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Abstract

The glymphatic system is functional waste clearance path from the brain parenchyma through 

dynamic exchange of cerebrospinal fluid (CSF) with interstitial fluid (ISF). Impairment of 

glymphatic waste clearance is involved in the development of neurodegenerative conditions. 

Despite many recent studies investigating the glymphatic system, few studies have tried to use a 

mathematical model to describe this system, quantitatively. In this study, we aim to model the 

glymphatic system from the kinetics of Gd-DTPA tracer measured using MRI in order to: 1) map 

the glymphatic system path, 2) derive kinetic parameters of the glymphatic system, and 3) provide 

quantitative maps of the structure and function of this system. In the proposed model, the brain is 

clustered to similar regions with respect to the profile of contrast agent (CA) density measured by 

MRI. Then, each region is described as a two-compartment kinetic model ‘derived from’ or ‘clears 

to’ its neighbors with local input function. We thus fit our model to the local cerebral regions 

rather than to the averaged time signal curve (TSC) of the whole brain. The estimated parameters 

showed distinctive differences between diabetes mellitus (DM) and control rats. The results 

suggest that in a typical DM brain the CSF bulk speed in the para-vasculature network is low. In 

addition, the resulting maps indicate that there may be increased binding and decreased absorbing 

of large molecules in a diabetic compared with a non-diabetic brain. The important contribution of 

this work was to fit the model to the local regions rather than to the averaged time signal curve 

(TSC) of the whole brain. This enabled us to derive quantitative maps of the glymphatic system 

from MRI.
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1. Introduction

Recent studies (Iliff et al., 2012; Iliff et al., 2013b; Rangroo Thrane et al., 2013; Xie et al., 
2013; Plog et al., 2015; Louveau et al., 2017) have fundamentally transformed the traditional 

model of cerebrospinal fluid (CSF) hydrodynamics. Traditionally, it is believed that CSF 

produced by the choroid plexus located in all 4 ventricles flows into the subarachnoid space 

surrounding the brain and from here exits the cranial cavity by outflow along cranial and 

spinal nerves and the arachnoid villi. However, new imaging measurements have shown that 

CSF also can be recycled back into the brain and exchanged with interstitial fluid (ISF) (Iliff 

et al., 2012; Iliff et al., 2013b; Rangroo Thrane et al., 2013; Xie et al., 2013; Plog et al., 
2015). The functional waste clearance path from the brain parenchyma through dynamic 

exchange of CSF with ISF is identified as the glymphatic system. The glymphatic system 

provides a pathway of convective fluid flow that drives clearance of interstitial solute from 

the brain parenchyma. A large proportion of subarachnoid CSF enters the interstitium 

through para-arterial pathways and exchanges with ISF (a process referred to herein as CSF-

ISF exchange), and both are cleared together with any associated solutes along specific para-

venous pathways (Iliff et al., 2012; Iliff et al., 2013a). The glymphatic system is primarily 

active during natural sleep (Jessen et al., 2015). Impairment of the glymphatic clearance is 

involved in the development of neurodegenerative conditions, including diabetes, 

Alzheimer`s disease, traumatic brain injury (TBI), stroke and glaucoma (Iliff et al., 2012; 

Xie et al., 2013; Gaberel et al., 2014; Kyrtsos and Baras, 2015; Plog et al., 2015; Wostyn et 
al., 2015; Ramirez et al., 2016; Venkat et al., 2016; Jiang et al., 2017).

Studies of the glymphatic system have shown that several factors can alter the waste 

clearance performance of the glymphatic system, e.g., vessel stiffness and heart rate 

(Kyrtsos and Baras, 2015), body posture (Lee et al., 2015), ventricular size (Jessen et al., 
2015). In addition, brain diseases, especially neuro-degenerative diseases may evoke 

impairment of glymphatic system. However, few studies have attempted to model the flow 

through the glymphatic pathways in order to derive quantitative parameters from MRI data. 

Having such a model may yield improved: 1) understating the glymphatic system dynamics, 

2) diagnosis, monitoring, and prognosis of the disease, 3) therapeutic approached.

For quantitative modeling of the glymphatic system using MRI, first, the map of glymphatic 

path needs to be identified. Then, the dynamics of the fluid (CSF-ISF) flowing through these 

pathways should be modeled using appropriate equations. Finally, an optimization method 

should be employed to estimate the model’s parameters from MRI measurements. 

Therefore, a dynamic MRI paradigm using a contrast agent tracer (such as GD-DTPA) 

should be used so that the ‘signal change’ inside the glymphatic pathways can be 

measurable.

Despite many recent studies that investigated the glymphatic system, few studies have 

employed a mathematical model to describe this system quantitatively. In (Ratner et al., 
2015; Ratner et al., 2017), optimal mass transport (OMT) was used to model the glymphatic 

flow vector field from MRI data and to map the glymphatic pathways. This method shows 

promising results in identifying the glymphatic channels; however, it does not provide 

quantitative measures for the dynamics of the glymphatic system. Moreover, it cannot 
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identify efflux path which is important in investigating the glymphatic system. Kinetic 

analysis was also incorporated to model the transport patterns of Gd-DTPA inside the rat’s 

brain at three different postures (Lee et al., 2015). In this work, the brain was divided into 

two parts, injection site and all other brain tissues. Then, the signal changes of tracer 

concentration (measured from MRI) of these two regions were used to derive the kinetic 

parameters of the brain, employing a two-compartment kinetic model. The limitation of this 

method is that the model parameters are calculated using global input function from the 

injection site, therefore, it does not provide accurate measures for local regions, separately, 

due to the difficulty in determining the input function corresponding to each region.

In the current study, we aim to model the glymphatic system from the kinetics of GD-DTPA 

tracer in order to: 1) map the glymphatic system pathways, 2) derive kinetic parameters of 

the glymphatic system, and 3) provide quantitative maps of the structure and function of this 

system. Diabetes mellitus (DM) is a major health problem with an estimated incidence of 

nearly 25.8 million people (8.3% of the US population) (CDC&P, 2011). A common factor 

among all diabetes related pathologies is their association with both micro- and macro-

vascular changes that develop throughout the progression of the disease, and that irreparable 

damage often occurs before symptoms of the disease are recognizable. The duration and 

severity of DM are also associated with changes in cerebrovascular structure, suggesting that 

the effects are cumulative (Saczynski et al., 2009). Using MRI, we previously investigated 

the impairment of the glymphatic system in diabetes animals and demonstrated that the brain 

solute clearance is reduced in diabetes by monitoring the clearance profile of the injected 

GD-DTPA contrast agent tracer (Jiang et al., 2017). Thus, we used the MRI data of healthy 

and DM animals to assess the performance of our model in differentiating affected tissues.

2. Methods

All experimental procedures were conducted and performed in accordance with guidelines 

of National Institute of Health (NIH) for animal research under a protocol approved by the 

Institutional Animal Care and Use Committee of Henry Ford Hospital, and experimental 

guidelines of ARRIVE (items 8, 10 to 13). All experimental procedures were approved by 

the Institutional Animal Care Committee of Henry Ford Hospital.

Ten rats (5 healthy controls and 5 diabetics) were evaluated using a Contrast-Enhanced 

Magnetic Resonance Imaging (CE-MRI) protocol using Gd-DTPA contrast agent as 

described in our previous publications (Jiang et al., 2017). MRI measurements were 

performed with a 7T system (Bruker-Biospin, Billerica, MA, US). A birdcage type coil was 

used as the transmitter and a quardrature half-volume coil as the receiver. During MRI 

measurements, breathing of animals was monitored (Biopac Systems Inc., Goleta, CA, 

USA) and anesthesia was maintained using a gas mixture of N2O (70%) and O2 (30%) with 

1.0–1.5% isoflurane (Piramal Inc., Bethiehem, PA, US). Stereotactic ear bars were used to 

minimize head movement during the MRI scan for all rats, and rectal temperature of animals 

was maintained at 37±1.0°C using a feedback controlled air heating blower (Rapid Electric, 

Brewster, NY, US). T1-weighted images were acquired using a 7Tesla animal scanner with 

TR/TE=15/4ms and acquisition voxel size of 0.125×0.167×0.167 mm3 and reconstructed to 

0.125×0.125×0.17 mm3. A total of 80 μl of the paramagnetic contrast agent was delivered 
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intrathecally at an infusion rate of 1.6 μl per minute (total infusion time 50 min) by using a 

100μL syringe (Hamilton Robotics, Reno, NV, US) with an infusion pump (Harvard 

Apparatus, Holliston, MA, US). Up to 62 3D-T1-weighted volumes (in approximately every 

5 minutes) were acquired until 6 hours after intra-cisterna magna (ICM) contrast agent 

delivery.

This enables us to monitor the propagation profile of the tracer in the brain during the 

experiments. For each voxel, x, the intensity value at each time, Ix(t), is used to derive time 
signal curve (TSC) (Lee et al., 2015), representing the time profile of the tracer’s density.

TSCx(t) =
Ix(t) − Ix t0

Ix t0
(1)

in which t0 is any time before injection.

2.1. Preprocessing

Motion Correction and Brain Extraction—The animal’s brain can move drastically 

during our long (~6 hours) imaging experiments. Moreover, the T1 weighted images in this 

work include all non-brain tissues of the animal`s head, as shown in Fig. 1, which need to be 

masked in order to reduce the computational complexity of the subsequent processes. In 

addition, the deformation of the non-brain tissues during the experiment affects proper co-

registration of the volumes.

For each animal, we compensated for the head motion in two steps, before and after brain 

extraction to correct severe head motions and small brain motions, respectively. To assess 

the head motion, visually, we derived standard deviation (STD) map from the images. The 

value of each voxel in this map equals to the standard deviation of the values of this voxel in 

the T1-weighted volumes during the experiment, see Fig. 1. We chose the STD map because 

it can determine how much the brain has moved during the experiments by highlighting the 

boundaries.

In the first step, the whole head is corrected for motion using coarse co-registration 

algorithm (Friston et al., 2007). Then, we drew manually a mask on the STD map (as shown 

in Fig. 1, bottom row) so that the resulting mask should encompass the entire brain volume. 

Then, for each volume, the mask is refined to the brain boundaries using morphological 

operations in MATLAB. Next, the brain extracted volumes were compensated for the head 

motion, again.

For the motion correction steps, all the volumes were co-registered to the first time point 

volume using a coarse registration algorithm in SPM8 toolbox with normalized mutual 

information (NMI) cost function with trilinear interpolation (Friston et al., 2007). Also, we 

set the window size of spatial Gaussian smoothing to 4 mm. The average distance between 

sample points in the optimization iterations were chosen as 4, 2, and 1 mm in the first step, 

and as 4, 2, 1, 0.5, 0.25 mm in the second step of the motion correction.
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In Fig. 1, the resulting images of motion correction steps are shown for a typical case. Four 

time points, 0, 100, 200, and 300 minutes after injection are displayed, representing the 

accumulation and dissipation of the tracer during the experiment. Although the motion 

cannot be seen clearly using these images, the corresponding STD maps can show the level 

of brain motion. As it can be seen from the STD maps, the edges have become clearer after 

the motion correction steps.

Common Spatial Space—Moreover, to have the same spatial space for all animals, we 

selected one animal as the reference and aligned all the other animal’s images to it. To this 

end, we aligned the AVG maps (calculated by averaging all co-registered and brain extracted 

T1-weighted images) of each animal to the reference animal using an affine registration 

algorithm in SPM8 and used the resulting transformation function to move all the T1-

weighted volumes to the common space. Please note that we calculated the TSCs (equation 

(1)) in the common space for all animals.

2.2. Down-sampling and Clustering

To reduce the computational complexity, first, we down sampled all the volumes from 

256*256*96 to 128*128*48 images which resulted in the voxel size of 0.25*0.25*0.34 

mm^3. Then, we clustered the voxels of each brain into similar regions based on the 

propagation profile of the tracer during the experiment. This would also reduce the 

computations as well as reduce the effect of noise and uncorrected head motions.

For the similarity criterion used in the clustering, we chose the derivative of the TSCs 

instead of the actual signal curves in order to cluster the voxels based on the dynamics of 

tracers only. As an example, the plots of the TSCs and their derivatives of a typical case are 

shown in Fig. 2.

A hierarchical clustering scheme that employs a k-means clustering algorithm was used. In 

this scheme, first, the k-means clustering algorithm splits the whole voxels into two clusters. 

Then, it sequentially splits each of the resulting clusters into two new sub-clusters, if 1) the 

number of voxels of the cluster is bigger than 100, and 2) the within cluster inconsistency 
(WCI) is greater than 0.125. WCI for a cluster, cj, of Nj voxels, in which a voxel i has the 

derivative signal dj(i,n), n=1,…,T, is defined as

WCI j =
maxn = 1, …, Tstd d j(i, n), i = 1, …, N j
maxn = 1, …, Tstd d(i, n), i = 1, …, N (2)

in which T is the number of time points.

This procedure continue until there is no cluster that can be split anymore. Here, the k-

means clustering algorithm is based on the Euclidian distance between the absolute value of 

derivative signals of the voxels. After the clustering, the average TSCs of the voxels inside 

each cluster is assigned to that cluster.
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2.3. Scalar Maps

Having the time signal curves (TSC) for each cluster, we calculated three parameters that 

can help to understand the response of the glymphatic system to Gd-DTPA injection.

1. The arrival time, ta, which is defined as the time that the tracer arrives to each 

cluster region after the injection,

2. the infusion flow rate, (IR), defined as the slope of TSC of each cluster between 

arrival time, ta, and the time that TSC goes to its maximum value, tmax, and

3. the tracer residual, (Res), which is defined as the amount of Gd-DTPA tracer that 

remains in the tissues at the end of experiment.

We estimated the arrival time, ta, for each cluster from its time signal curve by finding the 

time point that the signal rises and keeps rising for at least three successive time points. The 

infusion flow rate was estimated using the following equation,

IR =
TSC tmax −  TSC ta

tmax − ta
, (3)

and the tracer residual was calculated by

Res% =
TSC tend − TSC ta

TSC tmax
× 100, (4)

in which TSC(ta) is actually equal to zero.

2.4. Kinetic Modeling

As suggested by (Lee et al., 2015) we used a two-compartment structure shown in Fig. 3 to 

model the GD-DTPA Changes in the glymphatic system. The differential equations 

describing this model are

dC1(t)
dt = K1Cp(t) − k2 + k3 C1(t) + k4C2(t) (5)

dC2(t)
dt = k3C1(t) − k4C2(t) (6)

which, Cp is the tracer concentration in the para-artery where the tracer diffuses to its 

adjacent tissues, C1 is the concentration of free tracers inside the tissue, and C2 is the 

concentration of bounded tracers. In the glymphatic system, the tracer concentration in the 

para-vascular spaces can be used to estimate Cp. K1 determines the scaling factor for the 
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concentration, k2 is the washout coefficient, and k2 and k3 are the binding coefficients 

between compartments 1 and 2.

Using Laplace transform, the solution for the differential equations (5) and (6) is

C(t) = C1(t) + C2(t) =
K1
2 (1 + A)e−(B + M)t + (1 − A)e−(B − M)t ∗ Cp(t) (7)

in which * represents mathematical convolution and

M = 1
2 k2 + k3 + k4

2 − 4k2k4 (8)

A =
k2 − k3 − k4

2M (9)

B =
k2 + k3 + k4

2 . (10)

Model Fitting—The model described in equation (7) has 4 unknown parameters K1, k2, k3 

and k4 which need to be estimated from the TSCs measured from the regions (clusters). In 

the model fitting process, the corresponding TSC of each region can be assumed as C(t), 
since it represents the concentration of all CA molecules in that region. However, estimating 

the plasma concentration or the CA concentration in the para-arteries is challenging because 

identifying the arteries from the images is difficult. In (Lee et al., 2015) the authors adopt a 

two compartment vascular permeability model and identified the subarachnoid cisterna 

magna (CM) space as the injection site for input function (IF) to estimate the glymphatic 

kinetic parameters of the whole brain. However, one of the leading sources of error in 

quantifying perfusion and permeability is the determination of the arterial input function 

(AIF) which becomes even more severe in the modeling of glymphatic system since the 

errors from IF delay and dispersion in the glymphatic system are much larger than in the 

vascular system. The AIF is determined by its location relative to the tissue concentration 

curve, and can either be classified as a global or regional AIF. The most common method 

uses a global AIF, typically located in the middle branch of the middle cerebral artery 

(MCA), which implies that a single AIF measurement is used voxel-wise over the entire 

brain. Consequently, AIF delay and dispersion may occur and has been shown to introduce 

substantial errors in cerebral blood flow (CBF), mean transit time (MTT), and permeability 

(Wu et al., 2003; Calamante et al., 2006; Ferreira et al., 2010; Calamante, 2013; Nejad-

Davarani et al., 2017a, b).
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In this work, benefiting from clustering the tissues based on the dynamic response of the 

tissues to the CA infusion, we defined an approach to find the local input function for each 

region which could provide a big advantage over the traditional global IF approach (Lee et 
al., 2015) to reduce errors in the modeling of glymphatic system. To this end, first, for each 

region (cluster), Rj, the neighboring regions, Rjk, k=1,…,Nj were found based on their 

shared boundaries. Then, three criteria were defined to find the cluster that drives that region 

(Rj) dominantly among those Nj neighbors,

max
k ∈ 1, …, N j

t0 jk |

t0 jk ≤ t0 j

ra jk ≥ ra j

tm jk ≤ tm j

(11)

These criteria are based on the arrival times, ta, the early infusion rates (defined as the slope 

of TSC early after ta), ra, and the time of maximum of the TSCs, tm.

Now, the TSC of the neighboring cluster (Rjk*) found from equation (11) is considered as 

the local input function Cp(t) for cluster j. In other words, the kinetic model for cluster j is 

written as:

TSC j(t) =
K1
2 (1 + A)e−(B + M)t + (1 − A)e−(B − M)t ∗ TSC jk*(t) (12)

with four unknown parameters.

Employing non-linear least square optimization tool in MATLAB (Release 2012b, The 

MathWorks, Inc., Natick, Massachusetts, United States), we estimated the unknown 

parameters for each cluster.

As suggested by (Lee et al., 2015), two quantities can be defined based on the estimated 

parameters of equation (12), retention and loss which are defined as,

retention =
k3
k4

(13)

loss  =
k2

1 +
k3
k4

(14)

‘Retention’ is assumed to characterize the fraction of the tracers that remain bonded with 

large molecules and thus can reduce the CSF movement speed. Thus, higher values of 

retention can demonstrate slower clearance of waste particles though the CSF. In addition, 
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‘loss’ measures the portion of particles that continue to flow through the glymphatic system 

by going back to the para-veins.

A simple way to characterize the glymphatic system is to estimate the clearance signature of 

the injected CA by fitting a one exponential model to the relaxing phase of the TSCs. The 

relaxing phase of a TSC starts from the time that the signal reached to its maximum and 

ends at the end of experiment. It was assumed that the contrast agent particles are clearing 

out from the glymphatic system during this time. Therefore, estimating the time constant 

from the relaxing phase of TSC may identify how well the glymphatic system clears the 

wastes. We estimated this parameter, τ, from the following one exponential model,

TSCrelax(t) = TSC tm . e
−

t − tm
τ , tm ≤ t (15)

2.5. Data and Code Availability

The MRI data used in this study may be shared on request from the corresponding author, Q. 

J. The data are not publicly available due to our ongoing research projects. The in house 

MATLAB codes used in this study are available on request from the corresponding author, 

Q. J.

3. Results

In this section, first we evaluate our proposed approach using artificial data. Then we apply 

the methods to model real data.

3.1. Simulation

To generate artificial data for evaluating the methods proposed in this work, we solved the 

equations (5) and (6) using finite difference method, numerically. To this end, first we 

generated an imaginary path for contrast agent distribution consisting of three parts as shown 

in Fig. 4A. Region 1 is assumed to be the para-vascular path. Regions 2 and 3 correspond to 

brain tissues with different kinetic specifications. We assumed one injection site (IS) to 

infuse the contrast agent to the brain and four drain holes (DH) to clear it from the brain, as 

shown in Fig. 4A. The imaginary contrast agent (CA) is assumed to infuse to the brain with 

a constant rate of 100 for 60 minutes. Then, the following differential equations were solved 

numerically to generate the artificial data.

C1(x, t + dt) = C1(x, t) + dt . K1
xCp(x, t) − k2

x + k3
x C1(x, t) + k4

xC2(x, t) (16)

C2(x, t + dt) = C2(x, t) + dt . k3
xC1(x, t) − k4

xC2(x, t) (17)
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Cp(x, t) = ∑y ∈ Nx
C1(y, t) (18)

Here, x represents the current voxel and its neighboring voxels are yϵNx. We assumed N-8 

adjacency for the neighbors. Time step, dt, was set to 0.01 minutes and in each step, 

equations (16) and (17) were updated, successively, until 360 minutes. We set the kinetic 

parameters for region 1 as K1=k2=400, k3=4, and k4=3.9 min−1, region 2 as K1=k2=100, 

k3=4, and k4=2 min−1, and region 3 as K1=k2=80, k3=4, and k4=0.8 min−1.

The resulting temporal profiles for C(t)=C1(t)+C2(t) are shown in Fig. 4 B,C, and D, for the 

regions 1, 2, and 3, respectively.

To have a ground truth data for the parameters, we estimated the parameters directly from 

the clean data without using the clustering method described in section 2.2. The ground truth 

maps for the parameters of ta, tmax, residual, and infusion rate are shown in Fig. 4 E, F, G, 

and H, respectively. It can be seen clearly how the imaginary contrast agent infuses through 

the different regions. It reaches to the voxels close to the infusion site (IS) sooner and clears 

out faster.

Next, to investigate the effect of noise on the methods used in this work, we added white 

Gaussian noise to the data with different signal to noise ratios (SNR) of 500, 200, 100, 80, 

50, and 30. The standard deviation of the Gaussian noise for each SNR value was calculated 

as m/SNR in which m is the average of the image intensities without any noise. In each 

experiment, we compared the resulting parameters, ta, tmax, infusion rate, residual, τ, loss, 

and retention, from the models with the ground truth parameters by calculating the mean 

absolute percentage error (MAPE),

MAPE = 1
N ∑i = 1

N Pi − Pl

Pl
× 100 (19)

in which Pi is the estimated parameter in voxel i, Pl is the corresponding ground truth value, 

and N is the number of voxels. In Fig. 5, the MAPE values for different parameters on 

different regions in different SNRs are shown.

In section 2.2 we stated that for the similarity criterion used in the clustering, we used the 

derivative of the TSCs instead of the actual signal curves in order to cluster the voxels based 

on the dynamics of tracers only. Here, we investigated the effect of using the derivative of 

the signal instead of the actual signal. The blue and red bins correspond to the MAPEs from 

using the actual TSCs and the derivative of the TSCs for the clustering, respectively. It can 

be seen from the Fig. 5 that the parameters are estimated with less errors if the derivative of 

the TSCs is used for the clustering. However, as the SNR goes down, the two methods show 

comparable errors.
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Moreover, it can be seen that arrival time, ta, is the most robust parameter to the noise and 

the infusion rate is the worst one. By comparing the MAPE of the estimated parameters in 

the three regions (see Fig 4.A), it can be seen that the estimated parameters have more errors 

in region 2 than the other two regions. As an example, the MAPE map of residual parameter 

for the SNR of 80 is shown in Fig. 5H. Here there is higher errors for the estimated 

parameters in the regions far from the infusion site. This is mainly due to the attenuation of 

the TSCs in these regions.

3.2. Real Data

We applied the aforementioned steps described in section 2 to process the MRIs of 5 healthy 

control and 5 DM animals and to fit the kinetic model proposed in section 2.4. In order to 

evaluate our proposed model, we also applied the kinetic model used in (Lee et al., 2015).

Our clustering algorithm described in section 2.2 resulted in 400 to 550 clusters for the 10 

individual data sets. The difference in the number of final clusters is caused by the difference 

between the brains and between the experiments. The number of clusters was not considered 

to affect fitting the model as long as it is 1) large enough so that small tissues that have 

distinctive different TSCs from their neighbors are not absorbed into other clusters, and 2) 

small enough to avoid high computational time.

The clustering maps for two typical cases (One healthy control and one DM animal) are 

shown in Fig. 6A and B in which different clusters are shown with different colors. Since 

each color represented a region with similar profile of CA concentration, a rough view of the 

path of the Gd-DTPA tracer may be seen on these images. The paths are supposed to be 

realized by connecting ‘vessel’ shaped clusters. Moreover, deep tissues where the tracer did 

not reach to had been aggregated in bigger clusters, as we expected. The corresponding 

scalar maps for these cases are shown in Fig. 6C, D, E, F, G, and H as well.

By comparing the arrival time (ta) maps shown in Fig. 6C and D, it can be seen that the 

tracer took longer to reach to the anterior-frontal para-vascular spaces in the DM animal; 

suggesting lower bulk speed of CSF in the para-vasculatures. However, based on Fig. 6E and 

F, the infusion rate patterns appeared similar for animals in both groups but with higher rate 

in the inferior paravascular path of the DM animal. These two findings seem to be 

contradictory, however, this can be caused by higher para-vascular spaces in the DM animal 

(Jiang et al., 2017), so that although the infusion rate is high, the tracer particles need more 

time to fill out the space and move forward to the next location.

Fig. 6G and H also show that much higher amount of the tracer remains in the DM brain. 

These data are in agreement with our previous findings (Jiang et al., 2017) that reported the 

waste clearance system of the brain is reduced in DM brain.

We fitted the model proposed in section 2.4 to each animal’s data i.e., the TSCs of the 

clusters. In Fig. 7 the resulting estimated parameters of the two models (one-exponential and 

two-compartment kinetic models with local input function) for one typical healthy control 

and one typical DM animal are shown for visual comparison which demonstrates the 

differences of the maps for the two animals.
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To have a quantitative comparison between our proposed model, one-exponential model, and 

two-compartment kinetic model used by (Lee et al., 2015), the boxplots of their estimated 

parameters from five healthy and five DM animals are shown in Fig. 8. For each parameter, 

a two sample t-test with the hypothesis that if the mean values of that parameter for the two 

groups are equal was performed and the resulting p-value is displayed on each plot.

It can be seen that in the DM animals: 1) the clearance time constant, τ, calculated from one-

exponential model is increased (p-value=0.012), 2) the retention and loss parameters 

estimated from the two-compartment kinetic model used by (Lee et al., 2015) with global IF 

are increased (p-value=0.151) and decreased (p-value=0.027), respectively, and 3) the 

retention and loss parameters estimated from our proposed the two-compartment kinetic 

model are increased (p-value=0.031) and decreased (p-value=0.005), respectively, compared 

with healthy control animals.

These data are consistent with previous findings that suggest the waste clearance is slower in 

diabetic brain (Jiang et al., 2017). The higher values of retention parameter in many regions 

in diabetic brain, (Fig. 7C and D), may suggest that more numbers of large molecules remain 

bound in a diabetic brain. In addition, lower values of loss parameter, especially in deep 

tissues of the diabetic brain, may suggest that reduced numbers of large molecules circulate 

back to (are absorbed by) the glymphatic system in the DM brain (Fig. 7E and F).

The high retention values seen in the top central region of the control brain (Fig. 7C) may be 

caused by low concentration of CA. As suggested by Fig. 6C, small amounts of CA reached 

to the top central region which is mainly due to the quick clearance of CA from the regions 

around the para-vasculature in the control rats. Low CA concentration could also extend the 

clearance time in this region (as seen in Fig. 8A).

Compared with the method used by (Lee et al., 2015), our proposed method evidently 

differentiates the glymphatic system of the healthy and diseased animals. This has been 

mainly achieved by the capability of our proposed approach to modeling the local CA 

dynamics from the target and neighboring regions. Moreover, another important superiority 

of the proposed method is that it provides quantitative maps which can be used to unveil the 

characteristics of glymphatic system in different parts of brain.

4. Discussion

In this work, by modeling the dynamic of the tracer movement through the glymphatic path, 

we developed an approach to quantitatively model the glymphatic system. Using a CE-MRI 

protocol with Gd-DTPA contrast agent, the time signal curves (TSCs) representing the CA 

density in each region were analyzed using cluster analysis.

We propose an approach to fit a two-compartment kinetic model with local input function to 

the TSCs of the clusters in order to derive quantitative maps representing the dynamics of 

the glymphatic system. Compared to previous models (one-exponential and two-

compartment kinetic model with global input function), the proposed model generates more 

distinctive measures between two groups of healthy and DM animals. The resulting maps 

show increased binding and decreased loss of tracers in a diabetic brain.
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One of the important contributions of this work was to fit the model using the local input 

function rather than global input function and thereby to reduce errors. For long time, it was 

a major challenge to reduce the leading sources of error induced by arterial input function 

(AIF) in quantifying cerebral perfusion and permeability. Due to its convenience, current 

cerebral perfusion and permeability analysis is still dominated by global AIF. Global AIF 

may produce two major errors resulting from AIF delay and dispersion. Delay is defined as 

the delay in arrival time between the AIF and tissue concentration curve, whereas dispersion 

is the consequence of the contrast bolus becoming dispersed over time. Although the major 

error from global AIF in the cerebral perfusion and permeability analysis has been 

recognized for more than decade, it has not been fully resolved. Here, we have shown 

promising results when applying a novel model of the brain vascular system based on laws 

of fluid dynamics and vascular morphology to address the dispersion and delay of the AIF 

and to estimate the local AIF in perfusion and permeability analysis (Nejad-Davarani et al., 
2017a, b). The global IF delay and dispersion for the glymphatic system are much larger and 

could cause more error than that for the vascular system. In the current study, we tested a 

new cluster analysis approach to obtain the local IF. By direct comparison with the global IF 

model, our local IF modeling data exhibited tighter data distribution with higher statistical 

significance between DM and control groups (Fig. 8). Our results demonstrate that the 

glymphatic model with local IF may be a useful tool for obtaining more accurate estimation 

of parameters in glymphatic system studies.

Another advantage of the proposed method is that it provides quantitative maps of the 

dynamics of the CA distribution into the brain’s para-vascular system. These maps can be 

used to compare the characteristics of glymphatic system in different regions of brain. 

Moreover, our quantitative maps of glymphatic system may be used for optimizing 

experimental parameters such as CA dose, imaging intervals, imaging duration, etc. For 

example, many regions will receive little amount of CA if insufficient doses of CA is 

applied. This can make the experiment worthless, especially if the interested region for 

investigation is within these areas. The imaging duration can be adjusted based on the 

residual and relaxation time constant, and it should be long enough so that the CA has 

started clearing out from the interested regions.

Several factors could affect modeling of glymphatic system, especially the relative large 

volume injection of contrast agent. The large injection volume may increase the intracranial 

pressure (ICP) and disturb the regular CSF flow, which may affect glymphatic influx and 

efflux patterns, and lead to pathophysiological complications and erroneous information. 

Previous studies demonstrated that an increase in ICP of about 2.5mmHg, a 50% increase 

from the baseline of 5.0mmHg, was observed with a rate of 2.0μL/min infusion in mice, 

although it did not cause reflux of subarachnoid CSF back into the ventricular CSF 

compartments, which suggested that the physiological direction of CSF bulk flow is 

maintained (Kress et al., 2014). In rat, ICP was slightly increased, approximately 6.3% from 

baseline of 4.8mmHg to 5.1mmHg with the infusion rate of 3.0μL/min, and no ICP changes 

were observed with an infusion rate of 0.34μL/min (Bedussi et al., 2017). We have 

performed MRI studies to investigate the response of the glymphatic system to the rate of 

infusion of Gd-DTPA (Ding et al., 2018). We found that infusion rate of 2.92μL/min induced 

an evident accumulation of tracer in the fourth ventricle near the cisterna magna and the rate 
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1.6μL/min does not cause this kind of tracer accumulation (Ding et al., 2018). All of current 

MRI investigations of glymphatic system employed relatively large volume contrast agent 

due to the relatively low sensitivity of MRI compared with two photo imaging (Iliff et al., 
2013a; Lee et al., 2015; Ratner et al., 2017; Lee et al., 2018). However, MRI has great 

potential for translating its markers into clinic over two-photon laser scanning microcopy 

which is invasive and not suitable for whole brain study, especially deep brain tissues.

CSF-ISF impairment after diabetes may be associated with numerous complications 

including vascular dysfunction, loss of paravascular aquaporin-4 (AQP4) immunoreactivity, 

oxidative stress, neurotoxicity, defects in neural insulin and amyloid metabolism, etc (Qiu et 
al., 2014; Jiang et al., 2017). A common factor among all of these diabetes related 

pathologies is their association with both micro-and macro-vascular changes that develop 

throughout the progression of the disease and that irreparable damage often occurs before 

symptoms of the disease are recognizable (Qiu et al., 2014; Mayeda et al., 2015). Our study 

of the same animal model of diabetes showed the presence of patched micro-thrombosis and 

BBB leakages assayed by vascular and parenchymal fibrin deposition mainly in the 

hippocampus of diabetic rats (Jiang et al., 2017). Moreover, double immunofluorescent 

staining shows the presence of diffuse activated-astrocytes in areas with micro-thrombosis 

and BBB leakage in the hippocampus of DM rats, which was accompanied with substantial 

loss of paravascular AQP4 immunoreactivity (Jiang et al., 2017). Our results are consistent 

with published studies by others showing that astroglial AQP4 water channel is expressed in 

a highly polarized manner in paravascular astrocytic end-feet and micro-ischemia induces 

AQP4 de-polarization (Nielsen et al., 1997; Amiry-Moghaddam et al., 2004; Alvestad et al., 
2013). Previous studies has demonstrated that AQP4 plays important role on glymphatic 

system (Iliff et al., 2012; Kress et al., 2014; Benveniste et al., 2018). An important 

neuropathological mechanism in the diabetic brain is the accumulation of misaggregated 

proteins, including senile plaques comprised of amyloid-β (Aβ) (Szeman et al., 2012; 

Prasad et al., 2014). Previous studies have demonstrated that the glymphatic system 

regulates the clearance of Aβ (Iliff et al., 2012). Patients with T2DM who developed AD 

exhibited extensive accumulation of Aβ and neuritic plaques (Janson et al., 2004). 

Experimental studies show that diabetes induced by high-fat and/or sugar diet (HFD) leads 

to Aβ accumulation in the brain (Ho et al., 2004; Cao et al., 2007; Yang et al., 2013; Mehla 

et al., 2014). Recent epidemiological studies indicate that diabetes significantly increases the 

risk of developing Alzheimer Disease (AD), suggesting that diabetes may play a causative 

role in the development of AD pathogenesis (Baglietto-Vargas et al., 2016). It is likely that 

the impairment of the glymphatic system and associated accumulation of molecular waste in 

the paravascular space activate a cascade of inflammatory responses that lead to 

neurovascular disruption, including the increase of the paravascular space, a pathological 

feature in DM brain (Wuerfel et al., 2008). In this work, using kinetic modeling of contrast 

agent distribution through the paravascular spaces, for the first time, we introduce five 

different quantitative maps for the glymphatic system which can reveal an overall view of 

the circulation paths of the glymphatic system, as shown in Fig. 6 and Fig. 7. The 

accumulation of the CA in the diabetic brains in these maps is a non-invasive evidence of the 

waste accumulation in diabetes. A similar methodology may be employed for investigation 

of other brain diseases.
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In this work, we clustered the voxels into large regions in order to increase signal to noise as 

well as to decrease the computational complexity. This may cause loss of small paths or 

small regions from analysis if they are incorporated into their big neighboring clusters. 

Deriving detailed maps that can show the narrow paths of the glymphatic system may 

require additional complex complicated models along with a well-planned experiment with 

optimized dose and imaging parameters.

Acknowledgments

Funding

This work was financially supported by NIH R21 AG052735, RO1 NS097747, and RF1 AG057494.

Abbreviations

DM diabetes mellitus

CA contrast agent

TSC time signal curve

IF input function

6. References

Alvestad S, Hammer J, Hoddevik EH, Skare O, Sonnewald U, Amiry-Moghaddam M, et al. 
Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy. 
Epilepsy Res 2013; 105(1–2): 30–41. [PubMed: 23357720] 

Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, Agre P, et al. Alpha-syntrophin 
deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier 
and delays the development of brain edema in an experimental model of acute hyponatremia. 
FASEB journal : official publication of the Federation of American Societies for Experimental 
Biology 2004; 18(3): 542–4. [PubMed: 14734638] 

Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease 
crosstalk. Neuroscience and biobehavioral reviews 2016; 64: 272–87. [PubMed: 26969101] 

Bedussi B, Naessens DMP, de Vos J, Olde Engberink R, Wilhelmus MMM, Richard E, et al. Enhanced 
interstitial fluid drainage in the hippocampus of spontaneously hypertensive rats. Scientific reports 
2017; 7(1): 744. [PubMed: 28389645] 

Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The Glymphatic System and Waste 
Clearance with Brain Aging: A Review. Gerontology 2018: 1–14.

Calamante F Arterial input function in perfusion MRI: a comprehensive review. Progress in nuclear 
magnetic resonance spectroscopy 2013; 74: 1–32. [PubMed: 24083460] 

Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: 
implications for tissue predictor models in stroke. Magnetic resonance in medicine : official journal 
of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 
2006; 55(5): 1180–5.

Cao D, Lu H, Lewis TL, Li L. Intake of sucrose-sweetened water induces insulin resistance and 
exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. 
The Journal of biological chemistry 2007; 282(50): 36275–82. [PubMed: 17942401] 

CDC&P. National diabetes fact sheet: General information and national estimates on diabetes in the 
united states. 2011.

Davoodi-Bojd et al. Page 15

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ding G, Chopp M, Li L, Zhang L, Davoodi-Bojd E, Li Q, et al. MRI investigation of glymphatic 
responses to Gd-DTPA infusion rates. Journal of neuroscience research 2018; 96(12): 1876–86. 
[PubMed: 30272825] 

Ferreira RM, Lev MH, Goldmakher GV, Kamalian S, Schaefer PW, Furie KL, et al. Arterial input 
function placement for accurate CT perfusion map construction in acute stroke. AJR Am J 
Roentgenol 2010; 194(5): 1330–6. [PubMed: 20410422] 

Friston K, Ashburner J, Kiebel S, Nichols T, Penny W. Statistical Parametric Mapping - The Analysis 
of Functional Brain Images: Elsevier; 2007.

Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, et al. Impaired 
glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for 
fibrinolysis? Stroke; a journal of cerebral circulation 2014; 45(10): 3092–6.

Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, et al. Diet-induced insulin resistance promotes 
amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB journal : official 
publication of the Federation of American Societies for Experimental Biology 2004; 18(7): 902–4. 
[PubMed: 15033922] 

Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance 
captured by contrast-enhanced MRI. The Journal of clinical investigation 2013a; 123(3): 1299–
309. [PubMed: 23434588] 

Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates 
CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid 
beta. Science translational medicine 2012; 4(147): 147ra11.

Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, et al. Cerebral arterial pulsation 
drives paravascular CSF-interstitial fluid exchange in the murine brain. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 2013b; 33(46): 18190–9. 
[PubMed: 24227727] 

Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in 
Alzheimer disease. Diabetes 2004; 53(2): 474–81. [PubMed: 14747300] 

Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. 
Neurochem Res 2015; 40(12): 2583–99. [PubMed: 25947369] 

Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, et al. Impairment of the glymphatic system 
after diabetes. J Cereb Blood Flow Metab 2017; 37(4): 1326–37. [PubMed: 27306755] 

Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance 
pathways in the aging brain. Ann Neurol 2014; 76(6): 845–61. [PubMed: 25204284] 

Kyrtsos CR, Baras JS. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel 
Properties in Alzheimer’s Disease Pathogenesis. PloS one 2015; 10(10): e0139574. [PubMed: 
26448331] 

Lee H, Mortensen K, Sanggaard S, Koch P, Brunner H, Quistorff B, et al. Quantitative Gd-DOTA 
uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T. Magnetic resonance in 
medicine : official journal of the Society of Magnetic Resonance in Medicine /Society of Magnetic 
Resonance in Medicine 2018; 79(3): 1568–78.

Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The Effect of Body Posture on Brain Glymphatic 
Transport. The Journal of neuroscience : the official journal of the Society for Neuroscience 2015; 
35(31): 11034–44. [PubMed: 26245965] 

Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and 
relationships of the glymphatic system and meningeal lymphatics. The Journal of clinical 
investigation 2017; 127(9): 3210–9. [PubMed: 28862640] 

Mayeda ER, Whitmer RA, Yaffe K. Diabetes and cognition. Clinics in geriatric medicine 2015; 31(1): 
101–15, ix. [PubMed: 25453304] 

Mehla J, Chauhan BC, Chauhan NB. Experimental induction of type 2 diabetes in aging-accelerated 
mice triggered Alzheimer-like pathology and memory deficits. Journal of Alzheimer’s disease : 
JAD 2014; 39(1): 145–62. [PubMed: 24121970] 

Nejad-Davarani SP, Bagher-Ebadian H, Ewing JR, Noll DC, Mikkelsen T, Chopp M, et al. An 
extended vascular model for less biased estimation of permeability parameters in DCE-T1 images. 
NMR in biomedicine 2017a; 30(6).

Davoodi-Bojd et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nejad-Davarani SP, Bagher-Ebadian H, Ewing JR, Noll DC, Mikkelsen T, Chopp M, et al. A 
parametric model of the brain vascular system for estimation of the arterial input function (AIF) at 
the tissue level. NMR in biomedicine 2017b; 30(5).

Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized 
membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of 
aquaporin-4 in rat brain. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 1997; 17(1): 171–80. [PubMed: 8987746] 

Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of traumatic injury are 
transported from brain to blood via the glymphatic system. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 2015; 35(2): 518–26.

Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An 
Overview. Journal of pharmacovigilance 2014; 2(2): 125. [PubMed: 25632404] 

Qiu C, Sigurdsson S, Zhang Q, Jonsdottir MK, Kjartansson O, Eiriksdottir G, et al. Diabetes, markers 
of brain pathology and cognitive function: the Age, Gene/Environment Susceptibility-Reykjavik 
Study. Ann Neurol 2014; 75(1): 138–46. [PubMed: 24243491] 

Ramirez J, Berezuk C, McNeely AA, Gao F, McLaurin J, Black SE. Imaging the Perivascular Space as 
a Potential Biomarker of Neurovascular and Neurodegenerative Diseases. Cellular and molecular 
neurobiology 2016; 36(2): 289–99. [PubMed: 26993511] 

Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, et al. Paravascular 
microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Scientific 
reports 2013; 3: 2582. [PubMed: 24002448] 

Ratner V, Gao Y, Lee H, Elkin R, Nedergaard M, Benveniste H, et al. Cerebrospinal and interstitial 
fluid transport via the glymphatic pathway modeled by optimal mass transport. NeuroImage 2017; 
152: 530–7. [PubMed: 28323163] 

Ratner V, Zhu L, Kolesov I, Nedergaard M, Benveniste H, Tannenbaum A. Optimal-mass-transfer-
based estimation of glymphatic transport in living brain. Proceedings of SPIE--the International 
Society for Optical Engineering 2015; 9413.

Saczynski JS, Siggurdsson S, Jonsson PV, Eiriksdottir G, Olafsdottir E, Kjartansson O, et al. Glycemic 
status and brain injury in older individuals: the age gene/environment susceptibility-Reykjavik 
study. Diabetes care 2009; 32(9): 1608–13. [PubMed: 19509008] 

Szeman B, Nagy G, Varga T, Veres-Szekely A, Sasvari M, Fitala D, et al. [Changes in cognitive 
function in patients with diabetes mellitus]. Orvosi hetilap 2012; 153(9): 323–9. [PubMed: 
22348847] 

Venkat P, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and 
metabolism in the brain. Croatian medical journal 2016; 57(3): 223–8. [PubMed: 27374823] 

Wostyn P, Van Dam D, Audenaert K, Killer HE, De Deyn PP, De Groot V. A new glaucoma 
hypothesis: a role of glymphatic system dysfunction. Fluids and barriers of the CNS 2015; 12: 16. 
[PubMed: 26118970] 

Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-
insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value 
decomposition with a block-circulant deconvolution matrix. Magnetic resonance in medicine : 
official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic 
Resonance in Medicine 2003; 50(1): 164–74.

Wuerfel J, Haertle M, Waiczies H, Tysiak E, Bechmann I, Wernecke KD, et al. Perivascular spaces--
MRI marker of inflammatory activity in the brain? Brain : a journal of neurology 2008; 131(Pt 9): 
2332–40. [PubMed: 18676439] 

Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from 
the adult brain. Science 2013; 342(6156): 373–7. [PubMed: 24136970] 

Yang HT, Sheen YJ, Kao CD, Chang CA, Hu YC, Lin JL. Association between the characteristics of 
metabolic syndrome and Alzheimer’s disease. Metabolic brain disease 2013; 28(4): 597–604. 
[PubMed: 23644927] 

Davoodi-Bojd et al. Page 17

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Mathematical modeling of glymphatic system using local input function

• Map the glymphatic system pathways

• Derive kinetic parameters of the glymphatic system

• Provide quantitative maps of the structure and function of this system

• The developed maps are sensitive to diabetic induce brain changes
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Figure 1. Illustration of motion correction steps for a typical case.
Four time points, 0, 100, 200, and 300 minutes after injection are displayed, representing the 

accumulation and dissipation of the tracer during the experiment. Although the motion 

cannot be seen clearly using these images, the corresponding STD maps can show the level 

of brain motion. As it can be seen from the STD maps, the edges have become clearer after 

the motion correction steps.
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Figure 2. Illustration of signal change during the experiment of a typical case.
100 voxels were randomly selected and their intensity values on the T1-weighted images are 

plotted in (A). (B) The corresponding time signal curves (TSCs), calculated using equation 

(1). (C) The derivative signals of (B).
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Figure 3. 
Two compartment kinetic modeling of glymphatic paravascular CSF-ISF exchange.
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Figure 4. Generating artificial data.
(A) An imaginary path for contrast agent distribution consisting of three regions (region 1 : 

orange, region 2 : green, and region 3 : blue) and one infusion site (IS) and four drain holes 

(DM). The resulting temporal profiles for CA density in (B) region 1, (C) region 2, and (D) 

region 3. The resulting ground truth maps for the parameters (E) ta, (F) tmax, (G) residual, 

and (H) infusion rate.

Davoodi-Bojd et al. Page 22

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The mean absolute percentage error (MAPE) values for different parameters on 
different regions in different SNRs.
The blue and red bins correspond to the MAPEs from using the actual TSCs and the 

derivative of the TSCs for the clustering, respectively. For each SNR, the MAPE values are 

calculated on the three regions shown in Fig 4.A. (H) represents the MAPE map of residual 

parameter for the SNR of 80. Higher errors for the estimated parameters in the regions far 

from the infusion site is mainly due to the attenuation of the TSCs in these regions.
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Figure 6. Resulting clustering maps and their corresponding scalar maps for one healthy control 
and one DM animal.
First row (A and B) shows the resulted clusters colored with random color-maps. Deep 

tissues are seen in big clusters because of weak infusion of the tracer to them. Second row 

(C and D) corresponds to arrival time (ta) maps colored with cold and hot colors. The colder 

the color, the longer time the tracer arrives to the region. Lower bulk speed of CSF in the 

para-vasculatures of DM animal can be seen. Third row (E and F) shows the infusion rate 

maps with hot and cold color-maps. The hotter the color, the higher the infusion rate. These 

maps suggest higher infusion rate in the inferior para-vascular pathways of the DM animal. 

Forth row (G and H) corresponds to the contrast agent residual, Res. The hotter the color, 

the more amount of the CA remains at the end of experiment. Significant amount of Gd-

DPTA has remained in the DM animal brain.
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Figure 7. The resulting maps of quantitative modeling the glymphatic system for one healthy 
control and one DM animal.
First row (A and B) shows the clearance time constant, τ (minutes), resulted from one 

exponential model (equation 15). The longer time constant, the slower clearance of the CA 

from the tissue. The retention maps (equation 13) (C and D) and the loss maps (equation 14) 

(E and F) are estimated from the proposed two-compartment kinetic model shown in Fig. 3. 

The high retention values seen in the top central region of the control brain may be caused 

by low concentration of CA.
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Figure 8. Boxplot representation of the estimated parameters.
(A) one-exponential, (B) two-compartment kinetic, and (C) proposed modified two-

compartment kinetic models. The rectangles and circles show the median and mean values, 

respectively. For each parameter, a two sample t-test with the hypothesis that if the mean 

values of that parameter for the two groups are equal was performed and the resulted p-value 

is displayed on each plot. It can be seen that the estimated parameters from our proposed 

model discriminate the DM and control animals more significantly.
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