal modulation rates (fine 

temporal resolution) will also be tuned to low spectral modulation rates (poor spectral resolution), and 

vice versa; (2) a greater preponderance of STRFs tuned to high temporal modulation rates will be located 

in the left hemisphere and STRFs tuned to low temporal modulation rates (and high spectral modulation 

rates) will be located in the right hemisphere. 

We tested these predictions directly by examining the relation between best temporal and best 

spectral modulation frequency (tBMF and sBMF, respectively) across all significantly tuned auditory-

cortical surface nodes and across hemispheres.  In fact, there was a significant negative linear relation 



(i.e., in the predicted direction) between tBMF and sBMF within Cluster Group 1 (Fig. 6B), and there was 

no difference in the strength of this relation between hemispheres.  There was also a significant main 

effect of hemisphere on tBMF, but it was in the opposite direction of that predicted by lateralization 

models – namely, higher temporal modulation rates tended to be represented in the right hemisphere.  

Therefore, while tBMF and sBMF are related within each hemisphere, we find, if anything, the opposite 

between-hemisphere relation as that predicted by lateralization models. 

A rather simple explanation appears to account for the significant (within-hemisphere) relation 

between tBMF and sBMF within Cluster Group 1.  Recall that Cluster Group 1 responds essentially like 

an STM filterbank, and it is the only cluster group that responds significantly to high spectral modulation 

rates (pitch).  Figure 1A (left panel) displays the boundary containing 80% of the power in the speech 

modulation spectrum.  This boundary reveals that speech energy at high spectral modulation rates tends to 

be located at low temporal modulation rates and vice versa.  Indeed, this relation holds for many animal 

vocalizations including human speech (Elliott and Theunissen, 2009).  We therefore suggest that the 

natural modulation statistics of speech are reflected straightforwardly in the outputs of spectrotemporal 

modulation filters in Cluster Group 1.  Zatorre and colleagues (Zatorre et al., 2002) describe an ‘acoustic 

uncertainty principle’ in which there is a tradeoff between the precision that can be achieved in the time 

and frequency domains when analyzing an acoustic event.  We cannot rule out the notion that this 

spectral-temporal tradeoff reflects an intrinsic organizing principle of the auditory cortex, in which case it 

is possible that the human vocal apparatus and its associated motor control circuits have adapted to shape 

speech acoustics to match this pattern (Giraud et al., 2007). 

Regarding the possible right hemisphere preference for processing faster temporal modulation 

rates, it is unclear whether this might reflect a right hemisphere specialization for processing (slightly) 

more fine-grained temporal features, or a left hemisphere specialization for processing high-level 

components of intelligible speech (e.g. words, phrases; Peelle, 2012; Specht, 2013), which tend to come 

across at relatively slower rates.  While we found clear evidence for specialized processing of slow rates 

in a STRF cluster from Cluster Group 4 (Fig. 7C), this cluster was localized to the STS bilaterally.  In 



fact, the broad organization of STRF clusters was remarkably similar across the hemispheres (Fig. 3A), as 

were node-wise maps of STRF peak modulation frequencies (Fig. 5A).  Therefore, we assert that our data 

do not support the existence of broad hemispheric differences in spectrotemporal processing.  We should 

note that we did not test for hemispheric differences in temporal processing above 20 Hz.  This is because 

there is very little speech modulation energy above 20 Hz (Fig. 1A), so the bubbles technique was 

unlikely to identify consistent responses at such high modulation rates.  However, one of the critical 

windows in AST is 20-40 Hz, so we necessarily failed to detect any differences within that range.  

Electrophysiological recording techniques capable of detecting synchronized or phase-locked neuronal 

activity on a fine time scale are perhaps better suited to exploring speech processing in that time window. 

4.5 Cortical Maps of Speech Intelligibility: Left-Right and Anterior-Posterior Asymmetries 

Previous imaging studies using standard subtraction-contrast and multivariate analysis methods 

have yielded somewhat conflicting interpretations of the cortical organization for processing intelligible 

speech.  Two early studies localized processing of intelligible speech to the left anterior temporal lobe 

(Scott et al., 2000; Scott and Johnsrude, 2003), while more recent studies have observed bilateral 

activation to intelligible speech in the STG/S with a greater extent of activation in the left hemisphere, 

particularly in posterior temporal lobe regions (Davis and Johnsrude, 2003; Evans et al., 2014; 

McGettigan et al., 2012; Okada et al., 2010; Scott et al., 2006).  Multivariate analysis of activation 

patterns within these bilateral regions suggests that patterns in the left hemisphere are maximally 

informative regarding the distinction between intelligible and unintelligible speech (Evans et al., 2014; 

McGettigan et al., 2012; Okada et al., 2010), yet these studies disagree on the relative contributions of 

posterior (Okada et al., 2010) versus anterior (Evans et al., 2014) temporal lobe regions.  It should be 

noted that all of these studies used continuous speech (i.e., sentences) as stimuli, so “intelligibility” 

encompasses acoustic, phonetic, lexical-semantic, and syntactic/combinatorial semantic processing.  

However, studies using sublexical stimuli (i.e., comparing “phonetic” to “surface acoustic” processing) 

find similar patterns: a mix of left-lateralized (Liebenthal et al., 2005; Specht et al., 2009) and bilateral 



(Evans and Davis, 2015; Vaden et al., 2010) effects in the STG/S, with a left hemisphere bias when 

effects were bilateral, and some disagreement over the relative contributions of posterior (Vaden et al., 

2010) versus anterior (Liebenthal et al., 2005; Specht et al., 2009) superior temporal lobe regions. 

Here, we assessed processing of intelligible speech in two ways: (1) using the standard 

subtraction contrast method (i.e., testing for a mean activation difference on intelligible vs. unintelligible 

trials); and (2) by testing directly for a correlation between STRFs estimated at each cortical surface node 

and the behavioral classification images for intelligibility (i.e, “behavioral STRFs”) estimated for each 

participant.  Both methods (Fig. 8A/B) revealed essentially bilateral activation of superior temporal lobe 

regions (STG/S): 48.0% and 54.1% of significant nodes were located in the left hemisphere for methods 1 

and 2, respectively. An examination of the strength of the neural-behavioral correlations from method 2 

turned up somewhat subtle (i.e., qualitative) evidence of hemispheric asymmetries with the left 

hemisphere yielding higher overall correlation values than the right (Fig. 8B).  Within the left hemisphere, 

the largest relative correlations were observed in the anterior STG, mid-posterior STG, and Heschl’s 

sulcus.  Strong correlations were also observed in the left posterior STS. Within the right hemisphere, the 

largest relative correlations were observed in the mid-anterior STG/S.   

Thus, while the overwhelming tendency in the present data is for intelligible speech to be 

processed and represented bilaterally (Figs. 3, 5, 8), and for both posterior and anterior regions of the 

STG/S to process speech at a relatively high (abstracted) level (Figs. 3D, 8C), there are modest biases 

favoring anterior over posterior regions and left over right hemisphere.  In a sense, these intelligibility 

biases fall out naturally from the organization of the cortical speech hierarchy.  Regions at the top level of 

the hierarchy (e.g., those coding word- or phrase-level information) depend on accurate encoding of 

speech information at lower processing levels (e.g., those regions coding syllables, phonemes, or their 

underlying spectrotemporal patterns).  A failure to extract intelligible speech information at any level of 

processing will propagate up to the highest level and, therefore, lead to a near-perfect readout of 

intelligibility failures (and successes) in the activation patterns of regions like the anterior STG/S.  



Activation in potentially lower-level regions (posterior STG/S) will reflect a partial readout of 

intelligibility failures, yielding the apparent gradients in the intelligibility correlations.  

One early auditory region, at least anatomically speaking, that showed a strong intelligibility 

response was a portion of left Heschl’s sulcus (Fig. 8B).  This region was classified as belonging to 

Cluster Group 4 – the highest-level cluster from a functional standpoint – as was a small group of 

analogous cortical surface nodes in right Heschl’s sulcus (Fig. 3A).  Presumably, processing in this region 

reflects a strictly acoustic representation of the MPS features that support intelligible speech.  This 

conclusion is supported by previous work suggesting that Heschl’s sulcus plays a role in error correction 

during speech production.  These studies show that Heschl’s sulcus responds selectively to sublexical 

speech sounds (Formisano et al., 2008; Jäncke et al., 2002), activates during monitoring of overt speech 

feedback during production (van de Ven et al., 2009), and is suppressed when the likelihood of making a 

speech production error is reduced (Christoffels et al., 2011).  Thus, the suggestion is that Heshcl’s sulcus 

hosts the high-level acoustic targets (Guenther, 2006; Hickok, 2012) for speech production. Alternatively, 

it is possible that this region is processing a different slow modulation rate linguistic cue, namely prosody 

and/or stress patterns, that impact intelligibility.  This is a topic for future work. 

5. Conclusions 

Data-driven clustering of speech-driven STRFs recovered a hierarchy of cortical speech 

processing in which early auditory areas in the supratemporal plane faithfully reconstructed the speech 

signal while later areas in the lateral temporal lobe gradually abstracted over earlier representations to 

emphasize the speech features important for intelligibility.  Crucially, unlike previous imaging work, 

STRF-based analysis revealed the precise nature of speech representations throughout the cortical 

hierarchy, including evidence of processing specializations within and between different hierarchical 

levels.  Particular cortical regions were specialized for processing different subsets of acoustic speech 

information within or outside the range of features that support intelligibility.  A general trend was 

observed in which posteromedial regions of the supratemporal plane processed fine temporal information, 



while anterolateral regions of the temporal lobe processed coarse temporal information.  Similarly, medial 

supratemporal regions processed fine spectral information while lateral temporal regions processed coarse 

spectral information.  This broad organization was nearly identical between the left and right 

hemispheres, though the left hemisphere showed a slight preference for processing the slow 

spectrotemporal modulations associated with intelligible speech.  The left hemisphere also showed 

somewhat stronger correlations between STRF patterns the behaviorally-determined pattern of 

spectrotemporal modulations that underlie speech intelligibility.  These correlations also tended to be 

somewhat stronger in anterior than posterior temporal lobe regions.  Overall these findings are consistent 

with a bilateral but modestly asymmetric model of cortical speech processing with posterior-lateral 

regions preferentially processing phonological level information and anterior-lateral regions preferentially 

processing speech at the word and phrase level.  No significant STRF tuning was observed outside the 

auditory cortex.   
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Figure Captions 

Figure 1. (A) Speech Modulation Power Spectrum.  Left: Average MPS of 452 sentences spoken by a 

single female talker.  The MPS describes speech as a weighted sum of spectrotemporal ripples containing 

energy at a unique combination of temporal (Hz; abscissa) and spectral (cycles/kHz; ordinate) modulation 

rate.  Modulation energy (dB, arb. ref; color scale) clusters into two discrete regions: a high-spectral-

modulation-rate region corresponding to finely spaced harmonics of the fundamental (a “pitch region”) 

and a low-spectral-modulation-rate region corresponding to coarsely spaced resonant frequencies of the 

vocal tract (a “formant region”).  The black contour line indicates the modulations accounting for 80% of 

the total modulation power.  A spectrogram of an example spectrotemporal ripple (2 Hz, 4 cyc/kHz) is 

shown beneath. Right: Coefficient of variation across the 452 sentences (sd/mean), expressed as a 

percentage (color scale).  Plotted on the same axes as the MPS.  There is relatively little variation across 

utterances (maximum CV ~7%). (B) Bubbles Procedure.  Bubbles (middle) are applied to an image of a 

face (left) and the MPS of an individual sentence (right). In either case, bubbles reduce the information in 

the stimulus.  Different random bubble patterns are applied across trials of an experiment. For auditory 

bubbles, we in practice use a binary masker with bubbles that are larger than those shown in the example. 

 

Figure 2.  Bubbles Analysis Schematic.  A BOLD activation time-course from a single voxel in left 

Heschl’s gyrus of a representative subject is shown (blue line).  The time-course plots the z-scored time-

series of single-trial activation magnitudes (beta; ordinate) evoked by “bubble-ized” sentences (Sentence 

No., abscissa).  Example bubble patterns (black-and-white panels) associated with sentences that evoked 

relatively large (top) and small (bottom) activations are plotted and identified by their sentence number.  

Z-scored activation magnitudes associated with these examples are shown next to the corresponding point 

in the activation time-course.  Bubbles are applied to the MPS of each sentence as shown in Fig. 1.  White 

pixels show regions of the MPS that are transmitted to the listener, while black pixels show regions of the 

MPS that are removed.  Each bubble pattern is multiplied by its associated z-score, and the series of 



bubble patterns is summed pixel-by-pixel.  The resulting summed image is then blurred (Gaussian filter 

with sigma = 5 pixels) and scaled by the across-pixel standard deviation (sdpx).  The result is a STRF (top 

right) showing which regions of the MPS best activated this voxel.  The STRF color scale is in across-

pixel standard deviation units, where large positive values (yellow-red) correspond to regions of the MPS 

that evoked relatively large activations. 

 

Figure 3. (A) Maps of STRF Cluster Groups in Auditory Cortex.  Cluster Groups are plotted by color 

on cortical surface renderings of the left and right hemispheres.  Zoomed renderings of the temporal lobe 

are shown beneath whole-brain plots.  Cluster Group 1 (CG1, blue) is located primarily in the 

supratemporal plane and posterior STG.  Cluster Group 2 (CG2, cyan) is located primarily in medial 

supratemporal reigons.  Cluster Groups 3 and 4 (CG3/4, yellow/red) are located primarily in the posterior 

and anterior STG/STS. (B) STRF-Cluster Patterns.  For each of the 18 STRF clusters identified by 

GMM analysis, the cluster-average group-level (t-score) STRF is plotted.  STRF magnitudes have been 

normalized to the range [0, 1].  Larger values are associated with STMs that produced relatively more 

BOLD activation.  STRFs are organized by Cluster Group (CG1-4) in columns running from left to right.  

STRFs associated with CG1 respond to a broad range of STMs.  STRFs associated with CG2 respond 

especially to high temporal modulation rates.  STRFs associated with CG3/4 respond to STMs important 

for intelligibility (see C). (C) Behavioral Classification Image for Intelligibility Judgments.  This plot 

is essentially a ‘behavioral STRF’, derived entirely from button-press responses (yes-no intelligibility 

judgments) rather than neural activity.  The z-scored group-level behavioral classification image is 

shown.  Larger values are associated with STMs that contribute relatively more to intelligibility.  

Temporal modulations from 2-7 Hz and spectral modulations less than 1 cyc/kHZ contribute maximally. 

(D) Distribution of Cluster Groups within Anatomically Defined Regions.  The proportion of cortical 

surface nodes belonging to CG1-4 is plotted for six anatomical regions of interest in the left (LH) and 

right (RH) hemispheres: Heschl = Heschl’s gyrus/sulcus, pSTG/S = posterior STG/S, aSTG/S = anterior 

STG/S, pSyl = posterior Sylvian cortex.  Colored boxes beneath region labels correspond to the colors of 



the anatomical regions plotted on zoomed cortical surface renderings at right.  Only significantly tuned 

cortical surface nodes are labeled. 

 

Figure 4. Cluster level STRFs with the global effect of intelligibility removed (STRFUnbiased).  

For each of the 18 STRF clusters identified by GMM analysis, the cluster-average group-level (t-

score) STRFUnbiased is plotted.  STRF magnitudes have been normalized to the range [0, 1].  

Larger values are associated with STMs that produced relatively more BOLD activation.  STRFs 

are organized by Cluster Group (CG1-4) in columns running from left to right. Compare to Fig. 

3B. 

 

Figure 5. (A) Cortical Maps of Peak Modulation Frequencies.  Node-wise maps of temporal peak 

modulation frequency (tPMF, Hz) and spectral peak modulation frequency (sPMF, cyc/kHz) are 

displayed on inflated cortical surface renderings of the left and right temporal lobes.  The renderings have 

been zoomed in as indicated by the red boxes at the top of the figure.  Color scales are logarithmic.  (B) 

Probability Density of tPMF and sPMF Within Cluster Groups.  Empirical cumulative distribution 

functions (eCDFs; Kaplan-Meier method) for tPMF (Hz, top) and sPMF (cyc/kHz, bottom) were 

generated.  Empirical probability density functions (ePDFs) were obtained by taking the derivative of the 

eCDFs.  The ePDFs are plotted for each cluster group (colored lines, see legend) separately for the left 

(LH) and right (RH) hemispheres.  The interquartile ranges (25th percentile - 75th percentile) of each 

distribution are indicated at the top right of each panel (IQR).  The ordinate is the estimated probability 

density. 

 

Figure 6. Linear Mixed Effects Models: Best Modulation Frequency. (A) Effect of Cluster Region.  

The mean of the fitted values produced by the LME model for temporal (tBMF, top) and spectral (sBMF, 

bottom) best modulation frequencies (octave scale, ordinate) are plotted for Cluster Groups 1-4 (abscissa) 



in the left (blue) and right (red) hemispheres.  Error bars reflect ± 1 SEM.  Spectral BMFs are negative 

because nodes with an sBMF of 0, of which there were many, were set to 0.01 (-6.6 on the octave scale). 

(B) Covariation between tBMF and sBMF.  Results of linear mixed effects regression of sBMF on 

tBMF (top) and tBMF on sBMF (bottom) by hemisphere are plotted as fitted lines (bold blue) with 95% 

confidence regions (light blue shading).  BMFs have been mean-centered and transformed to the octave 

scale (i.e., axes show distance from the mean t/sBMF in octaves).  Ticks above the abscissa indicate the 

values of the covariate at which data were actually observed. 

 

Figure 7. Evidence of STRF Specializations Within Cluster Groups.  Individual clusters of interest 

(A-C) are plotted on inflated cortical surface renderings of the left and right hemispheres (figure left).  

Zoomed surface renderings of the temporal lobes are shown beneath the whole-brain plots.  The cluster-

average group-level (t-score) STRFs are also plotted with magnitudes normalized to the range [0, 1] 

(figure right).  (A, blue) From Cluster Group 1, this cluster on lateral Heschl’s Gyrus and the neighboring 

STG responds best to STMs at high cyc/kHz (“pitch” STMs). (B, Green) From Cluster Group 2, this 

cluster located entirely in the right auditory cortex responds best to STMS at high temporal modulation 

rates (Hz). (C, Red) From Cluster Group 4, this cluster located prominently in the left anterior temporal 

lobe responds best to STMs important for intelligibility, particularly at very low temporal modulation 

rates (< 3 Hz). 

 

Figure 8. (A) Contrast Map of Speech Intelligibility.  The group mean contrast beta (intelligible trials 

vs. unintelligible trials) is plotted on cortical surface renderings of the left and right hemispheres.  Whole-

brain analysis, wild-bootstrap-corrected p < 0.05. (B) Correlation Map of Speech Intelligibility.  The 

group mean Fisher z-transformed correlation, z(r), between behavioral classification images for 

intelligibility and neural STRFs is plotted on cortical surface renderings of the left and right hemispheres. 

Whole-brain analysis, wild-bootstrap-corrected p < 0.05. (C) Linear Mixed Effects Analysis of 

Intelligibility Correlation Values.  The mean of the LME-fitted values of the Fisher z-transformed 



correlation, z(r), between behavioral classification images for intelligibility and neural STRFs is plotted 

across cluster regions (top) and anatomical regions (bottom) in the left (blue) and right (red) hemispheres.  

Error bars reflect ± 1 SEM. 

 

Figure 9. (A) Cluster-Group Maps at the Group Level and in Representative Individual 

Participants. Cluster Groups are plotted by color on cortical surface renderings of the left and right 

hemispheres.  Separate maps are shown for the group-level data (GRP), and for the two individual 

participants with the lowest (S2) and highest (S3) percent agreement with the group. (B) Distribution of 

Individual-Participant Cluster Groups within Anatomically Defined Regions.  The across-participant 

average proportion of cortical surface nodes belonging to Cluster Group 1-4 is plotted for six anatomical 

regions of interest in the left (LH) and right (RH) hemispheres: Heschl = Heschl’s gyrus/sulcus, pSTG/S 

= posterior STG/S, aSTG/S = anterior STG/S, pSyl = posterior Sylvian cortex.  Error bars = ± 1 SEM.  

Compare to Fig. 3D for group-level distributions.  

 

 

 
 


