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Abstract

Diffusion spectrum MRI (DSI) provides model-free estimation of the diffusion ensemble average 

propagator (EAP) and orientation distribution function (ODF) but requires the diffusion data to be 

acquired on a Cartesian q-space grid. Multi-shell diffusion acquisitions are more flexible and more 

commonly acquired but have, thus far, only been compatible with model-based analysis methods. 

Here, we propose a generalized DSI (GDSI) framework to recover the EAP from multishell 

diffusion MRI data. The proposed GDSI approach corrects for q-space sampling density non-

uniformity using a fast geometrical approach. The EAP is directly calculated in a preferable 

coordinate system by multiplying the sampling density corrected q-space signals by a discrete 

Fourier transform matrix, without any need for gridding. The EAP is demonstrated as a way to 

map diffusion patterns in brain regions such as the thalamus, cortex and brainstem where the tissue 

microstructure is not as well characterized as in white matter. Scalar metrics such as the zero 

displacement probability and displacement distances at different fractions of the zero displacement 

probability were computed from the recovered EAP to characterize the diffusion pattern within 

each voxel. The probability averaged across directions at a specific displacement distance provides 

a diffusion property based image contrast that clearly differentiates tissue types. The displacement 

distance at the first zero crossing of the EAP averaged across directions orthogonal to the primary 
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fiber orientation in the corpus callosum is found to be larger in the body (5.65±0.09 μm) than in 

the genu (5.55±0.15 μm) and splenium (5.4±0.15 μm) of the corpus callosum, which corresponds 

well to prior histological studies. The EAP also provides model-free representations of angular 

structure such as the diffusion ODF, which allows estimation and comparison of fiber orientations 

from both the model-free and model-based methods on the same multi-shell data. For the model-

free methods, detection of crossing fibers is found to be strongly dependent on the maximum b-

value and less sensitive compared to the model-based methods. In conclusion, our study provides a 

generalized DSI approach that allows flexible reconstruction of the diffusion EAP and ODF from 

multi-shell diffusion data and data acquired with other sampling patterns.
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Multi-shell acquisition; q-space imaging; diffusion spectrum imaging; ensemble average 
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Introduction

Q-space diffusion magnetic resonance imaging (QSI) provides model-free estimation of the 

diffusion ensemble average propagator (EAP, also known as spin displacement probability 

density function and diffusion spectrum) and diffusion orientation distribution function 

(ODF) only relying on a Fourier relationship between the attenuated echo signal in q-space 

and the EAP. In the 1960s, Stejskal and Tanner formulated the pulsed gradient spin echo 

(PGSE) nuclear magnetic resonance (NMR) experiment using the propagator language that 

Einstein used to formulate Fick’s Law (1, 2). Stejskal and Tanner also proposed to recover 

the propagator of non-Gaussian diffusion and flow by taking a Fourier transform of signals 

measured by varying pulsed gradient direction and strength (3). To simplify the initial 

formalism, Kärger and Heink later introduced the concept of the EAP (4), which denotes the 

ensemble probability that spins at any starting position in a heterogeneous system displace 

by a certain displacement. In the 1980s, the PGSE NMR experiment was extended to MRI 

(5, 6). Callaghan then recast Stejskal and Tanner’s formalism in terms of the wave vector, q 
(7), and proposed the concept of q-space, in analogy to k-space (8, 9). It was not until the 

mid-1990s that QSI was introduced to study the central nervous system (10, 11). In the early 

2000s, Assaf and Cohen conducted a series of QSI studies (12) to infer the neuronal 

structure of bovine optic nerve (13, 14), rat brain (14) and spinal cord (15), and in vivo 
human brain (16, 17) from the EAP. Around the same time, Wedeen utilized QSI to delineate 

intra-voxel crossing fibers (known as diffusion spectrum imaging (DSI) (18-20)) for tracking 

white matter fiber pathways (i.e. tractography) in the in vivo human brain (21, 22) and 

proposed a new theory regarding the fundamental geometric structure of hemispheric fiber 

pathways (23). One limitation of DSI is that it only recovers the EAP and the diffusion ODF 

from q-space data acquired on a 3-dimension (3D) Cartesian grid. Here, we generalize the 

Cartesian DSI method by proposing a flexible framework that is also compatible with non-

Cartesian (e.g. multi-shell) q-space data.
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Even though the ODF is of great interest for tractography purposes, the EAP provides 

additional information of the tissue microstructure beyond fiber orientations. The EAP was 

found to be sensitive to the degree of myelination (24), and used to study spinal cord 

maturation (15) and degeneration (25) in the rat. In addition, the EAP may be used to 

characterize age-related white matter (WM) demyelination in healthy populations (26), 

differentiate lesions from normal appearing white matter and normal tissue in patients with 

multiple sclerosis (16, 17, 27), and detect remyelination within the multiple sclerosis lesions 

(24, 28). The EAP has also been used to map spinal cord diameter in an ex vivo rat (29, 30) 

and in vivo human axon diameters (31, 32). The various metrics derived from the EAP to 

characterize tissue microstructure properties include retum-to-origin probability (or zero 

displacement probability) (12, 33-35), displacement distance at half maximum (12), kurtosis 

(24), mean-squared displacement (5, 12, 33), and fiber population dispersion (36), etc.

While model-based methods have several advantages, a model-free approach for recovering 

the EAP provided by DSI can be particularly valuable for studying brain regions where the 

tissue microstructure is not as well characterized as in white matter, such as in gray matter 

(GM), demyelinating lesion (16, 17, 24, 27, 28), hemorrhagic lesion (37, 38), or a tumor (39, 

40). A model-free approach could also be valuable for diffusion measurements outside the 

brain (e.g. muscle (41-43)) or even potentially for studying vasculature (44).

Unfortunately, the use of DSI’s Fourier relationship between the q-space signal and the EAP 

(Eq. 1) demands performing the Fast Fourier Transform (FFT) of q-space samples acquired 

on a 3D Cartesian grid (e.g. 11×11×11 Cartesian grid with corners removed). The Cartesian 

sampling proposes several problems. Most importantly, the prescribed Cartesian q-space 

samples no longer locate on a strict Cartesian grid after the b-value and b-vector are 

corrected to account for gradient nonlinearity and subject motion (45-47), which decreases 

the accuracy of the FFT. Further, the Cartesian sampling is not optimal with many other 

analysis methods, such as diffusion tensor imaging (DTI) (48, 49), neurite orientation 

dispersion and density imaging (50) and the constrained spherical deconvolution (CSD) 

(51-53). In addition, the Cartesian diffusion data requires specialized data pre-processing. 

For example, the widely used “eddy” function (54) from the FMRIB Software Library (FSL) 

(55, 56) for eddy current correction and co-registration cannot process Cartesian data. The 

other problem with the Cartesian sampling is that the recovered EAP via the FFT also 

locates on a Cartesian grid, which is challenging to visualize and analyze (57). Last, the 

availability of Cartesian sampling protocols is limited on clinical MRI scanners.

Multi-shell q-space sampling has become the new standard for data acquisition. Some of the 

benefits of multi-shell sampling include the: (1) uniform angular resolution; (2) flexible 

sampling pattern and scan time (i.e. the number shells, and the b-value and the number of 

directions on each shell); (3) high compatibility with other processing and analysis methods; 

(4) capability to recover the EAP given sufficient sampling coverage, and (5) widely 

available protocols on clinical MRI scanners. Consequently, the multi-shell sampling 

scheme has been adopted by the MGH-USC (58-60) and WU-Minn-Ox (61-63) Human 

Connectome Project (HCP) to acquire gold standard diffusion data on a large population. 

Many widely used analysis methods which were originally proposed for single-shell 

diffusion data, such as q-ball imaging (QBI) (64-66), CSD and Bayesian estimation of 
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diffusion parameters obtained using sampling techniques for modeling crossing fibers 

(BEDPOSTX) (67), are now also compatible with multi-shell data.

Most EAP reconstruction methods using multi-shell data are based on DSI’s Fourier 

relationship, but impose a q-space signal model, relinquishing the benefits that arise due to 

DSI being model-free. For example, the diffusion orientation transform (DOT) method (68, 

69) assumes Gaussian diffusion. Alternatively, the multiple q-shell diffusion propagator 

imaging (mq-DPI) method (35, 70) models q-space signals as the solution of a Laplace 

equation in spherical coordinates. The Bessel Fourier orientation reconstruction (BFOR) 

(71) models q-space signals using the heat equation. The spherical polar Fourier imaging 

(SPFI) (72) method models q-space signals in terms of Gaussian-Laguerre polynomials. The 

mean apparent propagator (MAP)-MRI (73) method models q-space signals in terms of 

Hermite polynomials. For each approach, the accuracy and robustness to noise of the 

imposed model needs to be evaluated comprehensively for different microstructural 

configurations and q-space sampling schemes (e.g. maximum b-value).

Compared to the abundance of the model-based methods described above, there are very few 

model-free methods for reconstructing the EAP from multi-shell data. In hybrid diffusion 

imaging (HYDI), the multi-shell q-space samples are gridded to a Cartesian lattice (similar 

to k-space gridding (74)) for a FFT-based DSI reconstruction (75). The HYDI method has 

been used to directly compute EAP measures such as the zero displacement probability, 

mean-squared displacement and diffusion ODF but does not provide a complete solution of 

the EAP (33). The optimal way for gridding the q-space data has not been investigated. 

Further, the gridding process is also computationally expensive. Generalized q-sampling 

imaging (GQI) provides model-free diffusion ODF (76, 77) and has been applied to multi-

shell radial q-space samples (78, 79). GQI, however, does not reconstruct the EAP.

In the current study, we developed a generalized DSI (GDSI) framework that is compatible 

with both Cartesian and non-Cartesian q-space diffusion MRI data. GDSI recovers the EAP 

in a preferable arbitrary coordinate system using the Discrete Fourier Transform (DFT). 

Scalar metrics such as zero displacement probability and displacement distance at half 

maximum can be easily computed from GDSI’s EAP and are shown useful to characterize 

the diffusion process in different tissue types. Using GDSI’s matrix formalism, the 

contribution and combination of q-space signals to the diffusion ODF is elucidated. The 

fiber crossing angles estimated by model-free and model-based methods are depicted. GDSI 

is tested on multiple different types of multishell datasets including those from the HCP.

Theory

In DSI, the EAP P(r) is recovered from the Fourier transform of the normalized q-space 

signal S(q) (7, 80-82) as:

P(r) = ℱ(S(q)) = ∫ ∫ ∫
q ∈ ℝ3S(q)e−2πiq ⋅ rdq (1)
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ℱ denotes the Fourier transform, r is the 3D spatial vector describing a spin displacement 

(ru, with r=∣r∣ the displacement distance and unit vector u the displacement direction), q is 

the gradient wave vector (or q-space points) describing the diffusion-encoding scheme (qv, 

with q=∣q∣ the encoding strength and unit vector v the encoding direction), q is proportional 

to the product of the strength and duration of a rectangle diffusion-encoding gradient, and 

proportional to the square root of b-value (Eq. A2).

As S(q) is real and symmetric and P(r) is real (41), the exponential function in Equation 1 

can be reduced to a cosine function (76, 83) as:

P(r) = ∫ ∫ ∫
q ∈ ℝ3S(q)cos(2πq ⋅ r) dq (2)

For a finite number (N) of measured q-space samples, the EAP is calculated as a linear 

weighted summation of all diffusion signals as:

P(r) = ∑i = 1
N S(qi)cos(2πqi ⋅ r) Δqi (3)

or in matrix form:

P(r1)
⋮

P(rM)
P

=
cos(2πq1 ⋅ r1) ⋯ cos(2πqN ⋅ r1)

⋮ ⋱ ⋮
cos(2πq1 ⋅ rM) ⋯ cos(2πqN ⋅ rM)

F

Δq1 0
⋱

0 ΔqN
C

S(q1)
⋮

S(qN)
S

(4)

P is a column vector (M×1) of recovered EAP values evaluated at spin displacements 

r j(1 ≤ j ≤ M, j ∈ ℤ) . rj can reside in an selected coordinate system, e.g. Cartesian or polar, to 

assistant the visualization and analysis of the EAP. F is the DFT matrix (M×N). C is the 

diagonal q-space sampling density non-uniformity correction matrix (N×N). S is a column 

vector (N×1) of the normalized attenuated echo signal measured at q-space location 

qi(1 ≤ i ≤ N, i ∈ ℤ) .

Provided the gradient separation (Δ) and duration (δ) are kept constant, the spin dephasing 

term (Φ = 2πqr) in each element of matrix F can be expressed using the commonly reported 

b-value (b) and b-vector (v) of the diffusion pulse sequence following GQI’s derivation (76) 

(see Appendix A):

F =
cos( 6Dwaterb1v1 ⋅ λ1u1) ⋯ cos( 6DwaterbNvN ⋅ λ1u1)

⋮ ⋱ ⋮
cos( 6Dwaterb1v1 ⋅ λMuM) ⋯ cos( 6DwaterbNvN ⋅ λMuM)

(5)
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Dwater (2.5×10−3 mm2/s) is the diffusion rate of free water at 37°C. λ j(1 ≤ j ≤ M, j ∈ ℤ) is the 

scalar that relates an arbitrary displacement distance rj and the mean displacement distance 

of free water (MDDwater). MDDwater = 6Dwater(Δ − δ ∕ 3) is calculated using Einstein’s 

equation (1) with effective diffusion time Δ-δ/3 and an assumption of Gaussian diffusion. 

MDDwater is a constant number for all voxels, given the constant diffusion encoding timing 

Δ and δ in a diffusion pulse sequence, and represents the longest displacement a spin can 

transverse in a specific experiment. It is more intuitive to express an arbitrary distance rj. as 

a ratio of this upper bound compared to using actual numbers.

Each diagonal element Δqi of C represents the q-space volume associated with each q-space 

samples qi (1 ≤ i ≤ N, i ∈ ℤ) . The signal measured at a sparsely sampled q-space location 

associates with a large q-space volume and is therefore scaled up, and vice versa.

To summarize the EAP’s angular structure, the diffusion ODF is calculated by a radial 

integration of the EAP weighted by the displacement distance (r) to the power of n, along 

multiple directions as:

Ors, re, n(w) = ∫
rs

re
P(rw)rn dr (6)

Unit vector w denotes the direction along which the diffusion ODF is being computed. rs and 

re is the starting and ending displacement distance along w respectively for the radial 

integration, n is the power of displacement distance. When n=0 (e.g. in QBI), the ODF 

represents the ensemble probability that spins displace along a certain direction. When n=2 

(e.g. in DSI), the ODF represents the mean squared displacement distance along a certain 

direction. A larger n results in a diffusion ODF with higher contribution from the EAP at 

longer displacement distance.

The diffusion ODF can be calculated using a direct and indirect approach from the EAP. For 

the indirect approach, the EAP is first recovered along radial lines in the directions that the 

ODF will be reconstructed (using Eqs. 4 and 5) and then integrated. The EAP can be 

modified prior to ODF calculation, e.g. clipping the negative lobes of the ringing.

For the direct approach, the DFT and the radial integration are combined into a single step. 

The direct approach is advantageous for reducing computation and elucidating the 

relationship between q-space samples and the ODF, but does not allow modifying the EAP 

before the integration. Specifically, for a finite number of displacements with distances 

evenly spaced between rs and re, ODF is calculated as a linear weighted summation of EAP 

values as:

Ors, re, n(w) = ∑ j = 1
M P r jw r j

nΔr j(rs ≤ r j ≤ re) (7)
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or in matrix form:

Ors, re, n(w1)

⋮
Ors, re, n(wL)

Ors, re, n

= Δr

[r1
n⋯rM

n ⋯ 0
⋮ ⋱ ⋮
0 ⋯ [r1

n⋯rM
n ]

Irs, re, n

P(r1w1)
⋮

P(rMw1
⋮

P(r1wL)
⋮

P(rMwL)
P

(8)

Ors,re, n is a column vector (L×1) of recovered ODF values evaluated along directions 

wk (1 ≤ k ≤ L, k ∈ ℤ) for a given set of rs, re and n. Δr=(re-rs)/(n-1) is a constant term 

accounting for the distance interval Δrj for displacement rj 

(1 ≤ j ≤ M, j ∈ ℤ, rs ≤ r j ≤ re, r1 = rs, rM = re ). Irs,re,n is the weighted summation matrix 

(L×ML) of the radial integration of the EAP. P is a column vector (ML×1) of the EAP values 

along directions wk at displacement distances rj.

Substituting Equations 4 and 5 into 8 provides a solution for the ODF directly from the q-

space signals:
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Oλs, λe, n(w1)

⋮
Oλs, λe, n(wL)

Oλs, λe, n

Δr ⋅

MDDwater
n ⋅

∑ j = 1
M cos( 6Dwaterb1v1 ⋅ λ jw1) ⋅ λ j

n ⋯ ∑ j = 1
M cos( 6DwaterbNvN ⋅ λ jw1) ⋅ λ j

n

⋮ ⋱ ⋮

∑ j = 1
M cos( 6Dwaterb1v1 ⋅ λ jwL) ⋅ λ j

n ⋯ ∑ j = 1
M cos( 6DwaterbNvN ⋅ λ jwL) ⋅ λ j

n

Rλs, λe, n

Δq1 0
⋱

0 ΔqN
C

S(q1)
⋮

S(qN)
S

(9)

where λs≤λj≤λe (1≤j≤M. ( j ∈ ℤ ), λ1= λs=λs=rs/MDDwater. If Δr and MDDwater
n  are set to 

1, this only affects the scaling the absolute values of the ODF and therefore there is no loss 

of angular information. Rλs,λe,n is the reconstruction matrix (L×N) of ODF values. An ODF 

value Oλs,λe,n (Wk) along a specific direction wk is computed as a linear weighted 

summation of all sampling density corrected q-space signals, with linear weights determined 

by the kth row of Rλs,λe,n (Wk).

Equation 9 formulates the DSI ODF reconstruction as a linear system, which provides an 

intuitive perspective to understand the relationship between the q-space signal and the ODF. 

To visualize the contribution and combination of q-space samples to the ODF, the row of 

Rλs,λe,n for computing the ODF value along the qz-axis (Fig. 1 bottom to top) was 

calculated, with parameters λs=0, λe=1, and n=0 (R0,1,0(qz) in Fig. 1a) or n=2 (R0,1,2(qz) in 

Fig. 1b). R0,1,0(qz) and R0,1,2(qz) are displayed as 1D profile along the qz-axis (Fig. 1a, c), 

2D cross-section on the qy-qz plane (Fig. 1b, d), and 3D contour at single q(b)-values (Fig. 

1e, f). The weights are rotationally symmetric about the qz-axis (Fig. 1b, d, e, f), since the 

weight of a specific q-space sample is determined by the projection of its q-value to the qz-
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axis (i.e. bivi ⋅ wk in Eq. 9). The 1D profile on the qz-axis is a sinc function (76, 84) (Fig. 

1a), or resembles the shape of a sinc function (Fig. 1c).

The 3D contours of R0,1,0(qz) for high b-values (e.g. Fig. 1e, b ≥ 2000 s/mm2) resemble thin 

discs (i.e., the weight for q-space points outside the qx-qy plane are close to zero), indicating 

that the ODF value along the qz-axis is approximately the sum of signals on the equator of 

individual q(b)-values on the qx-qy plane, which is in agreement with QBI’s use of the Funk-

Radon transform. This approximation is more accurate (i.e. thinner disc) for higher b-values. 

In case of multiple q(b)-values, the ODF value along the qz-axis can be approximated as the 

sum of signals on the entire qx-qy plane.

An ODF can be decomposed into component ODFs from individual q-space samples by 

rewriting Equation 9 as:

Oλs, λe, n = Δr ⋅ Rλs, λe, n ⋅ C ⋅ S(q1)

1
0
⋮
0

+ S(q2)

0
1
⋮
0

+ ⋯ + S(qN)

0
0
⋮
1

S

= ∑i = 1
N S(qi)Oλs, λe, n

qi

(10)

Oλs, λe, n
qi  is the ith column of matrix Rλs,λe,n, representing the impulse response ODF from a 

unit signal q-space sample located at point qi. The impulse response ODF from q-space 

samples located on the qz-axis with different q(b)-values are displayed in Figure 1e and 1f). 

S(qi)Oλs, λe, n
qi  is the component ODF from the q-space sample located at point qi.

Similarly, an ODF can also be decomposed into component ODFs from q-space samples 

with identical q(b)-values (i.e. individual shells).

Methods

Data Simulation

Simulations were performed with a multi-tensor model using the “multi_tensor” function of 

the Diffusion Imaging in Python (DIPY) software (13) (http://nipy.org/dipy/). Each 

individual tensor had an axial diffusion rate of 1.6×10−3 mm2/s and a radial diffusion rate of 

0.2×10−3 mm2/s. A noise-free three-fiber-crossing voxel (Fig. 2) was simulated for 

illustration purpose, with each fiber contributing 55%, 25% and 20% of the total signal, 

using the standard DSI 11×11×11 Cartesian sampling (hereafter referred as DSI-11) with 

7,000 s/mm2 maximum b-value.
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Data Acquisition

With Institutional Review Board (IRB) approval and written informed consent, data were 

acquired on a healthy subject using a clinical 3 Tesla MRI system (Discovery MR750, GE 

Healthcare, Milwaukee, Wisconsin) at Stanford. The scanner was equipped with a 32-

channel radio frequency receive coil (Nova Medical, Wilmington, Massachusetts). A 2D 

single-refocused PGSE single-shot (SS) echo-planar-imaging (EPI) sequence was used to 

acquire multi-shell diffusion-weighted image (DWI) volumes of 30 contiguous axial slices 

covering the corpus callosum (CC). The data have: TE/TR=95.7/2000 ms, resolution=2×2×2 

mm3, diffusion time (Δ)=48.2 ms, gradient duration (δ)=31.8 ms, 6 shells (including q-space 

origin, hereafter referred to as MSL-6, 33×b=0, 103×b=1400 s/mm2, 103×b=2800 s/mm2, 

103×b=4200 s/mm2, 103×b=5600 s/mm2, 103×b=7000 s/mm2), ASSET parallel imaging 

factor R=2. Two non-DWI (b=0) volumes with reversed phase-encoding direction were 

acquired at the beginning of the scan. Non-DWI volumes were interleaved between every 16 

DWI volumes.

Human Connectome Project Data

Pre-processed whole-brain T1-weighted and multi-shell DW data of subject 1010 from the 

MGH-USC HCP consortium and subject 100307 from the WU-Minn-Ox HCP consortium 

were downloaded for analysis (https://www.humanconnectome.org/). The diffusion data 

from both sites were acquired using 2D single-refocused PGSE SS EPI sequences. The 

MGH-USC diffusion data have: resolution=1.5×1.5×1.5 mm3, Δ=21.8 ms, δ=12.9 ms, 5 

shells (MSL-5, 40×b=0, 64×b=1000 s/mm2, 64×b=3000 s/mm2, 128×b=5000 s/mm2, 

256×10,000 s/mm2), maximum q-value (qmax)=0.12 μm−1 (85). The WU-Minn-Ox diffusion 

data have: resolution=1.25×1.25×1.25 mm3, Δ=43.1 ms, δ=10.6 ms, 4 shells (MSL-4, 

18×b=0 s/mm2, 90×b=1000 s/mm2, 90×b=2000 s/mm2, 90×b=3000 s/mm2), qmax=0.0438 

μm−1 (61). The MGH-USC T1-weighted data were acquired with a multi-echo 

magnetization-prepared rapid acquisition gradient echo (ME-MPRAGE) sequence (86) at 1 

mm isotropic resolution.

Image Processing

For the diffusion data acquired on-site at Stanford, the susceptibility-induced off-resonance 

field was estimated from the non-DWIs with opposite phase-encoding direction (87) using 

FSL’s “topup” function. The susceptibility-induced EPI distortion, eddy current distortion, 

field drift and bulk motion were corrected simultaneously using FSL’s “eddy” function. The 

two non-DWI volumes with reversed phase-encoding direction were not used within 

subsequent analysis steps.

Regions of Interest

For MGH-USC T1-weighted data, cortical surface reconstruction and volumetric 

segmentation were performed using FreeSurfer software (88, 89) (https://

surfer.nmr.mgh.harvard.edu/). The volumetric segmentation results (provided by aparc

+aseg.mgz) were co-registered to the diffusion data using FreeSurfer’s “bbregister” function 

with nearest neighbor interpolation. Binary masks of 14 regions of interest (ROIs) (i.e. 

ventricle, white matter (WM), CC, cerebellar WM, gray matter (GM), thalamus, accumbens, 
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amygdala, caudate, putamen, pallidum, hippocampus, brainstem, and cerebellar GM), each 

containing both hemispheres, were created. The ventricle mask was created using 

FreeSurfer’s “mri_binarize” function with the “ventricles” option selected. The CC mask 

was created by combining masks of five sub-regions of CC, i.e. the anterior, mid-anterior, 

central, mid-posterior and posterior parts (Fig. 8g). Only voxels with FA from DTI larger 

than 0.5 in the CC mask were included. Three ROIs covering parts of pre- and post-central 

gyrus, through the center of the thalamus and the pons of the brainstem (red boxes in Fig.6 

b-d) were manually selected on axial slices based on FreeSurfer’s volumetric segmentation.

For the HCP data from both consortiums, binary masks of the WM were resampled from 

FreeSurfer’s volumetric segmentation and eroded by one voxel.

For each dataset, one ROI located in the centrum semiovale (CSO) region (Fig. 10), 

containing the intersection of three white matter fiber bundles (the CC, the corona radiata 

(CR), and the superior longitudinal fasciculus (SLF)), was manually selected based on DTI 

FA maps. The ROIs from each dataset all contain 8×10 voxels, but cover slightly different 

spatial extension due to the different spatial resolution of each dataset. A voxel with intra-

voxel crossing fibers from each dataset (Fig. 10 magenta dashed boxes) was selected for 

demonstration (Fig. 5, 9).

Q-space Sampling Density Correction

Numerical computation based on 3D Voronoi diagram (90) can be used for estimating the 

sampling density non-uniformity correction factor for various q-space sampling patterns. For 

multi-shell q-space samples, a simple geometry based approach was adopted (Fig. 4a), in a 

similar way that the correction factor is calculated for gridding the k-space data acquired 

with projection or radial trajectories (91).

Specifically, contours (middle shells) (Fig. 4a colored circles) were generated half-way 

between each q-space sampling shell to delineate the radial extent associated with each q-

space sample. For the outermost q-space sampling shell, the outer radial extent (Fig. 4a bold 

green circle) was set to be an equal distance from the q-space sample as the inner contour 

boundary.

For the sample located at the q-space origin (a single sample for the averaged b=0 image), 

the correction factor is the volume of the central sphere. For DW samples located on each 

shell, the correction factor is the volume associated with the space between the inner and 

outer contours divided by the number of samples on the shell (assuming the q-space samples 

are uniformly distributed on each shell).

Mathematically, the correction factor Vqi for a sample located on the ith shell with q-value qi 

is:
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Vqi
=

qi + qi + 1
2

3
−

qi + qi − 1
2

3

Nqi
⋅

q2
2

3 (11)

where q0=q1=0, qns+1=(3qns-qns−1)/2, qi<qi+1, 1≤i≤ns. q1 and q2 correspond to the b=0 and 

smallest non-zero b-value. ns is the number of shells. Nqi is the number of samples on a shell 

of q-value qi.

The volume of the central sphere 
q2
2

3
 is divided such that the correction factor Vq1 for the 

q-space sample at origin is equal to 1 and therefore the normalized non-DW signal (equal to 

the sum of EAP values) is still 1 after density correction. As the diffusion time is kept 

constant, the q-value in Equation 11 can be replaced by the square root of the corresponding 

b-value (Eq. A3).

DSI and GDSI Reconstruction

The proposed GDSI (Eqs. 4, 5, 9) method was implemented in the framework of the DIPY 

software (available at https://github.com/qiyuantian/GDSI). For the simulated DSI-11 voxel, 

DSI reconstruction was performed using DIPY’s “DiffusionSpectrumModel”. The EAP was 

recovered on a Cartesian grid with a FOV of 2×MDDwater along each dimension. The 

diffusion ODF was computed by integrating the EAP (negative values clipped to 0) from the 

center to the MDDwater. GDSI reconstruction was performed with identical parameters as 

DSI reconstruction to obtain the EAP and diffusion ODF (i.e. λs=0, λe=1, n=2). Q-space 

sampling density correction was not used since q-space was uniformly sampled on a 

Cartesian grid. The GDSI ODF was computed using both the direct and indirect approach. 

For the direct approach, the impulse response ODF and the component ODF of each q-space 

sample were reconstructed. Component ODFs were computed for subsets of q-space signals 

with maximum b-values equal to: 0, 280 s/mm2, 1120 s/mm2, 2520 s/mm2, 4480 s/mm2, and 

7000 s/mm2. For the indirect approach, the negative values of the EAP were clipped to 0 (as 

performed in DSI) before calculating the ODF. The Pearson correlation of the EAP and ODF 

values from DSI and QSI reconstruction was reported.

For crossing-fiber voxels from the CSO region from each dataset, EAP was reconstructed 

with and without q-space sampling density correction, on a Cartesian grid with a FOV of 

2×MDDwater along each dimension and along radial lines between 0 and MDDwater. The 

MDDwater for the Stanford, MGH-USC HCP and WU-Minn-Ox HCP data are 23.7 μm, 16.2 

μm and 24.4 μm respectively.

For the MGH-USC HCP data, EAPs were recovered between 0 and MDDwater with q-space 

sampling density correction. Two scalar metrics were derived from the recovered EAPs:

(1) Pr: the probability at a specific displacement distance averaged across all EAP 

orientations;
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(2) rα: the displacement distance at which the probability density decays to a fraction α of 

the maximum probability (i.e. zero displacement probability P0).

For the CC ROI, the displacement distance of the first zero crossing (r0) was computed in 

the plane perpendicular to the primary eigenvector (V1) from DTI.

For each dataset, GDSI ODFs were reconstructed using the indirect approach with q-space 

sampling density and ringing removal (clipping the EAP values along each radial line 

beyond the first zero crossing to zero). The reconstruction parameters were λs=0, λe=0.8, 

n=2 for the Stanford and MGH-USC HCP data, and λs=0, λe=1, n=2 for the WU-Minn-Ox 

HCP data. The constant offset were removed. For voxels from the CSO ROI, the component 

ODFs from each single shell were also recovered.

The fiber orientations were delineated from the GDSI ODF using DIPY’s 

“peaks_from_model” function. Specifically, the local maxima of a diffusion ODF with an 

amplitude larger than 5% of the global maximum were first detected. If the angle between 

the two directions of local maxima was less than 15 degrees, only the direction with the 

larger ODF amplitude was preserved. The directions were sorted according to their 

associated ODF amplitude. The first three directions were used as the primary, secondary 

and tertiary fiber orientations respectively.

DTI, BEDPOSTX, CSD and GQI Reconstruction

For each dataset, the DTI model was fitted using FSL’s “dtifit” function using only those 

shells with b-values less than 1500 s/mm2, to obtain the fractional anisotropy (FA) maps and 

V1.

The “ball and sticks” model was fitted using FSL’s “bedpostx” function (3 sticks with a 

range of diffusivities). The estimated secondary and tertiary fiber orientations with fiber 

volume fraction lower than 5% were excluded.

Multi-shell multi-tissue CSD was performed using the MRTrix3 software (http://

www.mrtrix.org/). The Stanford and MGH-USC HCP data were corrected for the B1 field 

inhomogeneity using MRTrix3’s “dwibiascorrect” function. For each dataset, the 

segmentation of five tissue types (e.g. GM, WM) was first derived from the T1-weighted 

data using MRTrix3’s “5ttgen” function with the “fsl” option. The response functions were 

calibrated using MRTrix3’s “dwi2response” function with the “msmt_5tt” option on brain 

voxels excluding the cerebellum. The fiber ODFs were then computed using MRTrix3’s 

“dwi2fod” function. Three peaks for each fiber ODF were delineated using MRTrix3’s 

“sh2peaks” function, without requirements on the peak amplitude. Within each voxel, the 

secondary and tertiary peaks were only preserved if their peak amplitudes were larger than 

5% of the amplitude of the primary peak.

GQI reconstruction was performed using the “GeneralizedQSamplingModel” function from 

DIPY software. The reconstruction parameters were λs=0, λe=0.8, n=2 for the Stanford and 

MGH-USC HCP data, and λs=0, λe=1, n=2 for the WU-Minn-Ox HCP data, same as those 

used in GDSI. The fiber orientations were delineated from the GQI ODF using DIPY’s 

“peaks_from_model” function in the same way as that used in GDSI.
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Statistical Analysis

For the MGH-USC HCP data, the mean and standard deviation of Pr and rα within the 14 

FreeSurfer ROIs were reported. The Pearson correlation of the T1-weighted and P0 values of 

brain voxels was reported. The mean and standard deviation of r0 perpendicular to DTI V1 

within the five FreeSurfer CC sub-regions were reported.

For the HCP data, the crossing angle in WM voxels between the primary and secondary 

fibers, the primary and tertiary fibers, and the secondary and tertiary fibers estimated using 

BEDPOSTX, CSD and GDSI were computed. The angle between two directions (v1, v2) 

was computed as cos−1(∣v1·v2∣), ranging between ([0, 90°]).

Results

Our proposed DFT-based GDSI is equivalent to FFT-based DSI reconstruction. The EAPs 

(Fig. 2a, b) and diffusion ODFs (Fig. 2d-f) recovered from the simulated DSI-11 voxel using 

the two methods are qualitatively similar and quantitatively highly correlated (correlation 

larger than 0.995). The amplitudes along some directions on GDSI ODF (Fig. 2d, e, g pink 

arrows) computed using the direct approach are lower than those on DSI ODF, because the 

negative EAP values were not clipped to 0 in the direct approach.

GDSI’s linear system formalism of the diffusion ODF reconstruction elucidates the 

contribution of q-space signals to a diffusion ODF. The diffusion ODF (reconstructed using 

the direct approach) from the simulated DSI-11 voxel (Fig. 3d) is a summation of 515 

component ODFs (Fig. 3c, S(qi)Oλs, λe, n
qi  in Eq. 10). Each component ODF is a multiplication 

of the signal intensity (Fig. 3a, arranged from low to high q(b)-value, in the left to right, top 

to bottom order) and the corresponding impulse response ODF (Fig. 3b, a column of 

Rλs,λe,n in Eq. 9) at a specific q-space sampling location. As the q(b)-value increases, the 

angular variation (high frequency information) of the impulse response ODF and component 

ODF increases, while the contribution (size) of the component ODFs to the combined ODF 

decreases. The combined diffusion ODF becomes sharper as more signals from high q(b)-

values are included (Fig. 3e). Notably, the impulse response ODF and component ODF have 

both positive and negative values, while their summation is guaranteed to produce non-

negative diffusion ODF.

Figure 4b displays the estimated q-space sampling density non-uniformity correction factors 

at each shell for the Stanford, MGH-USC HCP and WU-Minn-Ox HCP data using the 

proposed geometric method (Fig. 4a). For all three datasets, the sampling density correction 

factors for the q(b)=0 sample (a single sample for the averaged b=0 images) are relatively 

high, which scales up the non-DW signal and translates into an appropriate constant term in 

the EAP.

The correction factors for non-zero b-values are monotonically increasing, indicating that 

the signals from high q(b)-values are insufficiently sampled compared to low q(b)-values. 

The ratios between the correction factors of the lowest and the highest non-zero q-values 

are: 2.17, 2.89 and 1.76 for the Stanford, MGH-USC HCP and WU-Minn-Ox HCP data 
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respectively. This means that the sampling density correction operation only moderately 

scales the signals from high q(b)-values while does not over-emphasize the noise in the low 

SNR measurements at high q(b)-values. For the MGH-USC HCP data, the slope of the 

correction factors for non-zero b-values decreases as the b-value increases (Fig. 1b red 

curve). This is because the MGH-USC HCP protocol partially compensated for the 

decreased sampling density at high b-values by doubling the number of samples as b-value 

increases from 3,000 s/mm2 to 5,000 s/mm2, as well from 5,000 s/mm2 to 10,000 s/mm2.

Figure 5 demonstrates the effects of q-space sampling density correction on the EAP. For the 

crossing-fiber voxels (from CSO region, Fig. 10 magenta dashed boxes), the 2D coronal 

cross sections through the center of the 3D EAP (Fig. 5a, b, d, e, g, h), the 1D profiles along 

left-right (Fig. 5c, f, i red curves), superior-inferior (Fig. 5c, f, i blue curves) and anterior-

posterior (Fig. 5c, f, i green curves) directions from the EAP center, and the 3D contours 

(Fig. 5j, negative values clipped to 0) at different displacement distances are displayed. The 

EAP becomes sharper after the sampling density correction (comparing Fig. 5j rows i, iii, v 

with rows ii, iv and vi at displacement distance longer than 0.2 of the MDDwater) because the 

correction scales up high q(b)-value signals. The Gibbs ringing present in the EAP, however, 

becomes more severe (Fig. 5 pink arrows and dashed circles). The increased intensity of the 

Gibbs ringing after sampling density correction has the benefit of making the ringing easier 

to identify (comparing Fig. 5f solid and dashed lines), which assists operations to mitigate 

the effects of ringing, such as clipping the EAP values beyond the first zero-crossing to 0 

before computing metrics and ODF from the EAP. Without sampling density correction, the 

ringing is harder to identify (e.g. Fig. 5f solid lines) and obscures the shape of EAP (e.g. Fig. 

5j, rows iii, displacement distance larger than 0.4×MDDwater).

Due to the different qmax values for the Stanford, MGH-USC HCP and WU-Minn-Ox HCP 

datasets, the extents of the recovered EAP are different, i.e. about 2/3 (Fig. 5a, b), 1/2 (Fig. 

5d, e) and 1 of MDDwater (Fig. 5g, h) respectively. Therefore, the displacement distance at 

which the 3D EAP contour is the sharpest is different, i.e. 0.6×MDDwater=14.2 um, 

0.5×MDDwater=8.1 um, and 1×MDDwater=24.4 um, for the Stanford (Fig. 5j, row ii), MGH-

USC HCP (Fig. 5j, row iv) and WU-Minn-Ox HCP data (Fig. 5j, row vi).

Additional EAPs from brain regions where the tissue microstructure is more complex 

compared to the WM were recovered with q-space sampling density correction. These EAPs 

were reconstructed in the polar coordinates. For the MGH-USC HCP data, EAPs at 8 μm in 

ROIs that contain parts of pre- and post-central gyrus, thalamus and brainstem are displayed 

in Figure 6 (EAPs at 0-10 μm with 0.2 μm step are shown in supplementary videos). These 

EAPs present the diffusion patterns and map the complicated microstructure without 

imposing any model on the signal. In the post-central gyrus, for example, the water 

molecules have a high probability to diffuse in the direction radial to the cortical surface. 

Interestingly, a portion of the water molecules also tend to diffuse in the direction parallel to 

the cortical surface, resulting in crossing EAP orientations (Fig. 6b magenta dashed boxes). 

The sharp EAP contours also reveal multiple directional vectors of water diffusion in 

different thalamic nuclei and within the basis pontis in the brainstem.
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Figures 7 and 8 demonstrate two examples of metrics, i.e. Pr (Fig. 7) and rα (Fig. 8) that can 

be derived from the recovered EAP. Pr represents the mean probability of a water molecule 

within a voxel displacing to a specific distance within the diffusion time used in the pulse 

sequence. The mean Pr curve averaged from all WM voxels (Fig. 7f red, blue) is narrower 

than the mean Pr curves for the GM (Fig. 7f green) and cerebrospinal fluid (CSF) in the 

ventricle (Fig. 7f blue) due to the more constrained water diffusion within the tightly packed 

axon bundles. At different displacement distances, Pr provides a new type of image contrast 

based on the diffusion property of the tissue (Fig. 7 b-e). At zero displacement distance, the 

P0 map (Fig. 7b) resembles a T1-weighted image (Fig. 7h, correlation equal to 0.58). Since 

the probability of water molecules in the WM and GM displacing to ~5.2 μm is similar (Fig. 

7f pink arrow), the contrast between WM and GM is diminished in the P5.2μm map (Fig. 7c). 

For a displacement distance slightly longer than 5.2 μm, the Pr for the GM becomes larger 

than the Pr for the WM. Therefore, the GM is much brighter than the WM in the P7μm map, 

creating a strong GM-WM contrast. The CSF is the brightest in the P15μm map since only 

water molecules with very fast diffusion rate can diffuse to such a long distance.

The rα index measures the displacement distance that the mean probability decays to α of 

the maximum probability (i.e. P0), and hence indicates the overall level of restriction within 

a voxel. As expected, WM appears darker than the GM and CSF in the rα maps (Fig. 8 a-f), 

revealing the increased degree of restricted diffusion within WM.

The r0 index denotes the longest displacement distance that the water molecules can diffuse. 

Within the CC, r0 in the direction perpendicular to the DTI V1 is different in different sub-

regions (Fig. 8g, h). Specifically, the r0 is larger in the body of the CC (Fig. 8g green, 

5.65±0.09 μm) compared to the anterior (Fig. 8g red, 5.55±0.15 μm) and posterior part of 

the CC (Fig. 8g blue, 5.4±0.15 μm). This corresponds well to histological studies in the 

literature that show that larger axon diameters are only found in the body of the CC and not 

in the genu and splenium of the CC (92).

The effects of q-space sampling density correction on the ODF are demonstrated in Figure 9. 

The component ODFs from each shell (Fig. 9 columns 1-6) and the combined ODF (Fig. 9 

columns 7-8) reconstructed with (Fig. 9, rows ii, iv, vi) and without (Fig. 9, rows i, iii, v) 

sampling density correction for the Stanford (Fig. 9 rows i, ii), MGH-USC HCP (Fig. 9 rows 

iii, iv), and WU-Minn-Ox HCP data (Fig. 9 rows v, vi) are shown. The sampling density 

correction scales up the signals from high q(b)-value signals (weights determined in Fig. 4b) 

such that the component ODFs from high q(b)-value shell have higher contribution (larger 

size, the size of the component ODF from b=1000 s/mm2 were kept the same with and 

without the correction) to the combined ODF. Therefore, the combined ODF becomes 

sharper (comparing Fig. 9, rows i, iii, v with rows ii, iv, vi, column 7), with strengthened 

ringing obscuring the shape of the ODF and/or leading to “bumps” in the ODF (Fig, 9 green 

arrows) that might cause erroneous orientations to be used in the tractography. Using the 

indirect approach with ringing removal (clipping EAP values beyond the first zero crossing 

to 0), the ODF becomes much cleaner as well as sharper (comparing Fig. 9 columns 7 and 

8).
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Figure 10 displays the ODF and fiber orientations estimated using both model-based and 

model-free methods in the crossing fiber ROI from the CSO region. The GDSI ODFs are 

sharper compared to the GQI ODFs because the sampling density correction increases the 

contribution from the high q(b)-value signals that contain high frequency information in 

GDSI. Therefore, intra-voxel crossing fibers appear better delineated in GDSI compared to 

GQI (more blue and green sticks in Fig. 10b, rows 1, 3, 4, column iv than in column iii). For 

the model-free methods, detection of crossing fibers appears to be strongly dependent on the 

maximum b-value. Both GQI and GDSI identify more secondary and tertiary fibers in the 

MGH-USC HCP data with a maximum b-value of 10,000 s/mm2 compared to the WU-

Minn-Ox HCP data with a maximum b-value of 3,000 s/mm2. The model-based methods 

overall identify more secondary and tertiary fibers compared to the model-free methods 

(more blue and green sticks in Fig. 10b, rows 1, 3, 4, columns i and ii, than in columns iii 

and iv, and supplementary simulation study).

The fiber crossing angles estimated by the model-based (BEDPOSTX and CSD) and model-

free (GDSI) methods follow distinct distributions as depicted in Supplementary Figure 1 and 

Figure 11. The BEDPOSTX, CSD and GDSI method identifies a secondary fiber in 91%, 

84% and 59% and a tertiary of fiber in 63%, 47% and 19% of all WM voxels in the MGH-

USC HCP data, and identifies a secondary fiber in 95%, 78% and 9% and a tertiary of fiber 

in 70%, 26% and 0.7% of all WM voxels in the WU-Minn-Ox HCP data. For BEDPOSTX 

and CSD, the fiber crossing angle histograms show a peak ~60°, with an exception for the 

crossing angle between the primary and secondary fibers from the MGH-USC data (Fig. 

11a, red curve, histogram peak shifted to ~30°). The fiber crossing angle histograms from 

CSD also have a preference for ~90°. For GDSI, the fiber crossing angle distribution 

resembles a half Gaussian curve centered at 90°.

Discussion

Here we present a generalized DSI framework to recover the model-free EAP from non-

Cartesian diffusion data. Unlike conventional DSI, GDSI does not require Cartesian q-space 

sampling and FFT-based reconstruction. GDSI computes the EAP by multiplying the 

sampling non-uniformity corrected q-space samples with a DFT matrix, and is therefore 

flexible with the coordinate systems of both the q-space signals and the EAP. We 

demonstrate various metrics, such as the zero displacement probability, mean probability at a 

specific displacement distance, and the mean displacement distance at a fraction of the 

maximum probability, can be derived from multi-shell diffusion data using our method to 

characterize tissue microstructure. Using the GDSI framework, we also elucidate the 

contribution and combination of q-space signals to the diffusion ODF by formulating the 

reconstruction as a linear system, and compute the model-free diffusion ODF from the 

multi-shell diffusion data.

The model-free EAP from GDSI is equivalent to the raw diffusion data, but provides a more 

intuitive representation in the Fourier domain, which more directly relates to the underlying 

diffusion patterns. For example, the shape of the EAP can reflect the restriction and non-

Gaussianity of the diffusion process, which is useful for differentiating different tissue types 

(Fig. 7) and abnormal tissues. The size of the EAP (i.e. the width at the first zero-crossing) 
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measures the longest displacement distance a water molecule can transverse during the 

diffusion time, which might reflect the trend of axon/nerve diameter (Fig. 8). This 

information provided by the EAP may be useful for microstructural imaging. Since the EAP 

also provides the ODF (EAP’s angular summarization) for tractography purpose, the EAP 

potentially enables a way to integrate the microstructural imaging and diffusion tractography 

for characterizing microstructural properties associated with specific white matter fiber 

bundles (93-95).

The displacement distance associated with the GDSI EAP is different from the ground truth 

for two reasons. First, the narrow pulse assumption (δ<<Δ), a condition of the Fourier 

relationship between the q-space signals and the EAP, cannot be met in practice. Therefore, 

the EAP describes the displacement of a spin from the mean position during the first pulsed 

gradient to the mean position during the second pulsed gradient. Consequently, the 

displacement distance is underestimated (41, 82). Second, truncating the q-space before the 

signal decays to zero contaminates the EAP by convolving the true EAP with a point spread 

function (PSF) after the Fourier transform. The main lobe of the PSF blurs the EAP. The 

displacement distance is therefore overestimated (96). Therefore, any interpretation of 

displacement distance metrics derived from the EAP, such as rα, should account for these 

approximations.

Fortunately, many approaches now exist to reduce the influence of these two issues on the 

EAP. For example, the stronger gradient strength provided by the HCP scanners (up to 300 

mT/m from MGH-USC, and up to 80 mT/m from WU-Minn-Ox) achieves higher maximum 

b-values with shorter gradient durations, which not only brings the PGSE experiments closer 

to the narrow pulse approximation but also helps to mitigate the effects of q-space 

truncation. Alternatively, q-space truncation effects can be mitigated by deconvolving the 

EAP with the PSF associated with a specific q-space truncation (97) and reducing the noise 

floor for diffusion signal at high b-values using the real part rather than the magnitude of the 

signal (98).

Our proposed EAP reconstruction method relies on solving the Fourier transform using a 

matrix formalism, i.e. multiplying the q-space signals with a DFT matrix. This approach 

allows performing the Fourier transform on signals acquired with any q-space sampling 

pattern, such as multi-shell, and provides a more general form of DSI. Therefore, the 

proposed GDSI method enables a more direct way to compare the DSI based approach with 

many other model-based methods, such as CSD, on the same multi-shell data, without the 

confound of the different datasets required for different methods (e.g. Cartesian sampling 

data for DSI versus multi-shell sampling data for other model-based methods). The crossing 

fiber detection of model-free methods was found strongly dependent on the maximum b-

value and less sensitive compared to the model-based methods (Fig. 10, Fig. 11), which 

provides a way to determine the choice of model-free or model-based methods for different 

datasets for tractography in practice. For example, the model-free methods identify very few 

secondary and tertiary fibers for the WU-Minn-Ox HCP data with a maximum b-value of 

3,000 s/mm2 while identify similar numbers of secondary and tertiary fibers compared to the 

model-based methods for the MGH-USC HCP data with a maximum b-value of 10,000 

s/mm2. More interestingly, the distributions of the fiber crossing angles identified by the 
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model-free and model-based methods were found to follow very different distributions in the 

WM on the same multi-shell data (Fig. 11) (99).

Cartesian q-space samples acquired in DSI could also benefit from GDSI’s matrix formalism 

reconstruction. For example, the diffusion-encoding directions must be rotated to account for 

subject motion (45) and gradient nonlinearity (61), in which case the resultant q-space 

samples might no longer locate on a strict Cartesian grid. Errors will be introduced into the 

EAP if performing an FFT of the shifted samples. The shifted q-space samples could be 

interpolated back onto a Cartesian grid, but this requires extra computation. Applying 

GDSI’s matrix formalism EAP reconstruction method directly to the shifted samples offers a 

more accurate and direct computation of the EAP.

DFT matrix reconstruction also allows the flexibility to recover the EAP at an arbitrary set 

of displacement directions and distances, e.g. on a Cartesian grid or on radial lines along 

multiple directions. Recovering the EAP on radial lines is useful for visualizing and 

analyzing the EAP. To the first point, a 3D EAP can be decomposed as a set of spherical 

functions at different displacement distances, which can be displayed using the diffusion 

ODF visualization tools (Figure 6 and supplementary videos). To the second point, there is 

no need to resample the EAP recovered from FFT-based reconstruction onto radial lines (as 

performed in DSI) to compute the diffusion ODF and many other orientation-specific EAP 

metrics (Figures 7 and 8). Finally, along each radial line the EAP values beyond the first 

zero-crossing can be clipped to 0 to mitigate the Gibbs ringing, which results from the 

Fourier transform of the truncated q-space. The ringing can otherwise obscure the ODF 

shape and lead to erroneous fiber orientations (Figs. 3, 4) (83, 96). In DSI, the negative lobes 

of the ringing present in the EAP are clipped to 0 to mitigate ringing.

A valid DFT matrix reconstruction on non-Cartesian, such as multi-shell, q-space sample 

requires uniform and sufficient q-space sampling density. However, the q-space sampling 

density is usually non-uniform. In multi-shell sampling, it is common to slightly under-

sample the high q(b)-value regions (Fig. 4b). A sampling density correction is therefore 

needed to scale up the high q(b)-value signals, which contain high frequency information of 

the diffusion pattern. Here, we propose a fast geometrical method to estimate the q-space 

density correction factor that is similar to that used for image reconstruction of radial k-

space samples (91). This method makes an assumption that the q-space points are uniformly 

distributed on each shell, which is true for most multi-shell diffusion data, because of the 

requirement for uniform angular resolution. Advanced numerical methods such as using a 

3D Voronoi diagram (90) can be adopted for other q-space sampling patterns. The sampling 

density requirements for the multi-shell q-space sampling can be prescribed between shells 

(Appendix B Eq. B2) and within individual shell (Appendix B Eq. B6). These requirements 

have to be satisfied to avoid aliasing artifacts in the diffusion propagator reconstructed using 

GDSI (96, 100). For the multi-shell data used in this study, including those from the HCP, 

the sampling density requirements are satisfied. For undersampled multi-shell data, a model-

based approach or q-space compressed sensing techniques (101, 102) should be adopted.

In GDSI’s matrix formalism, the mapping from the q-space signals to the diffusion ODF can 

be formulated as a linear system, which provides intuition on the diffusion ODF 
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reconstruction. Specifically, the diffusion ODF value along a specific direction is a linear 

weighted summation of all the q-space samples, with the linear weights determined by the q-

space location of the samples (Eq. 9 and Fig. 1). In the special case of the single-shell 

sampling, GDSI is consistent with QBI’s use of the Funk-Radon transform that 

approximates the diffusion ODF value along a specific direction as the summation of the q-

space signals along the orthogonal equator (Fig. 1e). Further, GDSI is equivalent to GQI in 

terms of ODF reconstruction if GQI’s input signals are precompensated to account for q-

space sampling non-uniformity. The difference of the two methods is that GQI solves the 

ODF analytically while GDSI solves the ODF using a matrix formalism. Compared to GQI, 

GDSI has the additional freedom to modify the EAP before ODF calculation (e.g. clipping 

the negative lobes of the ringing to 0 to mitigate ringing), and select the starting point (0 in 

GQI) (83) and the power of displacement distance (0 and 2 in GQI) in the EAP integration 

for calculating the ODF, in addition to the benefit of recovering the EAP. GDSI unifies DSI, 

QBI and GQI in theory and can be used as a replacement in practice. GDSI’s linear system 

formalism also allows decomposition of a diffusion ODF into a series of component ODFs 

from each q-space sampling point, or each q-space shell (Eq. 10, Figs. 3 and 9). This 

decomposition is potentially useful for protocol optimization.

In terms of computation, the matrix based reconstruction requires N/log(M) (N is the 

number of q-space signals, M is the number of EAP values) more multiplications and 

additions compared to the FFT-based reconstruction, but saves the computations of gridding 

multi-shell samples to the Cartesian grid and/or interpolating the EAP recovered on the 

Cartesian grid to radial lines to compute the ODF. N is relatively small for the q-space 

signals (~102), in contrast to the number of k-space signals in a zero-padded 2D matrix 

(~104). Further, the simple computation of multiplication and addition in the matrix based 

reconstruction can be easily accelerated via parallel computing and the use of graphics 

processing units.

Summary

This study presents a generalized DSI framework named GDSI to recover the model-free 

spin displacement EAP from multi-shell diffusion MRI data. The proposed GDSI method 

involves correcting for the non-uniform q-space sampling density and performing the 

Fourier transform using a DFT matrix. GDSI is shown to produce the EAP and ODF that are 

in good agreement with those reconstructed from a full DSI acquisition, and to be broadly 

applicable to different types of multi-shell data including those from the HCP. The maps of 

EAP metrics such as Pr and rα are demonstrated as additional means to characterize the 

diffusion patterns in different tissue types. GDSI also enables fiber orientations estimated 

from both the model-free and model-based methods on the same multi-shell data. Lastly, 

GDSI elucidates the contribution and combination of q-space samples to the diffusion ODF 

and relationship between various diffusion ODF reconstruction methods. In conclusion, our 

study provides a generalized DSI framework for recovering the EAP and ODF from 

Cartesian and multi-shell diffusion data, which contributes to the theoretical understanding 

of the DSI methodology, and flexibility of diffusion MRI data analysis for studying 

microstructure and connectivity in the human brain.
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Appendix A

The dephasing term Φ of a spin is proportional to the scalar product between the applied 

gradient wave vector q (=qv) and the relative spin displacement r (=ru) as:

Φ = 2πqr = 2π ⋅ qv ⋅ ru (A1)

, where unit vectors v and u are directions of q and r.

q can be expressed in terms of b for pulsed gradient waveform as:

q = 1
2π γgδ = 1

2π
b

Δ − δ
3

(A2)

, where Δ is the diffusion time, the interval between the two diffusion encoding gradient 

pulses during which spins are allowed to displace, and δ is the diffusion-encoding gradient 

strength. γ is the gyromagnetic ratio (γ/2π=42.58 MHz/T). g is the diffusion-encoding 

gradient strength.

Any arbitrary displacement distance r can be expressed as a ratio λ of the mean 

displacement distance of free water (MDDwater) at 37°C as:

r = λ ⋅ MDDwater . (A3)

For a specific diffusion pulse sequence with given Δ and δ, MDDwater is a constant number, 

which can be calculated using Einstein’s equation (1):

MDD = 6D(Δ − δ
3) (A4)

, where D is the diffusion rate and Δ-δ/3 is the effective diffusion time. MDDwater is equal to 

6Dwater(Δ − δ
3 ) , with the diffusion rate of free water at 37°C Dwater=2.5×10−3 mm2/s.
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Substituting Equations A2, A3 and A4 into Equation A1 provides an expression for Φ in 

terms of the b-value, the b-vector and a ratio to the MDDwater:

Φ = 2π ⋅ 1
2π

b
Δ − δ

3
v ⋅ λ 6Dwater(Δ − δ

3)u = 6Dwaterbv ⋅ λu . (A5)

Since the b-value (b) and the b-vector (v) are commonly reported in most diffusion pulse 

sequences, it is more convenient to use Equation A5 rather than Equation A1.

Appendix B

The field of view determined by the q-space sampling density Δq should be larger than the 

extent of the ensemble average propagator (EAP) to avoid aliasing, as:

1
Δq ≥ 2 ⋅ MDD (B1)

, where 2 · MDD (mean displacement distance given in Eq. A4) is used to approximate the 

size of the EAP (96). The MDD of free water (MDDwater) can be used to provide an upper 

bound of the EAP size.

For the multi-shell q-space sampling, the sampling density should be sufficient between 

shells as well as within individual shell. For two arbitrary neighboring shells with b-values 

of b1 and b2 (b2 > b1), substituting Equations A2 and A4 into Equation B1 gives:

b2D − b1D ≤ π
6 (B2)

, where D is the diffusion coefficient. For an approximate higher bound of the apparent 

diffusion coefficient in the in vivo human brain of D=1.7×10−3 mm2/s (the apparent 

diffusion coefficient along the primary fiber orientation in the corpus callosum measured by 

DTI (49, 96), the b-value requirement specified in Equation B2 is simplified as:

b2 − b1 ≤ 31 (B3)

, where the unit of b1 and b2 is s/mm2.

On a specific shell with q-value q (b-value b) and N uniformly distributed samples, each 

sample has a solid angle of A=4π/N. The solid angle of a sample is also geometrically 

(Figure Appendix B) determined as:

A = 2π(1 − cosθ) . (B4)
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The distance between any two samples (ac=bd in Figure Appendix B) on the shell is given 

by:

Δq = 2 ⋅ qsinθ . (B5)

Substituting Equations A2, A4, B4 and B5 into Equation B1 gives:

bD ≤ π2

96( 1
N − 1

N2)
. (B6)

For D=1.7 × 10–3 mm2/s and assuming 1
N2  is negligible (since 1

N ≫ 1
N2  ), the number of 

samples N on a shell should satisfy:

N ≥ b
60 (B7)

, where b-value has a unit of s/mm2.

The diffusion coefficient D in Equations B2 and B6 should adapt to different applications 

accordingly. For example, the apparent diffusion coefficient is as high as ~2.5 χ 10−3 mm2/s 

for some types of tumor (103) while about 10× lower in the ex vivo brain tissue compared to 

in the in vivo brain (96).
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Figure Appendix B. 
2D illustration of a q-space sampling shell of q-value q. Radial lines ob and od define the 

cone associated with the q-space sample c. The distance between two samples (ac) is equal 

to the distance bd (=2 · qsinθ).
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Figure 1. 
The reconstruction matrix R0,1,0(qz) and R0,1,2(qz) for computing the orientation distribution 

function value along qz-axis (bottom to top) with parameters λs=0, λe= 1, n=0 (a, b, e) and 

λs =0, λe=1, n=2 (c, d, f). R0,1,0(qz) and R0,1,2(qz) are displayed as 1D profile along the qz-

axis (a, c), 2D cross-section on the qy-qz plane (b, d), and 3D contour at single q(b)-values 

(e, f). The green dots display the standard DSI-11 Cartesian q-space sampling locations with 

7000 s/mm2 maximum b-value.
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Figure 2. 
Comparison of ensemble average propagator (EAP) (a, b) and orientation distribution 

function (ODF) (d-e) recovered from fast Fourier transform (FFT)-based diffusion spectrum 

imaging (DSI) (a, d) and proposed matrix formalism-based (q-space imaging) QSI 

reconstruction (b, e, f) on a simulated noise-free three-fiber-crossing DSI-11 voxel. For both 

methods, the ODFs are reconstructed with λs =0, λe=1, n=2. The ODF from the indirect 

QSI approach (f) was computed with the negative values of the EAP clipped to 0, the 

practice used in DSI reconstruction. The EAP and ODF are normalized by their maximum 

values. The scatter plots (c, g, h) depict 500 randomly selected values, with correlation from 

all values reported. The pink arrows highlight a region on ODF that demonstrates the effects 

of clipping negative values in EAP to 0 on the consequently reconstructed ODF.
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Figure 3. 
Decomposition of the orientation distribution function (ODF) from the simulated noise-free 

three-fiber-crossing voxel (d) acquired using a standard diffusion spectrum imaging 

acquisition with 11×11×11 Cartesian grid and 7000 s/mm2 maximum b-value into 

component ODFs (c) from the 515 q-space signals (a), and component ODFs (e) from q-

space signals with different maximum b-values (the six b-values along the left-right axis, i.e. 

0, 280 s/mm2, 1120 s/mm2, 2520 s/mm2, 4480 s/mm2, 7000 s/mm2). The q-space signals in 

(a) are arranged from low to high b-value in a 2D matrix (left to right, top to bottom). Each 

component ODF in (c) is the impulse response ODF (b) weighted by the diffusion signal 

intensity measured at the correspondent q-space location. The size of the impulse response 

ODF (b), component ODF (c, e) is proportional to the ODF value.
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Figure 4. 
A 2D illustration of the proposed geometrical approach to estimate the q-space sampling 

density correction factor, i.e. the volume associated with each q-space sample, assuming q-

space samples are uniformly distributed on each shell (a), and the estimated results at each 

shell for the Stanford (b, blue curve), MGH-USC HCP (b, red curve) and WU-Minn-Ox 

HCP data (b, green curve). Four shells are depicted (including the origin) for illustration 

purpose. Note in (b) the x-axis is specified in b-value, which is square of the corresponding 

q-value.
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Figure 5. 
Reconstructed spin displacement ensemble average propagator (EAP) with (b, e, h, dashed 

lines in c, f, i, and rows ii, iv, vi in j) and without (a, d, g, solid lines in c, f, i, and rows i, iii, 

v in j) q-space sampling density correction of crossing-fiber voxels (Fig. 10 green dashed 

boxes) from the Stanford (a-c, row i and ii in j), MGH-USC HCP (d-f, rows iii and iv in j) 

and WU-Minn-Ox HCP data (g-i, rows v and vi in j). The 2D coronal cross sections through 

the center of the 3D EAP (a, b, d, e, g, h), the 1D profiles along left-right (L-R, red lines in 

c, f, i), superior-inferior (S-I, blue lines in c, f, i) and anterior-posterior (A-P, green lines in c, 

f, i) directions from the EAP center, and the 3D contours (j, negative values clipped to 0) at 

different displacement distances are displayed. The mean displacement distance of free 
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water (MDDwater) given the experimental timing is 23.7 μm, 16.2 μm, and 24.4 μm for the 

Stanford, MGH-USC HCP and WU-Minn-Ox HCP data respectively. The EAPs are 

normalized by their maximum values (i.e. the value at the EAP center). The pink arrows and 

dashed circles highlight the positive side lobes of the Gibbs ringing.
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Figure 6. 
Spin displacement ensemble average propagators (EAPs) recovered at 8 μm (with q-space 

sampling density correction) from the pre- and post-central gyrus, thalamus and brainstem 

regions of interest (ROIs, red rectangles in the inset images in b-d) from the MGH-USC 

HCP data overlaid on axial slices of fractional anisotropy (FA) maps (windowed between [0, 

1]) from diffusion tensor imaging (DTI) (b-d). The nearby voxels outside the gray matter, 

thalamus and brainstem within the ROIs are on top of black background. The FA and the 

primary eigenvectors (V1) from DTI of the three ROIs are displayed in (a). DTI V1 is color 

coded based on orientation (red: left-right, green: anterior-posterior, blue: superior-inferior).
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Figure 7. 
Maps of the mean probability at 0 (b), 5.2 μm (c), 7 μm (d) and 15 μm (e) displacement 

distance on a representative axial slice, and the mean and standard deviation of the mean 

probability (f, g) within 14 FreeSurfer regions of interest (ROIs) (a, listed along the x-axis in 

g) from the MGH-USC HCP data. The scatter plot of the zero-displacement probability 

versus the T1-weighted image intensity in the whole brain is showed with the correlation 

value (h).
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Figure 8. 
Maps of the displacement distance at 0.9 (a), 0.7 (b), 0.5 (c), 0.3 (d), and 0.1 (e) of the zero 

displacement probability (P0) on a representative axial slice, and their mean within 14 

FreeSurfer region of interests (ROIs) (Fig. 7a, listed along the x-axis in f) from the MGH-

USC HCP data. The map of the displacement distance at 0 probability (r0, distance at first 

zero crossing) perpendicular to the primary eigenvector (V1) from diffusion tensor imaging 

(DTI) in the corpus callosum (CC) is displayed on fractional anisotropy (FA) map 

(windowed between [0, 1]) from DTI on a representative sagittal slice. The mean and 

standard deviation of r0 within the five sub-regions of the CC (the anterior (red in g inset), 

mid-anterior (yellow in g inset), central (green in g inset), mid-posterior (cyan in g inset) and 

posterior (blue in g inset)) are reported in (h). Only voxels with FA larger than 0.5 within the 

FreeSurfer CC ROI are included.
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Figure 9. 
Component orientation distribution functions (ODFs) from single shell (columns 1-6) and 

combined ODF (columns 7, 8) reconstructed with (rows ii, iv, vi) and without (rows i, iii, v) 

q-space sampling density correction, with (column 8) and without (column 7) ensemble 

average propagator (EAP) ringing removal for the Stanford (rows i, ii), MGH-USC HCP 

(rows iii, iv) and WU-Minn-Ox HCP data (rows v, vi). The size of the component ODF is 

proportional to their value. The size of the component ODF from the b=1000 s/mm2 shell is 

kept the same with and without q-space sampling density correction. The combined ODF is 

normalized by their maximum.
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Figure 10. 
Reconstructed fiber orientation samples (b, rows 1, 3, 5, columns i, 15 randomly selected 

samples, stick length proportional to the fiber volume fraction) and the average orientation 

(b, rows 2, 4, 6, columns i) from the BEDPOSTX method, and the orientation distribution 

function (ODF) (b, rows 1, 3, 5, columns ii-iv) and the ODF peaks (b, rows 2, 4, 6, columns 

ii-iv) from the multi-shell multi-tissue constrained spherical deconvolution (CSD) method, 

generalized q-space imaging (GQI), and the proposed generalized diffusion spectrum 

imaging (GDSI) method in the centrum semiovale region (a) from the Stanford (b, rows 1, 

2), MGH-USC HCP (b, rows 3, 4) and WU-Minn-Ox HCP data (b, rows 5, 6). The primary 

eigenvectors (V1) from diffusion tensor imaging (DTI) are also depicted (a). All 

reconstruction results are displayed on top of the DTI fraction anisotropy (FA) map 

(windowed between 0 and 1). The diffusion ODF (b, rows 1, 3, 4, columns iii and iv) is 

color coded with the minimum as blue and the maximum as red. The red, blue and green 

vectors from the ODF peaks and BEDPOSTX (b, rows ii, iv, vi) represent the primary, 
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secondary and tertiary diffusion orientations, respectively. DTI V1 and the fiber ODF (b, 

rows 1, 3, 4, columns ii) is color coded based on orientation (red: left-right, green: anterior-

posterior, blue: superior-inferior). The centrum semiovale region contains intersection of the 

corpus callosum (CC), the corona radiata (CR), and the superior longitudinal fasciculus 

(SLF). The magenta dashed boxes indicate the crossing-fiber voxels presented in Figures 5 

and 9.
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Figure 11. 
Histograms of the angles between the primary, secondary and tertiary fiber orientations 

identified by the BEDPOSTX method (a, d), the multi-shell multi-tissue constrained 

spherical deconvolution (CSD) method (b, e), and the proposed generalized diffusion 

spectrum imaging (GDSI) method from the MGH-USC HCP (a-c) and WU-Minn-Ox HCP 

(d-f) multi-shell data. The histograms only include white matter voxels with both the 

primary and secondary fibers (red curves), both the primary and tertiary fibers (green curves) 

and both the secondary tertiary fibers (blue curves). The area under the red, green and blue 

curves is equal to the nur of the secondary fibers, tertiary fibers and tertiary fibers, 

respectively.
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