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Abstract 

Several models have been proposed to explain brain regional and interregional 
communication, the majority of them using methods that tap the frequency domain, like 
spectral coherence. Considering brain interareal communication as binary interactions, we 
describe a novel method devised to predict dynamics and thus highlight abrupt changes 
marked by unpredictability. Based on a variable-order Markov model algorithm developed in-
house for data compression, the prediction error connectivity (PEC) estimates network 
transitions by calculating error matrices (EMs). 
We analysed 20 hours of EEG signals of virtual networks generated with a neural mass 
model. Subnetworks changed through time (2 of 5 signals), from normal to normal or 
pathological states. PEC was superior to spectral coherence in detecting all considered 
transitions, especially in broad and ripple bands. Subsequently, EMs of real data were 
classified using a support vector machine in order to capture the transition from interictal to 
preictal state and calculate seizure risk. A single seizure was randomly selected for training. 
Through this approach it was possible to establish a threshold that the calculated risk 
consistently overcame minutes before the events. Using either spectral coherence or PEC 
we created 1000 models that successfully predicted 6 seizures (100% sensibility), a whole 
cluster recorded in a patient with hippocampal epilepsy. However, PEC resulted superior to 
coherence in terms of true seizure free time and amount of false warnings. Indeed, the best 
PEC model predicted 96% of interictal time (vs. 83% of coherence) of about 20 hours of 
stereo-EEG. This analysis was extended to patients with neo/mesocortical temporal, 
neocortical frontal, parietal and occipital lobe epilepsy. Again PEC showed high 
performance, allowing the prediction of 31 events distributed across 10 days with ROC 
AUCs that reached 98% (average 93±5%) in 6 different patients. Moreover, considering 
another state transition, PEC could classify and forecast up to 88% (average 85±3%) of the 
REM phase both in deep and scalp EEG. 
In conclusion, PEC is a novel approach that relies on pattern analysis in the time-domain. 
We believe that this method can be successfully employed both for the study of brain 
connectivity, and also implemented in real-life solutions for seizure detection and prediction. 
Keywords: coherence; Markov model; iEEG; EEG states; seizure prediction  
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1. Introduction 

Despite medical treatment, about a third of epilepsy patients (around 0,3% of the world 
population) continue to have seizures (Kwan et Brodie, 2010). Since less than half of these 
patients are eligible for epilepsy surgery, it is necessary to devise alternative strategies for 
seizure control. The apparent random nature of ictal events is not only one of the most 
significant factors affecting patients’ quality of life (Schulze-Bonhage et Kühn, 2008), but it is 
also a challenge for neuroscientists and physicians studying the brain dynamics related to 
this problem. In fact, since the 90s a huge effort has been made for solving seizure 
unpredictability, using a varied array of measures: correlation dimension and other fractal 
related measures, nonlinear similarity indexes, various types of frequential correlation and 
synchronization measures, compounded measures (for a comprehensive review see 
Mormann et al., 2007). Through these and other efforts aimed at understanding the basis of 
neural network behaviour, evidence has emerged of identifiable preictal brain states (for a 
comprehensive review see Stacey et al., 2011). Despite their reliable outcomes, early 
seizure forecasting methods were only recently implemented for real life solutions. Pitfalls 
were found not only in the methods themselves, but also in inadequate statistical analysis, 
especially the undersampling of the interictal period, which represents more than 99% of 
patients’ time (Mormann et al., 2007; Andrzejak et al., 2009). 
To define and quantify brain dynamics, published methods either use the raw EEG that is 
decomposed and represented in a multidimensional space (for chaos dynamics and 
nonlinear similarity methods) or preprocess the EEG into the frequency domain (correlation 
and synchronization methods). Indeed, the mainstream hypothesis of brain interareal 
communication is based on synchronisation of brain oscillations of the same or similar 
phase, and especially of high frequency activity (e.g. Rodriguez et al., 1998; Palmigliano et 
al., 2017). This hypothesis increased the popularity of spectral coherence and related 
methods. In fact, their extensive usage is also justified by the observation that different brain 
regions present distinct oscillation behaviours that may become synchronous or 
dyssynchronous (e.g. Fell et al., 2001; Matsumoto et al., 2013). Other approaches that 
eminently focus on time and pattern sequence, like Markov chain models, have been widely 
employed for state analysis in information science (e.g. Ziv et Lempel, 1978), biology and 
genetics (e.g. Langmead et al., 2009). However, markovian methods have been less often 
used in scalp and invasive EEG (iEEG) studies with some exceptions, especially in the 
subfields of seizure prediction and detection (e.g. Santaniello et al., 2011; Dadok et al., 
2015; Baldassano et al., 2016). The general strategy behind most of approaches consists in 
calculating epoch similarity to a preictal phase or dissimilarity from an interictal phase, or 
both. Some approaches model and predict brain activity to compute this measures (e.g. in 
the works of Dadok and Baldassano), the majority use the distance between measures 
taken at preictal and interictal phases, assuming different levels of chaotic behaviour or 
synchronicity between brain areas. 
Recently it has been demonstrated that seizure forecasting is possible (Brinkmann et al., 
2015) but the classification between preictal and interictal time was very variable among 
patients, such that for some of them seizure warnings were issued for a considerable 
amount of daily time (Cook et al., 2013). Notwithstanding the usage of the latest machine 
learning technologies and problem solving modalities like crowdsourcing (Brinkmann et al., 
2016), things did not change considerably. And even if this classification is methodologically 
plausible, most of promising algorithms require a large amount of processing time and 
memory. Most studies, even the ones using non-frequency domain methods, apply complex 
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transformation methods that need multiple iterations and require significant amounts of 
memory, especially when run for many sources like the EEG channels, (e.g. the Dirichlet 
process used in Baldassano et al., 2016). 
In the current study, we introduce a novel method for EEG data analysis, entitled prediction 
error connectivity (PEC). PEC quantifies the error of brain regions as if they were failing to 
communicate with each other. The method relies on a very fast transform of the EEG signal 
and on a preprocessing phase with low memory requirements. Through the in-house 
developed variable-order Markov chain algorithm, the average weighted context (AWC), 
data streams are predicted bit by bit and the prediction error is considered. Unlike other 
approaches using data compression algorithms (e.g. Aarabi et He, 2012 and 2017), PEC 
uses the discrepancy between the predicted and the real data stream to infer state 
transitions. To our knowledge, this is the only method that uses the error made during 
prediction as a measure to detect changes in neural dynamics. To validate PEC, we first 
quantified the transitions in virtual data arranged in subnetworks that changed through time 
in a controlled way. Then we analysed real data recorded in patients with temporal, frontal, 
parietal and occipital lobe epilepsy. Finally, we also considered sleep stage transitions both 
in scalp and iEEG. 
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Figure 1. Averaged Weighted Context (AWC) and bit stream prediction. In the first line (DATA) we 
show an example of the data (TEXT, a text written by the first author, and a whole EEG epoch of 120 
seconds) analysed by the algorithm (refer to section 2.1 for more information). In the second line 
(PROCESSING) we show raw 8x8 bit matrices (bitmaps, on the left in both TEXT and EEG boxes) 
and error maps of the same dimensions (on the right). In the TEXT box we show an example of AWC 
processing, which consists on averaging probabilities to find 1. Each probability equation example 
(blue, green, yellow and red) corresponds to a dotted box in the bitmap. Previous bit combinations are 
stored in memory as bit matches, which are retrieved through context keys. Dotted boxes represent 
the keys that retrieve multi-bit and byte match statistics (the grey equation corresponds to the last 
dictionary key, a 8x8+7 bit sequence that initialises a new match). Probabilities in square brackets 
correspond to byte probabilities (see section 2.1 for more information). In the third line (STREAM 
ALTERATION) we alter 5000 bits (10 seconds of iEEG at 500 Hz) from state 30000 on at position 4 in 
both data streams. We show raw bit streams (left, unaltered above, altered below) and error streams 
(right, corresponding to unaltered above, altered below). The analysis using AWC highlights the 
altered section as an increase of error values. 

2. Materials and methods 

2.1 Average Weighted Context (AWC) 

Prediction error connectivity (PEC, see next section) was devised to work through a variable-
order Markov model algorithm designed for pattern prediction, the additive weighted context 
(AWC). AWC produces good estimations of several types of data (see section 
supplementary results, 6.2, data compression experiments). In data compression, an 
estimation consists of bit forecasting from previous readings. 
 
The iEEG as a sequence of bits. To use bit forecasting in the neurophysiological setting 
and characterise transitions of dynamics, first of all it was necessary to assess whether EEG 
data could be compared to data successfully processed by the AWC, like a text stream. 
Thus, given a text of around 60,000 characters, 120 seconds (at 500 Hz sampling rate) of 
interictal time were randomly selected from a patient undergoing an iEEG study (figure 1). 
Eight contacts (matching the 8 bits of text symbols) were chosen from an electrode targeting 
the epileptogenic zone. Although both text and iEEG were represented by a matrix of 
8x60,000, the text matrix contained binary values, while the iEEG matrix floating point 
values. Only the direction of the electrical vector was considered. After this transform both 
matrices contained 8x60,000 bit values (bitmaps). 
 
Forecasting sequences of bits to obtain error maps. Bitmaps are transformed by AWC 
into probability maps, then into error maps, �	 = 	 |�(�) 	− 	�| where B is the original bitmap 
and P(B) is the probability map. 
What is the AWC probability map? The AWC transforms a sequence of bits into a sequence 
of probabilities that range from 0 to 1. Every map starts with a variable number of 0.5 values 
that depends on the number of new bit patterns encountered. Whenever the pattern at the 
current position matches a previously encountered pattern, the AWC computes the 
probability of the next bit instead of giving an output 0.5 (average probability). In other words, 
for new patterns the probability of the next bit is 0.5 (neither 0, nor 1), while for previously 
encountered patterns the probability is either close to 0 or 1. 
How is the prediction of the next bit computed? To compute the probability of the next bit the 
AWC takes into account two dimensions: space, the number of bits that encode the 
message symbols (e.g. 8 bits or byte per text character); and time, the number of considered 
past symbols. Taken together, these two parameters make up the context. To compare text 
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and iEEG a context of 8x8 is used for simplicity. The context is implemented a set of bit 
patterns (keys) for retrieving the next bit statistics of previous matches. Considering an 8x8 
context, the prediction starts with a key of 1 bit (previous bit), and it is extended bit by bit 
until a maximum of 7 bits, and then byte by byte until a maximum of 8x8+7 bits is reached. 
Finally, the context is shifted and the process starts again for the next pattern (a new 
character in the text stream, a new pattern of stacked electric vector directions in the iEEG). 
Despite a context of 8x8 implies a dictionary of 4.7·1021 potential keys, in practice only a 
small fraction of them (a tree of patterns) is stored in memory, since keys become allocated 
only if found. Every key points to a match, which is a memory space that stores two values: 
the number of encountered 1s and the number of 0s and 1s, which in practice represents the 
times the bit pattern was found in previous readings.  
How is the process step by step? In figure 1 the prediction of a bit of text data is 
represented. In the example the algorithm is shown at the position 100 (byte 100) that 
corresponds to the string ‘e in tim’ in the text. The algorithm has already computed the first 7 
bits of the character ‘e’. The prediction of the last bit consists in averaging the statistics of all 
previous matches starting from the 0-bit match. The 0-bit match is unbound and updated at 
every bit. After the 0-bit, the rest of multiple-bit matches are added up starting from 1-bit 
(196/399 in the example, blue in figure 1) up to the 7-bit match (15/21, green in figure 1). 
Finally, all symbol matches -bytes in a 8x8 context- are added up. For instance, considering 
the byte match ‘m’, ‘me’ appears twice in the words ‘become’ and ‘something’, while the 
letter ‘m’ appears 3 times (also in ‘might’), therefore the sequence ‘me’ has a probability of ⅔ 
(orange in figure 1). On the other hand, since ‘time’ and ‘e in time’ never appear before their 
probability is set to ½ (average probability, red and grey in figure 1).  
How are the statistics of frequent and infrequent matches balanced? All probabilities except 
the 0-bit are weighted in two ways: first, they are multiplied by a constant (the training factor, 
see section 6.1 in supplementary methods and results), then they are multiplied by a length 
factor that depends on the length of the key (long patterns appear less often than short 
ones). By this correction multiple-bit and byte matches are balanced against each other, and 
also against the 0-bit match, the most frequent since it is updated at every bit. Before 
applying the length correction, a limiting function is used to balance the most frequent 
patterns between each other, and also to minimise memory requirements (see section 6.1). 
Thus, the equation of next bit prediction is the following: 
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where �(
 �)is the prediction of current bit c, m is a bit sequence up to bit c that points to a 
match (m1 denotes the number of encountered 1, while m01 denotes the number of all 
previous matches), m0 is the 0-bit match; k is the constant for balancing matches against m0, 
while l is the function that limit the size of the most frequent matches; s is the current space 
and t is the current time; β represents the remainder of  /" or  	#$%	". 
 
Error maps are used to detect dynamics changes. The chosen stream of iEEG channels 
was processed into an error map, which did not significantly differ from the error map 
obtained by a text stream (see Figure 1). Through the stream alteration test we assessed 
whether a random change of dynamics would increase the error rates, as expected. Since 
the AWC records bit occurrences after already encountered patterns, random bits should 
hamper bit prediction and thus increase the error where the alteration occurred. To check 
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this hypothesis we produced an artificial change of dynamics: we altered 5000 bits at bit 4 
from byte 30.000 on, using sequences of 1-30 bits copied from random bit streams at 
random times, both in the text and iEEG streams (red dotted rectangles in figure 1). In both 
text and iEEG, the error dramatically rose from byte 30.000 on up to approximately 35.000, 
with a peak at bit 4 (see Figure 1). 

2.2 Prediction error connectivity, signal processing and statistical analyses 

Given that both text and EEG data could be processed into error maps that are reactive to 
dynamics changes (see 2.1), which should be the best number of EEG channels to analyse 
and in which order? Analysing several channels at the same time, like in figure 1, and all 
their possible combinations would require an unmanageable amount of time and memory, as 
reported in 2.1 (a context of 8x8 bits would produce 4.7·1021 potential bit keys). For this 
reason, instead of analysing multiple contacts and relying on electrode placements to 
determine the best order, we decided to analyse all possible contact pairs or a subset of 
them. We implement this method in three steps: binarization, serialization and online pattern 
analysis (see figure 2). The method was implemented entirely in Python (version 3.6.1). The 
hybrid C/Python modules Numpy (Walt et al., 2011; version 1.13.0), Scipy (Jones et al., 
2016; version 0.19.0) and Matplotlib (Hunter et al., 2007; version 2.1.0) were used for 
statistics, graphics, and for the calculation of coherence matrices (see below). 
 
Binarization. The first step was the binary trending: the EEG data was transformed into a 
series of zeros and ones, using one when the previous sample was either equal or smaller 
than the current (see figure 2.B). This transformation maintains only the signal shape but 
loses the amplitude information. Other time series measures like permutation entropy 
consider discrete parts of the EEG, like its trend. We believed that this particular kind of 
reduction did not remove information about the temporal dynamics of the synaptic activity, 
which is the main source of the extracellular current flows that determine the electric vectors 
recorded by the EEG (Buzsáki et al., 2012). This is because the electric potential amplitude 
relates to the proximity of the source, therefore the flattening only reduces the information 
about the exact position of the various components of the signal, which in turn can be 
determined by temporal analysis.  
 
Serialization. Considering two contacts, A and B, a new bit stream was made by putting in 
sequence the first bit of A and the first of B, then the second of A and the second of B, and 
so on. This process, which we called serialization, was used to check for synchronisation 
(see figure 2). By serialization, the two sources produced a single output. Therefore, if their 
variation was homogeneous the stream would become repetitive and predictable, thus 
suggesting related processes that worked synchronously. On the other hand, the 
unpredictability of the stream would indicate independent processes or a change in 
dynamics. 
 
Online pattern analysis. The predictability was obtained through the AWC bit prediction 
(see 2.1, figure 1 and figure 2). A sliding window corresponding to an AWC with context 2x6 
(the space -2- referred to the number of contacts, the time -6- was defined by compression 
studies, see section 6) walked along the serialized stream, predicting the next bit by 
recording pattern statistics. Pattern analysis operates online because the algorithm does not 
predict with forward knowledge, which would imply a readout phase followed by a prediction 
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phase. The AWC reads and predicts at the same time, with just a single read/predict 
passage. Practically, the AWC constructed trees of patterns, which are the sub sequences 
found by reading the stream. The statistics of pattern trees were used to predict the next bit 
by averaging incremental matches (see 2.1 and figure 1, PROCESSING). For further details 
about AWC memory management and statistics see section 6. As an important note, all 
experiments were done using bit statistics that never overcame 16 bits or 2 bytes. This 
limited the memory requirements to around 2 kilobytes per contact pair. Therefore, if the 
process is run pair by pair, 2 kilobytes is the minimum amount of memory needed. 
 
Error matrices (EM). All possible combinations with duplicates were considered (e.g. 
following the example of figure 2, AA, AB, BA, BB) since the algorithms provides 
asymmetrical predictability values. The AWC returns the continuous prediction error that is 
used to create error matrices (EM), which are constructed as follows: 

�& '( =	 |�(� '() − � '(| 

where a and b are the matrix row and column indices respectively, P is a function 
representing the transformation computed by the AWC, B is the bit sequence. As described 
above, each sequence was made of two bit streams and the AWC allowed a specific error 
retrieval, therefore we stored separately the error of the most and the less relevant (using 
big-endianness) bit sequence (0 and 1 respectively). For all calculations we used bit 1. Since 
bit 1 is the last predicted bit (the easiest to predict) we expected to find low error yields in a 
more predictable sequence. Therefore the effects of a change of dynamics, which decreases 
predictability, although altering both bits, would be more evident on bit 1. 
 
Coherence matrices (CM). We compared the results with the normalized spectral density 
using a coherence matrix obtained with: 

)&'( = 
|* +,|

-

* ++	* ,,
 

where P is the power spectral density by Welch’s average periodogram method. EMs, like 
CMs, are sets of values ranging from 0 to 1. Since the AWC was written in pure Python, in 
order to compare processing times, CMs were partially implemented in pure Python 
(bypassing the accelerated routines of Numpy and Scipy).  
 
Mann Whitney U and t-test were performed accordingly to distributions. To check for 
Gaussian distribution we used the Shapiro-Wilk normality test using random sampling when 
needed. 

2.3 Neural mass model, virtual signals and network transitions 

Twenty hours of virtual signals were generated using a neural mass model developed to 
produce virtual EEG signals from organized networks of neural populations (Wendling et al., 
2000). Among others (membrane average time constant, dendritic tree average time delays, 
average number of synaptic contacts of the feedback loops) the model uses two important 
parameters to generate EEG sources, the average excitatory and inhibitory synaptic gain. 
We modified the latter to produce networks that yielded signals with similar characteristics to 
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normal EEG activity, interictal-like (increased excitatory synaptic gain) and seizure-like 
activity (increased excitatory and decreased inhibitory synaptic gain). We used the standard 
values described by Wendling and colleagues with some exceptions: in normal signals we 
used 3.25 and 22 mV for average excitatory and average inhibitory synaptic gain 
respectively, in interictal-like signals we increased the average excitatory gain up to 4, 
variable until 8 mV, while in seizure-like signals we used an excitatory gain of 8 mV and 
decreased the inhibitory gain to 10 mV. The rest of the parameters were set to standard. 
 
Virtual networks. We generated stationary (S) and variant (V) signals with a sampling rate 
of 500Hz to form networks with controlled linear transitions. Both S and V signals were 
produced using from 1 to 3 common sources and 1 to 3 extra sources, each source being a 
distinct neural mass. Variant signals used as many common sources as the stationary ones, 
though coupled with time-shifting extra sources. The extra sources were generated by 
waxing and waning several neural masses (from 1 to 3) in a linear fashion (source drift). We 
used the aforementioned neural mass parameters to build three types of network transitions: 
from normal to normal, from normal to interictal-like and from normal to seizure-like EEG 
signals. To simulate a focal transition, similar to the distribution of focal interictal activity or 
seizures, we constructed unevenly distributed epochs of 5 nodes per 60 seconds with 3 S 
and 2 V signals (see figure 3.A). In practice, networks of 5 nodes were generated simulating 
an iEEG recorded from 5 contacts. Of the 5 signals, 2 (V signals) linearly changed from a 
dynamic to another across 60 seconds. 
 
Network transition detection. To obtain values of network transitions we constructed two 
EMs or two CMs per minute using the first and the last 30 seconds. We then computed the 
distance between matrices using: 

. = |/ 0−30" − / 30−60"| 

where X stands either for EMs or CMs. For the analysis we used broadband signals and the 
following sub-bands: δ-θ, α, β, γ and ripple (60-120 Hz), obtained through a butterworth 
bandpass filter. 

2.4 Epilepsy patients and procedures 

About 20 hours (1151 minutes) of stereotactic iEEG (SEEG) from a patient with 
pharmacoresistant motor cognitive seizures were analysed. The patient was identified in our 
centre among epilepsy surgery candidates who underwent SEEG evaluation for epilepsy 
surgery and was selected because she presented a cluster of 7 seizures and well defined 
focal seizure onset zone (SOZ). The subject was also selected because she was our first 
patient with hippocampal epilepsy explored with SEEG. A right hippocampal sclerosis was 
found on MRI recordings. SEEG exploration was performed, given a seizure semiology (with 
some opercular and insular characteristics) and an extensive PET hypometabolism, 
suggesting of temporal plus epilepsy (which indicates a complex epileptogenic network 
located within the temporal lobe and over neighbouring structures). To check whether the 
strategy could work in other epilepsy types, we chronologically included a non paleocortical 
temporal lobe, a frontal lobe, a parietal lobe and an occipital lobe epilepsy patient. All 
presented focal seizures with cognitive and/or motor symptoms. All but the patient with 
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occipital lobe epilepsy presented secondary tonic-clonic seizures. Refer to table 1 for clinical 
and electrode implants details. 
Finally, to test extensibility to other state transitions and to surface EEG we included a sixth 
patient with a non-lesional left parietal lobe epilepsy. Despite the extensive bilateral mapping 
(16 electrodes, 15 on the left hemisphere), a good definition of the SOZ was not possible. 
The patient was also monitored with surface EEG electrodes. Refer to results for clinical 
information and electrode implants details. 
All recordings were performed using a standard clinical EEG system (XLTEK, subsidiary of 
Natus Medical) with 500 Hz sampling rate. Implantations were performed using 5 to 16 
(average 10) intracerebral electrodes (Dixi Médical, Besançon, France; diameter: 0.8 mm; 5 
to 15 contacts, 2 mm long, 1.5 mm apart) that were stereotactically inserted using robotic 
guidance (ROSA, Medtech Surgical, Inc). The decision to implant, the selection of the 
electrode targets and the implantation duration were entirely made on clinical grounds 
without reference to this research study. 

2.5 Classification analysis and seizure risk assessment 

We classified EMs in order to obtain a value indicating the proximity of seizures. This 
process is depicted in figure 4.A. In the first step, sampling, 10 random samples of 1 minute 
of all EEG channels in the interictal (everything but preictal and ictal time) and 10 in the 
preictal time (5 to 10 minutes before the event) were processed into EMs. In order to obtain 
results in an acceptable lapse of processing time we used 120 random contiguous points of 
EEG downsampled at 62 Hz (2 seconds) per minute. One-hundred and twenty points 
represents 10 times the memory that the AWC uses with a 2x6 context. In the second step, 
training, we used a support vector machine (SVM) implemented in a hybrid C/Python library 
frequently used in machine learning problems (Scikit-learn; Pedregosa, 2011). SVMs are 
especially useful when the supervised classification involves binary choices and/or trees 
(Cortes, 1995). The SVM was trained to distinguish between interictal and preictal EMs by 
scoring them with 0 and 1 respectively. Using this classification, we computed continuous 
risk curves by scoring each minute of the EEG stream. Scores in a sliding buffer of 10 EMs 
were averaged to compute the curve: when all values were 0 then the average score was 0, 
which translates to far from seizure; instead when all values were 1, the average score was 
1, thus indicating maximal proximity to an ictal event. The same procedure was repeated 
using CMs instead of EMs. 
After this analysis, we assessed whether more events could be predicted by training the 
classifier with a single seizure. Two different epileptologists, AP and RR, selected three SOZ 
contacts of the patient with hippocampal epilepsy. To avoid statistical biases, continuous 
SEEG signals without resampling were used. To produce risk curves the SVM classifier was 
trained with random EMs and CMs selected in a preictal period of 3 to 5 minutes of a single 
seizure (preictal) and random EMs and CMs taken outside of any preictal and ictal period 
(interictal). Instead of using a buffer of 10 matrices we used only three. We discarded 
models that could not successfully recognise all ictal events by setting lowest thresholds. We 
repeated the procedure 1000 times and assessed: true predicted seizure free time, number 
of false warnings and warning time. We considered a warning to be true when lasting until 
an ictal event. Warnings could be retriggered (nested warnings) and, without retriggering, 
lasted at least a number of minutes equal to the chosen preictal training time (3 to 5 
minutes). Again for this analysis we used EMs and CMs. 
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Finally, we extended the procedure to the remaining patients, again using unabridged 
minutes, full sampling rate, and three adjacent contacts lying in the same electrode targeting 
the SOZ. The SOZs were identified by three different epileptologists, AP, ML and RR. True 
predicted seizure free time, number of false warnings and warning time were evaluated. All 
models were assessed through receiver operator characteristic areas under the curve (ROC 
AUC). For this extension we used only EMs. 

2.6 Risk assessment with downsampling and far from the SOZ 

Three consecutive days (71.8 hours) recorded from deep electrode implants were used. 
Three adjacent contacts lying in the same electrode were selected as the closest to SOZ; 
three hippocampal contacts that did not present interictal activity were also chosen. Seizure 
start and end were identified by two different epileptologists, AP and ML. Data was 
processed into EMs, either unabridged at full sampling rate, and the first two seconds of 
each minute resampled at 62 Hz. As in 2.5 true predicted seizure free time, number of false 
warnings and warning time were evaluated. All models were assessed through receiver 
operator characteristic areas under the curve (ROC AUC). 

2.7 Sleep phase transition classification 

For this experiment we analysed data recorded from the same subject of 2.6. For sleep 
phase transition we used either three head hippocampal contacts (the same as in 2.6) and 
three surface EEG derivations placed over the non-epileptic hemisphere (F2-F8, F8-T2 and 
T2-T4, because of the electrode implants no full 10-20 montage was available). Ocular and 
chin contacts were present and used only for manual sleep classification. From lights off until 
lights on, 535 minutes were recorded. AP and RR staged sleep phases independently, then 
REM phases were selected. Unabridged minutes at full sampling rate (500 Hz) were 
processed in EMs. For REM stage classification we used the same framework used in 2.5 
and 2.6, by considering non-REM to REM transitions instead of interictal to preictal phase 
transitions. Phases longer than 5 minutes were split into distinct adjacent events. A buffer of 
3 matrices was again used. Similar to what was done in section 2.5, 1000 SVM models were 
built using 3 non-REM EMs and 3 REM EMs, then a sliding SVM classified the whole 
sequence of EMs. For sleep phase classification, no models were discarded. The model 
giving the best classification result was chosen for each type of data (hippocampal 
recordings and scalp EEG). 
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Figure 2. Prediction error connectivity (PEC) overview. PEC analyses node pairs and build error 
matrices (EMs), similar to correlation matrices (see section 2.2 for further details). In the example we 
show only two contacts taken from a patient with deep electrodes. The analysis can be performed on 
all or a selected set of contacts. PEC analysis relies on a variable-markov model algorithm (the 
additive weighted context, AWC) that learns and predicts patterns produced by signal pairs. The 
method uses the error calculated after predicting the trend of serialized pairs. The notch filtered EEG 
is processed in four different steps: binarization, serialization, online pattern analysis and the 
calculation of the error matrices. Briefly, binarization transforms the EEG signal in a binary trend or a 
sequence of bits, serialization produces a common output from region pairs to check for 
synchronization, while the online pattern analysis produces a predicted stream, which is compared 
to the real stream for determining the error rates that are recorded in error matrices (refer to sections 
2.1 and 2.2 for more details). Note: in the figure we only represent the most common trees and 
branches found up to position 20 of the AB stream using a context of 1x5 for graphical reasons. 

3. Results 

PEC is a method that relies on a variable-order Markov model algorithm designed for pattern 
prediction (the AWC, see section 2.1). In figure 1, we depict an example of text and EEG 
analysis. The text recorded in unicode characters is the product of 8 synchronous bit 
streams that generate bitmaps (see figure 1). Similarly, electroencephalographic data 
recorded from 8 contacts of iEEG is transformed into bitmaps. The AWC transforms bitmaps 
into probability maps. The latter can be compared to the original bitmaps to obtain error 
maps. Frequent sequences of characters or EEG patterns are easily predictable and 
therefore lower the average error. On the other hand, non synchronous or random bit 
sequences raise the error rates. Using error maps, it is possible to highlight which is the 
stream responsible of the error increase. Indeed, we generated peaks in error maps by 
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altering a single bit row with random bit sequences in both text or iEEG data (see figure 1, 
STREAM ALTERATION). 
Apart from the artificial peaks, the first iEEG bit stream shows spontaneous high error rates. 
In fact, the stream represents the discretized activity recorded from a SOZ channel. This is in 
line with the hypothesis that an epileptogenic node dynamics would intermittently (e.g. Sinha 
et al., 2017) or constantly (e.g. Warren et al., 2010) differ from the physiological dynamics of 
the rest of the network. 
Analysing all or several contacts at the same time, like in figure 1, and their combinations 
would require an unmanageable amount of time and memory, for this reason we devised 
PEC to analyse node pairs and build error matrices (EMs), similar to correlation matrices. To 
save time and memory we implemented a very simple transform that solely considers the 
EEG vector direction (see section 2.2). 
The memory requirements were extremely low (around 2 kilobytes per contact pair) and the 
processing times rather fast: a pair of 10 seconds (5000 points at 500 Hz sampling rate) was 
processed in 551±39 ms against the 3.84 s ± 92 ms of the pure Python implementation of 
coherence matrix (CM), while a pair of 60 seconds (30,000 points) was processed in 4.3 s ± 
116 ms against the 4 mins 20s ± 12.8 s of CM. 

3.1 PEC measures network transitions better than spectral coherence 

To create a model where we could control stationarity we generated virtual networks made 
of five streams. In two of them a variable number of nodes were produced with a linear drift 
that forced two different dynamics at the start and at the end of a signal. Three conditions 
were evaluated, a transition from normal to normal, from normal to interictal and from normal 
to ictal dynamics. In figure 3.B there are examples of these three conditions. A total of twenty 
hours of virtual EEG signals were generated and divided in epochs of 5x60 
streams·seconds, using common nodes (represented as grey circles in figure 3.A) and extra 
nodes (represented as coloured circles) for each stationary (S) stream. Common nodes and 
time shifting nodes (orange to red circles) were used for variant (V) streams. Since the 
proposed method is a network approach, we wanted to simulate a focal change of dynamics 
and altered the stationarity of 2 among 5 signals. To compare PEC and spectral coherence 
in detecting transitions the distance (�) between EMs and CMs obtained from the first and 
the last 30 seconds was calculated. Both whole matrices and the difference between V 
subnetworks only (all and V in figure 3.B) were considered. 
PEC relative changes were more pronounced than those of spectral coherence in all 
transitions, when considering all conditions like the number of nodes and EEG sub-bands 
together. In figure 3.B we show the overall results of transition analysis. Interestingly, �EM 
values almost always defined clear-cut groups, thoroughly distinguishable from �CM 
groups. Moreover, the difference between whole matrices and V subnetworks were less 
marked using PEC instead of coherence, therefore suggesting a more robust detection of 
transitions of similar dynamics. When the transition was driven by two completely different 
dynamics (from normal to ictal) PEC showed a marked difference between whole EMs and V 
subnetworks, thus suggesting an enhanced sensitivity to a thoroughly different dynamics, as 
seen in the context alteration experiment. All differences between �EM and �CM were 
statistically significant (p < 10-6). 
Also when considering conditions separately, like the ratio between common and variant 
nodes and sub bands, PEC changes were generally more pronounced than those measured 
by coherence. However, it was possible to always define clear-cut groups only in broadband. 
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Interestingly, clear-cut groups were also definable in ripple band, but only in normal and 
interictal transitions or when considering V subnetworks (see section 7 and table S1 in 
supplementary materials for condition and band results). 

 
Figure 3. PEC (red) can distinguish network transitions better than spectral coherence (blue). Panel 
A. Top: example of virtual focal seizure. We created 20 hours of virtual signals divided in epochs of 
5x60 nodes·seconds. Signals were either stationary (S, generated by common and extra nodes -grey 
and coloured dots respectively- all stable through time) and variant (V, generated using common and 
time shifting nodes -orange to red dot) with unequal ratios (3:2). Bottom: error matrices (EMs) 
calculated by the AWC algorithm. We compared the first and the last 30 seconds of the transition. 
Panel B. Left column: examples of the three state conditions of V signals that shift from normal to 
normal excitatory/inhibitory gain (top), from normal to interictal-like (increased excitatory gain, middle) 
and from normal to seizure-like (increased excitatory, decreased inhibitory gain, bottom). Right 
column: distance between matrices using coherence (blue) and PEC (red), by comparing either whole 
matrices (all) or V sub-networks. Dotted lines divide the space from each �EM average - σ. 

3.3 Seizure risk assessment 

After verifying that PEC can effectively distinguish virtual network transitions we related EMs 
to real network states. We considered interictal and preictal states. Despite there is no clear 
temporal definition of the latter, most of studies consider the preictal period to peak around 
30-10 minutes before a seizure (for a review, van Mierlo et al., 2014). Similar temporal limits 
have been recently used for seizure prediction competitions (Brinkmann et al., 2016). The 
most successful solutions in these competitions used frequency domain EEG preprocessing 
and machine learning classifiers ranging from SVM to distributed gradient boosting 
algorithms. In our study, instead of classifying discrete EEG epochs of binary events, e.g. 10 
minutes epochs labeled either as preictal or interictal time, we built a scenario in which we 
imagined to set a device that continuously samples the EEG, either unabridgedly or with 
gaps. Initially, a SVM was trained with interictal and preictal EMs calculated from random 
small samples (only 2 seconds per minute). This allowed to obtain EMs of many nodes (151) 
in a reasonable amount of time. Risk curves were built by sliding the classifier along the 
EEG (see section 2.5 for more details, and figure 4.A for a graphical description of the 
method). 
In figure 4.C we present the results using PEC (red) and spectral coherence (blue). Both 
methods predicted high risk in a variable period of time before the ictal event. However, 
coherence risk values peaked after the seizure, while PEC predicted the highest risk before 
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it. We used an arbitrary threshold of 90% (dotted black line). No other peaks were recorded 
in the considered period of time (4 hours). In figure 4.C the correlation matrix corresponding 
to the distance between matrices (�EM) used for training the SVM is shown. The most 
altered lines correspond to the hippocampal head (Hh) and amygdala (Am), which showed 
interactions with the entorhinal cortex (ERC), the frontal operculum (Fop) and the frontal 
polar cortex (FPC). 
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Figure 4. Seizure risk assessment. Panel A. For risk assessment we used an interictal and preictal 
period (5 to 10 minutes before the event). After sampling we trained a support vector machine (SVM) 
to recognise interictal and preictal EMs, scored with 0 and 1 respectively. Finally, the trained SVM 
classifies continuous EEG data processed into EMs or CMs. A seizure risk curve is obtained by 
averaging a buffer of 10 matrices -all zeroes, no risk at all; all ones, maximum risk). Panel B. Brain 
glass model and implants: the black lines represent the electrodes, the SOZ contact pairs are shown 
in red. Panel C. Left: seizure risk curves obtained with coherence (C, blue discontinuous line) and 
PEC (P, red). Right: distance between the EMs (�EM) used for training the binary classifier. We used 
distance as a surrogate of the difference between dynamics (interictal vs. preictal) recorded in the 
explored regions. Legend: ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; Hh, hippocampal 
head; T2, 2nd temporal gyrus; Am, amygdala; Hbt, hippocampal body and tail; Tp, temporal pole; 
ERC, entorhinal cortex; T3, 3rd temporal gyrus; PRC, perirhinal cortex; MIC, middle insular cortex; 
Fop, frontal operculum; PIC, posterior insular cortex; FPC, frontopolar cortex; ACC, anterior cingulate 
cortex; MFG, middle frontal gyrus; AIC, anterior insular cortex; F2, 2nd frontal gyrus. 

3.4 Continuous risk assessment by a hypothetical device 

Since PEC captured real state transitions from the interictal to the preictal phase we built 
seizure prediction models simulating a real life application. Models were built always by 
training the classifier with a single event. To avoid any statistical biases of random sampling 
in a long time unit (e.g. seconds in a minute), unabridged minutes at the maximum sampling 
rate were considered. To reduce the processing time and set up a realistic scenario the 
analysis was restricted to SOZ contacts. By seizure analysis, we identified three contacts 
recording from three distinct areas of the hippocampal structure: the cornu ammonis (CA) 
region one, three and four (as depicted in figure 5). Afterwards, 1151 minutes of continuous 
EEG recordings were transformed in two sets of 1151 EMs and CMs, which were used to 
train 1000 models that predicted all events. 
Both CMs and EMs allowed the definition of 1000 risk models that successfully predicted 6 
of 7 seizures (we did not count the training event as a predicted event). In figure 5, we 
present risk curves obtained with spectral coherence (blue) and PEC (red). In the same 
figure we show EM or CM best single correlation (below the risk curves), determined as the 
maximum value of �CMs and �EMs of the best 10 models. Using spectral coherence we 
identified the intersection between CA1 and CA3, while using PEC the highest transition 
changes were determined by the correlation between CA3 and CA4. The best single 
correlation analysis might be used as a fast seizure detection method, since highest 
coherence values and lowest PEC values corresponded to ictal events. Averaging peri-ictal 
windows (1 hour before and 1 hour after the seizure) of the best single correlation, we 
graphically assessed the signal-to-noise ratio (SNR) of both methods. PEC clearly 
surpassed coherence in both seizure risk prediction, and best single correlation, as shown 
by the lower SNR and the fewer threshold curve hits. 
In order to quantify these differences, we calculated the effective seizure free-time predicted 
by an hypothetical device recording from deep electrodes. The number of false warnings and 
their duration were also assessed. The first 100 models obtained using EMs predicted a 
considerable higher number of minutes of seizure-free time than models obtained with CMs 
(p<0.001). However, the greatest differences were found by comparing the best 10 models 
of 1000. PEC reached a top of 1069 minutes of true seizure-free time, which corresponded 
to the 96% of time in which the patient did not suffer a seizure or its consequences (we 
considered that each seizure lasted an average of 5 minutes, since 4 of them ended as 
secondary tonic-clonic and lasted longer than average focal cognitive seizures). Spectral 
coherence only reached 83%. The group of best PEC models was clearly different from the 
group of best coherence models (p<0.0001) since all PEC models overcame the limit of 
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1000 minutes, while no coherence model reached that limit. In term of false warnings, again 
PEC outshone coherence since EM risk curves predicted false events almost two times less 
frequently than CM models (p<0.0001). PEC and coherence models presented comparable 
average warning times of around 5 minutes. 
Finally, we extended this simulation to other four patients with different type of epilepsy and 
well defined SOZ. In order to avoid comparison biases, again three adjacent SOZ contacts 
of a single electrode were used to build 1000 models predicting all seizures, after training 
with a single, randomly selected, ictal event. The best model was selected. PEC allowed the 
prediction of a total of 27 events distributed in 7 and a half days (10807 minutes, 3,6 
seizures per day) in 5 different patients. ROC AUCs reached 98% (average 94%±5%). A 
total of 8515 minutes (5,9 days) were successfully predicted as seizure-free, corresponding 
to 80% of all recorded non-seizure time. A total of 244 warnings were issued, corresponding 
to 8 false warnings per seizure. The average warning time was of 14,3 minutes, ranging from 
1 to 168 minutes. Table 1 summarises results per patient. 
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Figure 5. Continuous risk assessment using SEEG signals. Top left. Epilepsy subject brain MRI, T1 
3D sequence. Red translucent circles identify the SOZ: three contacts recording from corpus 
ammonis (CA) 1, 3 and 4. Top right. Continuous SEEG signals 1 hour before and after the first 
seizure (sz). Middle left. �CM (top) and �EM (bottom) of the best 10 of 1000 models. Middle centre 
top. Seizure risk (up) and best single correlation (C1-C4, down) determined by spectral coherence. 
Middle centre bottom. Seizure risk (up) and best single correlation (C3-C4, down) determined by 
PEC. Middle right. Averaged best single correlation of all seizures using 2-hour windows (1 hour 
before and after the ictal event, marked as a dotted vertical line) using spectra coherence (top) and 
PEC (bottom). Bottom. Predicted true seizure free time using the first 100 and the best 10 models 
(left). False warnings (centre). Average warning time (left). 
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 Hippocampal Temporal Parietal Occipital Frontal 

Sex F F M M M 

Personal history Unremarkable Unremarkable Intellectual disability Head traumatism Unremarkable 

Duration of 

epilepsy in years 
23 10 38 5 37 

Seizure frequency 

(episodes per year) 
100 20 80 50 100 

 

Aura Epigastric aura and 
choking sensation 

Fear sensation 
and/or epigastric 
aura 

None Photopsia None 

 

 

 

 

Ictal signs and 

symptoms 

Loss of contact, 
oral and manual 
automatisms; in the 
past secondary 
tonic clonic 
evolution 

Loss of contact, 
grimace of terror 
and teeth grinding, 
then verbal assault 
and spitting, finally 
confusion; rare 
tonic-clonic 
evolution 

Behavioural arrest 
followed by loss of 
contact, oral and 
manual 
automatisms; half 
of the times tonic-
clonic evolution 

Aura followed by 
subjective vertigo; 
half of the times 
loss of contact and 
ictal speech; rare 
asymmetrical tonic-
clonic evolution 

Upward gaze 
deviation and 
inverted U grimace, 
elevation of both 
arms with slight left 
predominance, 
tonic clonic 
evolution 

 

MRI 
Hippocampal 
sclerosis 

Normal Normal 
Extensive R parietal 
and occipital gliosis 

Normal 

 

Interictal PET R temporal and 
frontal 
hypometabolism 

R temporal 
hypometabolism 

R frontal and 
temporal 
hypometabolism 

Extensive R 
parietal, occipital 
and temporal 
hypometabolism 

N/A 

 

SISCOM N/A 
R temporal 
hyperperfusion 

R posterior 
temporal 
hyperperfusion 

R occipital 
hyperperfusion 

R frontal pole 
hyperperfusion 

Electrodes (left) 15 (1) 5 (0) 11 (1) 10 (0) 9 (0) 

Surgery Outcome Engel 1A Engel IA Engel II Engel IA Engel ID 

Pathology HS FCD type IA FCD type IC Gliosis Gliosis 

      

Hours analysed 

(mins) 
19,2 (1152) 26,3 (1576) 48,1 (2887) 38,6 (2316) 47,9 (2876) 

Seizures (tonic-

clonic) 7 (4) 8 (4) 5 (4) 3 (0) 4 (4) 

Hours of seizure-

free time (mins) 18,4 (1103) 24,0 (1437) 29,4 (1765) 31,4 (1881) 38,8 (2329) 

False warnings 10 19 113 63 12 

Warning time in 

mins (min-max) 5,1 (1÷21) 5,1 (1÷19) 15,2 (1÷72) 8,7 (1÷31) 37,6 (1÷168) 

ROC AUC 98% 98% 84% 95% 96% 

Table 1. Clinical data and continuous seizure risk assessment. HS stands for hippocampal sclerosis, 
FCD for focal cortical dysplasia. 
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3.5 Continuous risk assessment with downsampling and far from the SOZ 

Extending 3.4, we selected a subject without a clear definition of the SOZ. The patient, 42 
years old, male, presented seizures with a parietal opercular semiology since he was 27. 
The MRI was normal, while the PET scan suggested a left insular hypometabolism. Despite 
the multimodal exploration and the placement of 16 electrodes (170 contacts) we could not 
record a clearcut SEEG pattern of a focal cortical dysplasia or any other lesion (Lagarde et 
al., 2016). After the study, surgery was discarded. For this reason we considered the patient 
as a potential candidate for a hypothetical device designed to send warnings about seizure 
risk, or a smart electrical stimulator switching on at risk peaks. After the suspension of the 
medication the patient presented six seizures, only one with tonic-clonic evolution. From 
recordings, we selected three consecutive days, during which the subject presented four 
seizure (the last tonic-clonic). We discarded other days because of other clinical tests that 
involved potentially biasing procedures like electrical stimulation or proximity to the surgical 
placement of electrodes and the waning of anesthesia. In the selected period the percentage 
of interictal time reached 99,5%, very close to what is considered the average amount of 
interictal time of subjects with drug-resistant epilepsy (Andrzejak et al., 2009). 
Using the three contacts where the most intense beta/alpha activity preceding a seizure was 
recorded, it was possible to predict all seizures and 72% of interictal time (86% ROC AUC) 
totalling 3102 minutes. There were 253 false warnings, the minimum warning time was 1 
minute, the maximum 130 minutes, the average 10 minutes and 29 seconds. By 
downsampling to 62 Hz and using the first two seconds of each minute, the prediction of 
interictal time fell to 68% (84% ROC AUC) totalling 2929 minutes. There were 341 false 
warnings, the minimum warning time was 1 minute, the maximum 130 minutes, the average 
9 minutes and 26 seconds. Interestingly, by downsampling to 62 Hz and using three 
hippocampal contacts, a region away from the suspected SOZ and unaffected by interictal 
activity, the interictal time prediction rose again to 72% (86% ROC AUC) totalling 3136 
minutes. There were 310 false warnings, the minimum warning time was 1 minute, the 
maximum 70 minutes, the average 5 minutes and 38 seconds. 

3.6 Sleep phase transition classification 

As a final extension, non-REM to REM phase transitions were classified using hippocampal 
and scalp EEG recordings. A night recording (8 hours and 55 minutes) from the same 
subject of 3.5 was used. In this patient hippocampal interictal activity was ruled out and the 
scalp EEG recordings were taken from the unaffected hemisphere. Non-REM to REM 
transitions were considered instead of interictal to preictal transitions, the same framework of 
3.4 and 3.5 was used. A model built with just six EMs (3 taken in non-REM phases and 3 
taken 1 to 3 minutes before a REM phase) processed from hippocampal recordings correctly 
classified 88% of the considered time (91% for REM, 86% for non-REM). Accuracy fell to 
81% using scalp EEG recordings (72% for REM, 90% for non-REM). Interestingly, in both 
cases -although more clearly with hippocampal recordings- curves not only distinguished 
REM from non-REM phases, but could actually anticipate the phase transition (Figure 6). 
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Figure 6. Sleep phase transitions anticipated by PEC. The sleep phases were staged in a 535 
minutes night recording in a patient implanted with deep electrodes and recorded both from deep and 
scalp contacts. The classification was done using PEC by considering the REM phases as seizures 
(periods longer than 5 minutes were divided in multiple, contiguous events), 1000 models were 
trained, no model was discarded. REM phases are marked by discontinued vertical lines and a red 
transparent overlay, while the blue transparent overlay marks wake periods.  Top. Scalp electrode 
classification: 72% of REM was correctly classified, ROC-AUC 81%. Bottom. Hippocampal 
classification: 91% of REM was correctly classified, ROC-AUC 88%. Note: electrode implants on the 
right hemisphere are depicted in blue, on the left in red. 

4. Discussion 

In this work we introduce a novel approach to measure network state transitions. The 
prediction error connectivity (PEC) infers dynamics changes from their predictability. Like 
other markovian methods modeling relations and dependence between channels (e.g. 
Wulsin et al., 2014), PEC as well predicts interactions between channels (EEG sources). 
Unlike other measures, PEC uses the prediction error to infer dynamics changes. Another 
point of novelty provided by our work is the implementation of such concept through a new 
algorithm, the Averaged Weighted Context (AWC), which we proved effective for data 
compression. Finally, a third important difference between PEC and other approaches, is the 
characterisation of dynamics states by just using the direction of the electric vector, thus 
requiring very low memory and processing times. 
 
To test PEC we first measured controlled transitions of signals produced by neural masses 
already described to effectively produce virtual iEEG signals. We generated virtual networks 
with stationary (S) and variant (V) signals. PEC distinguished whole virtual network and V 
subnetwork transitions better than spectral coherence, regardless of the type of transition. 
Interestingly, PEC not only showed to be more effective than coherence but also more 
robust, since measures obtained with whole virtual networks did not differ much from values 
obtained with V subnetworks when the transition occurred between similar dynamics. This 
finding suggests that the method specifically captures the transition and is only slightly 
modified by stationary dynamics. 
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The only exception were the transitions from normal to ictal states. Whole network 
differences in this case were more attenuated in comparison with V subnetwork changes, 
even more than in coherence dependent measures. This might be due to the ictal dynamics 
themselves, which are more regular and therefore represented, as shown in figure 3.A, by 
more stable subnetworks. Indeed in the EM30-60s displayed in the figure, the error values of V 
ictal signals are the network lowest. This is in line with the findings obtained with the seizure 
risk assessment. In that part of the work performed with real data, we verified that error rates 
drop during seizures, as shown by best single correlation plots (see Figure 5). The latter 
represented the most relevant interaction between hippocampal areas before and during 
seizures. To single out these interactions we compared the matrices used to successfully 
train a SVM classifier to assess the seizure risk, which implies a correct classification of 
transitions between interictal and preictal states. PEC demonstrated higher performance 
than spectral coherence in terms of true seizure free time and amount of false warnings. In 
other words, both methods allowed the generation of models that captured the interictal-
preictal state transitions, but PEC showed higher specificity than coherence. Interestingly, as 
shown by the best single correlation plots, PEC performed better detecting ictal events. 
Nonetheless, as expected, it showed the opposite trend than coherence on seizures. 
Unexpectedly, however, it allowed better SNR hence supporting a potential application in 
seizure detection. 
 
Apart from pathological state transitions, we also demonstrated that PEC can classify and 
even forecast REM sleep phases. This finding suggests that the algorithm usage might be 
extended to the analysis of neuropsychological data. The concept behind PEC does not 
either fit, nor is in contrast with any of the models conceived for explaining the mechanisms 
behind interareal information processing. First of all, the measure considers exclusively the 
temporal domain, therefore there are no constraints about selected frequencies, or any 
frequency at all, since the frequential information is translated into pattern matching. Indeed, 
the model conceives frequencies as patterns that repeat over time. When comparing to the 
hypothesis of communication through coherence, PEC certainly contemplates 
synchronization, but it actually checks about repetitive patterns formed by the interplay 
between two areas. Although synchronic, these patterns might not be either coherent (in 
terms of the physical measure) nor display the same or similar frequential composition. PEC 
just predicts patterns that are the result of the arrangement of two brain areas dynamics, 
blind to their covariance or phase lock. In other words, it does not matter how complex the 
pattern is or within which sequence it is repeated, when it is encountered twice or more 
times, the prediction is feasible. For this reason, the PEC approach might yield lower error 
values when two brain areas are phase locked transiently, covariate, or even when such 
alternate slow and high frequency activity. Therefore coupling this measure with other 
frequential methods might add depth to current connectivity analyses. Another potentially 
interesting feature of PEC for cognitive studies is its ability to produce asymmetrical 
connectivity matrices, as shown in figure 3, 4 and 5. This characteristic that implies 
directionality (the pair AB might be easier to predict that the pair BA) should be investigated 
further, compared with causal measures like Granger causality or regression analysis, and 
validated with cognitive studies that involve known and unknown causal relations between 
brain areas.  
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Considering seizure prediction applications, the method allowed us to continuously analyse 
10,5 days of iEEG and predict 31 seizures with average ROC AUC of 93%. Most relevantly, 
this corresponded to correct a prediction of 82% of all non-seizure time, which is used by 
patients for social and personal activities. In this introductory analysis we just discarded 
models that failed to predict all seizures, which would be impossible in a real scenario. 
Nonetheless, we demonstrated that it is possible to build 1000 different models per 42 hours 
of average recording time, which predict an average of 5 seizures using a single event for 
training. In future studies, using whole recording times (weeks of recording), we will calculate 
seizure and seizure free-time prediction rates using incremental datasets by simulating 
scenarios of data acquisition and new event prediction and detection. With the experiment 
described in 3.5, we hint at the possibility that even abridged and low sample recordings 
might allow a good classification of interictal time. This result, along with PEC low memory 
footprint and processing speed, suggests that the algorithm could be successfully 
implemented in a portable, low-power consumption device, and that further battery time 
could be saved by low sampling rates and sparse recordings. The hippocampal recordings, 
on the other hand, show that such hypothetical device might work even with implants placed 
far from the SOZ. 
 
Our study presents several limitations and its findings are still far from being used to produce 
real life applications or to be whatsoever generalised. First of all, the central idea about 
pattern analysis and brain dynamics should be experimentally confirmed, possibly with 
animal models, local field potentials and single neuron recordings. Moreover, in this setting 
we should also perform several other comparisons, especially with derivatives of spectral 
coherence and other synchronicity measures. 
From a neuroscientific point of view, despite the promising results obtained with REM sleep, 
PEC will need to be tested on other clinical and neurophysiological settings before being 
considered a useful tool. Further studies should compare it with other, more established 
analysis methods. In this study we only hint at the potential applications of the PEC 
approach. For instance, connectivity matrices considering interactions between three or 
more nodes are only briefly discussed in the methods of our manuscript (see the stream 
alteration test and the comparison between text and iEEG datasets), but not explored in 
detail. In cognitive studies, where processing time and memory are not crucial, the 
exploration of channel combinations might give insights about the ordered processing of 
brain areas and the causal relationship between them. Moreover, this introductory study only 
contemplates shape (the direction of the electrical vector) as input, discarding amplitude 
information. Further studies should take into account other binarization and discretization 
options, like wavelets. 
In the clinical domain, despite the good predictability shown for different types of epilepsy 
and across different brain regions, recordings from more patients will be needed to further 
confirm the potential of this tool. Although our study suggests that few adjacent contacts 
from a single electrode could be sufficient to build prediction models, the optimal number of 
contacts and their relation to the SOZ and/or epileptogenic zone remains to be fully 
assessed. Indeed, that fact that seizures could be anticipated by using recordings from a 
healthy brain region away from the SOZ suggests that seizures are a phenomenon triggered 
by the interaction between their generator and the rest of the network. Which are the main 
actors and whether all brain regions participate in this interaction are interesting questions 
still to be answered. From another point of view, it would be very interesting to know whether 
it is necessary to target the SOZ in order to forecast ictal events, since in many patients 
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surgery is discarded precisely because of the lack of definition of the SOZ. Indeed these 
would be the target patients of such alternative strategies. Finally, to consider real life 
applications, it will be necessary to robustly assess predictability with low sampling rates and 
sparse recording strategies, extending these tests to other patients and several hours/days 
of recordings.  
 
In conclusion, PEC is a novel variable-order Markov-chain approach that can be used in the 
study of epilepsy and likely any neuroscientific studies involving the analysis of EEG and 
iEEG. We demonstrate that PEC is superior to spectral coherence (and possibly other 
frequential measures) in assessing network dynamics transitions and we suggest that our 
method might be successfully implemented to power a device employed for seizure 
prediction. Although preliminary, these results are encouraging and might lead to the 
creation of new strategies and algorithms that might add up to existing ones already used in 
implantable (Cook et al., 2013) or upcoming devices. 
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