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Abstract 39 

 40 

Can we change our perception by controlling our brain activation? Awareness 41 

during binocular rivalry is shaped by the alternating perception of different 42 

stimuli presented separately to each monocular view. We tested the possibility 43 

of causally influencing the likelihood of a stimulus entering awareness. To do 44 

this, participants were trained with neurofeedback, using realtime functional 45 

magnetic resonance imaging (rt-fMRI), to differentially modulate activation in 46 

stimulus-selective visual cortex representing each of the monocular images. 47 

Neurofeedback training led to altered bistable perception associated with 48 

activity changes in the trained regions. The degree to which training 49 

influenced perception predicted changes in grey and white matter volumes of 50 

these regions. Short-term intensive neurofeedback training therefore sculpted 51 

the dynamics of visual awareness, with associated plasticity in the human 52 

brain.  53 

 54 

Word count 123 (150 max) 55 

 56 

 57 

  58 
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Highlights 59 
 60 

 Unconscious biasing of higher-order visual perception with realtime 61 

fMRI neurofeedback.  62 

 Participants unknowingly modulated two brain regions to control 63 

feedback signal 64 

 Short-term neurofeedback training over 3 days induced functional 65 

plasticity  66 

 Neurofeedback may strengthen neural representations and alter prior 67 

expectations 68 

 Potential avenue for behavioural shaping and therapeutic reduction of 69 

aberrant perception 70 

 71 

  72 
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Introduction 73 

 74 

The ability to causally modify how we perceive the world has potential 75 

implications in health and disease. Altering perceptual biases, which may be 76 

conscious or unconscious, could modify pathological perception such as 77 

hallucinations, or provide a means of selective cognitive 78 

enhancement(Miranda et al., 2015). Such attempts to deliberately manipulate 79 

higher-order sensory perception have, until now, proven to be unsuccessful. 80 

For example, attempting to alter perception using mental imagery, a cognitive 81 

process which utilises similar neural substrates to perception(O’Craven and 82 

Kanwisher, 2000), does not increase the vividness of the imagery. Most 83 

importantly, mental imagery training has no effect on perception linked to the 84 

imagery strategy used during training, as demonstrated with binocular rivalry 85 

(BR) between images specifically associated with the mental imagery 86 

training(Rademaker and Pearson, 2012). BR is a unique perceptual 87 

phenomenon that has been used to provide a window into the unconscious 88 

and conscious processes underlying visual perception. It is produced by 89 

simultaneously presenting conflicting monocular stimuli to each eye. 90 

Paradoxically, the brain cannot form a stable image. Instead, each image 91 

randomly competes for exclusive perceptual dominance. Until now, producing 92 

unconscious shifts in higher-order perception by directly modifying brain 93 

function has proven to be unsuccessful. 94 

 95 

Neurofeedback training using realtime functional magnetic resonance imaging 96 

(rt-fMRI) is an emerging technique which allows participants to control target 97 
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brain regions by voluntarily modulating online feedback of activity in those 98 

regions(Sitaram et al., 2016). Feedback is typically provided via a visual 99 

interface during concurrent MR scanning. Online modulation of the Blood 100 

Oxygen Level-Dependent (BOLD) signal using neurofeedback involves 101 

abstract cognitive strategies, as well as mental imagery that maybe explicitly 102 

linked to the brain region-of-interest (ROI). This approach can produce 103 

changes in behaviour through the functional modulation of trained brain 104 

regions, including low-order visual perception (e.g. grating orientation, colour) 105 

by modulating primary retinotopic cortex(Amano et al., 2016; Shibata et al., 106 

2011), pain and craving by modulating anterior cingulate cortex(deCharms et 107 

al., 2004; Li et al., 2013), and motor function by  modulating supplementary 108 

motor area and primary motor cortex(Blefari et al., 2015; Subramanian et al., 109 

2011). We hypothesised that rt-fMRI neurofeedback might prove more 110 

powerful than previous approaches, such as mental imagery alone, in 111 

enabling participants to modify brain activity associated with higher-order 112 

visual perception, and consequently directly influence how they perceive the 113 

world. 114 

 115 

To test this hypothesis, we trained human participants using mental imagery 116 

combined with neurofeedback to voluntarily control the difference in activation 117 

between two higher-order visual cortical regions (Fusiform Face Area, FFA 118 

and Parahippocampal Place area, PPA). The human FFA responds strongly 119 

to faces(Kanwisher et al., 1997; McCarthy et al., 1997), but not to other types 120 

of non-face stimuli, while the PPA responds to houses and places, but not 121 

faces(Epstein and Kanwisher, 1998). Further, both of these regions activate 122 
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during mental imagery of faces or places respectively, even in the absence of 123 

visual stimuli(O’Craven and Kanwisher, 2000).  The differential response 124 

properties of these two regions enabled participants in the study to have a 125 

visually presented neurofeedback training signal that represented the 126 

difference in activation between the two regions i.e. a differential signal. 127 

 128 

The use of a differential signal provided an internal control for global brain 129 

activation, and helped focus the training effect on the two selected brain 130 

regions in a manner that might not occur with mental imagery training only. 131 

We tested participants with a BR task, where they were exposed to rivalrous 132 

monocular face and house images, before and after neurofeedback training. 133 

During BR, participants are consciously aware of only one of the perceptual 134 

stimuli at a time, while the other stimulus is temporarily suppressed. The 135 

perceptual fluctuation is spontaneous and stochastic, with both top-down (i.e. 136 

cognitive modulation) and bottom-up (i.e. salience-based) processes being 137 

implicated(Dayan, 1998; Parker and Alais, 2007; Tong et al., 2006). In this 138 

study, the ensuing BR, where perception alternated spontaneously between 139 

each monocular view, provided a test of whether neurofeedback training had 140 

altered the likelihood of either stimuli entering awareness. We investigated 141 

whether any perceptual changes were associated with differences in brain 142 

activity and structure (see also Supplementary Materials). 143 

 144 

To anticipate our findings, following neurofeedback training, there was a 145 

sustained influence on the perceptual dynamics of BR, suggesting functional 146 

plasticity. This effect was additionally observed when participants performed 147 
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concurrent modulation of brain activity during BR. Further, a multivariate 148 

analysis of changes in brain structure produced by neurofeedback training 149 

predicted changes in BR dynamics. 150 

151 
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Methods 152 
 153 
 154 
Main experiment: 155 
 156 

Participants  157 

 158 

Ten neurologically normal adult volunteers (24–35 years of age; mean age 28 159 

years; 8 females) with normal or corrected-to-normal visual acuity participated 160 

in the experiment. Each participant gave written informed consent. The study 161 

was approved by the local ethics committee (UCL Ethics Committee code: 162 

09/H0716/14). 163 

 164 

Stimuli and Materials  165 

 166 

All visual stimuli were generated and displayed via scripts in MATLAB created 167 

with the Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent_2000.php), 168 

on a viewing screen with a visual angle of 23 degrees by 17 degrees, (30 x 26 169 

LCD projector (LT158; NEC). The mirror-mounted viewing screen was set on 170 

the top of the scanner bore (optical distance 52 cm). During the 171 

neurofeedback sessions, participants saw a fluctuating thermometer bar at 172 

the centre of the screen. During the BR sessions only, participants wore a pair 173 

of prism glasses. Additionally, a black cardboard divider was placed between 174 

the forehead and the screen to ensure that each eye could see one side of 175 

the screen only, and provide a stable base for fixation. Two identical box 176 

stimuli were displayed side-by-side on the monitor, each with a central white 177 

fixation cross (0.68 visual angle) and tile frame surround (11.78 visual angle), 178 
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upon a uniform grey background (background luminance ¼ 65 Cd/m2). 179 

Optimal perceptual fusion of the two box stimulus images was confirmed with 180 

the participant prior to commencing each BR session. Face or house stimuli 181 

were presented (20 exemplars each). Responses for durations were obtained 182 

via a pair of custom-built, MR-compatible, response boxes.  183 

 184 

FMRI Scanning  185 

 186 

Scanning was performed on a 3T Allegra head-only scanner (standard 187 

transmit-receive head coil). Functional data was acquired with a single-shot 188 

gradient echo planar imaging sequence (matrix size, 64x64; field of view, 189 

192x192mm; isotropic in-plane resolution, 3x3 mm; 32 slices with ascending 190 

acquisition; slice thickness, 2 mm; slice gap, 1 mm; echo time (TE), 30 ms; 191 

repetition time (TR), 1920 ms; flip angle, 90°; receiver bandwidth, 3551 192 

Hz/pixel). Although the nominal slice thickness was 2mm, the effective slice 193 

profile achieved in practice is typically larger such that the effective slice 194 

thickness is closer to 3mm.  Allowing a gap additionally minimised any risk of 195 

saturation effects upon excitation of the subsequent slice (again due to 196 

imperfect slice profiles).  This is particularly important in the case of ascending 197 

acquisition order, as used here.  Ascending acquisition order was chosen to 198 

minimise the impact of any participant motion, which again could lead to 199 

saturation effects if the motion resulted in any part of the previously excited 200 

slice being re-excited in a time shorter than the TR. 201 

 202 

Within each scanning session, double-echo fast, low-angle shot sequence 203 
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(FLASH) field maps (TE1, 10 ms; TE2, 12.46 ms; resolution, 3 x 3 x 2 mm; 204 

slice gap, 1 mm) were acquired and used to correct geometric distortions.  205 

 206 

High Resolution Structural Scans  207 

 208 

A whole brain high-resolution T1-weighted structural scan was performed 209 

before and after training. This was in addition to structural scans performed on 210 

each neurofeedback training day. The scan was a 3D-modified, driven 211 

equilibrium Fourier transform (MDEFT) scan (1mm isotropic resolution; matrix 212 

size, 256x240 mm; field of view, 256x240 mm; 176 sagittal partitions; TE, 2.4 213 

ms; TR, 7.92 ms; inversion time, 910 ms; flip angle, 15°; readout bandwidth, 214 

195 Hz/pixel; spin tagging in the neck with flip angle 160° to avoid flow 215 

artifacts for superposition of functional maps(Deichmann et al., 2004)). 216 

 217 

Realtime fMRI Set-up for Neurofeedback  218 

 219 

Turbo Brain Voyager(Goebel et al., 2006) was used, with custom realtime 220 

image export tools programmed in ICE VA25 (Siemens Healthcare)(Weiskopf 221 

et al., 2004), and custom MATLAB based scripts. Participants were shown 222 

visual representations of BOLD signal changes in brain regions previously 223 

identified with a functional localiser scan (i.e. target ROIs). Realtime data 224 

preprocessing encompassed 3D motion correction, smoothing, and 225 

incremental linear detrending of time series. The ROI time course(s) were 226 

extracted from the prescribed ROI masks, averaged and exported. Signal 227 

drift, spikes and high frequency noise were further removed in realtime from 228 
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the exported time courses with custom MATLAB scripts(Koush et al., 2012). 229 

The feedback signal (a ‘fluctuating’ thermometer bar) was displayed to the 230 

participants with a delay of 2 s from the acquisition of the image.  231 

 232 

Binocular Rivalry Set-up and Behavioural data acquisition 233 

 234 

Inside the scanner, participants, wearing custom-made prism glasses, were 235 

shown two stimuli equidistant from a central viewing screen divider. During 236 

the viewing blocks, a face stimulus and a house stimulus were presented in 237 

the left and right hemi-fields respectively. The stimuli were pseudorandomised 238 

with regards to which eye received the face or house stimuli. Each viewing 239 

block (40 s followed by rest 20 s) was performed with a new pair of stimuli 240 

from the pool of 20 stimuli. Six blocks were performed per session, for three 241 

sessions.   242 

 243 

During the BR sessions, participants pressed one of three buttons to record 244 

their percept of ‘face’, ‘house’ or ‘mixed’. The participants were instructed to 245 

switch as accurately and rapidly as possible between the three possible 246 

button presses linked to the three percepts. This was the only instruction 247 

given during pre-training BR and post-training BR, which were identical save 248 

for being performed either side of neurofeedback training. Additional 249 

instructions were given for two further post-training BR conditions (see below,  250 

 251 

Day 5: Post-training BR). 252 

 253 
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Cumulative dominance durations were calculated, which were equal to the 254 

total amount of time each monocular stimulus was perceived, and averaged 255 

across blocks. The three percepts were then pooled as follows: (1) strategy-256 

related percept e.g. face percept for the neurofeedback group advised to use 257 

face mental imagery (‘Face’ group) or house percept for the neurofeedback 258 

group advised to use house mental imagery (‘House’ group) (2) strategy-259 

unrelated percept’ e.g. house percept for the ‘Face’ group, face percept for 260 

the ‘House’ group); and (3) ‘mixed percept’. 261 

 262 

Experimental Outline  263 

 264 

The experiment was divided into multiple days, with each participant attending 265 

five consecutive scanning days (Figure 1). The participants were split into two 266 

groups, with five participants in the ‘face’ group and five participants in the 267 

‘house’ training group.  268 

 269 

Day 1: Pre-training BR and Localiser  270 

A Pre-training BR scan was performed as described above for all 271 

participants. They then underwent a functional localiser scan to identify FFA 272 

and PPA regions (12 minutes, 16 blocks of face stimuli, 16 blocks of house 273 

stimuli, and 20 different exemplars per block). Each stimulus was presented 274 

for 600 ms (400 ms interstimulus interval). A one-back task was performed (3 275 

targets per block), requiring a button press upon detection of the same 276 

stimulus. Two contrasts were used; Houses vs. Faces and Faces vs. Houses. 277 

Using the Juelich histological atlas to provide an anatomical 278 
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landmarks(Eickhoff et al., 2006, 2005), voxel selection for the ROIs were 279 

defined along the ventral and lateral surfaces of the temporal lobe in proximity 280 

to the fusiform gyrus for FFA, and lateral to the collateral sulcus in the 281 

parahippocampal region for PPA respectively. 282 

 283 

Day 2-4: Neurofeedback Sessions  284 

Each neurofeedback training day comprised three scanning sessions, each 285 

six blocks of 60 s with an ‘upregulate’ period (40 s) followed by ‘rest’ (20 s). 286 

During an upregulation period, participants viewed a fluctuating red bar and a 287 

fixed horizontal black bar. The latter was placed towards the top of the screen, 288 

and the participants were asked to push the red bar above it. Participants 289 

were told that the fluctuating red bar was linked to their brain activity, and that 290 

they should drive the red bar up to the level of the black bar using a mental 291 

imagery strategy. They were advised to maintain the red bar at that level, for 292 

as long as possible, during the ‘upregulate’ period. Participants were told that 293 

there was a delay related to the training signal (produced by the 294 

hemodynamic response function, HRF) of approximately 6-8 s. During rest, 295 

participants were instructed to perform a mental arithmetic task (serial 296 

subtraction of 7 from 100).  297 

 298 

Controlling the Neurofeedback Training Signal  299 

 300 

Participants were pseudorandomised into two groups – a ‘Face’ group and a 301 

‘House’ group. Each group was instructed to use mental imagery strategies. 302 

They were given examples of what might work (Figure 1), although the 303 
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participants could use their own interpretation. Specific examples for the 304 

house group were ‘think about your house, or a building you are familiar with 305 

such as a school or church’, or ‘think about walking down the road looking at 306 

buildings’. Specific examples for the face group were ‘think of faces of people 307 

you know’, ‘think of celebrity faces’, or ‘think of memorable faces you have 308 

seen recently’. Both groups were instructed to pay close attention to the 309 

fluctuating red bar, and to find the best way of pushing the bar up for as much 310 

and as long as possible. Both groups were instructed to use whatever 311 

strategy worked best, including their own, and to vary the strategy to ensure 312 

continuous control of the fluctuating red bar. 313 

 314 

Each group was unaware of the precise nature of their feedback signal. 315 

During neurofeedback training, the fluctuating red bar was driven by brain 316 

activity in which the signal from PPA was subtracted from FFA for the ‘Face’ 317 

group, and the reverse subtraction (PPA – FFA) for the ‘House’ group. 318 

Participants were trained to modulate a differential training signal.  Therefore, 319 

the ‘Face group’ learned to voluntarily increase the difference in BOLD 320 

between FFA and PPA. In contrast, the ‘House group’ learned to voluntarily 321 

increase the difference in BOLD between PPA and FFA. 322 

 323 

For each group there was a strategy-related ROI (e.g. FFA for the Face group 324 

and a strategy-unrelated ROI (e.g. PPA for the Face group, and vice versa for 325 

the House group, Figure 2A). 326 

 327 

Day 5: Transfer Session  328 
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After the final neurofeedback training session, there were two transfer 329 

sessions, each comprising six blocks. Each block lasted 60 s and consisted of 330 

an ‘upregulate’ period (40 s) followed by ‘rest’ (20 s). During upregulation, 331 

participants were required to drive their brain activity ‘up’, using the mental 332 

imagery strategies successfully used to drive the bar during neurofeedback 333 

training, but now in the absence of a feedback signal. 334 

 335 

Day 5: Post-training BR  336 

All participants then performed post-training BR, with the same set-up 337 

described for pre-training BR. Three different BR conditions were performed 338 

(2 sessions each) pseudorandomised and counterbalanced across all 339 

participants: (1) Post-training BR. The instruction was identical to the pre-340 

training BR; (2) Post-training BR with ‘concurrent trained upregulation’. 341 

Both groups were instructed to use their trained mental imagery strategies 342 

that had worked best during the training sessions while simultaneously 343 

performing BR; and (3) Post-training BR with ‘concurrent non-trained 344 

mental imagery’.  Participants were instructed to use mental imagery related 345 

to either houses if in the ‘Face group’, or faces if in the ‘House group’. Mental 346 

imagery was to be performed while concurrently performing BR. 347 

 348 

Brain Imaging  349 
 350 

Functional data was analysed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). 351 

To allow for T1 equilibration the first five images of each session were 352 

discarded. Preprocessing involved bias correction, realignment of each EPI to 353 

the mean EPI, unwarping, and co-registration of the functional data to the 354 

http://www.fil.ion.ucl.ac.uk/spm
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structural image. Normalisation was not performed, as initial analyses were 355 

performed in native space. Data was smoothed with a 6 mm FWHM Gaussian 356 

kernel and high-pass filtered (128s cut-off) to remove low-frequency noise, 357 

while at the same time preserving as many of the spontaneous fMRI 358 

fluctuations as possible(Cordes et al., 2001). Session-specific grand mean 359 

scaling was applied with no global normalisation.  360 

 361 

Offline ROI Analysis: Fusiform Face Area and Parahippocampal Place 362 

Area 363 

 364 

Neurofeedback  365 

BOLD signals across the 9 training sessions (acquired on Days 2-4) were 366 

modeled using a GLM, with regressors for each of the 9 sessions. Boxcar 367 

functions were created for the six upregulation blocks, convolved with the 368 

canonical HRF. Six regressors for movement and a global constant were 369 

included. Beta values from the GLM were averaged across all the voxels in 370 

the ROI masks (FFA and PPA ROIs based on the functional localiser). Mean 371 

percentage signal change (PSC) was then calculated. For each participant, 372 

the differential mean PSC between the two ROIs (i.e. strategy-related ROI 373 

minus strategy-unrelated ROI) was calculated across sessions. From this, the 374 

average mean PSC across participants over the training was calculated.  375 

 376 

Transfer Sessions 377 

Two transfer sessions were performed, with participants performing six blocks 378 

of upregulation of brain activity as trained, but now in the absence of a 379 
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neurofeedback signal. In a similar manner to the neurofeedback sessions 380 

(see above), the differential mean PSC between the two ROIs (i.e. strategy-381 

related ROI minus strategy-unrelated ROI) was calculated across sessions, 382 

and from this, the average mean PSC across participants over transfer was 383 

calculated. 384 

 385 

Binocular Rivalry  386 

Boxcar functions were created to model the onset of the BR block, convolved 387 

with the canonical HRF, for each BR condition. A GLM was performed at the 388 

single participant level. Beta values for each of the trained ROIs were 389 

averaged for each condition and adjusted for the global brain signal. Mean 390 

percentage signal change (PSC) was then calculated. 391 

 392 

For inferential statistical analyses, SPSS 21 (IBM Corp. Armonk, USA) was 393 

used to perform ANOVAs and follow-up planned paired sample t-tests, which 394 

were two-tailed unless otherwise stated.  395 

 396 

Control Experiment- Mental Imagery: 397 
 398 
 399 
Experimental outline 400 
 401 

Ten different participants (age range = 22-39 years, mean age 30. years, 8 402 

females) were recruited for a control BR experiment. They viewed a Dell LCD 403 

monitor (width: 43.5 cm; resolution: 1600 900; refresh rate: 60 Hz) from a 404 

distance of 43 cm (fixed using a chin rest) through a mirror stereoscope. The 405 

stereoscope reflected the left and right sides of the screen into the 406 
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participants’ left and right eyes, so that each eye was presented with only one 407 

of the two images (house or face). In order to ensure robust fusion of 408 

binocular images, prior to the start of BR task, fusion was achieved for each 409 

participant by slowly moving two grey squares from the edge toward the 410 

centre of the screen. At the beginning of this process the participants would 411 

see two squares. By the end of this process the participants would report 412 

when they were seeing one square. All testing took place in a darkened room.  413 

During the viewing blocks, a face stimulus and a house stimulus were 414 

presented in the left and right hemi-fields respectively. The stimuli were 415 

pseudorandomised with regards to which eye received the face or house 416 

stimuli. Each viewing block (40 s followed by rest 20 s) was performed with a 417 

new pair of stimuli from the pool of twenty stimuli. Six blocks were performed 418 

per session, for three sessions. Participants were instructed to indicate a 419 

perceptual shift only if the whole exemplar was perceived; any combination or 420 

‘patchwork’ percept regardless of the predominance of the exemplar category 421 

was reported as a ‘mixed’ percept. The participants were instructed to switch 422 

as accurately and rapidly as possible between three possible button presses 423 

linked to the three perceptual states (face percept, house percept, mixed 424 

percept). This resulted in measures of the cumulative duration of the percept 425 

throughout the BR measurement period. 426 

 427 

BR was performed in this manner prior to and after 3 days of consecutive 428 

mental imagery training (see below).  429 

 430 

Mental Imagery Training over 3 Days 431 
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 432 

Participants returned to perform mental imagery training. Participants were 433 

pseudorandomised into two equal groups, and were explicitly advised to use 434 

mental imagery strategies that involved faces (‘Face group’) or house/places 435 

(‘House group’). Mental imagery was undertaken while viewing a LCD monitor 436 

screen with a fixed horizontal black bar. They were told to imagine pushing a 437 

bar above the fixed black bar, while performing their mental imagery 438 

strategies. Each mental imagery training session comprised three sessions, 439 

each including six blocks of 60 s with a ‘perform mental imagery’ period (40 s) 440 

followed by ‘rest’ (20 s). 441 

 442 

Brain Structural Analysis  443 

 444 

The structural analysis was performed using Tensor Based Morphometry 445 

(TBM), an emerging computational analysis technique(Ceccarelli et al., 2009; 446 

Farbota et al., 2012; Li et al., 2009; Wang et al., 2013; Welch et al., 2013), 447 

which is better suited to studies with smaller participant samples. TBM 448 

enables longitudinal quantitative assessment by identifying regional structural 449 

differences from the gradients of the deformation fields that nonlinearly warp 450 

each individual image to the template.  451 

 452 

For each participant, high-resolution T1 structural images were reoriented 453 

placing the anterior commissure at the MNI origin. Longitudinal nonlinear 454 

registration(Ashburner and Ridgway, 2012) was performed to align the two 455 

time-points (before and after training) to their within-subject average, 456 
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characterising the relative volumetric expansion or contraction (as the 457 

divergence of a velocity field) of each voxel in each time-point with respect to 458 

the average. The within-subject average images were then segmented to 459 

produce grey and white matter segmentations for each participant(Ashburner 460 

and Friston, 2005). These segmentations were nonlinearly aligned to their 461 

group-wise average using Dartel (Ashburner, 2007), and the final Dartel 462 

average template was affinely registered to MNI space. The resultant 463 

between-subject transformations were then used to spatially normalise the 464 

divergence maps of the velocity fields, which were finally smoothed with a 465 

6mm FWHM Gaussian kernel. 466 

 467 

Divergence measures for each participant were then extracted within 468 

spherical ROIs for FFA and PPA (6 mm). The spheres were centered on 469 

coordinates that demonstrated the highest functional activity within the 470 

localiser ROIs across training. A t-test was then performed to establish if a 471 

specific brain region had changed significantly before versus after training. 472 

 473 

Canonical Variate Analysis 474 

 475 

We used a Canonical Variate Analysis (CVA) to demonstrate that measures 476 

of change in brain activation and brain structure following neurofeedback 477 

training predicted changes in behavioural measures. Also known as a 478 

multivariate analysis of variance, or ManCova (Friston et al., 2014, 1995), 479 

CVA enables statistical inferences to be made about associations between 480 

the imaging data, and behavioural data that are distributed over variables. It 481 
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was chosen for analysis of this dataset because it can accommodate 482 

statistical dependencies between multivariate predictor variables (behavioural 483 

changes) and multivariate outcome variables (functional or structural 484 

measures). Neither the behavioural nor imaging data had to be examined in 485 

isolation, which had the advantage that distributed changes could be 486 

identified, while minimising the multiple comparisons problem. The 487 

behavioural changes for each participant was the change in dominance 488 

duration of each the three percepts (e.g. strategy-related percept, strategy-489 

unrelated percept, mixed percept) between the pre-training BR condition and 490 

post-training BR (Figure S3), and between the pre-training BR condition and 491 

post-training BR with concurrent trained up-regulation (Figure S3). As the 492 

behavioural and structural measures were taken prior to and immediately after 493 

neurofeedback training, the functional measures for each participant were the 494 

change in the different signal between the first and the last training run (e.g. 495 

run 1 and run 9). The structural measures for each participant were the 496 

divergence measures for each ROI, FFA and PPA (6 mm).  497 

 498 

The objective of the CVA was to find the linear combination of outcome 499 

variables that was best predicted by a linear mixture (contrast) of structural or 500 

functional components. The weights of these linear combinations are called 501 

canonical vectors. The canonical variates of the outcome and predictor 502 

variables are the expression of each canonical vector in each subject. Other 503 

quantities generated by the CVA include Bartlett’s approximate chi-squared 504 

statistic for Wilks’ Lambda and its associated significance, or p-value, which 505 

test for the significance of a linear mapping or correlation between the 506 
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canonical variates (in other words, if one or more pairs of canonical variates 507 

show a significant statistical dependency). 508 

 509 

 510 

 511 

  512 
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Results 513 
 514 

We first examined the effect of neurofeedback training on behaviour using 515 

three comparisons. We compared perceptual dynamics, specifically 516 

cumulative dominance durations, performed during BR before and after 517 

training. We then examined the effects of learned upregulation on BR by 518 

comparing pre-training BR versus post-training BR with concurrent ‘learned’ 519 

upregulation of brain activity. For the final comparison, we examined the non-520 

trained mental imagery on BR, by comparing perceptual dynamics during pre-521 

training BR versus post-training BR with concurrent non-trained mental 522 

imagery. The effects of trained mental imagery were additionally examined 523 

separately – see Mental Imagery Control Experiment and Figure S1 524 

(Supplementary Materials). 525 

 526 

As the durations of the three percepts were dependent on each other, a 527 

change in one percept occurred linked to changes in one or both of the other 528 

percepts.  529 

 530 

Within Condition Comparisons: 531 

Comparison 1. Pre-training BR vs. Post-training BR 532 

Comparing behavioural measures of pre-training BR and post-training BR 533 

indicated an effect of training (Figure 3). Paired t-tests revealed a significant 534 

reduction in the cumulative dominance durations (i.e. how long a percept type 535 

was perceived) for the strategy-unrelated percept (t(9)=2.88,p=0.02), and a 536 

significant increase in mixed percept durations (t(9)=2.74,p=0.02), with no 537 
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significant change in the dominance duration of the strategy-related percept 538 

(t(9)=0.46,p=0.66).  539 

 540 

Comparison 2. Pre-training BR vs. Post-training BR with Concurrent 541 

Trained Upregulation 542 

Paired t-tests revealed a significant reduction in the duration of the strategy-543 

unrelated percept (t(9)=4.76,p=0.001), and a significant increase in the 544 

duration of the mixed percept (t(9)=2.68,p=0.03). There was no significant 545 

change in the dominance duration of the strategy-related percept 546 

(t(9)=0.53,p=0.61) (Figure 3). The changes in BR dynamics were similar to 547 

those observed with pre-training BR vs. post-training BR (Comparison 1). 548 

 549 

Comparison 3. Pre-training BR vs. Post-training BR with concurrent 550 

Non-trained Mental Imagery 551 

Paired t-tests indicated a significant reduction in the duration of the strategy-552 

related percept (t(9)=2.41, p=0.04), and a significant increase in the duration 553 

of the mixed percept (t(9)=2.68, p=0.03). There was no significant change in 554 

the dominance duration of the strategy-unrelated percept (t(9)=0.12, p=1.74). 555 

 556 

We further examined differences between conditions.  557 

 558 

Between Condition Comparisons: 559 

 560 

1. Post-training BR vs. Post-training BR with Concurrent Trained 561 

Upregulation (Comparison 1 vs. Comparison 2) 562 
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There was a significantly greater reduction in the dominance duration of the 563 

strategy-unrelated percept (t(9)=2.40, p=0.04) in Comparison 2 as compared 564 

with Comparison 1 (Figure 3B). There were no other significant differences 565 

between the two comparisons (strategy-related percept: t(9)=0.95, p=0.37; 566 

mixed percept: t(9)=0.90, p=0.39). 567 

 568 

2. Post-training BR vs. Post-training BR with Non-trained Mental Imagery 569 

(Comparison 1 vs. Comparison 3) 570 

There was a significantly greater reduction in the dominance duration of the 571 

strategy-related percept (t(9)=3.12, p=0.01) (Figure 3B). There was also a 572 

significantly greater increase in the dominance duration of the mixed percept 573 

(t(9)=2.62, p=0.03). There were no significant changes in the strategy-574 

unrelated percept (t(9)=0.09, p=0.93)  575 

 576 

3. Post-training BR with Concurrent Trained Upregulation vs. Post-577 

training BR with Non-trained Mental Imagery (Comparison 2 vs. 578 

Comparison 3) 579 

There was a trend towards reduction in the dominance duration of the 580 

strategy-related percept (t(9)=2.23, p=0.05) in Comparison 3 as compared 581 

with Comparison 2 (Figure 3B). The other two comparisons were not 582 

significant (strategy-related percept: t(9)=0.95, p=0.37; mixed percept: 583 

t(9)=1.1, p=0.30). 584 

 585 

Functional Changes during Neurofeedback Training 586 
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To test if neurofeedback training resulted in progressive learning, we 587 

examined whether participants demonstrated increased control of the 588 

differential feedback signal over the three training days (Figure 2B). A 589 

repeated-measures ANOVA with a factor of training day (3 levels; Days 1-3) 590 

demonstrated a significant effect (F(2,16)= 3.74, p= 0.047). Post-hoc t-tests 591 

demonstrated a significant increase in the differential signal from Day 2 592 

onwards, suggesting a learning effect (Day 1: t(9)=0.88, p= 0.40; Day 2: 593 

t(9)=3.27 p=0.001; Day 3: t(8)=2.75, p=0.02).  594 

 595 

Functional Changes during Transfer 596 

Following neurofeedback training and prior to BR, voluntary control of brain 597 

activation in the absence of neurofeedback was confirmed in a ‘transfer 598 

session’. Differential BOLD activation (strategy-related ROI minus strategy-599 

unrelated ROI) pooled across the two transfer sessions, revealed a significant 600 

effect (t(9)=2.38, p= 0.04). 601 

 602 

Functional Changes during Binocular Rivalry  603 

We examined task-related BOLD signals in the trained ROIs (FFA and PPA) 604 

comparing pre-training BR with post-training BR. We observed significant 605 

reductions in BOLD signals in both the strategy-related ROI (t(9)= 3.43, p= 606 

0.007) and strategy-unrelated ROI (t(9)= 2.26, p=0.04), when comparing pre-607 

training BR with post-training BR.  608 

 609 

Comparing pre-training BR versus post-training BR with concurrent trained 610 

upregulation, there was a significant reduction in the activation level of the 611 
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strategy-unrelated ROI (t(9)= 2.48, p= 0.03). No significant change was noted 612 

for the strategy-related ROI (t(9)= 1.41, p=0.19). We performed one-tailed t-613 

tests as we had an a priori hypothesis that following neurofeedback training, 614 

participants should be able to increase the difference in BOLD activation 615 

between the two trained ROIs (Figure 4). 616 

 617 

There were no significant changes for pre-training BR versus post-training BR 618 

with concurrent non-trained mental imagery (strategy related ROI: t(9)= 0.82, 619 

p= 0.44; strategy unrelated ROI: t(9)= 0.83, p= 0.43). 620 

 621 

Mental Imagery Control Experiment  622 

 623 

There was no evidence of significant changes in the cumulative dominance 624 

durations of any of the three percepts (strategy-related percept t(9)= 0.74, p= 625 

0.48; strategy-unrelated percept, t(9)= 1.00, p= 0.34; mixed percept, t(9)= 626 

2.00, p= 0.07). 627 

 628 

Between Group Comparisons with ‘Mental Imagery’ Control Group 629 

We performed an ANOVA with a within-subjects factor of percepts (strategy-630 

related percept, strategy-unrelated percept, mixed percept)) and a between-631 

subjects factor of group (Group 1: neurofeedback, Group 2: mental imagery). 632 

There was a main effect of percept (F(2,36)= 4.64, p= 0.02). There was no 633 

interaction (F(2,36)= 2.65, p= 0.08) between these two factors. 634 

 635 
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We performed a second ANOVA with a within-subjects factor of percepts 636 

(strategy-related percept, strategy-unrelated percept, mixed percept)) and a 637 

between-subjects factor of group (Group 1: neurofeedback with concurrent-638 

upregulation, Group 2: mental imagery). There was a main effect of percept 639 

(F(2,36)=6.68, p=0.003), and an interaction between percept and group 640 

(F(2,36)= 5.29, p= 0.01). Follow-up two-sample t-tests looking at changes in 641 

durations of the similar percepts showed a significant difference for the 642 

strategy-unrelated percept (t(9)= 2.35, p= 0.04), but not for strategy-related 643 

percept (t(9)= 1.04, p= 0.32) or the mixed percept, (t(9)= 2.00, p= 0.08). 644 

 645 

We performed a further ANOVA with a within-subjects factor of percepts 646 

(strategy-related percept, strategy-unrelated percept, mixed percept)) and a 647 

between-subjects factor of group (Group 1: neurofeedback with concurrent 648 

non-trained mental imagery, Group 2: mental imagery). There was a main 649 

effect of percept (F(2,36)= 6.70, p= 0.003), and an interaction between 650 

percept and group (F(2,36)= 3.63, p= 0.04). Follow-up two-sample t-tests 651 

looking at changes in durations of the similar percepts showed a significant 652 

difference for the mixed percept (t(9)= 2.79, p= 0.02, but not for strategy-653 

related percept (t(9)= 1.00, p= 0.86) or the strategy-unrelated percept, (t(9)= 654 

0.29, p= 1.14). 655 

 656 

 657 
  658 
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Results - Structural 659 

 660 

The results of the longitudinal non-rigid registration were used to determine 661 

volume changes in the ROIs by calculating the divergence of the velocity 662 

fields. One-sampled t-tests of these values were used to calculate if any 663 

significant structural changes had taken place as a result of neurofeedback 664 

training. They were not significant for both ROIs i.e. FFA (t(9)= 0.36, p> 0.05),  665 

and PPA (t(9)= 0.46, p>0.05),  666 

 667 

Results – Canonical Variate analysis 668 

 669 

Plots for comparisons of combined measures in: (1) behaviour (dominance 670 

durations for the three perceptual reports) and functional (BOLD changes 671 

across training in FFA, PPA); and (2) behaviour and structural measures 672 

(measure of the volume changes in FFA and PPA following training) are 673 

presented in Figure S4, together with Bartlett’s approximate chi-squared 674 

statistic for Wilks’ Lambda and its p-value, for each comparison. 675 

 676 

The participant neurofeedback training measures (i.e. differential BOLD brain 677 

activation) had a trend to being correlated with changes in BR behavioural 678 

dynamics as recorded during BR with concurrent trained upregulation of brain 679 

activation (compared with pre-training BR) (chi-squared value = 12.35, p = 680 

0.05). Comparison of changes in the neurofeedback training measures with 681 

behavioural changes during ‘simple BR’ before and after training was non-682 

significant (chi-square value = 11.43, p= 0.07). Significant correlations were 683 
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noted between structural changes in both ROIs and the change in BR 684 

dynamics produced during concurrent trained upregulation of brain activation 685 

(chi-squared value = 19.64, p= 0.03). Comparison of structural measures with 686 

behavioural measures during ‘simple BR’ before and after training was non-687 

significant (chi-square value = 13.77, p= 0.09). 688 

 689 

Of note, the mapping weights obtained for the behavioural measures and the 690 

training-related BOLD measures were independent of the mapping weights 691 

obtained for the behavioural measures and the structural measures. This is 692 

because these multivariate mapping values were specific to the measures 693 

used in the comparisons. Finally, the interpretation of the mapping weights in 694 

relation to having a positive or negative value did not indicate a positive or 695 

negative change in the values (e.g. an increase or decrease in structural 696 

measures). Rather they represent a positive (or negative) contribution to the 697 

mapping between the multivariate predictor variable and the outcome 698 

variables. 699 

  700 
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Discussion 701 
 702 
 703 

Participants learned to differentially regulate the amplitude of BOLD activation 704 

in two higher-order visual brain regions, FFA and PPA. This was achieved in 705 

realtime, through volitional control using neurofeedback training with rt-fMRI. 706 

The use of a ‘differential’ training signal was implemented by showing the 707 

participants a ‘thermometer bar’ whose size represented the difference in the 708 

mean BOLD signal between the two selected brain regions. By doing this, one 709 

of the brain regions acted as an internal control for the other, accounting for 710 

potential confounds produced by global changes in brain activation in 711 

response to effects such as arousal. Furthermore, specific behavioural effects 712 

linked with the direction of change of the differential training signal were 713 

obtained, providing a comparison of behavioural metrics for the training 714 

effect(Thibault et al., 2018). The effect on visual perception was examined 715 

with an independent BR task that employed stimuli specifically engaging 716 

these stimulus-selective brain regions (face stimuli for FFA, house stimuli for 717 

PPA). During BR, moment-to-moment stochastic alternations between two 718 

competing visual percepts are observed, while concurrent brain activity can 719 

be recorded and potentially manipulated(Blake et al., 2014; Blake and 720 

Logothetis, 2002). 721 

 722 

In this study, a change in BR perceptual dynamics was observed following 723 

neurofeedback training. Perception of the stimulus linked to neurofeedback 724 

training was rendered more stable e.g. strategy-related percept, with a 725 

reduction in the perception of the other stimulus e.g. strategy-unrelated 726 
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percept. This behavioural change occurred when comparing pre-training BR 727 

with post-training BR, and additionally when participants performed post-728 

training BR while concurrently performing learned ‘upregulation’ of brain 729 

activity. We compared pre-training ‘BR’ with three post-training BR conditions: 730 

‘post-training BR’, ‘post-training BR with concurrent trained upregulation’, and 731 

‘post-training BR with concurrent non-trained mental imagery’. The first 732 

comparison, examining changes during BR before and after neurofeedback 733 

training, showed altered BR dynamics; specifically a reduction in the 734 

cumulative dominance duration of the strategy-unrelated percept. These 735 

findings are important, as they show that neurofeedback training produced a 736 

behavioural effect that was: (1) counter-intuitive in that percept durations were 737 

not increased in line with the verbally instructed neurofeedback training 738 

strategy, which was initially expected. Rather, percept durations not linked to 739 

the neurofeedback training strategy (e.g. strategy-unrelated percept) were 740 

reduced; (2) aligned with a longstanding finding in the field, namely Levelt’s 741 

second proposition (discussed below); and (3) indicative of a lack of demand 742 

characteristics (see also Mental Imagery Control Experiment). 743 

 744 

There was a significant reduction in the levels of activation in both ROIs, 745 

comparing pre-training BR versus post-training BR. This linked neuroimaging 746 

finding was unexpected, as the prediction from existing literature(Tong et al., 747 

1998) is that BOLD activation levels in extrastriate visual areas will reflect 748 

dominance durations. The expected finding might have been that activation 749 

levels would be lower in the strategy-unrelated ROI. Our findings instead 750 

showed that both regions were affected by neurofeedback training, as we 751 
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expected given that participants trained on a differential signal involving both 752 

ROIs. Both ROIs demonstrated a reduction in activation, which may reflect an 753 

increase in neural efficiency as a result of more precise tuning of neural 754 

representations(Gimenez et al., 2014; Haler et al., 1992; Heinzel et al., 2014; 755 

Vartanian et al., 2013). The exact mechanisms underlying this gain are 756 

unknown, particularly in the context of neurofeedback training and thus 757 

warrants further study(Poldrack, 2015).  758 

 759 

The purpose of the second comparison (‘pre-training BR’ versus ‘post-training 760 

BR with concurrent upregulation’) was to examine if there was an effect of 761 

concurrent trained modulation of brain activation on BR dynamics that was 762 

additive or different to the effect of neurofeedback training alone. We 763 

observed a change in BR dynamics that was similar and greater to that 764 

observed for pre-training BR vs. post-training BR, in that there was more of a 765 

reduction in the mean dominance duration of the strategy-unrelated percept. 766 

This confirmed that the effect of trained upregulation was directly aligned with 767 

the effect of neurofeedback training on BR dynamics. There was a decrease 768 

in the level of BOLD activation in the strategy-unrelated ROI only, with no 769 

significant change in the strategy-related ROI. Interestingly, these BOLD 770 

activation changes were the same as those observed during neurofeedback 771 

training (a reduction in activation levels of the strategy-unrelated ROI, Figure 772 

2B). This provides further evidence for a similar mechanism underlying the 773 

changes in BR dynamics following training and for those observed with 774 

concurrent trained upregulation. The counter-intuitive effect of training and up-775 

regulation (during BR) on the brain activations in the two ROIs (i.e. opposite to 776 
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an a priori instruction and predicted direction of activation changes) is 777 

intriguing and worthy of further investigation(Abel et al., 2015; Bueichekú et 778 

al., 2016). 779 

The third comparison (‘pre-training BR’ versus ‘post-training BR with non-780 

trained mental imagery’) served to assess the impact of using a differential 781 

training signal, which was hypothesised to have an effect on both ROIs in all 782 

participants. It additionally helped reveal the role of non-trained mental 783 

imagery in the context of prior neurofeedback training. No significant change 784 

in brain activation in either ROI was observed. However, BR dynamics 785 

changed in a similar manner to the other two post-neurofeedback training BR 786 

conditions, with a significant reduction in the duration of the percept not linked 787 

to the training strategy used during training. This reduction was significant 788 

when comparing changes in perceptual dynamics across conditions. These 789 

behavioural findings would therefore suggest that neurofeedback training, 790 

despite the lack of a statistically significant BOLD effect, produced a more 791 

general effect on the neurobiology of the two trained ROIs. The exact nature 792 

of this effect may be complex, given that behavioural changes observed for 793 

this condition were opposite to the direction of neurofeedback training, but 794 

nonetheless sufficient to produce an effect e.g. ‘House’ group participants 795 

specifically underwent neurofeedback training with ‘House-based’ mental 796 

imagery strategies, and yet they generated changes in BR dynamics simply 797 

by using non-trained ‘face’ based mental imagery strategies during the 798 

performance of BR. These behavioural findings are different from Rademaker 799 

and Pearson’s work, in which using mental imagery training did not produce 800 

training-related changes in BR dominance duration. Five successive days of 801 
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mental imagery training had no effect on BR, with no benefit being conferred 802 

by expending increased effort during mental imagery generation(Rademaker 803 

and Pearson, 2012). On the other hand, Rademaker and Pearson’s findings 804 

are in keeping with our own mental imagery control experiment, indicating the 805 

relevance of neurofeedback training. We conducted a behavioural control 806 

experiment in which a different group of participants performed BR before and 807 

after three consecutive days of mental imagery training, which was analogous 808 

to the neurofeedback training. The training was again explicitly linked to one 809 

of the two stimuli used in BR (face mental imagery for a ‘Face group’, house 810 

mental imagery for a ‘House group’). However there was no targeted training 811 

strategy for the brain, unlike with the neurofeedback-trained groups. No 812 

significant changes in dominance durations of any of the three percepts were 813 

observed.  814 

 815 

Taken together, these results indicate that short-term intensive training over 3 816 

days on a neurofeedback BOLD signal produced by two brain regions, 817 

engages and alters the function and biology of both regions. This is 818 

specifically supported by the shift in perceptual dynamics during BR following 819 

neurofeedback training, and the activation changes observed in both ROIs 820 

(see Results: Comparison 1). It is further supported more broadly by the 821 

behavioural changes observed in all of the post-neurofeedback training BR 822 

conditions, which were not observed in the mental imagery control 823 

experiment. Habes et al.(Habes et al., 2016) have previously confirmed that 824 

although differential regulation of category-specific visual areas can be 825 

achieved after a single day of training, a linked change in BR dynamics was 826 
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not produced. We therefore suggest that in order for mental imagery to 827 

produce a change in perception, it must be linked with neurofeedback-led 828 

learning, conducted over a period of days. This may be attributable to the 829 

interposition of sleep with sequential daily training. Sleep has been directly 830 

linked with the offline processing necessary for the consolidation of 831 

neuroprosthetic learning(Gulati et al., 2014) and associated behavioural 832 

output(Gulati et al., 2017). 833 

 834 

Mental imagery may be utilised for perceptual learning of low-level visual 835 

features, and to activate stimulus-selective cortical representations(O’Craven 836 

and Kanwisher, 2000; Tartaglia et al., 2009). Similarly, rt-fMRI neurofeedback 837 

together with implicit operant reinforcement has been used to unconsciously 838 

train patterns of activation in primary visual brain regions(Amano et al., 2016; 839 

Shibata et al., 2011) to produce perceptual and associative learning of low-840 

level visual features such as colour and orientation. However, to-date neither 841 

approach has successfully yielded changes in higher-order visual perception. 842 

In this study, we show that coupling explicitly instructed mental imagery with 843 

rt-fMRI neurofeedback training of higher-order visual brain regions produces 844 

an unconscious and targeted shift in the perceptual processing of visual 845 

stimuli. This result is novel and significant in providing evidence for non-846 

invasively manipulating higher-order brain function, potentially at the level of 847 

directly strengthening neural representations to alter higher-order 848 

perception(Fahle, 2002; Watanabe et al., 2002, 2001). From a mechanistic 849 

perspective, an interesting next step might be to test if unconsciously inducing 850 

specific patterns of brain activations related to category-specific stimuli will 851 
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produce linked shifts in perception in a similar manner to that observed in this 852 

study(Watanabe et al., 2017). This would provide more direct evidence of 853 

modulating neural representations.  854 

 855 

The observed behavioural findings may constitute a neural analogue of 856 

Levelt’s second proposition(Levelt, 1966), as applied to stimulus perception. 857 

The original proposition (see Supplementary Discussion) was based on the 858 

physical properties of visual stimuli. It was recently modified to indicate that 859 

‘increasing the difference in stimulus strength between the two eyes will 860 

primarily act to increase the average perceptual dominance duration of the 861 

stronger stimulus’(Brascamp et al., 2015). Our work may provide evidence for 862 

a neural reformulation of BR. Participants were trained on a differential signal, 863 

rather than specifically training to increase the level of activation in the 864 

strategy-related ROI. During training, they appeared to reduce the level of 865 

activation in the strategy-unrelated ROI across the three days, while 866 

maintaining a fixed level of activation in the strategy-related ROI (Figure 2B). 867 

This difference in activation levels as a result of training was maintained when 868 

the participants undertook the transfer sessions, an assessment of 869 

upregulation in the absence of neurofeedback.  The difference in ROI 870 

activation levels may have therefore led to a relative difference in the 871 

strengths of the neural representations linked to the visual stimulus 872 

categories. In keeping with this view, we observed a reduction in the mean 873 

dominance duration of the strategy-unrelated percept. This resulted in greater 874 

mean dominance durations of the strategy-related percept, corresponding to 875 

the ROI with the strengthened neural representation. On the basis of this, we 876 
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propose a possible neural analogue of the Levelt’s modified second 877 

proposition as follows: ‘increasing the difference in neural representation 878 

strengths between the two brain regions linked to the two monocular visual 879 

stimuli will primarily act to increase the average perceptual dominance of the 880 

percept linked to the stronger neural representation’. The effect of this would 881 

be to produce unconscious perceptual biasing towards the strengthened 882 

percept. This mechanism for perceptual ‘shaping’(Lange et al., 2018) may 883 

have real-world application in conditions requiring targeted enhancement of 884 

perception such as in threat detection(Miranda et al., 2015), or therapeutically 885 

to reduce unwanted or aberrant percepts(Taschereau-Dumouchel et al., 886 

2018). 887 

 888 

Several mechanisms have been put forward to explain the neural 889 

underpinnings of BR. Of note, known influences on visual perception such as 890 

priming and cueing have not been shown to produce changes in BR 891 

dominance durations (see also Supplementary Discussion). Neurofeedback 892 

with rt-fMRI provides the most direct means of testing neuronal function 893 

involved in processing visual stimuli. Using a hierarchical model of BR(Dayan, 894 

1998), it may be proposed that neurofeedback training of higher order brain 895 

regions strengthens neuronal representations linked to the processing of 896 

specific visual stimuli, leading to unconscious perceptual biasing. Preferential 897 

processing of strategy-related stimuli would result in decreased dominance 898 

durations of the strategy-unrelated stimuli, as was observed here. The effect 899 

of neurofeedback on BR may be further considered within a Bayesian 900 

framework(Lange et al., 2018). During BR, the dominant percept at any given 901 
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time is maintained by the highest posterior probability, at the top of the cortical 902 

hierarchy. Stimulus representations at lower levels generate error signals that 903 

are compared with top-down predictions. The percept is rendered more or 904 

less stable in relation to bottom-up inhibition i.e. the lower the error signal, the 905 

more stable the percept(Alink et al., 2010; Hohwy et al., 2008; Summerfield 906 

and Koechlin, 2008). In keeping with this, BR dynamics were shifted in the 907 

direction of the information represented in the trained visual brain regions. 908 

Therefore, perception of the stimulus linked to training was rendered more 909 

stable, with a simultaneous reduction in the stability of the perception of the 910 

other stimulus, leading to a reduction in its mean dominance duration. 911 

The changes in high-level visual perception following neurofeedback training 912 

in this study were associated with structural changes in the trained regions 913 

(see Supplementary Materials). We used a multivariate analysis technique, 914 

Canonical Variate Analysis, which can accommodate multiple measures of 915 

behaviour, structure, and function to help determine the overarching effect of 916 

neurofeedback training. The change in BR dynamics (i.e. cumulative 917 

dominance durations) was linked with measures of structural changes in FFA, 918 

and PPA (Figure S3, Supplementary Materials). These preliminary findings in 919 

ten participants suggest that neurofeedback training, even over a relatively 920 

short period of time (3 days) can alter perception as a result of plasticity in the 921 

trained brain regions(Johansen-Berg et al., 2012; Sagi et al., 2012).  922 

 923 

In this study, we provide a direct demonstration of the rapid changes in 924 

perception and neural plasticity that can be produced by neurofeedback 925 

training of higher-order visual areas using rt-fMRI. Imagery-related activation 926 
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in higher-order visual cortex, such as the ventral visual areas, are related to 927 

semantic content, and are more flexible and abstract(Orban et al., 2014) as 928 

compared to early visual cortex. Therefore, the use of higher-order visual 929 

areas paired with rt-fMRI neurofeedback training may provide the most potent 930 

and generalizable means of enacting a change on complex perception. Neural 931 

representations that give rise to prior expectations can be directly shifted in 932 

the direction of neurofeedback training, even in the presence of pre-existing 933 

expectations. This could lead to targeted enhancement of specific responses 934 

during discrete tasks as demonstrated here using BR, or in the reduction of 935 

aberrant visual perception, such as hallucinations, for therapeutic 936 

effect(Lange et al., 2018). 937 

938 
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Figure legends 1176 

Figure 1. Experiment procedure schematic.  1177 

Stage 1 Pre-training BR 1178 

Stage 2 Neurofeedback training: 10 participants were separated into two 1179 

groups, a ‘face’ group and a ‘house group’, and were trained to increase a 1180 

fluctuating thermometer bar (blue bar), up to a fixed mark (orange bar). After 1181 

the neurofeedback training sessions, the participants performed a transfer 1182 

session with brain modulation in the absence of neurofeedback signal.  1183 

Stage 3 Post-training BR: Three types of sessions: a) BR; b) BR with 1184 

‘concurrent trained upregulation’; and c) BR with ‘concurrent non-trained 1185 

mental imagery’. 1186 

  1187 
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Figure 2A. Schematic showing group ROIs (FFA and PPA statistical masks) on 1188 

inflated canonical brains. Activation was extracted from these regions for 1189 

production of the differential signal for neurofeedback training. The direction 1190 

of regulation of these ROIs was specific for each group i.e. House Group, PPA 1191 

up/ FFA down, Face Group, FFA up/ PPA down.  1192 

 1193 

Figure 2B. Mean BOLD signal changes across groups, in the strategy-related 1194 

ROI (red) and the strategy-unrelated ROI (blue), for each of the nine training 1195 

sessions. The green line shows the difference in mean BOLD activation 1196 

between the two brain regions and corresponds to the neurofeedback training 1197 

signal that participants visualised in the scanner as a fluctuating bar. Error 1198 

bars show ±1SEM. 1199 

 1200 

  1201 
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Figure 3A. Cumulative dominance durations across participants for pre-1202 

training BR, and the three post-training BR sessions: Post-training, Post-1203 

training BR with concurrent trained upregulation, and Post-training BR with 1204 

concurrent non-trained mental imagery. Error bars show ±1SEM. The total 1205 

duration of each BR block was 40s.  1206 

  1207 
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Figure 3B. Changes in cumulative dominance durations for binocular rivalry 1208 

(BR) sessions, showing comparisons before and after neurofeedback training 1209 

collapsed across both groups. Error bars indicate ±1SEM 1210 

 1211 

A. Pre/post training BR comparison  1212 

B. Pre/post-training BR with concurrent training upregulation  1213 

C. Pre/post-training BR with concurrent non-trained mental imagery 1214 

 1215 

*p<0.05. Double **p<0.01. Horizontal brackets indicate significant differences in 1216 

the changes of cumulative dominance durations (p<0.05) ~ over a bracket 1217 

indicates p=0.07. 1218 

 1219 

  1220 
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Figure 4. BOLD activation changes in the trained ROIs, during binocular rivalry 1221 

(BR) sessions, before and after neurofeedback training. There was a significant 1222 

reduction in activation in both the strategy-related ROI and the strategy-1223 

unrelated ROI following training. When BR was performed with concurrent 1224 

trained up-regulation, there was a significant further decrease in BOLD 1225 

activation in the strategy-unrelated ROI only.  Error bars indicate ±1SEM. (* 1226 

p<0.05). 1227 

  1228 
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Figures 1229 

1230 
Figure 1  1231 
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 1233 

 1234 
 1235 

 1236 
Figure 2A and B.  1237 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

1 2 3 4 5 6 7 8 9 10 11 

 Differential training 

signal 

Strategy-related ROI 

 Strategy-unrelated ROI 

Training Sessions Transfer Sessions 

Day 1 

C
h
a

n
g

e
 i
n

 l
e

v
e

l 
o

f 
B

O
L

D
 a

c
ti
v
a

ti
o

n
/ 
 

m
e

a
n

 p
e

rc
e
n

ta
g

e
 s

ig
n
a

l 
c
h

a
n

g
e

 

Day 2 Day 3 Day 4 

B 



 

60 

 1238 

Figure 3A.  1239 
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 1241 
Figure 3B.  1242 
 1243 
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 1246 
Figure 4. 1247 
  1248 
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Supplementary Materials List: 1249 

 Supplementary methods 1250 

 Supplementary results 1251 

 Supplementary discussion 1252 

 Supplementary references 1253 

 Supplementary figures S1-S4 1254 

 1255 

 1256 

Supplementary Methods  1257 

 1258 

Learning Effect across Rt-fMRI Neurofeedback Training 1259 

 1260 

The learning effect measures the change in BOLD activation in trained brain 1261 

region/s across the neurofeedback training sessions. The mean percentage 1262 

signal change (PSC) for each training run and ROI was calculated and plotted 1263 

(seeFigure2B in main paper, and compare with S1, S2). 1264 

 1265 

 1266 

 1267 

  1268 
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Supplementary Results 1269 

Results - Behaviour  1270 

 1271 
Binocular Rivalry – Durations: 1272 

See main paper. 1273 

 1274 

Results – Imaging 1275 

 1276 

Strategy-related and Strategy-unrelated ROIs: 1277 

We first determined if the differential signal significantly changed over days 1278 

across participants (see main paper, Result Section). We additionally 1279 

examined the changes in the two ROIs used to produce the differential signal; 1280 

the strategy-related ROI and the strategy-unrelated ROI (see Figure 2, main 1281 

paper). 1282 

 1283 

A one-way ANOVA (with 3 levels corresponding to the 3 training days) 1284 

revealed a significant reduction in activation in the strategy-unrelated ROI 1285 

over the 3 days of training (F(2,16)= 8.71, p= 0.003). On the other hand, a 1286 

one-way ANOVA for the strategy-related ROI revealed no significant change 1287 

(F(2,16)= 0.33, p= 0.72). 1288 

 1289 

Sub-groups: 1290 

To assess whether there was any difference between the face and house 1291 

group during training, an ANOVA was performed on the differential training 1292 

signal across the 3 training days, with a between-subjects factor with two 1293 
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levels (for the two sub-groups, ‘Face’ and ‘House’). This did not reveal a 1294 

significant interaction (F(2,14)=0.064, p=0.94) between the two factors. 1295 

 1296 

For neurofeedback training graphs for the two groups (mean percentage 1297 

signal change over 9 sessions), please see Figures S2 and S3. 1298 

 1299 

 1300 

  1301 
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Supplementary Discussion 1302 

 1303 

Levelt’s Second Proposition, 1966 1304 

Levelt’s second proposition(Levelt, 1966), as applied to stimulus perception 1305 

was based on the physical properties of visual stimuli and states: “Variation of 1306 

the stimulus strength in one eye will only influence the mean dominance 1307 

duration of the contralateral eye and not the mean dominance duration of the 1308 

ipsilateral eye”. 1309 

 1310 

Known Influences on Visual Perception 1311 

The role of ‘priming’ and ‘cueing’ might also be invoked as possible causes for 1312 

the perceptual changes observed following neurofeedback training in this 1313 

study. Prior presentation of a specific orientation grating can cause an 1314 

increase in the perception of the identical grating during BR. However, 1315 

dominance durations were unchanged(Denison et al., 2011). Similarly, 1316 

exogenous cueing prior to BR can increase the probability of the predominant 1317 

percept being linked to the cue. For example prior to BR, hearing sentences 1318 

with the word ‘face’, results in FFA activation(Pelekanos et al., 2011). 1319 

Nonetheless, no significant change in stimulus dominance between faces and 1320 

houses on rivalry trials were observed when participants were cued with a 1321 

word linked to one of the rivalrous stimuli. Dominance durations have also 1322 

been demonstrated as being immune to the effects of volitional attention(Jung 1323 

et al., 2016), and reflective of true differences in sensory processing(Dieter et 1324 

al., 2016). It is therefore unlikely that the perceptual changes produced by 1325 

neurofeedback training could be ascribed to participant expectation. Evidently, 1326 
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neither altering the level of activity in higher order brain regions involved in 1327 

perception, nor applying known influences on visual perception, provide a 1328 

comprehensive explanation for the lasting shifts in perceptual bistability 1329 

observed following neurofeedback training in this study.  1330 

 1331 

Controlling the Neurofeedback Signal 1332 

With regards to the neurofeedback training signal itself (i.e. differential brain 1333 

activation between two ROIs), there were five potential activation states which 1334 

could increase the difference between the two brain regions (strategy-related 1335 

ROI minus strategy-unrelated ROI), leading to upregulation of the training 1336 

signal: These could be: (1) an increase in strategy-related ROI; (2) a decrease 1337 

in strategy-unrelated ROI; (3) a combination of the two; (4) a relatively greater 1338 

increase in strategy-related ROI as compared to strategy-unrelated ROI; and 1339 

(5) a relatively greater decrease in the strategy-unrelated ROI. Based on our 1340 

results (Figure 1B in main paper), the mechanism for the upregulation of the 1341 

differential signal across groups during neurofeedback training appeared to be 1342 

produced by maintenance of activation in the strategy-related ROI, and a 1343 

reduction of activation in the strategy-unrelated ROI. 1344 

 1345 

 1346 

  1347 

 1348 

  1349 
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Supplementary figures 1350 

 1351 

Figure S1. Changes in cumulative dominance durations for binocular rivalry 1352 

sessions, showing comparisons before and after neurofeedback training. This 1353 

figure is the analogous to Figure 3B in the main paper, but additionally shows 1354 

changes in dominance durations for the ‘Mental Imagery’ control group. Error 1355 

bars indicate ±1SEM.  Horizontal brackets show significant between group 1356 

comparisons for percepts (p<0.05). 1357 

 1358 

A. Pre vs. Post-training BR comparison  1359 

B. Pre vs. Post-training BR with concurrent training up-regulation  1360 

C. Pre vs. Post-training BR with concurrent non-trained mental imagery 1361 

D. Pre vs. Post training BR comparison for Mental Imagery Control group  1362 

 1363 
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 1364 

 1365 

Figure S2. Mean BOLD signal changes across the House group, in the strategy-1366 

related brain region (red) and the strategy-unrelated brain region (blue), for 1367 

each of the nine training sessions. The green line shows the difference in mean 1368 

BOLD activation between the two brain regions and corresponds to the 1369 

neurofeedback training signal. Error bars show ±1SEM. 1370 

 1371 

 1372 

 1373 

 1374 



 

70 

 1375 

 1376 

Figure S3. Mean BOLD signal changes across the Face group, in the strategy-1377 

related brain region (red) and the strategy-unrelated brain region (blue), for 1378 

each of the nine training sessions. The green line shows the difference in mean 1379 

BOLD activation between the two brain regions and corresponds to the 1380 

neurofeedback training signal. Error bars show ±1SEM. 1381 

 1382 

 1383 

 1384 

 1385 

  1386 
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 1387 

 1388 

Figure S4. Canonical variate analysis illustrating the correlation between 1389 

individual behaviour and physiological measures. For each participant 1390 

mapping weights are shown for pairs of predictor and outcome variables. This 1391 

approach aims to reveal relationships that may exist between multiple outcome 1392 

variables following neurofeedback training. 1393 

 1394 

A,B: Comparison of BR behavioural measures (i.e. durations of mixed, 1395 

strategy-related and strategy-unrelated percepts), and functional BOLD signal 1396 

changes across training (i.e. differential signal). Nine of the ten participants 1397 

were included, as one of the participants did not complete all nine training 1398 

sessions. Participants 1-5 are Face Group, Participants 6-9 are House Group. A 1399 

shows a non-significant relationship (p= 0.07) between individual participant 1400 

BR measures (pre vs. post training) and functional BOLD signal changes 1401 

across training. B shows a non-significant relationship (p= 0.05) between 1402 
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individual participant BR measures (pre vs. post-training with concurrent 1403 

trained upregulation) and functional BOLD signal changes across training. 1404 

 1405 

C,D: Comparison of BR behaviour measures (i.e. durations of mixed, strategy-1406 

related and strategy-unrelated percepts), and structural measures from FFA 1407 

and PPA (pre vs. post training). Participants 1-5 are ‘Face Group’, Participants 1408 

6-10 are ‘House Group’. C shows a non-significant relationship (p= 0.09) 1409 

between individual participant BR measures (pre vs. post training) and 1410 

structural measures from FFA, and PPA (pre vs. post training). D shows a 1411 

significant relationship (p= 0.03) between individual participant BR measures 1412 

(pre vs. post-training with concurrent trained upregulation) and structural 1413 

measures from FFAand PPA (pre vs. post training).  1414 
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