
Neural Architecture Supporting Active Emotion Processing in 
Children: A Multivariate Approach

M. Catalina Camacho*,1,2, Helmet T. Karim3, and Susan B. Perlman1,2,3

1.Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA

2.Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA

3.Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA

Abstract

Background: Adaptive emotion processing is critical for nearly all aspects of social and 

emotional functioning. There are distinct developmental trajectories associated with improved 

emotion processing, with a protracted developmental course for negative or complex emotions. 

The specific changes in neural circuitry that underlie this development, however are still scarcely 

understood. We employed a multivariate approach in order to elucidate distinctions in complex, 

naturalistic emotion processing between childhood and adulthood.

Method: Twenty-one adults (M±SD age=26.57±5.08 years) and thirty children (age=7.75±1.80 

years) completed a free-viewing movie task during BOLD fMRI scanning. This task was designed 

to assess naturalistic processing of movie clips portraying positive, negative, and neutral emotions. 

Multivariate support vector machines (SVM) were trained to classify age groups based on neural 

activation during the task.

Results: SVMs were able to successfully classify condition (positive, negative, and neutral) 

across all participants with high accuracy (61.44%). SVMs could successfully distinguish adults 

and children within each condition (ps<0.05). Regions that informed the age group SVMs were 

associated with sensory and socio-emotional processing (inferior parietal lobule), emotion 

regulation (inferior frontal gyrus), and sensory regions of the temporal and occipital lobes.

Conclusions: These results point to distributed differences in activation between childhood and 

adulthood unique to each emotional condition. In the negative condition specifically, there is 

evidence for a shift in engagement from regions of sensory and socio-emotional integration to 

emotion regulation regions between children and adults. These results provide insight into 

circuitry contributing to maturation of emotional processing across development.
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1. Introduction

Processing emotional information is critical for social and emotional functioning. 

Disruptions in emotion processing are found in nearly every psychiatric disorder (e.g. 

Brotman et al., 2010; Engels et al., 2007; Kircanski & Gotlib, 2015; Stuhrmann, Suslow, & 

Dannlowski, 2011). For example, extensive research has found a preference for processing 

sad stimuli in depression (for a review, see Kircanski and Gotlib, 2015). This disruption in 

emotion processing is present even in asymptomatic older children and adolescents at high 

familiar risk for depression evidenced by difficulty processing and identifying sad and angry 

faces (Joormann et al., 2010, 2007). These deficits in emotion processing are hypothesized 

to reflect aberrant amygdala and nucleus accumbens functioning (Monk et al., 2008). 

Further, preschool children who are unimpaired and high in temperamental negative affect, 

and therefore predisposed to depression, also show increased amygdala activation toward 

sad faces, which in turn predicts increased negative affect at a 12 month follow up (Gaffrey 

et al., 2016). Similarly, youth at risk for developing bipolar disorder show deficits in labeling 

emotional faces on par with bipolar patients (Brotman et al., 2008). Further, children 

temperamentally risk for anxiety disorders demonstrate an increased propensity for 

processing negative stimuli over neutral, which in turn moderates social withdrawal later in 

adolescence (Pérez-Edgar et al., 2010). These data point to a neurodevelopmental 

component to aberrant emotion processing in psychiatric disorders, which implies the need 

to characterize foundations of adaptive emotion processing in typically developing children. 

Our ability to pinpoint the developing brain’s normative processing circuits for specific, 

emotionally-laden, environmental stimuli, will be critical to understanding how these 

disruptions in psychiatric disorders emerge. This circuitry, particularly in the negative 

domain, is likely to differ between children and adults, making it imperative that we develop 

models specific to each neurodevelopmental stage.

Early in development, the cognitive and biological foundations of emotion processing begin 

to solidify. Children are readily able to discriminate happy faces from other affective faces as 

young as infancy (Barrera and Maurer, 1981) and at consistent adult-levels throughout 

childhood (Boyatzis et al., 1993; Camras and Allison, 1985; Durand et al., 2007; Gao and 

Maurer, 2010). Other basic emotions such as anger and sadness are discriminated from 

neutral faces at adult levels of accuracy in early childhood (Boyatzis et al., 1993; Camras 

and Allison, 1985; Durand et al., 2007), while other nuanced facial emotions such as disgust 

are not as easily discriminated until late childhood (Durand et al., 2007; Gao and Maurer, 

2010). Further, when basic emotions are presented dynamically there is evidence for 

continued development into late adolescence (Thomas et al., 2007). Additionally, there is 

evidence that the ability to discriminate complex emotions such as those with a social 

component like embarrassment or guilt is still developing into late adolescence and early 

adulthood (Motta-Mena and Scherf, 2017). This suggests that the processing of discrete 

emotions have distinct developmental trajectories with more nuanced emotions having more 
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protracted development. Concurrent changes in regional brain structure and function are 

hypothesized to support this emotional development (Casey et al., 2005; Perlman and 

Pelphrey, 2011; Posner et al., 2014; Shaw et al., 2008; Tsujimoto, 2008), however the 

specific changes in neural circuitry from childhood to adulthood are still scarcely 

understood. Thus, more recent work has sought to identify specific functional changes in the 

brain that occur from childhood to adulthood.

Previous investigations of the neural processing of emotion across development have 

examined isolated stimuli such as emotional faces or sounds during free viewing/listening 

(e.g., Hare et al., 2008; Todd et al., 2011) or placed emotion stimuli as distractors within a 

cognitive task (e.g., Perez-Edgar and Fox, 2003; Perlman et al., 2014; Perlman and Pelphrey, 

2010). Many such studies, which examine basic emotions (e.g. fearful, angry, happy), find 

amygdala activation to be critical in detecting distinct emotional stimuli. Past research has 

found increased amygdala activation to fearful faces in teens (Hare et al., 2008) and to happy 

faces in children (Todd et al., 2011), which was not found in the adult comparison sample. 

There is even some evidence that children have increased amygdala activation in response to 

neutral faces compared to fearful faces, which is not found in adults (Thomas et al., 2001). 

Social emotions such as guilt and embarrassment, on the other hand, consistently activate a 

circuit of the brain associated with social cognition including the medial prefrontal cortex 

(MPFC), inferior parietal lobule (IPL), and superior temporal sulcus (STS) (Adolphs, 2009), 

in addition to the amygdala. A study by Burnett et al. (2009) found evidence for a shift in 

activation from the anterior MPFC to the posterior MPFC from adolescence to adulthood, 

indicating continued development in how the MPFC processes emotion into later ages than 

were previously expected. Taken together, these studies demonstrate neurodevelopmental 

support for differential trajectories in processing emotions, with more complex and nuanced 

emotions activating a more sophisticated circuit that shifts across development.

The limitation of this work, however, is that real-world emotion processing rarely occurs as 

isolated affective events or stimuli. Thus, more recent developmental work has turned away 

from reductionist emotion tasks and toward naturalistic perception (Cantlon and Li, 2013; 

Karim and Perlman, 2017; Richardson et al., 2018) which is critical for studying 

ecologically-relevant socio-emotional processing (Zaki and Ochsner, 2009). Previous studies 

that examine emotions in isolation have provided important foundations for interpretation of 

more naturalistic, complex emotion processing. Two studies that use naturalistic viewing 

paradigms to examine neurodevelopment found that socio-emotional regions such as the 

MPFC, STS, and IPL are critical for integrating emotions into the context in which they are 

perceived (Karim and Perlman, 2017; Richardson et al., 2018). Karim and Perlman (2017) 

compared whole brain activation differences in processing positive, negative, and neutral 

film clips between adults and children. They found increased activation in children 

compared to adults in both positive and negative viewing conditions across many neural 

regions including the IPL (the angular gyrus), STS (superior and middle temporal gyri), and 

the MPFC (anterior cingulate). Richardson et al. examined age related changes in processing 

emotional versus physical pain in children and adults (Richardson et al., 2018) and found 

increasing coherence and overall activation with age of these same regions while processing 

emotional pain. These two studies together indicate important development of the socio-
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emotional integration circuit of the parietal and temporal lobes across age in processing 

emotional stimuli.

There are limitations in previous developmental work that we seek to address in this 

investigation. First, most functional studies of brain development initially isolate neural 

activation associated with task condition and then examine correlations between task 

activation and age post-hoc. This approach excludes regions that do not activate during 

emotion processing uniformly across the lifespan. In other words, this approach is best tuned 

to detect changes in signal magnitude for a given region across development but not to detect 

regions that, for example, contribute to emotion processing in childhood only but not in 

adulthood or vice versa. Second, as alluded to above, studies that present emotional stimuli 

in isolation such as with static, emotional faces or scenes snapshots do not represent the 

ecologically valid complexity in which people experience emotions. Lastly, most studies 

examining emotional neurodevelopment rely on univariate statistics, which involves 

modeling the time series of each voxel in the dataset separately, clustering, and correcting 

for multiple comparisons. This approach has sparked controversy as there is high statistical 

likelihood for Type I error when adequate controls for multiple comparisons are not applied 

(Eklund et al., 2016) and an inherently increased bias for large effects (increased Type II 

error) when they are.

To address these limitations, we employ a multivariate machine learning approach to 

identify regions of the brain whose activity during a naturalistic emotion processing task 

accurately categorizes children versus adults. More recently, multivariate analyses of 

emotion processing in adults have elucidated widespread regions involved in processing 

emotional information. These neural signatures are unique enough to correctly categorize a 

wide range of emotions (Baucom et al., 2012; Ethofer et al., 2009; Peelen et al., 2010; Said 

et al., 2010) and are consistent across multiple emotional modalities including body posture, 

facial expressions, and voices (Peelen et al., 2010). By using a multivariate analysis to 

categorize participant age groups within and across emotional conditions, we can more 

precisely explore the changes in emotional processing that occur as a function of brain 

development, both in conjunction with and independent of the emotional content. Based on 

previous work, we hypothesize that there are circuitry wide differences between children and 

adults that reflect a refinement of socio-emotional integration across development. 

Specifically, negative and positive stimuli will have distinct differences in circuitry between 

children and adults, reflecting the protracted development of negative emotion processing in 

children (Durand et al., 2007; Gao and Maurer, 2010). This would be reflected in distinct 

neural activation patterns informing child versus adult classification.

2. Methods

This study was approved by the Institutional Review Board of the University of Pittsburgh. 

Informed consent and assent was obtained from all participants.

2.1 Participants

Participants included 21 adults ages 20-44 years old and 36 children ages 4-12 years old 

recruited from the Pittsburgh area. The sample has been previously described by Karim & 
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Perlman (2017). The child group was selected to represent a wide range of emotional 

processing across childhood but prior to the onset of adolescence. Exclusion criteria for both 

adults and children included personal history of any Axis I disorder, autism spectrum 

disorders, mental retardation, severe systematic illnesses, neurological disorders, head 

trauma with loss of consciousness, MR contraindications (such as metal in the body), 

claustrophobia, pregnancy, and use of medications that may produce central nervous system 

effects. Participants were required to be able to complete tasks in English. For children, 

additional exclusion criteria included history of Axis I disorders in first-degree relatives. The 

final sample included 21 adults (M±SD age = 26.6±5.1 years) and 30 children (M±SD age = 

7.8±1.8 years) after removing children with unusable MRI data (see section 2.4).

2.2 Movie task

Participants performed a free-viewing movie task during fMRI scanning described in greater 

detail in Karim and Perlman (Karim and Perlman, 2017) and depicted in Figure 1. 

Participants were instructed to lie still in the scanner and watch the screen in order to 

perform the task. Because children are still developing their self-control, we sought to 

minimize cognitive demand during the task. Thus, no button box was given to the participant 

and no button presses were required to complete the task. The KidVid fMRI task included 24 

short film clips 19-46 seconds long with an inter-stimulus interval (ISI) of 6-12 seconds for a 

total of 17 minutes of scanning. Positive, negative, or neutral content film clips (eight each) 

were shown. Negative and positive film clips were selected from popular kid’s movies and 

contained a mixture of live action and cartoon clips. All of the clips contained music either 

in the form of a song or to aid in setting the tone for the scene. For the affective clips, 4 

negative and 2 positive contained spoken words while 4 negative and 5 positive contained 

songs with words. One positive clip contained a song without words. Neutral clips were 

from nature documentaries (e.g. a flower blooming) and contained no affective content. 

Importantly, to control for differences in animation and cinematography styles, each movie 

contributed one negative and one positive clip. To help minimize differences in visual 

features each film clip was rated on a second-by-second basis for the presence (1 if present, 

0 if not) of the following: facial features (eyes, noses, mouths), negative emotion (e.g., 

anger, fearfulness, pain, or frowning), positive affect (e.g., smiling, cheering, warm embrace, 

excitement), and neutral content (i.e., not containing either positive or negative content). The 

specific ratings for each clip are included in Supplement 1. There was no difference between 

positive and negative clips in the average amount of time (t(14) = −0.30, p=0.77) that facial 

features were present, nor was there a difference in the average emotional valence scores 

(t(14) = 0.51, p=0.62). In total, participants viewed 253 seconds of negative film clips, 237 

seconds of neutral film clips, and 256 seconds of positive film clips. To minimize carryover 

effects from viewing one valence into the next movie clip, the clips were randomly ordered, 

creating three different versions of the task. The three versions of the task were randomly 

assigned to participants. After the fMRI scan, participants were administered a short quiz in 

which they were asked to identify if a given movie frame was from the clips they had 

watched in the scanner (8 questions) or from an unviewed movie (8 questions). Participants 

were able to pass this quiz with high accuracy in both the adult (accuracy 92.9±7.9%) and 

child (accuracy 97.9±3.3%) groups. There was no significant difference in accuracy between 
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adults and children (t(49)= −1.82, p=0.076) and no significant correlation between age and 

accuracy in the child group (Pearson’s r(29)=0.25, p=0.189).

2.3 MRI Acquisition

Neuroimaging data were collected using a 3T Siemens Trio MR scanner equipped with a 12-

channel parallel transmit-receive head coil. T1-weighted structural magnetization prepared 

rapid acquisition gradient echo (MP-RAGE) images were acquired with the following 

sequence parameters: repetition time, inversion time, and echo time (TR/TI/TE, 

respectively) = 2530/1100/3.44ms, 7-degree flip angle (FA), 256mm field of view (FOV), 

256×256 matrix, 1mm isotropic voxel, and a total acquisition time of 353s (1 volume). 

There were 175 sagittal left-to-right slices (whole brain) acquired. Functional whole brain 

blood oxygen-level dependent (BOLD) echo planar images were collected in a sagittal 

acquisition with the following parameters: TR/TE = 2000/30ms, 90-degree FA, 256mm 

FOV, 64×64 matrix, 4mm isotropic voxel, and a total acquisition time of 1020s (510 

successive volumes). Stabilization scans were acquired and discarded by the scanner before 

triggering the start of the KidVid task.

2.4 MRI preprocessing

Structural MR data (sMRI) were preprocessed by simultaneous segmentation and 

normalization as implemented in SPM12 (Friston et al., 2007) with default parameters. This 

step segmented the sMRI using six tissue priors, registered the sMRI to a standard Montreal 

Neurological Institute (MNI) 2mm isotropic template, and performed light regularization to 

correct for spatial bias in the image. Brain extraction was performed by first thresholding 

gray, white, and cerebrospinal fluid tissue maps with a 0.1 probability threshold then 

combining them and filling holes in the volume. The resulting mask was applied to the 

sMRI. Functional MR data (fMRI) were preprocessed in SPM12 according to standard 

practices. Each volume was first slice-time corrected then rigidly registered to the mean 

volume of the time series to correct for movement across sequence collection. Next, the 

mean fMRI image was used to register the fMRI data to the MNI template by first 

coregistering to the participant’s sMRI then applying the deformation field from the 

structural segmentation to the fMRI data. Finally, fMRI data were spatially smoothed using 

an 8mm full-width at half-maximum kernel. To control for motion quality, participants with 

motion exceeding 3mm of absolute translation in any direction for more than 2% of the 

fMRI volumes were excluded from further analyses (6 children, 0 adults).

2.5 Preparing the training set

All subsequent analyses were carried out in python3.6 using the Nipype (Gorgolewski et al., 

2011) and scikit-learn (Pedregosa et al., 2011) libraries. The full analysis code is freely 

available online at bitbucket.org/lcbd/kidvid_mvpa. To build the training sample set, each 

trial was modeled using a typical general linear model (GLM). This model consisted of each 

trial modeled separately by convolving a double gamma hemodynamic response function 

convolved onto a box car function, the width of which corresponded to the length of each 

particular clip. Serial correlations were also modeled and framewise displacement was 

included as a covariate of noninterest. High-pass filtering to account for slow signal drift 

(1/128 Hz) was applied right before GLM deconvolution. This model resulted in 24 (8 per 
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condition) whole brain, voxel-wise parameter maps per subject for a total of 1,224 training 

samples across all participants. Parameter estimates were normalized (i.e. converted to 

standard units) for subsequent analyses.

2.6 Condition classification across age groups

Before classifying subjects on the basis of age group, a support vector classifier (SVC) with 

a linear kernel was trained on the full sample (1,224 training samples) to classify each 

condition (positive, negative, or neutral). This model provides context for development-

specific changes in neural activity in response to the three conditions. Additionally, this 

model would provide insight into which regions are stable in their participation during 

emotion processing across childhood and into adulthood. Classification accuracy for each 

model was estimated using leave one subject out (LOSO) cross-validation in order to 

maximize the amount of training data used in each cross-validation iteration. As points of 

reference to evaluate the SVC performance, theoretical chance level was calculated based on 

ground truth (1/3 or 33.33%) and simulated chance level were derived from 500 condition-

label permutations. Labels (positive, negative, or neutral) were permuted within each 

participant rather than across the entire training sample set in order to maintain the same 

number of each label within each subject for these permutation tests.

2.7 Age group classification across and within conditions

To test if the emotion processing parameter estimates from the negative and positive 

conditions could accurately classify age groups (adults versus children) an SVC with a linear 

kernel was employed to classify age groups across and within each condition. There is no a 

priori reason to hypothesize that children and adults would process neutral movie clips 

(nature videos) differently, thus the across conditions model and neutral condition model 

were included to contextualize results from the negative and positive condition models. 

Classification accuracy for each model was estimated using LOSO cross-validation. To 

evaluate the performance of the SVCs, theoretical chance level accuracy was calculated 

based on ground truth (number of children divided by total number of participants) and 

simulated chances levels were estimated from 500 group-label permutations. Labels (adult 

or child) were permuted across the entire training sample set for these permutation tests. 

Both theoretical and simulated chance levels provide a reference point to evaluate model 

performance. Additionally, p-values were assigned based on recommendations from 

Combrisson and Jerbi, which includes acceptable accuracy cut offs based on sample size and 

number of labels (Combrisson and Jerbi, 2015). A total of 4 SVC models classifying age 

group were examined: across all conditions (1,224 training samples), within negative (408 

training samples), within positive (408 training samples), and within neutral (408 training 

samples).

2.8 Exploratory multivariate age prediction in children

As an exploratory follow-up analysis, we next examined if the emotion processing parameter 

estimates could train a model to accurately predict a child’s age. To this end, a linear kernel 

support vector regression (SVR) was employed within only children to predict activity 

within each condition associated with age. Mean square error (MSE) for each model was 

estimated using LOSO cross validation. Predicted ages for each subject from the cross 
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validation was regressed on the actual ages to test correspondence between the model and 

the ground truth. Both Pearson’s and Spearman’s correlations were recorded. A total of 4 

models were tested: across all conditions (720 training samples), within negative (240 

training samples), within positive (240 training samples), and within neutral (240 training 

samples).

3. Results

3.1 Participants

There were no differences between the adult and child groups on the basis of race, ethnicity, 

or sex (X2<0.71, ps>0.398). Participants were 49.9% male, 46.7% in the child group and 

52.4% in the adult group. The child sample was 76.7% Caucasian American, 13.3% African 

American, 10.0% Asian American. The adult sample was 71.4% Caucasian American, 

19.0% African American, and 9.5% Asian American. Only 1 participant identified as Latino 

or Hispanic (child group).

Multivariate results (SVC and SVR) are summarized in Table 1.

3.2 Condition classification across age groups

The SVC was able to successfully classify positive, negative, and neutral viewing conditions 

across the full sample with 61.44% accuracy that was nearly double both theoretical 

(33.33%) and simulated (33.37%) chance. The SVC performed with high sensitivity 

(61.44%) and precision (61.50%). Sensitivity was higher for neutral than for negative and 

positive (75.00%, 62.75%, and 46.57% respectively). Brain regions whose activity 

contributed the most to the model (top 5%) are presented in full in Table 2. To aid in 

interpretation, these regions were separated using the AAL2 atlas, and mean parameter 

estimates were extracted for the intersection of the full SVM weight map and the AAL2 

atlas. These included large areas of the bilateral superior temporal sulcus (superior and 

middle temporal gyri), bilateral posterior cingulate cortex, bilateral posterior inferior 

temporal gyrus, the right inferior frontal gyrus, the right pulvinar/ventral posteriolateral 

thalamic nuclei, and small regions of the right dorsolateral precentral gyrus, right amygdala, 

and right hippocampus. These regions and the confusion matrix from this SVC are 

visualized in Figure 2 as a comparison to the age group classification model results.

3.3 Age group classification across and within conditions

The SVCs within neutral, negative, and positive condition SVCs were able to successfully 

classify adults versus children (ps<0.05), while the SVC classifying adults versus children 

across all conditions did not perform better than chance (p>0.05). The negative and positive 

models performed better than neutral (positive p-value range = 0.001-0.01; negative p-value 

range = 0.001-0.01; neutral p-value range = 0.01-0.05). Both performed well above 

theoretical (58.00%) and simulated (Mean±SD negative=51.06%; positive=51.09%) chance 

levels with accuracies greater than 69.61% and high sensitivity (>69.17%) and precision 

(>68.83%). Brain regions contributing most to each SVC (top 5%) are listed in detail in 

Table 3. As with the previous model, these regions were separated using the AAL2 atlas, and 

mean parameter estimates were extracted for the intersection of the full SVM weight map 
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and the AAL2 atlas. The positive condition SVC was best informed by the bilateral cuneus, 

calcarine cortex, lingual gyri, precuneus, superior parietal lobule, inferior parietal lobule, 

posterior cingulate cortex, left posterior putamen, left pallidum, left caudate tail, bilateral 

occipital pole, and the cerebellum. These regions are visualized in Figure 3 along with the 

confusion matrix for the positive condition SVC. These regions overlapped with regions 

contributing most to the negative condition SVC, however the caudate tail did not contribute 

to the negative condition SVC. Regions of the left precentral gyrus and right posterior 

putamen additionally contributed to the negative condition SVC, and the bilateral inferior 

and superior parietal lobule regions were larger. The confusion matrix for the negative 

condition SVC and the regions contributing to the model are included in Figure 3. Positive 

and negative condition SVC results are also combined in Figure 2 for easy comparison to the 

condition classifier results listed in section 3.2.

Two follow up analyses were also conducted and are included in the Supplement 

(Supplement 2 and 3). Supplement 2 repeats all SVCs but uses a cross validation technique 

that leaves specific clips out for testing rather than specific participants. Supplement 3 tests 

if an SVC trained in one condition would be able to predict age groups in another condition.

3.4 Exploratory multivariate age prediction in children

None of the exploratory SVRs predicting child age within the child group only were able to 

perform accurately. None of the linear relationships between the predicted and actual ages 

were significant (ps>0.05).

4. Discussion

Our findings replicate and extend previous work decoding emotion processing in the human 

brain (Ethofer et al., 2009; Kassam et al., 2013; Said et al., 2010). We found evidence for a 

distributed network of neural activation patterns that lent to accurate classification of 

positive, negative, and neutral stimuli across all participants, which included sensory 

integration, social processing (IPL and STS), and ventral and primary visual cortex regions. 

Extending these results, we were able to accurately classify child and adult neural activation 

within each condition separately. These models were best informed by a distributed pattern 

of activation that did not overlap with the condition classification model with the exception 

of a small region of the IPL/posterior STS and a region of the posterior cingulate cortex. 

Regions that accurately distinguished adults from children within each condition (positive, 

negative, and neutral) overlapped considerably with a handful of exceptions. In negative 

only, additional regions of the left fusiform cortex, left precentral gyrus, posterior cingulate, 

right angular gyrus, left supramarginal gyrus, and the left superior parietal lobule were 

informative to the model. In positive only, additional regions of the bilateral occipital and 

temporal poles, right precentral gyrus, and posterior cingulate cortex informed the model. In 

neutral only, anterior regions of the bilateral middle temporal gyri were informative. 

Additionally, the across conditions model was not able to accurately classify children versus 

adults, consistent with behavioral research indicating distinct trajectories for developing 

negative, neutral, and positive emotion processing (Durand et al., 2007; Gao and Maurer, 

2010). These results may point to important developmental shifts from childhood to 
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adulthood in visual processing of negative content, specifically decreased engagement of 

social and sensory integration regions (fusiform gyrus, occipital cortex, inferior parietal 

lobule) and increased emotion regulation engagement (inferior frontal gyrus) in adults 

compared to children.

The largest area informing the group models was the visual cortex. There is extensive 

evidence for the protracted development of the visual cortex through childhood and 

adolescence, particularly for regions that distinguish faces and scenes from objects (Golarai 

et al., 2007; Grill-Spector et al., 2008). There is some evidence that the visual cortex 

activation is modulated by emotional content (Peyk et al., 2008; Sabatinelli et al., 2009). 

Systematic study of emotional content versus feature detection (e.g. colors, angles, or 

shapes), however, finds that this relationship between visual cortex activation and emotional 

content is likely due to the differences in visual features between stimuli of differing 

valences (Rotshtein et al., 2001). Additionally, the visual cortex has a low propensity to 

habituation (Schupp et al., 2006) evidenced by extensive multivariate work successfully and 

reliably decoding it (Haxby, 2012, 2001; Norman et al., 2006). The visual cortex would 

therefore activate similarly across a task even if the participant had habituated to the 

emotional content of the task stimuli. This suggests that the visual cortex is likely 

developing across age in terms of feature processing rather than in how it processes distinct 

emotions. This is consistent with our results since the visual cortex did not inform the across 

sample condition classification to the same degree as it informed the age classification 

models.

We also found greater activation of the inferior frontal gyrus (IFG) in adults compared to 

children when processing emotional stimuli (positive and negative). Lesion studies of the 

IFG suggest that the IFG is important for engaging in emotional empathy (Shamay-Tsoory 

et al., 2009). The IFG is associated with processing prosody, the emotional content of speech 

(Frühholz and Grandjean, 2013; Rota et al., 2011) as well as both identifying and expressing 

emotional faces (Hennenlotter et al., 2005). There is evidence that individuals with autism 

spectrum disorder improve in emotional face identification with increasing activation of the 

IFG both within a task (Zürcher et al., 2013) and with developmental improvements across 

age (Bastiaansen et al., 2011). Based on this work, it is possible that greater activation in the 

IFG found in the present study is related to improved emotional content identification, 

however behavioral studies of emotion processing in children show that children 4-12 

possess adult-level ability to identify overtly positive and negative stimuli (Durand et al., 

2007; Gao and Maurer, 2010). Additionally, there is evidence that the IFG is integral to 

inhibiting both cognitive and motor responses, likely via cortico-basal ganglia-thalamic 

loops (Aron et al., 2014). Inhibition is an important step in emotion regulation, and the IFG 

is found to activate more during directed emotion regulation (Goldin et al., 2008; Grecucci 

et al., 2013). Thus, it is more likely that greater IFG activation in adults is related to 

improvements in emotional regulation between childhood and adulthood.

This study has several notable strengths. First, we used naturalistic, child-friendly emotional 

stimuli that included a wider range of contexts than previous work on emotion processing in 

children. Complex scenes, with multiple emotions of the same general valence, more 

accurately reflect real world emotional situations than single, static, isolated stimuli. Second, 
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we included a wide range of children (ages 4-12) as well as a separate adult group in order 

to more confidently generalize our findings between differences in children and adults. 

However, there were several limitations to take into consideration. First, though these 

analyses were conducted on 1,224 training samples, these samples came from only 51 

individuals. This is a larger number of participants than have been previously included in 

studies decoding emotion processing (Ethofer et al., 2009; Kassam et al., 2013; Said et al., 

2010) but these results must be replicated in a larger, separate sample nonetheless. With a 

larger sample of children, it may be possible to detect changes in emotion processing 

circuitry year by year, which was not found in our sample. Further, pubertal status was not 

formally collected for our child sample. While most of the children included in the study are 

too young to likely be starting puberty, future work examining emotion processing from 

childhood into adolescence should collect this information, particularly since boys and girls 

tend to progress through puberty at different rates (Sisk and Foster, 2004). Additionally, 

though we tried to minimize this limitation by including unique film clips for each trial, it is 

impossible to completely disentangle development in visual processing from development of 

emotional processing as there are likely visual features that are highly collinear with their 

emotional content (e.g. dark green and black contrast correlating with negative film clips). 

Thus, future work should strive to include a wide variety of visual presentations of 

emotional stimuli to further elucidate circuitry associated with emotional visual processing 

development separately from simple visual processing development. Lastly, the KidVid 

paradigm included generally negative, neutral, and positive movie clips and were not further 

selected to fit specific but common emotional situations. Future work is needed to see if 

there are distinct neurodevelopmental pathways for naturalistic processing of specific 

emotional situations (e.g., learning of the death of a loved one or achieving a group goal). A 

potential means of conducting this work while maintaining the naturalistic integrity of the 

stimuli could include having participants ranging from child through adulthood watch an 

entire episode of an emotional TV show and conduct inter-subject correlation analysis 

similar to the analysis done in Finn et al (2018).

5. Conclusions

In conclusion, this study provides an important step forward in mapping the 

neurodevelopmental changes that underlie the development of emotional processing from 

childhood to adulthood. Notably, these results extend past research demonstrating a distinct, 

protracted development in processing negative information. Specifically, we found evidence 

for the neural basis of the shift from primarily processing or contextualizing the content to 

regulating emotion while consuming negative content. This is consistent with behavioral 

observations of child versus adult reactions to emotional stimuli. Most people have the 

experience of seeing a child get visibly excited at a happy song in a movie or physically 

hiding or crying in response to the appearance of a villain while teens and adults are able to 

remain composed when watching the same content. Mapping this change across age is 

important to understanding emotion regulation development, a crucial process to engage 

with in order to treat childhood onset socio-emotional psychopathology such as depression, 

anxiety, irritability, and autism. A better understanding of these emotional neural systems 

would improve intervention and prevention efforts of these disorders.
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Figure 1: 
A schematic of the KidVid fMRI task. Children watched 24 short film clips (8 each positive, 

negative and neutral) 19-46 seconds long with an inter-stimulus interval (ISI) of 6-12 

seconds.
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Figure 2: 
Regions that most informed the condition SVC are overlaid on the MNI template brain for 

ease of comparison to regions informing the age group SVCs. Only two brain regions 

overlapped between the two sets. Age group SVC regions from only the within positive and 

negative models are included for ease of visualization. The confusion matrix for the 

condition SVC is included to highlight the accuracy of the model per condition.
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Figure 3: 
Regions most informing the age group classification models for each condition and their 

overlap is displayed for ease of comparison. The confusion matrices for the negative and 

positive models are presented to visualize age group level accuracy.
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Table 1:

Multivariate support vector model results. 1a.) A summary of the support vector classifier performance across 

adults and children (N=51 participants, 1224 total training samples). Theoretical chance was calculated as 

instances of a given label over the total labels in the set. In the case of group, there are more children than 

adults, thus chance level was calculated as number of children over the total number of participants (30/51). 

The permuted chance level was derived from 500 label permutations and is included as the mean accuracy. 

The p-value range is taken from Combrisson and Jerbi, 2015 and corresponds to a sample size range of 40-60 

subjects (note: since 3 label classes were not simulated in Combrisson and Jerbi, 2015, a p-value range for the 

condition-classifying SVC is not included). 1b.) A summary of SVR model performance performed within the 

child group only (N=30 children, 720 total training samples). Pearson’s correlation coefficient and Spearman’s 

rho were derived from correlating the predicted age label and the actual age label.

a. Support Vector Classifiers

Outcome Sample Set Accuracy Sensitivity Precision Theoretical Chance Permuted Chance P-value Range

Condition All 61.44% 61.44% 61.50% 33.33% 33.37% --

Group All 62.01% 61.01% 60.92% 58.00% 50.79% >0.05, n.s.

Group Negative 69.61% 69.17% 68.83% 58.00% 51.06% 0.001-0.01

Group Neutral 64.71% 64.55% 64.17% 58.00% 51.11% 0.01-0.05

Group Positive 70.59% 70.45% 69.97% 58.00% 51.09% 0.001-0.01

b. Support Vector Regressors

Outcome Sample Set Pearson’s R P-value Spearman’s rho P-value MSE

Age All 0.34 0.066 0.26 0.156 408.90

Age Negative −0.17 0.374 −0.09 0.632 813.33

Age Neutral 0.04 0.846 0.07 0.728 548.21

Age Positive 0.17 0.363 0.14 0.454 507.71
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Table 2:

Regions that best classified each condition are listed in descending rank order (largest contributors to the 

model first). Average parameter estimates and standard deviations are listed in standard units.

SVC Peak MNI Coordinates Outcome Parameter Estimate Mean±SD

sample set Cluster Size Region X Y Z Negative Neutral Positive

All 91 Bilateral posterior cingulate cortex 0 −18 28 −6.75±6.65 −1.74±5.79 −5.66±6.11

187 Right superior temporal pole 42 10 −24 1.31±2.88 1.61±2.90 1.23±3.42

1567 Right superior temporal gyrus 62 −6 −2 1.88±2.89 3.27±3.88 2.50±3.84

1965 Left middle temporal gyrus −48 −22 −8 1.34±2.52 2.11±3.35 1.40±3.41

2098 Right middle temporal gyrus 68 −22 −4 2.03±3.28 2.82±4.03 2.12±4.19

78 Left superior temporal pole −46 4 −20 1.08±3.10 1.00±3.05 0.85±3.47

13 Right lingual gyrus 14 −30 −8 1.77±4.37 1.74±5.57 1.77±5.59

31 Right precentral gyrus 50 2 54 2.99±4.20 −0.64±4.16 2.12±4.36

412 Right fusiform gyrus 40 −40 −14 3.69±4.54 4.15±5.00 3.91±5.68

924 Left superior temporal gyrus −52 −26 4 2.84±3.23 3.45±3.29 2.93±3.40

90 Right angular gyrus 44 −52 24 0.24±3.47 0.95±5.00 0.24±4.44

225 Right middle temporal pole 50 2 −16 0.89±2.66 1.22±3.55 0.64±3.79

517 Left occipital cortex −38 −68 −14 2.97±3.87 −0.40±3.44 2.16±3.78

212 Right inferior frontal gyrus 48 20 20 5.12±4.12 0.55±4.44 3.85±4.41

72 Left supramarginal gyrus −54 −44 26 0.90±3.37 2.11±4.22 0.91±4.17

77 Left middle occipital cortex −46 −74 12 3.61±4.79 5.62±5.67 4.73±6.64

61 Right hippocampus 16 −28 −8 0.66±2.88 0.69±2.90 0.60±3.32

38 Right middle occipital cortex 40 −66 4 4.94±5.46 7.02±4.66 5.32±5.63

133 Right inferior temporal gyrus 42 −42 −14 3.81±4.47 4.94±4.52 4.39±5.32

113 Right inferior occipital cortex 44 −72 −10 5.06±4.88 6.20±4.87 5.15±5.50

81 Right pulvinar thalamic nucleus 18 −24 −2 1.12±2.80 1.06±3.04 0.91±3.02

25 Right amygdala 34 0 −20 0.34±2.90 1.02±3.05 0.97±3.48

5 Left angular gyrus −44 −52 22 0.44±3.06 0.85±4.13 0.98±4.25

73 Right supramarginal gyrus 56 −48 24 −0.09±3.18 1.06±5.04 0.47±4.58

55 Right cerebellum 40 −60 −24 2.84±5.24 3.78±6.78 3.95±7.93

4 Right cerebellum crus 44 −58 −24 2.18±5.88 4.38±8.96 3.31±8.91
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Table 3:

Regions that best classified each group for each SVC that performed better than chance (positive, negative, 

and neutral) are listed below in descending rank order (largest contributors to the model first). Average 

parameter estimates and standard deviations for each cluster are listed in standard units.

SVC Peak MNI Coordinates Outcome Parameter Estimate Mean±SD

Sample set Cluster Size Region X Y Z Adults Children

Negative 21 Right fusiform gyrus −42 −58 −22 3.38±4.75 7.62±6.70

304 Right inferior parietal lobule 56 −44 22 2.38±2.49 5.64±4.15

58 Left middle temporal gyrus −62 −40 −10 −0.21±1.69 −2.44±3.43

83 Right inferior frontal gyrus 60 8 10 1.40±2.49 −0.90±3.30

28 Left inferior frontal gyrus −58 8 0 0.47±3.80 −2.35±4.07

1008 Left lingual gyrus −24 −86 −16 −0.80±3.25 −1.43±3.26

115 Right cerebellum 8 −66 −10 0.50±3.81 −0.24±2.96

696 Right cuneus 4 −76 32 −2.15±3.35 −2.93±3.59

80 Left superior occipital cortex −6 −100 8 0.54±3.40 1.40±5.48

1267 Left calcarine cortex 0 −96 0 −0.72±3.42 −1.07±3.87

81 Right precuneus 10 −76 54 −2.50±5.15 −2.50±5.38

49 Cerebellar vermis 6 −68 −10 −0.93±4.92 −1.13±3.60

1109 Right lingual gyrus 8 −68 −10 −0.50±3.02 −1.01 ±3.07

527 Bilateral posterior cingulate cortex 10 −28 28 −2.15±3.09 −5.24±4.40

621 Left cuneus −2 −82 32 −3.33±4.40 −3.83±4.61

790 Left inferior parietal lobule −54 −46 54 −0.77±3.29 −4.43±4.51

148 Left premotor cortex −8 0 62 0.01±3.07 −2.57±3.61

34 Left fusiform gyrus −22 −86 −18 5.00±7.11 5.24±5.56

42 Right premotor cortex 50 −10 52 0.72±3.48 −2.01±3.99

219 Left cerebellum −4 −74 −14 0.08±5.11 −0.64±3.59

1042 Right calcarine cortex 10 −98 4 −1.28±2.88 −1.42±3.17

533 Right angular gyrus 50 −52 52 −0.45±4.01 −5.31±5.59

355 Left precuneus −10 −68 38 −0.71±3.82 −5.16±5.43

80 Right premotor cortex 58 −6 42 1.12±2.81 −1.36±3.65

28 Cerebellar vermis −2 −62 −2 −1.60±3.33 −1.84±3.25

26 Right fusiform gyrus 24 −74 −12 2.64±4.95 0.92±3.34

60 Right cerebellum 12 −48 −6 −1.20±2.71 −1.32±3.15

39 Left cerebellum −4 −60 −2 −2.14±3.83 −2.32±3.37

114 Left precentral gyrus −52 −12 42 0.22±2.97 −2.08±3.12

5 Right superior parietal lobule 10 −78 52 −1.49±8.68 −1.24±6.72

66 Left putamen/pallidum −26 −20 0 0.09±2.18 −1.65±2.59

26 Right putamen 30 −10 2 0.13±2.16 −1.57±2.73

12 Right superior occipital cortex 31 12 44 −0.09±3.67 1.34±5.45

Neutral 1227 Right calcarine cortex 30 −66 6 −4.49±3.92 −5.87±3.93

1473 Left lingual gyrus −22 −78 −2 −3.12±4.28 −5.96±4.58

160 Left fusiform gyrus −28 −80 −18 3.36±5.17 0.08±6.61
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SVC Peak MNI Coordinates Outcome Parameter Estimate Mean±SD

Sample set Cluster Size Region X Y Z Adults Children

40 Left thalamus −8 −30 4 −0.11±4.31 −3.08±5.95

123 Left superior occipital cortex −14 −88 14 −1.63±2.84 −3.67±4.74

363 Left cerebellum −26 −80 −20 −1.23±4.33 −4.22±4.89

40 Left middle occipital cortex 18 −86 18 −0.59±5.33 −2.71±6.22

35 Left cerebellum crus −26 −82 −20 2.05±8.87 −0.04±9.01

386 Left superior temporal sulcus −54 −30 −2 −0.21±1.35 −1.57±2.06

1620 Left calcarine cortex 2 −98 0 −5.12±4.29 −6.71±4.70

573 Left cuneus −8 −78 20 −6.79±3.83 −10.36±5.36

627 Right cuneus 18 −90 14 −4.79±3.61 −7.37±4.88

391 Right superior temporal sulcus 46 −30 −8 −0.75±1.97 −2.42±2.99

1549 Left lingual gyrus 16 −68 −8 −3.29±4.01 −4.76±4.26

291 Right fusiform gyrus 24 −62 −14 4.50±4.01 1.28±5.24

10 Right inferior occipital cortex 32 −80 −12 7.79±4.54 5.17±7.62

3 Left middle occipital cortex −18 −86 −6 2.11±4.37 2.05±6.24

262 Right cerebellum 10 −72 −20 1.01±4.28 −1.26±4.9

43 Right precuneus 6 −76 54 −5.55±6.74 −9.68±9.87

50 Cerebellar vermis −2 −64 −2 −4.26±3.74 −5.87±5.06

102 Cerebellar vermis 6 −74 −18 −2.11±4.64 −4.58±5.16

92 Right cerebellum 8 −52 −6 −2.99±3.16 −4.16±3.88

10 Left inferior occipital cortex −28 −80 −12 5.21±5.48 4.52±7.93

37 Left caudate tail −16 −12 20 −0.32±2.57 −1.84±3.00

56 Left cerebellum −6 −62 −6 −3.15±3.07 −5.41±4.01

30 Left precuneus −24 −56 4 −2.75±2.85 −3.28±3.52

8 Right superior parietal lobule 12 −82 48 −3.41±7.84 −9.82±12.64

Positive 879 Right cuneus 12 −100 8 −5.60±4.51 −7.38±5.59

81 Right occipital cortex 18 −102 −12 4.69±6.08 8.84±5.21

61 Left inferior parietal lobule −58 −38 48 −0.45±4.04 −3.28±4.74

32 Right fusiform cortex 22 −78 −14 −0.79±5.77 −2.89±4.82

1157 Right lingual gyrus 20 −80 −14 −4.36±3.82 −4.99±4.24

142 Right cerebellum 20 −78 −16 −2.92±5.09 −3.70±5.51

141 Right precuneus 12 −78 54 −5.99±6.89 −6.03±6.83

1287 Left calcarine cortex −4 −104 4 −4.71±4.74 −6.10±4.99

55 Right premotor cortex 48 −2 48 1.42±3.50 −1.05±4.01

120 Left superior occipital cortex −4 −104 6 −3.37±3.91 −3.95±4.99

1102 Left lingual gyrus −14 −66 −6 −3.70±4.07 −5.12±4.34

514 Bilateral posterior cingulate cortex −6 −40 20 −1.98±3.34 −5.01±4.55

185 Right inferior parietal lobule 54 −42 20 1.69±2.56 4.53±4.21

904 Left cuneus −4 −102 6 −6.45±5.56 −8.41±6.99

214 Left premotor cortex −2 0 56 −0.26±3.20 −2.59±3.37

16 Right superior parietal lobule 14 −80 52 −4.66±9.22 −5.59±10.81

409 Left precuneus 0 −66 54 −5.83±6.63 −5.43±6.18
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SVC Peak MNI Coordinates Outcome Parameter Estimate Mean±SD

Sample set Cluster Size Region X Y Z Adults Children

999 Right calcarine cortex 12 −64 14 −4.42±4.25 −6.76±4.74

139 Left inferior frontal gyrus 56 4 8 2.25±3.41 −0.26±3.66

247 Left cerebellum −22 −68 −16 −3.05±5.12 −4.70±5.68

101 Right inferior parietal lobule 44 −50 54 0.46±7.39 −4.56±7.21

116 Left occipital cortex −16 −100 −4 6.32±5.35 10.9±5.94

82 Cerebellar vermis −2 −80 −14 −3.86±5.59 −4.20±5.89

119 Left putamen −32 −14 0 −0.06±2.14 −1.60±2.40

51 Left fusiform cortex −22 −70 −14 1.40±7.40 0.79±6.22

57 Left cerebellum −8 −58 −6 −3.24±4.35 −4.84±4.81

32 Right superior occipital cortex 16 −88 28 −4.52±4.45 −5.47±5.13

71 Left inferior frontal gyrus −58 12 0 0.27±3.69 −2.54±4.11

65 Right cerebellum 8 −54 −8 −2.95±3.39 −4.07±3.99

64 Cerebellar vermis 0 −66 −4 −2.75±5.34 −4.45±4.77

44 Left caudate tail −14 −8 20 −0.21±2.70 −1.96±2.84

21 Left superior parietal lobule −14 −60 46 −3.62±5.33 −2.30±5.01

90 Left inferior parietal lobule −44 −58 44 −1.30±4.93 −4.85±5.83

Neuroimage. Author manuscript; available in PMC 2020 March 01.


	Abstract
	Introduction
	Methods
	Participants
	Movie task
	MRI Acquisition
	MRI preprocessing
	Preparing the training set
	Condition classification across age groups
	Age group classification across and within conditions
	Exploratory multivariate age prediction in children

	Results
	Participants
	Condition classification across age groups
	Age group classification across and within conditions
	Exploratory multivariate age prediction in children

	Discussion
	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:
	Table 3:

