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Abstract 

There is significant interest in using resting-state functional connectivity (RSFC) to predict 

human behavior. Good behavioral prediction should in theory require RSFC to be sufficiently 

distinct across participants; if RSFC were the same across participants, then behavioral 

prediction would obviously be poor. Therefore, we hypothesize that removing common 

resting-state functional magnetic resonance imaging (rs-fMRI) signals that are shared across 

participants would improve behavioral prediction. Here, we considered 803 participants from 

the human connectome project (HCP) with four rs-fMRI runs. We applied the common and 

orthogonal basis extraction (COBE) technique to decompose each HCP run into two subspaces: 

a common (group-level) subspace shared across all participants and a subject-specific 

subspace. We found that the first common COBE component of the first HCP run was localized 

to the visual cortex and was unique to the run. On the other hand, the second common COBE 

component of the first HCP run and the first common COBE component of the remaining HCP 

runs were highly similar and localized to regions within the default network, including the 

posterior cingulate cortex and precuneus. Overall, this suggests the presence of run-specific 

(state-specific) effects that were shared across participants. By removing the first and second 

common COBE components from the first HCP run, and the first common COBE component 

from the remaining HCP runs, the resulting RSFC improves behavioral prediction by an 

average of 11.7% across 58 behavioral measures spanning cognition, emotion and personality. 
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Highlights 

• We decomposed rs-fMRI signals into common subspace & individual-specific 
subspace 

• Common subspace is shared across all Human Connectome Project (HCP) 
participants 

• Common subspaces are different across runs, suggesting state-specific effects 
• Individual-specific subspaces are unique to individuals 
• Removal of common subspace signals improve behavioral prediction by 11.7% 
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Introduction 

Mapping from brain to behavior in individuals is a crucial step in developing imaging-

based biomarkers with real-world utilities. With the widespread availability of large-scale 

resting-state functional magnetic resonance imaging (rs-fMRI) datasets, there has been 

significant interest in using resting-state functional connectivity as a predictive fingerprint of 

human behavior (Finn et al., 2015; Rosenberg et al., 2016). Resting-state functional 

connectivity reflects synchrony between brain regions present during rest and has been widely 

utilized to provide insights into the intrinsic architecture of the human brain (Biswal et al., 

1995; Fox and Raichle, 2007; Buckner et al., 2013). The brain functional architecture measured 

during the resting-state is similar (although not the same) during task states, suggesting the 

relevance of resting-state functional connectivity to brain function and cognition (Smith et al., 

2009; Mennes et al., 2010; Yeo et al., 2015a; Tavor et al., 2016). Consequently, resting-state 

functional connectivity has been widely utilized to predict behavioral measures, ranging from 

cognition to personality (Hampson et al., 2006; Smith et al., 2015; Dubois et al., 2018; 

Bertolero et al., 2018).  

Successful behavioral prediction requires functional connectivity to be distinct across 

individuals, while retaining key features of an individual (Finn and Constable, 2016). For 

example, if the functional connectivity patterns of all participants were the same, then 

behavioral prediction could not possibly work. Therefore, fMRI signals that are present (or 

shared) across participants should theoretically not be useful for prediction. In fact, the shared 

signals might confuse the prediction algorithm, leading to worse prediction performance. Here, 

we investigated whether removing fMRI signals that are common across individuals might 

improve behavioral prediction. 

More specifically, we applied the common orthogonal basis extraction (COBE) algorithm 

(Zhou et al., 2016a; Zhou et al., 2016b) to rs-fMRI data from the Human Connectome Project 

(HCP; Van Essen et al., 2012; Smith et al., 2013). The COBE algorithm was originally 

developed to project “multi-block” data (collection of matrices) into a common subspace 

shared by all blocks and block-specific subspaces. The number of components spanning each 

subspace is specified by the user. The rs-fMRI data of an individual could be thought of a 

block, so application of COBE to the rs-fMRI of all participants decomposed each participant’s 

fMRI signals into a linear sum of a number of common COBE components (shared by all 

participants) and a number of individual-specific COBE components. Our hypothesis is that 

removing the common (group-level) COBE components from the rs-fMRI data might yield an 

improved predictive fingerprint of human behavior. 
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Conceptually, it is worth distinguishing our work from the vast literature investigating 

trait-level and state-level aspects of functional connectivity (Shirer et al., 2012; Cole et al., 

2014; Krienen et al., 2014; Meija et al, 2015; Yeo et al., 2015b; Wang et al., 2016; Gratton et 

al., 2018; Green et al., 2018; Kong et al., 2018). Here, our goal was to remove rs-fMRI signals 

common across participants, which might include common state-level effects (e.g., arising 

from participants undergoing the same experimental protocol), but also trait-level effects 

shared across all participants (e.g., all HCP participants are young adults).  

Cognizant of the fact that there might be inter-run variation (state-level effects) across 

the four runs of the HCP data (Bijsterbosch et al., 2017), the COBE algorithm was applied to 

each HCP run independently to explore if the common COBE components were similar across 

runs. We then evaluated whether functional connectivity computed using the individual-

specific fMRI signals can improve prediction of 58 behavioral measures across cognition, 

personality and emotion. 
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Methods 

Overview 

COBE was applied to preprocessed rs-fMRI data of 803 subjects from the Human 

Connectome project (HCP). Three variants of COBE emerged and the individual-subspace 

functional connectivity derived from these variants were considered for prediction of 58 

behavioral measures. Prediction accuracies with and without COBE were assessed. 

 

Rs-fMRI data 

The HCP S1200 release comprises a multi-modal collection of data across behavioral, 

structural MRI, rs-fMRI, and MEG paradigms from healthy adults (Van Essen et al., 2012; 

Smith et al. 2013). All imaging data were collected on a custom-made Siemens 3T Skyra 

scanner using a multiband sequence. The MRI and behavioral data were collected on two 

consecutive days. During the resting-state scan, participants are instructed to fixate their eyes 

on a projected bright cross-hair on a dark background. There were two rs-fMRI sessions. Each 

rs-fMRI session consisted of two runs. For convenience, we will refer to the two rs-fMRI runs 

(obtained on the first day) as run 1 and run 2. We will refer to the two rs-fMRI runs (obtained 

on the second day) as run 3 and run 4. Each rs-fMRI run was acquired in 2mm isotropic 

resolution with a TR of 0.72 seconds for a total of 1200 frames lasting 14 minutes and 33 

seconds (Van Essen et al., 2012; Smith et al., 2013).  

 

Preprocessing  

We utilized the MSMAll ICA-FIX data on fs_LR32K surface space (HCP S1200 manual; 

Glasser et al. 2013; Griffanti et al., 2014; Salimi-Khorshidi et al. 2014) from 1094 participants. 

However, some studies have pointed out that ICA-FIX does not completely eliminate global 

head-motion artefacts and recommended further nuisance regression (Burgess et al., 2016; 

Siegel et al., 2016; Kong et al., 2018; Li et al., 2019).  More specifically, framewise 

displacement (FD; Jenkinson et al., 2002) and root-mean-square of voxel-wise differentiated 

signal (DVARS) (Power et al., 2012) were estimated using fsl_motion_outliers. Volumes with 

FD > 0.2mm and DVARS > 75, as well as uncensored segments of data lasting fewer than 5 

contiguous volumes were flagged as outliers. Nuisance regression with regressors consisting 

of a global signal, six motion parameters, averaged ventricular signal, averaged white matter 

signal, and their temporal derivatives (18 regressors in total) were performed. When 

performing nuisance regression, outlier volumes were ignored in the computation of the 

regression coefficients. A bandpass filter (0.009 Hz ≤ f ≤ 0.08 Hz) was then applied to the data. 
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BOLD runs with more than half the volumes flagged as outliers were completely removed. 

Consequently, 82 subjects had all runs removed and were thus not considered further. 

Preprocessed rs-fMRI time courses were averaged within each of 400 cortical parcels 

(Schaefer et al., 2017) and 19 subcortical regions (brain stem, accumbens, amygdala, caudate, 

cerebellum, diencephalon, hippocampus, pallidum, putamen, and thalamus; Fischl et al., 2002). 

Therefore, there were 419 regions in total, resulting in a 419 x 1200 matrix of rs-fMRI time 

courses for each run of each subject. 

 

Behavioral data 

We considered a set of 58 behavioral measures across cognition, personality and emotion 

(Table S1; Kong et al., 2018). We restricted our analyses to participants, who had all four runs 

survived the quality control procedure and all 58 behavioral measures, resulting a final set of 

803 participants. 

 

Common Orthogonal Basis Extraction (COBE)  

For more details about the COBE algorithm, we refer readers to previously published 

papers (Zhou et al., 2016a; Zhou et al., 2016b). Here we briefly describe how COBE was 

applied to rs-fMRI data in this study. 

Given that within-subject differences have been reported across the four HCP runs 

(Bijsterbosch et al., 2017), COBE was applied to the four runs separately. In other words, 

COBE was applied to the first runs of all subjects, the second runs of all subjects, the third runs 

of all subjects and finally, the fourth runs of all subjects.  

For ease of explanation, let us consider the first run of all subjects. As explained 

previously, the first run of a subject is represented as a 419 x 1200 matrix. Let 𝑆𝑆𝑛𝑛 denote the 

419 x 1200 rs-fMRI matrix of the 𝑛𝑛-th subject. As illustrated in Figure 1A, COBE seeks to 

decompose 𝑆𝑆𝑛𝑛 into  

 

𝑆𝑆𝑛𝑛 = 𝐴̅𝐴𝑌𝑌�𝑛𝑛𝑇𝑇 + 𝐴̂𝐴𝑛𝑛𝑌𝑌�𝑛𝑛𝑇𝑇 

= common subspace + individual subspace, 

 

where 𝐴̅𝐴 is a 419 x C matrix representing the common subspace shared across all subjects. C is 

the number of components spanning the common subspace, and is defined a priori by the user. 

Thus, COBE assumes spatial correspondence, but not temporal correspondence across 
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subjects. Indeed, each column of 𝐴̅𝐴 can be visualized as a spatial map (see Figure 2 in Results). 

𝑌𝑌�𝑛𝑛𝑇𝑇 is a C x 1200 matrix of subject-specific time courses (of the 𝑛𝑛-th subject) associated with 

the common space. 𝐴̅𝐴𝑌𝑌�𝑛𝑛𝑇𝑇 is a 419 x 1200 matrix representing the projection of the 𝑛𝑛-th subject’s 

rs-fMRI time courses onto the common subspace, while 𝐴̂𝐴𝑛𝑛𝑌𝑌�𝑛𝑛𝑇𝑇 is a 419 x 1200 matrix 

representing the projection of the 𝑛𝑛-th subject’s rs-fMRI time courses onto the individual-

specific subspace. Figure 1B illustrates 𝑆𝑆𝑛𝑛 (red), 𝐴̅𝐴𝑌𝑌�𝑛𝑛𝑇𝑇(black) and 𝐴̂𝐴𝑛𝑛𝑌𝑌�𝑛𝑛𝑇𝑇 (green) for a random 

HCP subject with C = 1.  

 
Figure 1. Illustration of Common Orthogonal Basis Extraction (COBE). (A) COBE applied to 
one rs-fMRI run of 803 HCP participants. COBE projects the rs-fMRI data (𝑆𝑆𝑛𝑛) of an HCP 
individual onto a common subspace (𝐴̅𝐴𝑌𝑌�𝑛𝑛𝑇𝑇) and individual-specific subspace (𝐴̂𝐴𝑛𝑛𝑌𝑌�𝑛𝑛𝑇𝑇). The 
common subspace (𝐴̅𝐴) is shared across all subjects. The number of components C spanning the 
common subspace (number of columns of 𝐴̅𝐴) is a user-specified parameter. (B) The original 
signals (red), common-subspace signals (black; 𝐴̅𝐴𝑌𝑌�𝑛𝑛𝑇𝑇) and individual-subspace signals (green; 
𝐴̂𝐴𝑛𝑛𝑌𝑌�𝑛𝑛𝑇𝑇) are shown for a random HCP subject. 
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Three variants of COBE 

 An important parameter is the number of common components C. A useful property of 

COBE is that if COBE was applied twice (sequentially) with C = 1, the two common 

components will be (in practice) the same as the common components obtained by applying 

COBE once with C = 2. Here, we applied COBE extracting to each of the four HCP runs, 

sequentially extracting components up to three components per run, yielding 4 x 3 = 12 

common components.  

 As will be elaborated in Figure 2 of the Results section, we found that the first common 

component of the first run was unique to the run, while the second common component of the 

first run was highly similar to the first common components of the remaining runs. On the other 

hand, the third common component of the first run was also similar to the second common 

components of the remaining runs. These results motivated three variants of COBE for 

subsequent analyses: (i) COBE-1000, where COBE was only applied to the first run (C = 1) 

and the common subspace spanned by the common component was removed from the first run, 

(ii) COBE-2111, where COBE was applied to the first run (C = 2) and the remaining runs (C 

= 1), and the common subspace spanned by the common components were removed from the 

respective runs, and (iii) COBE-3222, where COBE was applied to the first run (C = 3) and the 

remaining runs (C = 2), and the common subspace spanned the common components were 

removed from the respective runs. Finally, along with three variants of COBE, we also 

considered “NO-COBE”, where COBE was not utilized at all.  

 

Behavioral prediction with and without COBE 

For each variant of COBE, 419 x 419 RSFC (Pearson’s correlation) matrix was computed 

based on the individual-subspace signals (419 x 1200) of each run of each subject. The 

correlation matrices were then averaged across all the four runs of each subject. For example, 

in the case of the variant COBE-2111, the final correlation matrix of a subject was computed 

in the following way: (i) for the first run, the correlation matrix was computed after two 

common-subspace components were removed, (ii) for the remaining runs, the correlation 

matrices were computed after one common-subspace component was removed from the 

corresponding runs, and (iii) the four correlation matrices were averaged to obtain the final 

functional connectivity matrix of a subject. A 419 x 419 Pearson’s correlation matrix was also 

computed for the “NO-COBE” condition. 
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As previously discussed, we considered 58 behavioral measures (Table S1, Supplement). 

For each behavioral measure, the elastic net (Friedman et al., 2010; Zou and Hastie, 2005) was 

used to predict subjects’ behavior in a 20-fold nested cross-validation scheme using the 

functional connectivity matrices obtained from COBE-1000, COBE-2111, COBE-3222 or NO-

COBE. For every test fold and each behavioral measure, the remaining 19 folds were used for 

training and validation. More specifically, certain behavioral measures are known to correlate 

with motion (Siegel et al., 2016). Therefore, age, sex, and framewise displacement (FD) were 

regressed from the behavioral measure before elastic net regression. The nuisance regression 

was performed on the training and validation folds, and the estimated coefficients were then 

applied to the test fold.  

After nuisance regression, the 19 training and validation folds were used for feature 

selection by selecting the top 50% of functional connections most strongly correlated (positive 

or negative) with the particular behavioral measure (see HCP MegaTrawl; 

https://db.humanconnectome.org/megatrawl/HCP820_MegaTrawl_April2016.pdf). The 

selected features (functional connectivity strength) were then entered into the elastic net 

regression estimation procedure. There were two hyperparameters associated with the elastic 

net, which were determined via inner-loop cross-validation of the 19 folds. The optimal 

hyperparameters were then used for predicting the behavioral measure in the test fold. 

Accuracy was measured by correlating the predicted and actual behavioral measure across all 

subjects within the test fold (Finn et al., 2015). Thus, for each behavioral measure, the 20-fold 

cross-validation yielded 20 prediction accuracies.  

When comparing different approaches, the prediction accuracies were averaged across 

all behavioral measures and then the corrected resampled t-test was utilized (Bouckaert and 

Frank, 2004; Nadeau and Bengio, 2000). The corrected resampled t-test accounted for the fact 

that the cross-validation accuracies were not independent across folds.  

 

Code availability 

The code for COBE can be downloaded at 

http://www.bsp.brain.riken.jp/~zhougx/cifa.html. The code for elastic-net is available freely at 

https://web.stanford.edu/~hastie/glmnet_matlab/. The Schaefer parcellation is available at 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal.   
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Results 

Overview 

COBE was applied to each rs-fMRI run of 803 HCP subjects. The spatial maps of the 

common (group-level) components from the four runs were then examined. The impact of 

removing the common components on the resulting RSFC was then investigated. Finally, we 

explored whether removing the common components from the rs-fMRI data improved 

behavioral prediction. 

Spatial maps of common COBE components 

COBE was applied to the rs-fMRI data of 803 HCP subjects to extract three components 

(C = 3) that were common across subjects. Common components were extracted from the four 

rs-fMRI runs independently, yielding a 419 x C matrix Ᾱ for each run. Each column of Ᾱ 

corresponds to the spatial map of a common COBE component, which is visualized in Figure 

2.  

The first common COBE component of the first run (Figure 2A) was predominantly 

focused on the visual cortex, especially the portion of the visual cortex involved in peripheral 

vison. This component was not found in the remaining runs. Instead, the second common 

COBE component of the first run and the first common COBE component of the second, third 

and fourth runs were primarily focused on regions within the default network with particular 

strong emphasis in the posterior cingulate cortex and precuneus. Indeed, average correlation 

between the first component of the first run with the first component of the remaining runs was 

only 0.03. On the other hand, the average correlation between the first component of the first 

run with the second component of the remaining runs was 0.83. Overall, this suggests the 

existence of a “common-subspace” component present in the first run of the HCP data, but not 

present in the remaining runs.  

The third common component of the first run and the second common COBE component 

of the second, third and fourth runs were also similar (r = 0.42), with strong weights on the 

posterior cingulate cortex and lateral inferior frontal lobe, although the degree of similarity was 

considerably weaker than the earlier components (discussed in the previous paragraph). For 

example, the somatomotor face region within the central sulcus exhibited strong spatial weights 

in the third component of the first run, but not in the second components of the remaining runs. 

The degree of similarity reduced even more with more components (Figure S1). More 

specifically, the average correlation between the fourth component of the first run with the third 
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component of the remaining runs was 0.06. Therefore, we did not explore more than three 

components (e.g., COBE-4333) in subsequent results.  

The above observations motivated our considerations of three variants of COBE: COBE-

1000, COBE-2111 and COBE-3222 in subsequent analyses. To illustrate the notation, COBE-

2111 means that two common components were removed from the first HCP run, while one 

common component was removed from the remaining three HCP runs. 

 
Figure 2. Spatial map of three common components shared across subjects (N = 803) in each 
of the four rs-fMRI runs. Observe that the first component of the first run (Figure 2A) was 
unique to only that run. Instead, the second component of the first run and the first component 
of the remaining runs were highly similar (r = 0.83). The third component of the first run and 
the second component of the remaining runs were also similar (r = 0.42). We note that very 
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similar components were obtained if the rs-fMRI time courses were variance normalized before 
COBE was applied. 
 

Functional connectivity changes arising from removing common COBE components 

Figures 3A and 3B show the 19 subcortical and 400 cortical ROIs used to compute the 

419 x 419 RSFC matrices. To illustrate the effects of removing common COBE components 

on the resulting RSFC matrices, Figures 3C and 3D show the RSFC matrices of the first rs-

fMRI run (averaged across 803 subjects) before and after removing the first common COBE 

component. Figure 3E shows RSFC changes from removing the first common COBE 

component. Since the first common COBE component of the first run was primarily focused 

on the visual cortex (Figure 2A), removing the first common COBE component largely resulted 

in RSFC changes associated with the visual network. In particular, there was decreased 

connectivity within the visual network, decreased connectivity between visual network regions 

and the somatomotor and dorsal attention networks, as well as increased connectivity between 

visual network regions and the control and default networks. 

Similarly, FC changes from removing the first common COBE component from the 

second, third and fourth rs-fMRI runs are shown in Figures 4A to 4C. Given that the first 

component was primarily focused on the posterior cingulate and precuneus (Figures 2B to 2D), 

the resulting RSFC changes were largely limited to the default network. More specifically, 

there was decreased connectivity within the default network, as well as increased connectivity 

between the default and attentional networks (Figures 4A to 4C).  

Figure 4D shows FC changes from removing the first two common COBE components 

from the first rs-fMRI run. Given that the first component was associated with the visual cortex, 

while the second component was associated with the posterior cingulate and precuneus, the 

resulting FC changes involved both visual and default networks. Indeed, the resulting FC 

changes appeared to be a combination of Figure 3E and Figures 4A to 4C.  
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Figure 3. FC changes from removing first COBE component from the first run of the HCP data. 
(A) 19 subcortical ROIs (Fischl et al., 2002) (B) 400 cortical parcels (Schaefer et al., 2017). 
Parcel colors correspond to 17 large-scale-networks (Yeo et al., 2011). For visualization, the 
17 networks were divided into eight groups (TempPar, Default, Control, Limbic, 
Salience/Ventral Attention, Dorsal Attention, Somatomotor and Visual). (C) 419 x 419 FC 
matrix of the first run of the HCP data, averaged across 803 participants. (D) 419 x 419 FC 
matrix after removing the first common COBE component from the first HCP run. (E) FC 
difference obtained by subtracting (C) from (D). 
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Figure 4. FC changes from removing the first common COBE component from the (A) second 
run, (B) third run and (C) fourth run of the HCP data. FC changes were mostly restricted to the 
default network and its connectivity with other networks. (D) FC changes from removing the 
first and second common COBE components from the first rs-fMRI run. FC changes mostly 
involved the default and visual networks, and their interactions with other networks. 
 

COBE improves behavioral prediction 

The 419 x 419 FC matrices from NO-COBE, COBE-1000, COBE-2111 and COBE-3222 

were utilized for cross-validated prediction 58 behavioral measures across cognition, 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2019. ; https://doi.org/10.1101/515742doi: bioRxiv preprint 

https://doi.org/10.1101/515742
http://creativecommons.org/licenses/by-nd/4.0/


personality and emotion (see Methods). The 20-fold cross-validation resulted in 20 prediction 

accuracies for each behavior measure.  

Figure 5 shows the prediction accuracies averaged across all behavioral measures. 

COBE-2111 performed the best with an average prediction accuracy r = 0.179 ± 0.015 (mean 

± std). Compared with NO-COBE (r = 0.160 ± 0.015), COBE-2111 achieves a relative 

improvement of 11.7% (p < 0.0001). From COBE-2111 to COBE-3222, the prediction 

accuracy dropped to r = 0.163 ± 0.015. From COBE-3222 to COBE-4333 (not shown), the 

prediction accuracy dropped even further to r = 0.143 ± 0.014, which confirmed our decision 

not to explore more components.  

Table S1 reports the prediction accuracies for each behavioral measure averaged across 

20 folds. Figure 6 shows the prediction accuracies of all 58 behavioral measures for NO-COBE 

and COBE-2111. COBE-2111 achieved an average relative improvement of 16.5% over NO-

COBE (when relative improvement was computed for each behavioral measure and averaged 

across all behavioral measures). 

We also repeated the analyses using partial correlations, instead of Pearson’s correlation. 

COBE-2111 again achieved the best prediction accuracies (Figure S2). Compared with NO-

COBE, COBE-2111 achieved a relative improvement of 13.6% (p < 0.0001). 
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Figure 5. Cross-validated prediction accuracy (averaged across 58 behavioral measures) for 
NO-COBE, COBE-1000, COBE-2111 and COBE-3222. Functional connectivity was 
computed using Pearson’s correlation. COBE-2111 has the highest prediction accuracy. 

 

Figure 6. Cross-validated prediction accuracies (correlation) for NO-COBE and COBE-2111 
for 58 behavioral measures across cognition, personality and emotion. Note the difference in 
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y-axis scales across the three panels. COBE-2111 achieved an average relative improvement 
of 16.5% over NO-COBE.  
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Discussion 

In this paper, we investigated whether the removal of common rs-fMRI components (that 

were shared across participants) could improve RSFC-based behavioral prediction. To this end, 

the COBE technique (Zhou et al., 2016a) was applied to decompose each HCP rs-fMRI run 

into a common subspace shared by all participants and individual-specific subspaces. We found 

that the first common COBE component from the first run was unique to that run. On the other 

hand, the second common COBE component from the first run was highly similar to the first 

common COBE component of the remaining three runs. By removing the first and second 

common COBE components from the first HCP run, and the first common COBE component 

from the remaining three HCP runs, behavioral prediction improved by 11.7% (averaged across 

58 HCP behavioral measures).  

Resting-state brain activity and functional connectivity are influenced by a large number 

of factors (Patriat et al., 2013; Yan et al., 2013; Rondinoni et al., 2011; Rondinoni et al., 2013; 

Tagliazuscchi et al., 2014; Gorgolewski et al., 2014; Laumann et al., 2015; Ong et al., 2015; 

Bijsterbosch et al., 2017; Power et al., 2017), including experimental conditions (e.g., fixation 

or eyes open rest, length of scan, etc), environment (e.g., scanner noise, temperature, etc), 

physiology (e.g., respiration and heart rate variability), brain state (e.g., caffeine intake, scanner 

anxiety, sleepiness) and content of self-generated thoughts (e.g., imagery, future related, etc).  

In the case of the HCP data, Bijsterbosch and colleagues have noted run-specific (state-

specific) differences, whereby early sensory-motor networks exhibited higher rs-fMRI 

amplitude in the second run of each of two scan days, with the first run of the first scan day 

exhibiting the lowest rs-fMRI amplitude. Our analyses also revealed run-specific effects: the 

first common COBE component of the first rs-fMRI run was unique and spatially localized in 

the peripherical portion of the visual cortex. Given that HCP participants were instructed to 

fixate on a bright cross-hair, one might speculate that this might yield strong effects in the 

visual cortex in the first run, which dissipated in subsequent runs as participants habituated to 

the “fixation task”.  

 Once the visual common component unique to the first HCP run was removed, the next 

common COBE component in the first run and the first common COBE component from the 

remaining three runs echoed the default network with particularly strong loadings on the 

posterior cingulate and precuneus, and also weak loadings on the inferior frontal gyrus, lateral 

temporal cortex, inferior parietal lobe and medial prefrontal cortex (Gusnard and Raichle, 

2001; Raichle et al., 2001; Buckner et al., 2008). The default network is involved in self-

generated thought (e.g., autobiographical memory, prospective thinking, etc), which is the 
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dominant cognitive process during the resting-state (Spreng et al., 2009; Smallwood 2013; 

Andrews-Hanna et al., 2014). Furthermore, the posterior cingulate and precuneus are 

considered to be one of the core regions of the default network (Andrews-Hanna et al., 2010; 

Leech and Sharp, 2013) and plays a pivotal role in mediating the intrinsic activity throughout 

the default mode network (Fransson and Marrelec, 2008). Since the default network supports 

the generation of self-generated thoughts during the resting-state, it might not seem surprising 

that the default network is one of the common COBE component. However, inter-individual 

variation in the nature and content of self-generated thoughts can influence the resulting 

patterns of brain activity during rest (Gorgolewski et al., 2014; Wang et al., 2018). Therefore, 

it is somewhat surprising that the default network is one of the common COBE components 

that is shared across participants. 

In the original COBE paper (Zhou et al., 2016a), COBE was shown to be useful in 

multiple datasets. For example, COBE was applied to 2856 face images from 68 individuals 

taken under different conditions (e.g., pose, illumination) to extract two common COBE 

components. By visual inspection, the common COBE components appeared to reflect 

illumination direction. Since illumination direction was not useful for face recognition, 

removing the common components improved recognition accuracies. Similarly, the common 

COBE components estimated in this study (Figure 2) might represent components not 

important for prediction, so their removal improved behavioral prediction. However, unlike 

face images (Zhou et al., 2016a), inferring the biological meaning of the components is tricky. 

While the common COBE components appeared biologically plausible (e.g., mapping to visual 

or default network regions), the actual biological mechanisms remain unclear and is a topic for 

future work. 

 

Conclusions 

In this work, we decomposed participants’ rs-fMRI data into two components: a common 

(group-level) subspace and individual-specific subspaces. We found run-specific (state-

specific) effects that were shared across participants. When common rs-fMRI signals were 

removed, the resulting RSFC yielded improved behavioral prediction in the Human 

Connectome Project. 
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