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Abstract 

Resting-state functional MRI (R-fMRI) studies have demonstrated widespread alterations in brain 

function in patients with major depressive disorder (MDD). However, a clear and consistent conclusion 

regarding a repeatable pattern of MDD-relevant alterations is still limited due to the scarcity of large-

sample, multisite datasets. Here, we address this issue by including a large R-fMRI dataset with 1,434 

participants (709 patients with MDD and 725 healthy controls) from five centers in China. Individual 

functional activity maps that represent very local to long-range connections are computed using the 

amplitude of low-frequency fluctuations, regional homogeneity and distance-related functional 

connectivity strength. The reproducibility analyses involve different statistical strategies, global signal 

regression, across-center consistency, clinical variables, and sample size. We observed significant 

hypoactivity in the orbitofrontal, sensorimotor, and visual cortices and hyperactivity in the frontoparietal 

cortices in MDD patients compared to the controls. These alterations are not affected by different 

statistical analysis strategies, global signal regression and medication status and are generally 

reproducible across centers. However, these between-group differences are partially influenced by the 

episode status and the age of disease onset in patients, and the brain-clinical variable relationship 

exhibits poor cross-center reproducibility. Bootstrap analyses reveal that at least 400 subjects in each 

group are required to replicate significant alterations (an extent threshold of P<.05 and a height 

threshold of P<.001) at 50% reproducibility. Together, these results highlight reproducible patterns of 

functional alterations in MDD and relevant influencing factors, which provides crucial guidance for 

future neuroimaging studies of this disorder. 
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Introduction 

Major depressive disorder (MDD) is the leading contributor to years-of-life lived with disability, and it 

is characterized by mood disturbances, loss of interest in activities and deficits in cognitive functions, 

resulting in increasing economic and social burdens (Kessler et al., 2007; Murray et al., 2012). Many 

previous studies of MDD have revealed structural and functional alterations in the brain that have 

substantially enhanced our understanding of the neurobiological substrates underlying the behavioral 

deficits in patients with MDD. However, the pathophysiological mechanism of MDD is incompletely 

understood (DeRubeis et al., 2008; Gong and He, 2015). 

  Over the past two decades, rapid advances in resting-state functional MRI (R-fMRI) have 

provided an unprecedented opportunity for the noninvasive investigation of functional architecture in 

spontaneous or intrinsic brain activities within and between regions (Biswal et al., 1995; Fox and 

Raichle, 2007; Wang et al., 2015a). Relating to depression, many R-fMRI studies have documented 

widespread functional alterations in patients with MDD, involving the primary sensorimotor (Kuhn and 

Gallinat, 2013; Wang et al., 2014a; Zhang et al., 2011) and visual (Kaiser et al., 2015; Kuhn and 

Gallinat, 2013) cortices, medial/lateral prefrontal (Greicius et al., 2007; Kaiser et al., 2015; Kuhn and 

Gallinat, 2013; Lui et al., 2011; Sheline et al., 2010; Wang et al., 2014a; Wang et al., 2015b; Zhang et 

al., 2011; Zhu et al., 2012) and parietal (Kaiser et al., 2015; Sheline et al., 2010; Wang et al., 2014a; 

Zhang et al., 2011; Zhu et al., 2012) cortices, and subcortical areas (Anand et al., 2009; Greicius et al., 

2007; Kaiser et al., 2015; Kuhn and Gallinat, 2013; Lui et al., 2011; Wang et al., 2014a; Wang et al., 

2015b); these areas cover approximately the whole brain. It is important to note that a clear and 

consistent conclusion regarding whether these functional alterations are reliable and can be reproduced 

in patients with MDD is still limited. The causes of this phenomenon might result from the limited 

statistical power of a small research sample, different patient recruitment criteria (e.g., cultural 

background and diagnostic criteria), different imaging protocols (e.g., MRI scanners and imaging 

parameters) and different analysis strategies (e.g., preprocessing procedures and functional brain 

measures) across studies (Button et al., 2013; Gong and He, 2015). 

  With the continuous emergence of datasets or consortiums with large sample sizes, high-quality 

data and multidimensional variables, functional imaging research of the brain is entering the era of “big 

data” (Poldrack and Gorgolewski, 2014; Xia and He, 2017). These data are extremely important for 

identifying reliable patterns of functional brain alterations in psychiatric disorders such as MDD due to 

the benefits of greater statistical power and across-center validations. For instance, using a large-sample 
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R-fMRI dataset of 421 patients with MDD and 488 healthy controls (HCs) from three research sites, 

Cheng et al. reported abnormal functional connectivity in the medial reward and lateral nonreward 

circuits of the orbitofrontal cortex in patients with MDD (Cheng et al., 2016). Using R-fMRI data from 

458 patients with MDD and 730 HCs from two sites, Drysdale et al. divided depressed patients into 

different neurophysiological subtypes according to their connectivity dysfunctions and successfully 

predicted their differential responses to transcranial magnetic stimulation therapy (Drysdale et al., 2017). 

However, large-sample, multicenter neuroimaging studies aiming to evaluate the reproducibility of 

functional alterations in patients with MDD are still lacking.  

  Here, we collected a large R-fMRI dataset of 1,434 participants, including 709 patients with 

MDD and 725 HCs, from five centers in China, thus ensuring homogeneity in genetic and cultural 

backgrounds in the same race. We calculated individual functional activity maps that represent very 

local to long-range connections using three frequently used R-fMRI measures, including the amplitude 

of low-frequency fluctuations (ALFF) (Zang et al., 2007), regional homogeneity (ReHo) (Zang et al., 

2004) and distance-dependent functional connectivity strength (FCS) (Buckner et al., 2009; Dai et al., 

2015; Liang et al., 2013; Liao et al., 2013; Xia et al., 2018). We then examined functional brain 

alterations in patients with MDD, followed by reproducibility analyses involving different preprocessing 

and statistical analysis strategies with cross-center validation. 

 

Materials and Methods 

Participants 

This study included 1,558 participants (782 patients with MDD and 776 HCs) who were recruited from 

five research centers in China through the Disease Imaging Data Archiving - Major Depressive Disorder 

Working Group (DIDA-MDD). All patients were diagnosed according to the Diagnostic and Statistical 

Manual of Mental Disorders IV (DSM-IV) criteria for MDD (First et al., 1997). The severity of 

depression was rated using the Hamilton Depression Rating Scale (HDRS) (Williams, 1988). Quality 

control was performed for both clinical and imaging data, including the presence of demographic 

information, completeness of R-fMRI scan, inconsistency in key scan parameters, errors in reading raw 

Digital Imaging and Communications in Medicine (DICOM) data, abnormalities in anatomical brain 

images, head motion, and coverage of the whole brain. The final sample included 1,434 participants 

(709 patients with MDD and 725 HCs). For detailed inclusion and exclusion criteria of data quality 

control in each center, see Supplementary Information. The study was approved by the ethics 
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committees of each center, and written informed consent was obtained from each participant. Table 1 

illustrates the demographics, clinical characteristics, and imaging data quality. 

 

Image Acquisition  

All R-fMRI data were obtained on 3.0-T MRI scanners with gradient-echo planar imaging sequences. 

During the scan, the participants were instructed to keep their eyes closed without falling asleep and 

move as little as possible. Detailed scanning parameters for each center are listed below (see Table 2 for 

summary). 

  China Medical University (CMU) dataset: R-fMRI images were acquired with a 3.0-T GE HDxT 

scanner (General Electric, Milwaukee, USA) with an 8-channel head coil. The parameters were 

TR=2,000 ms, TE=40 ms, flip angle=90°, field of view=240×240 mm2, and matrix=64×64. Thirty-five 

axial slices were collected with a 3-mm thickness and no gap. The scan lasted for 6 minutes and 40 s, 

resulting in 200 volumes. 

  Central South University (CSU) dataset: R-fMRI images were acquired with a 3.0-T GE HDxT 

scanner (General Electric, Milwaukee, USA) with a standard head coil. The parameters were TR=2,000 

ms, TE=30 ms, flip angle=90°, field of view=220×220 mm2, and matrix=64×64. Thirty-three axial slices 

were collected with 4-mm thickness and a gap of 0.6 mm. The scan lasted for 6 minutes, resulting in 180 

volumes. 

  Peking University (PKU) dataset: R-fMRI images were acquired with a 3.0-T Siemens 

Magnetom Trio scanner (Siemens, Erlangen, Germany) with a standard head coil. The parameters were 

TR=2,000 ms, TE=30 ms, flip angle=90°, field of view=210×210 mm2, and matrix=64×64. Thirty axial 

slices were collected with 4-mm thickness and a gap of 0.8 mm. The scan lasted for 7 minutes, resulting 

in 210 volumes. 

  Sichuan University (SCU) dataset: R-fMRI images were acquired with a 3.0-T GE EXCITE 

scanner (General Electric, Milwaukee, USA) with a standard head coil. The parameters were TR=2,000 

ms, TE=30 ms, flip angle=90°, field of view=220×220 mm2, and matrix=64×64. Thirty axial slices were 

collected with a 5-mm thickness and no gap. The scan lasted for 6 minutes and 40 s, resulting in 200 

volumes.  

  Southwest University (SWU) dataset: R-fMRI images were acquired with a 3.0-T Siemens Trio 

scanner (Siemens, Erlangen, Germany) with a 16-channel head coil. The parameters were TR=2,000 ms, 

TE=30 ms, flip angle=90°, field of view=220×220 mm2, and matrix=64×64. Thirty-two axial slices were 
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collected with 3-mm thickness and a gap of 1 mm. The scan lasted for 8 minutes and 4 s, resulting in 

242 volumes. 

 

Data Preprocessing 

R-fMRI image preprocessing was conducted with SPM12 (www.fil.ion.ucl.ac.uk/spm/) and an in-house 

toolbox, SeeCAT (www.nitrc.org/projects/seecat). Briefly, the first ten time points (the first five time 

points for the CSU dataset due to the short scan time) were discarded. Subsequent preprocessing steps 

included slice-timing correction and head-motion correction. Next, motion-corrected functional images 

were normalized to the standard space using the EPI template, resampled to 3-mm isotropic voxels, and 

further smoothed with a 6-mm full-width at half maximum Gaussian kernel. Linear detrending was 

performed, and several confounding covariates, including the Friston-24 head-motion parameters, white 

matter and cerebrospinal fluid signals, were regressed out from the time series for all voxels. 

Subsequently, temporal bandpass filtering (0.01-0.1 Hz) was applied. Given that the spectral magnitudes 

in R-fMRI signals are sensitive to head motion (Satterthwaite et al., 2013), we also applied filtering with 

a band of 0.01-0.08 Hz for validation purposes. Finally, a “scrubbing” procedure was performed on 

individual preprocessed data to remove outlier data due to head motion (Power et al., 2012). 

Specifically, for volumes with a framewise displacement exceeding a threshold of 0.5 mm, we replaced 

the volumes and their adjacent volumes (2 forward and 1 backward frames) with linear interpolated data. 

 

Functional Brain Measurements 

In the present study, we used three functional brain measurements, ALFF (Zang et al., 2007), ReHo 

(Zang et al., 2004) and distance-dependent FCS (Buckner et al., 2009; Dai et al., 2015; Liang et al., 

2013; Liao et al., 2013; Xia et al., 2018), which have been widely used in previous R-fMRI studies in 

MDD. These three measures examine functional coordination ranging from focal activity to long-range 

connections, respectively. Specifically, i) the ALFF reflects functionally coordinated amplitudes among 

various neurons within a voxel (Zang et al., 2007). For a given gray matter (GM) voxel, the R-fMRI 

time course was first extracted and then converted to the frequency domain using a fast Fourier 

transform. The ALFF of this voxel was computed as the averaged square root of the power spectrum 

across the 0.01-0.1 Hz frequency interval. ii) The ReHo estimates functional similarities in brain 

activities among neighboring voxels located within a short range (Zang et al., 2004). For a given GM 

voxel, the ReHo value was computed as Kendall’s coefficient of concordance (Kendall and Gibbons, 
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1990) of the time series of this voxel with those of its nearest neighbors. iii) The FCS captures a total 

functional coordination between a given GM voxel and all other voxels at a specific distance range 

(Buckner et al., 2009; Dai et al., 2015; Wang et al., 2014a; Wang et al., 2015b; Xia et al., 2018). Briefly, 

for a given GM voxel, we first computed its full-range FCS by summing Pearson’s correlation 

coefficients between the voxel and other voxels. Considering the effects of distance on brain networks in 

healthy (Achard et al., 2006) and diseased (Alexander-Bloch et al., 2013; Dai et al., 2015; Wang et al., 

2014b; Xia et al., 2018) populations, we further divided whole-brain functional connectivity into 9 bins 

with Euclidean distances binned into 20-mm steps, ranging from 0 to 180 mm (the longest distance 

between voxels in the GM mask), and calculated a distance-weighted FCS for each bin (Xia et al., 

2018). Voxels with higher FCS values tend to play central roles in transferring information flow across 

regions. In the present study, we obtained individual ALFF, ReHo and FCS maps in a voxel-wise 

manner, which were further normalized to reduce global brain effects. Notably, all of the analyses were 

constrained within a GM mask that was generated by thresholding the GM probability map in SPM 12 

with a threshold of 0.2 and removing voxels that were not covered by the subjects’ data. As a result, 12 

individual functional brain maps (1 ALFF, 1 ReHo, 1 full-range FCS, and 9 distance-specific FCS maps) 

were generated for each subject, representing functional coordination from local voxels to long-range 

connectivity. 

 

Reproducibility Analyses of Functional Brain Measures 

We systematically evaluated the effects of several methodological and clinical factors on the 

reproducibility of dysfunctions in MDD. These factors included the multisite statistical analysis 

strategies, removal of the global signal, across-center consistency, clinical variables (e.g., first episode, 

medication status, and age of onset) and sample size. 

 

Multi-site statistical analysis strategies. To study whether MDD-related functional alterations can be 

reliably identified, we used two multisite statistical analysis methods, the stepwise linear regression and 

the Liptak-Stouffer z-score method (Liptak, 1958). i) Stepwise linear regression method. Briefly, we first 

pooled all individuals from the five centers together, and regressed out the center effect, and then 

established a stepwise linear regression model for each metric (i.e., ALFF, ReHo or FCS). In this model, 

the metric was treated as the dependent variable, and the age, sex, group, age-by-group, sex-by-group 

and age-by-sex-by-group interactions were treated as independent variables. For each voxel, the model 
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started with the same variables, and the independent variables were iteratively removed from the model 

if they did not significantly predict the dependent variable, leading to a potentially unique final model. 

ii) Liptak-Stouffer z-score method (Liptak, 1958). This method has been used to analyze multisite MRI 

data (Cheng et al., 2016; Glahn et al., 2008). Briefly, for each metric, we first evaluated the between-

group differences at each center by using a general linear model with the metric as a dependent variable, 

group as an independent variable, and age and sex as covariates. The P-value for the group effect 

derived from the GLM was first converted to its corresponding z-score, and a combined Z-score was 

then calculated as follows: 

𝑍𝑍 =
∑ 𝑤𝑤𝑖𝑖𝑧𝑧𝑖𝑖𝑘𝑘
𝑖𝑖=1

�∑ 𝑤𝑤𝑖𝑖2𝑘𝑘
𝑖𝑖=1

 

where i=1, 2, …, k represents the centers, 𝑤𝑤𝑖𝑖 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the weight for the ith center, and zi is 

the z-score of the ith center. Finally, the Z-score was transformed to its corresponding P-value. Both 

statistical analysis strategies (i.e., stepwise linear regression and Liptak-Stouffer z-score method) were 

separately performed in a voxel-wise fashion, and the height threshold for significance was set at a two-

tailed P<.001 at a voxel level to strictly control for the false positive rate (Eklund et al., 2016). Gaussian 

random-field correction at the cluster level was performed for multiple comparisons, with an extent 

significance level at P<.05. 

 

Global signal processing strategies. The biological substrate of the global signal is currently unclear 

(Murphy and Fox, 2017), given that it simultaneously captures neural activity and physiological noise 

such as respiration and movement (Liu et al., 2017b; Murphy and Fox, 2017). To date, the procedure of 

performing global signal removal (GSR) or not during R-fMRI data preprocessing remains 

controversial. One recent study revealed the diverse effects of different processing strategies on global 

signals (with and without GSR) on functional data from subjects with psychiatric disorders (Yang et al., 

2014). To estimate the effect of GSR on identifying MDD-related functional alterations, we reperformed 

the abovementioned two statistical strategies by analyzing R-fMRI data with GSR in preprocessing. 

 

Cross-center consistency. We first assessed the site effect on these functional measurements and whether 

the multisite statistical analysis strategy of linear regression could reduce site effects. Briefly, for each 

functional metric, we performed Kruskal-Wallis tests across centers to estimate the site effect at each 
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voxel. The obtained P-value map was converted to a Z-value map and corrected for multiple 

comparisons using Gaussian random-field correction. The significance level was set at a height 

threshold of two-tailed P<.001 with an extent threshold of P<.05. Then, we pooled all individuals from 

the five centers together and linearly regressed out the dummy site variables. The Kruskal-Wallis tests 

were performed again on the processed metric maps to check whether the site effects were reduced. 

Additionally, we utilized a ComBat model to correct for the site effects (Yu et al., 2018). The ComBat 

model is based on multivariate linear mixed effects regression, in which the empirical Bayes is used to 

improve the estimation of the model parameters (Yu et al., 2018). We further used Kruskal-Wallis tests 

to estimate the site effects and performed the stepwise linear regression to identify MDD-related 

alterations in ComBat harmonized metric data. 

Next, we conducted a conjunction analysis to assess the reproducibility of MDD-related functional 

alterations across different centers. Considering that the Liptak-Stouffer z-score method was performed 

based on statistical analysis in each center, which is conceptually similar to a conjunction method, we 

only performed this across-center consistency analysis for the stepwise regression method on both data 

with and without GSR. Briefly, for each identified cluster with a significant between-group difference, 

we first conducted the stepwise linear regression analysis in a voxelwise manner to obtain the group 

effect in each center, using the same model previously used in the pooled dataset. We then binarized the 

group effect maps in that voxels with a significant between-group difference were set as 1; otherwise, 

they were set as 0. Given the post hoc nature of this analysis, the significance level was set at P=.05 at 

the voxel level. Finally, the conjunction map for each cluster was obtained by summing the binarized 

group effect maps across centers. 

 

Effect of clinical variables. We further investigated the effects of categorized clinical variables on the 

identification of group differences in functional activities. Briefly, we classified the patients into six 

different subgroups according to their clinical information, including patients in their first episode or in a 

nonfirst episodes, patients receiving medication or not receiving medication, and patients with an onset 

age older than or no more than 21 years (Benazzi, 2009; Schmaal et al., 2017; Schmaal et al., 2016). 

First, we performed statistical analysis on the clinical variables (i.e., illness duration, onset age, episode 

number, and HDRS) between each corresponding pair of the subgroups. Second, for each group, along 

with HC data, we extracted the mean value of functional metrics within each of the previously identified 

clusters and performed the stepwise linear regression analysis to estimate the group effect. Cohen’s d 
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was also calculated for each cluster to show the effect size. Finally, we directly compared the mean 

functional metric of each region between each corresponding pair of subgroups using stepwise linear 

regression analysis. A threshold of false discovery rate (FDR) corrected P<.05 across regions was 

considered significant. 

  Next, for regions with significant group differences, we also explored the relationships between 

functional measurements and continuous clinical variables (i.e., HDRS, duration of illness, onset age 

and episode number). A robust regression analysis was performed with each clinical variable as the 

dependent variable, mean functional measurements in each cluster as the independent variable, and the 

center, age, and sex as covariance. We conducted this analysis in the pooled dataset and in each center to 

assess the reproducibility. The significance level was set to P<.05 with Bonferroni correction across 

different clusters. 

 

Effect of sample size. To estimate the number of participants needed to identify MDD-related functional 

alterations, we performed a bootstrap simulation analysis. Briefly, we first randomly sampled subsets 

from the pooled cohort with different sample sizes (from 50 to 700 individuals in each group, with an 

interval of 50 individuals). Given that the between-group difference might derived from the center effect 

by unbiased sampling, we constrained our sampling procedure so that at least 50% of the individuals of 

the two groups should come from the same centers. Then, in each subset, we performed a stepwise 

regression analysis for each functional metric to identify regions with significant group effects. For each 

sample size, we conducted a random sampling and statistical analysis 1,000 times, and we defined the 

reproducibility rate at each voxel as the percentage of times that the given voxel exhibited a significant 

group difference in 1,000 simulations. Three significance levels (a height threshold of P<.001, P<.01, 

and P<.05 at a voxel level with an extent threshold of P<.05 estimated by using Gaussian random field 

at cluster level) were applied, respectively. Therefore, at each significance level, we obtained a curve of 

reproducibility rate against sample size at each voxel, and the smallest required sample size to reach a 

critical reproducibility rate of 50% was calculated. Finally, the smallest required sample size of each of 

the previously identified regions with significant MDD-related functional alterations was estimated as 

the minimum smallest sample size across all voxels within the cluster under reproducibility rate of 50%.  
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Results 

Reproducible Functional Brain Alterations in Patients with MDD (Statistical Strategies and GSR 

Effects) 

Figure 1 and Figure 2 show between-group difference maps of each functional measure (without 

thresholding). With a strict statistical analysis with multiple comparison corrections (a cluster-level 

corrected P<.05 with a voxel-level P<.001), we identified a repeated pattern of significant functional 

alteration in patients with MDD that was mainly distributed in the prefrontal, parietal and occipital 

regions regardless of multicenter statistical analysis strategies and whether the global signal was 

regressed (Figure 3). Specifically, patients with MDD had significantly lower functional activities in the 

right postcentral gyrus (PoCG, ReHo), the bilateral orbitofrontal cortices (OFC, FCS of 0-20 mm) and 

the bilateral middle and inferior occipital gyri (FCS of 60-80 and 80-100 mm) than did the HCs. 

Furthermore, patients with MDD exhibited significantly higher functional activities in the left triangular 

part of the inferior frontal gyrus (IFGtriang, ALFF), the right supramarginal gyrus (SMG, FCS of 0-20 

and 20-40 mm), the bilateral precuneus (FCS of 80-100 mm), and the right superior frontal gyrus (SFG, 

FCS of 100-120 mm) than did the HCs (Table 3-6). We did not observe significant effects for age-by-

group, sex-by-group, or age-by-sex-by-group interactions, although significant age and sex effects were 

observed for these functional measurements (Figure S1 and S2). 

  The results from two different statistical analysis and GSR strategies were generally consistent. 

However, influences were observed for several specific regions. i) The Liptak-Stouffer z-score method 

was slightly more sensitive in identifying MDD-related alterations of a few regions with better extent 

significance, such as significantly lower ReHo in the left PoCG in MDD patients than in HCs (Figure 3; 

Table 3 vs. Table 4; Table 5 vs. Table 6). ii) In data without GSR, patients with MDD had significantly 

lower FCS in the left cuneus (CUN, full-range, 40-60, and 60-80 mm) and higher FCS in the right 

opercular part of the inferior frontal gyrus (IFGoperc, 60-80 mm) than did the HCs (Figure 3; Table 3 vs. 

Table 5; Table 4 vs. Table 6). In contrast, in data with GSR, we observed a significantly lower FCS in 

the right precentral gyrus (PrCG, 100-120 mm) and the left inferior parietal lobule (IPL, 120-140 and 

140-160 mm), and a significantly higher FCS in the left SFG (60-80 mm), right calcarine fissure cortex 

(CAL, 100-120 mm), and the bilateral medial part of SFG (SFGmed,120-140 mm) in the MDD groups 

than in the HC group (Figure 3; Table 3 vs. Table 5; Table 4 vs. Table 6). These results suggest that the 

data after GSR were the most sensitive for identifying alterations in long-range functional coordination 

in patients with MDD. Finally, the results of using filtering with a band of 0.01-0.08 Hz during data 
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preprocessing were overall parallel to the main findings in that most of the significant MDD-related 

alterations remains unchanged (Figure S3).  

 

The Consistency of Cross-center Validation 

We observed a significant site effect on all of the raw functional metrics in most of the brain regions 

(Figure S4), suggesting the necessity for performing site effect correction in multicenter imaging studies. 

Notably, these site effects no longer existed after performing linear regression or applying the ComBat 

method (except for ALFF in a few parietal and temporal regions in linear regressed maps, which did not 

overlap with regions exhibiting MDD-related alterations) (Figure S4). The result indicated the ability of 

both methods to correct confounding site factors in the MDD R-fMRI studies. Additionally, almost all of 

the MDD-related functional alterations remained significant in data processed with ComBat method 

(Figure S5).  

Figure 4 illustrates the conjunction maps, showing significant between-group differences using 

stepwise regression analysis across five centers. Overall, we found a fair-to-good across-center 

consistency for these MDD-related functional alterations in both data with and data without GSR. 

Specifically, in data without GSR, the between-group differences in the left IFGtriang (ALFF), right 

SMG (FCS of 20-40 mm), left CUN (FCS of 40-60 mm), and PCUN (FCS of 100-120 mm) could be 

reproduced in four centers, while those in the other regions were observed three times. In data with 

GSR, alterations in regions located in the frontal and parietal cortices were more repeatedly identified 

(four times) across centers, including the right SMG (FCS of 20-40 mm), left SFG (FCS of 60-80 mm), 

PCUN (FCS of 100-120 mm), right SFG (FCS of 100-120 mm), and left IPL (FCS of 140-160 mm). 

 

Effects of First Episode, Medication Status, and Onset Age 

Regarding clinical variables, the first-episode patients had a significantly shorter illness duration and a 

lower rate of receiving medication than did the recurrent patients (both P<.001). Patients with 

medication had significantly longer illness duration, higher episode number, lower HDRS, and lower 

first-episode ratio than patients that did not receive medication (all P<.001). Moreover, there were no 

significant differences in illness duration, episode number, HDRS, or medication status between patients 

with an onset age greater than or no more than 21 years (Table S1).  

For the functional brain alterations, after dividing the patients into first-episode and recurrent 

groups, all identified regions remained significant in the first-episode patients and mostly in the 
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recurrent patients (all P<.05, FDR corrected), except for several regions with short-range functional 

coordination, such as the left IFGtriang, right PoCG, bilateral OFC, and left cuneus (Figure 5). After 

dividing the patients into medicated and nonmedicated groups, the between-group differences for all the 

clusters remained significant in both groups (all P<.05, FDR corrected) (Figure 5). After dividing 

patients according to the onset age, patients with MDD who had an onset age greater than 21 years 

showed short-range functional alterations (ALFF, ReHo, and FCS of <60 mm), including the left 

IFGtriang, right PoCG, right SMG, left OFC and left cuneus. In contrast, patients with MDD who had an 

onset age no greater than 21 years mainly exhibited altered long-range functional coordination (FCS 

of >60 mm), including the right IFGoperc, bilateral cuneus, bilateral precuneus and right SFG (all 

P<.05, FDR corrected) (Figure 5). Finally, in the direct comparisons between each corresponding pair of 

patient subgroups, we only found significantly lower FCS (80-100 mm) of the left cuneus in patients 

with an onset age no greater than 21 years than in patients with an onset age greater than 21 years 

(P=.004, FDR corrected). No significant differences were observed between first-episode and recurrent 

patients or between patients with and without medication. 

 

Correlations Between Functional Metrics and Clinical Variables in Patients with MDD 

In the pooled dataset, we observed a significant positive correlation between the long-range FCS of the 

right PCUN (80-100 mm) and episode number in patients with MDD (P=.003, Bonferroni-corrected) 

(Figure 6). Additionally, we observed a negative correlation between the ReHo of the right PoCG and 

the HDRS (P=.021, uncorrected) (Figure 6). None of the functional metrics were correlated with the 

duration of illness or age of onset. In the dataset of each center, we found a positive correlation between 

the FCS of the right IFGOperc (60-80 mm) and the illness duration in the CSU dataset (P=.009, 

uncorrected); a negative correlation between the FCS of the right SMG (20-40 mm) and the age of onset 

in the CSU dataset (P=.038, uncorrected); a negative correlation between the ReHo of the right PoCG 

and the age of onset in the SCU dataset (P=.034, uncorrected); and a negative correlation between the 

ReHo of the right PoCG and the HDRS in the CMU dataset (P=.010, uncorrected) (Figure S6 and Table 

7). These results indicate poor cross-center reproducibility of the relationship between functional metrics 

and clinical variables. 

 

Influence of Sample Size on Reproducibility 

At a cluster level (for previously identified cluster in Table 3), a sample size of 400 to 700 was needed to 
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reach a reproducibility rate of 50% for a corrected P<.05 with a height threshold of P<.001 (Figure 7A, 

left). The required sample size depends on different regions and functional measurements. Notably, the 

between-group differences in long-range FCS required relatively a smaller sample size than did those in 

short-range FCS, ReHo, and ALFF of the regions identified to be reproduced in the same chance. Of the 

functional measurements, the FCS of the left CUN (40-60 and 60-80 mm) and the right PCUN (80-100 

mm) were the most reproducible regions, requiring 400 to 475 subjects in each group to show corrected 

between-group differences with a chance of 50%. The ReHo in the right PoCG was the least 

reproducible region, and even with 700 subjects in each group, the chance for surviving correction was 

less than 50%. With the reduction of height significance level, the overall pattern of curves among 

different clusters remain unchanged but with smaller sample size required. The FCS of the left CUN 

(60-80 mm) and the right PCUN (80-100 mm) were still the most reproducible regions, requiring 300 

and 225 for a height threshold of P<.01 and P<.05, respectively (Figure 7A, middle and right). 

Additionally, the reproducibility rate of several regions dropped under these lenient thresholds even 

when sample increased, including the ReHo of the right PoCG, the FCS of the right SMG and left OFC 

(<20 mm), and the FCS of the right SFG (100-120 mm). These might be largely due to the limited size 

of these significant clusters that cannot survive the corrections of large extent thresholds estimated with 

low height thresholds. Figure 7B presents the required sample size at a voxel level under different 

significance levels. 

 

Discussion 

Using a large-sample, multicenter R-fMRI dataset from a Chinese MDD cohort (N = 1,434), we 

revealed a repeated pattern of hypoactivity in the orbitofrontal, sensorimotor and visual cortices and 

hyperactivities in the frontoparietal cortices in MDD patients compared to HCs. These findings were 

generally reproducible regardless of statistical strategies, removal of global signal and medication status, 

and exhibited a high across-center consistency. However, the between-group differences were partially 

influenced by the episode status and the age of onset in patients, and the correlations between functional 

metric and clinical variables had poor across-center reproducibility. Finally, we showed that at least 400 

subjects in each group were required to replicate significant alterations (a voxel level of P<.001 and a 

cluster level of P<.05) at a 50% reproducible chance. Together, these results highlight reproducible 

patterns of functional alterations in MDD and influencing factors involving research methodology and 

clinical design.  
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MDD-relevant Hypoactivity in the Medial Orbitofrontal and Primary Cortices 

The OFC is involved in prediction and decision making regarding emotion-related information for 

hedonic experiences (Kringelbach, 2005). Particularly, the medial OFC is associated with reward 

processing, including reward reinforcement, learning and memory, and is a crucial hub in the reward 

circuit connecting the medial temporal lobe and prefrontal cortex (Kringelbach and Rolls, 2004; Rolls, 

2016). Previous studies in MDD reported a wide range of abnormalities in this region in either structure 

or function, such as reduced GM volume (Bremner et al., 2002) and cortical thickness (Schmaal et al., 

2017) and abnormal functional activation (Lawrence et al., 2004) and connectivity (Cheng et al., 2016; 

Meng et al., 2014; Wang et al., 2014a; Zhang et al., 2011). Here, our findings of functional disruption in 

the medial OFC provide further evidence of altered memory systems encoding pleasant feelings and 

rewards that underlie the persistently depressed mood or loss of interest in activities in MDD patients. 

Significant hypoactivity of the right opercular part of the PoCG and the cuneus was also observed in 

patients with MDD. Neuroimaging studies suggest that the opercular part of the PoCG is a functionally 

heterogeneous region involved in recognizing emotions from visually presented facial expressions 

(Adolphs et al., 2000). Although several studies observed MDD-related structural or functional 

abnormalities in the PoCG (Iwabuchi et al., 2015; Schmaal et al., 2017), disruptions in this specific 

location have been reported only rarely in patients with MDD. In contrast, abnormalities in the visual 

cortex, such as a reduced surface area (Schmaal et al., 2017) and decreased cerebral blood flow (Ito et 

al., 1996), are associated with depression. Moreover, connectome studies have also revealed disrupted 

network topologies in either functional or structural brain networks of the visual cortex in patients with 

MDD (Korgaonkar et al., 2014; Singh et al., 2013; Zhang et al., 2011). Interestingly, the orbitofrontal 

and primary cortices had a large effect size on the cortical area shrinkage observed in the large-sample, 

worldwide brain structural study performed by the ENIGMA consortium (Schmaal et al., 2017). This 

finding indicates common disruptions in structure and function of these brain regions in MDD. 

 

MDD-relevant Hyperactivity in the Frontoparietal Cortices 

We observed that patients with MDD exhibited significant hyperactivity in the left IFGtriang, right 

SMG, right IFGoperc, bilateral precuneus and right SFG. MDD-related changes in these regions have 

been reported in several previous studies. For instance, higher glucose metabolism rates in the IFGtriang 

were observed in depressed patients (Biver et al., 1994), and normalized metabolism of this region was 
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lower in paroxetine responders than in nonresponders (Brody et al., 1999). Using R-fMRI, Zhang et al. 

revealed greater nodal centralities of the right SMG and the right IFGoperc in drug-naïve patients with 

first-episode MDD, suggesting more involvement of these areas in coordinating whole-brain functional 

networks (Zhang et al., 2011). In patients with depression, the precuneus shows multidimensional 

hyperactivity, including increases in cerebral metabolism (Smith et al., 2009), within-system 

coordination (Greicius et al., 2007; Sheline et al., 2010), and functional network connectivity (Cheng et 

al., 2016; Zhang et al., 2011). The SFG is also an area that is deeply involved in the pathology of MDD, 

with higher regional glucose metabolism (Brody et al., 2001) and hyper intra- and intersystem 

coordination (Sheline et al., 2010). To a certain extent, these regions share a common feature: 

involvement in nonreward, emotion-related processing. Specifically, the IFGtriang is related to lexical-

semantic processing (Gold et al., 2006) and the self-regulation of emotions (Johnston et al., 2010). The 

right supramarginal gyrus participates in cognitive or emotional processing series, including working 

memory (Liu et al., 2017a) and empathic judgments (Silani et al., 2013). The right IFGoperc, a 

homologous region of Broca’s area in the opposite hemisphere, could be associated with orthography-to-

semantic (Siok et al., 2004) and perception of negative mood (Hofer et al., 2006). The precuneus is a 

highly heterogeneous region involved in a wide spectrum of integrated functions, including memory 

retrieval, self-consciousness, and emotion judgment (Cavanna and Trimble, 2006). The precuneus is also 

a core component of the default-mode network (Raichle et al., 2001) and a critical hub with dense, long-

range connections in human whole-brain structural (Gong et al., 2009; van den Heuvel and Sporns, 

2011) and functional (Buckner et al., 2009; Liang et al., 2013) networks. Based on these findings, the 

precuneus plays an important role in integrating brain functions. Furthermore, the SFG is another 

important cortical area responsible for a series of high-order cognitive functions, such as working 

memory (Liu et al., 2017a), moral decision making (Greene et al., 2001), and behavioral inhibition 

(Aron et al., 2004). Recent functional imaging studies have also revealed the recruitment of the SFG 

during the regulation of negative emotions through reappraisal/suppression strategies (Levesque et al., 

2003; Phan et al., 2005). Together, the hyperactivity in these key brain areas contributes to the broad 

spectrum of emotion-related disturbances and cognitive deficits observed in subjects with depression. 

 

The Effect of Global Signal on Reproducibility of MDD-relevant Functional Alterations 

The global signal of fMRI data refers to the averaged time course across all voxels of the brain areas, 

and its biological significance relevant to neuronal activity is still poorly understood (Murphy and Fox, 
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2017). Recent studies documented that the global signal is a complex mixed signal because it 

simultaneously captures the underlying neural activity (Scholvinck et al., 2010) and several confounding 

noises, such as motion, cardiac and respiratory cycles that are globally embedded in the fMRI signals in 

nature (Liu et al., 2017b; Murphy et al., 2013). Therefore, whether to perform global signal regression 

remains confusing and controversial because the conduction of GSR can not only, at least partially, 

reduce the effect of unnecessary global confounds and enhance the identification of system-specific 

connections (Fox et al., 2009), but also can partly wipe away potential personal traits or diagnostic 

information (Liu et al., 2017b) and mathematically mandates anti-correlations between regions (Murphy 

et al., 2009). GSR also affects the reliability of commonly used functional metrics, such as ReHo (Zuo et 

al., 2013) and functional connectivity (Chai et al., 2012), as well as the topology of functional networks 

(Chen et al., 2018; Liang et al., 2012; Tomasi et al., 2016). More importantly, the relationship between 

global signal and spatially distributed brain regions was altered in several neuropsychiatric disorders, 

such as schizophrenia (Yang et al., 2017) and autism spectrum disorder (Gotts et al., 2012), and the 

conduction of GSR affected the identification of functional alterations in schizophrenia (Yang et al., 

2014) and Alzheimer’s disease (Chen et al., 2018). Here, we showed that the MDD-relevant alterations 

were largely reproducible in data with and without GSR for local functional metrics (i.e., ALFF and 

ReHo) and short-range FCS, while GSR enhanced the sensitivity in detecting alterations in long-range 

FCS. A possible reason is the shifting of resting-state functional correlation distribution after GSR from 

being mainly positive to being zero centered (Chai et al., 2012). In functional connections with a 

relatively high strength (e.g., >.2), the proportion of medium- and short-range connections is much 

larger than that of long-range connections. Therefore, the distribution of functional correlation mainly 

reflects the strength of medium and short-range connections, and the determination of whether 

conducting GSR could have little effect on changing the shape of the overall distribution. Conversely, 

given the small number of long-range functional connections, their strength distribution is much easier 

to influence by GSR, and thus might increase the sensitivity to identify disorder-relevant alterations. 

 

Advantages of a Large-sample Dataset 

Our bootstrapping simulation study showed that at least a sample size of 400 subjects in each group was 

required to replicate significant MDD-relevant functional alterations with a reproducibility rate over 

50%, and the minimum sample size largely depended on brain regions and significance thresholds. This 

simulation analysis might partially explain the large discrepancies in MDD-relevant functional 
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alterations across previous R-fMRI studies. To our knowledge, this study represents the largest R-fMRI 

MDD dataset collected in China. One thousand four hundred thirty-four patients with MDD and HCs 

were included based on the consistent diagnostic standards of the DSM-IV for MDD. Although the 

patients were recruited from five different research centers (i.e., Changsha, Beijing, Chongqing, 

Shenyang, and Chengdu), this cohort exhibited remarkable homogeneity in biological and demographic 

characteristics, including genetic background, language, and cultural environment. This homogeneity 

enables the reliable and reproducible identification of key brain nodes with abnormal functional 

activities in Chinese patients with MDD due to improved cross-validated power in statistical analysis 

and the avoidance of biased sampling in small datasets. The promising international multicenter 

structural imaging studies conducted by the ENIGMA consortium (Schmaal et al., 2017; Schmaal et al., 

2016) have provided an important analytical framework for delving into neuroimaging big data and have 

revealed the general, reliable structural underpinnings of MDD, regardless of racial, genetic and 

environmental factors. Together, these large-sample multisite studies are particularly helpful for 

identifying reliable brain nodes with MDD-relevant abnormalities and developing imaging biomarkers 

for an effective early diagnosis and optimization of interventions for patients with MDD (Drysdale et al., 

2017; Perrin et al., 2012). It should also be noted that given the existence of large individual 

heterogeneity in the brain relative to a normative distribution, particularly in patients with psychiatric 

disorders (Marquand et al., 2016; Wolfers et al., 2018), these functional and structural alterations in 

MDD should be considered a general pattern of this disorder. The assessment of reproducibility of 

functional alterations at an individual level is highly encouraged and could improve understanding of 

individualized precision medication for depression. 

 

Limitations and Further Considerations 

Several issues need to be addressed. First, the clinical information, such as medication status and 

episode number, was not fully recorded for each patient due to variations in data management practices 

across different centers. This issue limited our power to analyze the effects of clinical variables on 

functional alterations. Second, significant site effects were observed on the raw functional metrics, 

which might result from the different MRI scanners, imaging parameters, experimental procedures, and 

clinical status of patients across different centers. Although our statistical analysis strategy eliminated 

the linear effects of centers, the potential nonlinear and interaction effects of these factors might remain 

upon identifying MDD-related functional alterations. The heterogeneity in collecting clinical and 
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imaging data could explain the poor reproducibility of correlations between functional metrics and 

clinical variables. Third, longitudinal datasets were not included in the current study. Future studies 

including longitudinal neuroimaging data will be critical for evaluating the reproducibility of probing 

mechanisms of the progression of depression in the brain and developing reliable biomarkers for early 

diagnosis and prediction of treatment effects. Fourth, a recent study offered a promising example of 

defining subtypes of depression using big imaging data (Drysdale et al., 2017). Although MDD subtypes 

are not the main topic of the current paper, classifying subtypes with multicenter datasets is an intriguing 

challenge when facing the high heterogeneity in data across centers. Constructing an appropriate cross-

center normative modal and further assessing the reproducibility of the shared and distinct patterns of 

alterations in patients with different subtypes of MDD will benefit the diagnosis and optimization of 

treatment for affected individuals. Fifth, our study identified several repeatable key brain regions with 

significantly altered functional activities; however, we have not determined whether these alterations are 

coupled with underlying structural and metabolic substrates. Sixth, the FCS used in the current study is 

an integration functional metric that sums many of region-to-region connections. Investigations focusing 

on the reproducibility of MDD-related alterations in specific regional connections can provide insights 

into the understanding of crucial pathways in depression. Finally, depression is highly associated with 

various types of cognitive deficits and genetic risk factors, such as 5-HTTLPR (Caspi et al., 2003). 

Future studies combining neuroimaging data and these multidimensional biological variables will 

contribute to improving our understanding of the biological mechanisms of behavioral disturbance. 

Moreover, these studies provide crucial opportunities to probe the intermediate effects of genes and 

behavior on depression pathology in the brain and the development of high-dimensional biomarkers for 

individuals with depression.   
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Tables 

Table 1. Demographic, clinical and imaging quality characteristics 

Center Group Age, mean 
(SD), yr 

Sex (M/F) Education, 
mean (SD), 

yr 

Duration of 
illness, mean 
(SD), yr 

Medication 
(Yes/No) 

HDRSa, mean 
(SD) 

Maximum 
Translation, 
mean (SD), 
mm 

Maximum 
Rotation, 
mean 
(SD), 
degree 

Mean FD, 
mean 
(SD), mm 

tSNR, mean 
(SD) 

ALFF of 
GS, mean 
(SD) 

CMU,  Healthy (n=249) 27.24 (8.20) 103/146 14.85 (3.23)     1.10 (1.68) .57 (.41) .57 (.45) .11 (.06) 104.65 (20.09) 1.48 (.84) 
Shenyang Patient (n=125) 27.91 (9.70) 39/86 12.15 (3.07) 1.65 (3.17) 49/76 21.44 (8.67) .68 (.58) .65 (.57) .11 (.07) 102.97 (20.90) 1.54 (.85) 
  Statistics T or χ2/P .70/.484 3.33/.068 7.72/<.001     33.71/<.001 2.13/.034 1.41/.159 1.07/.286 .76/.451 .66/.512 
                          
CSU,  Healthy (n=108) 32.31 (7.96) 62/46 11.84 (3.40)     .62 (.88) .93 (.63) .76 (.50) .13 (.06) 132.52 (27.92) .86 (.41) 
Changsha Patient (n=177) 36.28 (10.21) 77/100 10.16 (3.43) 2.52 (3.83)  N.A. 31.39 (7.82) .80 (.49) .79 (.49) .14 (.07) 136.88 (28.58) .76 (.53) 
  Statistics T or χ2/P 3.45/.001 5.19/.023 4.02<.001     36.52/<.001 1.96/.052 .44/.662 .88/.382 1.26/.209 1.67/.096 
                          
PKU,  Healthy (n=73) 31.90 (9.01) 42/31 15.23 (2.28)       .40 (.26) .25 (.15) .18 (.07) 131.54 (24.33) .26 (.09) 
Beijing  Patient (n=75) 31.51 (7.86) 44/31 13.76 (3.02) .52 (.47) 0/75 25.35 (4.77) .43 (.28) .30 (.14) .18 (.06) 133.08 (23.63) .27 (.11) 
  Statistics T or χ2/P .29/.775 .02/.889 3.39/.001       .56/.580 1.78/.077 .91/.363 .39/.691 .94/.348 
                          
SCU,  Healthy (n=41) 34.83 (17.69) 17/24         .51 (.38) .68 (.62) .12 (.07) 129.54 (21.69) 1.57 (.66) 
Chengdu Patient (n=50) 34.44 (12.90) 25/25 16.08 (4.22) 1.17 (1.60) 25/25 22.88 (4.25) .45 (.32) .54 (.32) .11 (.07) 138.06 (30.29) 1.16 (.48) 
  Statistics T or χ2/P .12/.904 .66/.416         .77/.442 1.37/.173 .71/.479 1.51/.134 3.37/.001 
                          
SWU,  Healthy (n=254) 39.65 (15.80) 88/166 12.80 (4.25)       .67 (.42) .82 (.56) .13 (.06) 96.98 (13.29) .33 (.11) 
Chongqing Patient (n=282) 38.74 (13.65) 99/183 11.83 (3.72) 4.20 (5.52) 124/125 20.78 (5.88) .65 (.41) .77 (.55) .13 (.05) 99.05 (14.56) .31 (.12) 
  Statistics T or χ2/P .72/.472 .01/.911 2.84/.005       .58/.562 1.02/.307 1.68/.094 1.71/.087 2.03/.043 

 
Abbreviations: SD, standard deviation; HDRS, Hamilton depression rating scale; FD, framewise displacement; tSNR, temporal signal-to-
noise ratio; ALFF, amplitude of low-frequency fluctuations; GS, global signal; CMU, China Medical University; CSU, Central South 
University; PKU, Peking University; SCU, Sichuan University; SWU, Southwest University; N.A., not available. 
aThe 17-item HDRS was used in the research centers of CMU, PKU, SCU and SWU while the 24-item HDRS was used in the research center 
of CSU. 
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Table 2. Scan parameters of R-fMRI data in each center 

Center Scanner TR (ms) TE (ms) FA (°) FOV (mm2) Matrix Slices Thickness (mm) Gap (mm) Volumes 
CMU GE HDxT 3T 2000 40 90 240×240 64×64 35 3 0 200 
CSU GE HDxT 3T 2000 30 90 220×220 64×64 33 4 .6 180 
PKU Siemens Trio 3T 2000 30 90 210×210 64×64 30 4 .8 210 
SCU GE EXCITE 3T 2000 30 90 220×220 64×64 30 5 0 200 
SWU Siemens Trio 3T 2000 30 90 220×220 64×64 32 3 1 242 

 
Abbreviations: TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; CMU, China 
Medical University; CSU, Central South University; PKU, Peking University; SCU, Sichuan University; 
SWU, Southwest University; GE, General Electric. 
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Table 3. Clusters with significant group effects identified by stepwise regression analysis in data 
without GSR 

No. Region Metric Direction x y z Z-value Size (mm3) P-value 
1 Left inferior frontal gyrus, triangular/orbital parts, BA45/47 ALFF MDD>HC -51 30 -3 4.71 1728 2.49×10-6 
2 Right postcentral gyrus, BA43/6 ReHo MDD<HC 66 -6 18 -4.07 2349 4.72×10-5 
3 Left cuneus, BA18 FCS full-range MDD<HC -6 -87 24 -4.45 2808 8.50×10-6 
4 Left medial orbitofrontal cortex, BA11/47  FCS <20 mm MDD<HC -18 21 -21 -4.45 2079 8.47×10-6 
5 Right medial orbitofrontal cortex, BA11/47  FCS <20 mm MDD<HC 15 27 -18 -4.90 2241 9.58×10-7 
6 Right angular/supramarginal gyri, BA40/42 FCS <20 mm MDD>HC 51 -48 24 4.57 2403 4.85×10-6 
7 Right angular/supramarginal gyri, BA40/41 FCS 20-40 mm MDD>HC 48 -45 27 4.88 3537 1.08×10-6 
8 Left cuneus, BA18/19 FCS 40-60 mm MDD<HC -9 -81 30 -4.96 3267 7.16×10-7 
9 Left middle occipital gyrus/cuneus, BA18 FCS 60-80 mm MDD<HC -6 -84 18 -4.94 8046 7.89×10-7 
10 Right inferior frontal gyrus, opercular part, BA44/9  FCS 60-80 mm MDD>HC 39 15 33 4.87 2241 1.12×10-6 
12 Left cuneus, BA18 FCS 80-100 mm MDD<HC -6 -87 24 -4.54 2484 5.65×10-6 
11 Right precuneus, BA7 FCS 80-100 mm MDD>HC 3 -54 45 5.27 6345 1.36×10-7 
13 Right superior/middle frontal gyri, BA46/10  FCS 100-120 mm MDD>HC 33 48 18 5.13 2187 2.94×10-7 
 
Abbreviations: GSR, global signal regression; BA, Brodmann area; ALFF, amplitude of low-frequency 
fluctuations; MDD, major depressed disorder; HC, healthy control; ReHo, regional homogeneity; FCS, 
functional connectivity strength. 
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Table 4. Clusters with significant group effects identified by the Liptak-Stouffer z-score method in 
data without GSR 

No. Region Metric Direction x y z Z-value Size (mm3) P-Value 
1 Left inferior frontal gyrus, triangular/orbital parts, BA47  ALFF MDD>HC -39 24 -6 4.39 1917 1.144×10-5 
2 Left superior parietal gyrus, BA7  ALFF MDD<HC -12 -81 45 -4.42 1647 9.962×10-6 
3 Right postcentral gyrus, BA43/6 ReHo MDD<HC 66 -6 18 -4.28 2241 1.877×10-5 
4 Left postcentral gyrus, BA43/6 ReHo MDD<HC -60 -6 30 -4.58 2133 4.762×10-6 
5 Left cuneus, BA18/19 FCS full-range MDD<HC -6 -87 24 -4.57 3429 4.899×10-6 
6 Left medial orbitofrontal cortex, BA11/47  FCS <20 mm MDD<HC -21 18 -21 -4.77 2889 1.851×10-6 
7 Right medial orbitofrontal cortex, BA11/47  FCS <20 mm MDD<HC 18 21 -21 -4.95 2673 7.421×10-7 
8 Right angular/supramarginal gyri, BA40/42 FCS <20 mm MDD>HC 51 -45 24 4.89 5940 1.008×10-6 
9 Right angular/supramarginal gyri, BA40/41 FCS 20-40 mm MDD>HC 48 -45 27 5.07 5508 4.084×10-7 
10 Left cuneus, BA18/19 FCS 40-60 mm MDD<HC -6 -75 21 -5.57 7344 2.518×10-8 
11 Right middle occipital gyrus, BA19/18 FCS 60-80 mm MDD<HC 36 -87 15 -4.07 2457 4.641×10-5 
12 Left middle occipital gyrus/cuneus, BA18/19 FCS 60-80 mm MDD<HC -6 -84 18 -4.94 8046 7.893×10-7 
11 Right inferior frontal gyrus, opercular part, BA44/9  FCS 60-80 mm MDD>HC 39 15 33 5.16 2403 2.430×10-7 
14 Left cuneus, BA18/19 FCS 80-100 mm MDD<HC -6 -84 21 -4.77 3402 1.806×10-6 
15 Right precuneus, BA7 FCS 80-100 mm MDD>HC 6 -54 45 5.44 9288 5.269×10-8 
16 Right superior/middle frontal gyri, BA46/10 FCS 100-120 mm MDD>HC 33 48 18 5.50 3969 3.820×10-8 
 
Abbreviations: GSR, global signal regression; ALFF, amplitude of low-frequency fluctuations; MDD, 
major depressed disorder; HC, healthy control; ReHo, regional homogeneity; FCS, functional 
connectivity strength. 
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Table 5. Clusters with significant group effects identified by stepwise regression analysis in data 
with GSR  

No. Region Metric Direction x y z Z-value Size (mm3) P-Value 
1 Left inferior frontal gyrus, triangular/orbital parts, BA45/47 ALFF MDD>HC -51 30 -3 4.66 1377 3.240×10-6 
2 Right medial orbitofrontal cortex, BA11/47 FCS <20 mm MDD<HC 15 27 -18 -4.87 2916 1.139×10-6 
3 Right supramarginal gyrus, BA40 FCS 20-40 mm MDD>HC 51 -42 24 4.76 2619 1.898×10-6 
4 Left middle occipital gyrus, BA19/18 FCS 60-80 mm MDD<HC -39 -87 3 -4.31 1269 1.603×10-5 
5 Right middle occipital gyrus, BA19/18 FCS 60-80 mm MDD<HC 42 -81 6 -4.11 1566 3.889×10-5 
6 Left superior frontal gyrus, BA9 FCS 60-80 mm MDD>HC -15 57 33 5.66 1674 1.540×10-8 
7 Right inferior occipital gyrus, BA19 FCS 80-100 mm MDD<HC 39 -72 -12 -4.30 1539 1.685×10-5 
8 Right precuneus, BA7 FCS 80-100 mm MDD>HC 9 -45 39 5.23 2349 1.668×10-7 
9 Right superior/middle frontal gyri, BA46/10 FCS 100-120 mm MDD>HC 27 45 21 4.93 1890 8.393×10-7 
10 Left angular gyrus/inferior parietal lobule, BA40/7 FCS 120-140 mm MDD<HC -33 -51 36 -4.49 1350 7.122×10-6 
11 Left inferior parietal lobule, BA40 FCS 140-160 mm MDD<HC -48 -45 36 -5.44 5967 5.480×10-8 
 
Abbreviations: ALFF, amplitude of low-frequency fluctuations; MDD, major depressed disorder; HC, 
healthy control; ReHo, regional homogeneity; FCS, functional connectivity strength. 
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Table 6. Clusters with significant group effects identified by the Liptak-Stouffer z-score method in 
data with GSR 

No. Region Metric Direction x y z Z-value Size (mm3) P-Value 
1 Left inferior frontal gyrus, triangular/orbital parts, BA47  ALFF MDD>HC -48 30 -3 4.34 1566 1.361×10-5 
2 Right postcentral gyrus, BA43/6 ReHo MDD<HC 66 -6 18 -4.24 1728 2.229×10-5 
3 Left postcentral gyrus, BA43/6 ReHo MDD<HC -60 -6 30 -4.55 1782 5.471×10-6 
4 Right medial orbitofrontal cortex, BA11/47 FCS <20 mm MDD<HC 15 27 -18 -4.91 2943 9.141×10-7 
5 Right supramarginal gyrus, BA40 FCS <20 mm MDD>HC 57 -33 33 4.13 2565 3.703×10-5 
6 Right medial orbitofrontal cortex, BA47 FCS 20-40 mm MDD<HC 21 9 -30 -4.75 2079 2.070×10-6 
7 Right supramarginal gyrus, BA40 FCS 20-40 mm MDD>HC 45 -39 45 4.92 4887 8.852×10-7 
8 Left middle occipital gyrus, BA19/18 FCS 60-80 mm MDD<HC -39 -87 3 -4.46 1485 8.360×10-6 
9 Right middle occipital gyrus, BA19 FCS 60-80 mm MDD<HC 42 -81 6 -4.14 1512 3.451×10-5 
10 Left superior frontal gyrus, BA9 FCS 60-80 mm MDD>HC -15 57 33 5.44 1458 5.292×10-8 
11 Right inferior occipital gyrus, BA19 FCS 80-100 mm MDD<HC 39 -69 -12 -4.47 1944 7.742×10-6 
12 Right precuneus, BA7 FCS 80-100 mm MDD>HC 9 -42 39 5.41 2457 6.297×10-8 
13 Right calcarine fissure and surrounding cortex, BA17 FCS 100-120 mm MDD>HC 15 -63 6 4.27 1242 1.927×10-5 
14 Right superior/middle frontal gyri, BA46/10 FCS 100-120 mm MDD>HC 27 45 21 4.85 2403 1.248×10-6 
15 Right precentral gyrus, BA4 FCS 100-120 mm MDD<HC 51 -15 42 -4.29 1539 1.787×10-5 

16 Left anterior cingulate gyrus/superior frontal gyrus, medial 
part, BA32 FCS 120-140 mm MDD>HC 15 33 27 4.52 1647 6.250×10-6 

17 Left angular gyrus/inferior parietal lobule, BA40/7 FCS 120-140 mm MDD<HC -30 -54 36 -4.60 2025 4.165×10-6 
18 Left inferior parietal lobule, BA40 FCS 140-160 mm MDD<HC -48 -45 36 -5.53 5913 3.256×10-8 

 
Abbreviations: GSR, global signal regression; ALFF, amplitude of low-frequency fluctuations; MDD, 
major depressed disorder; HC, healthy control; ReHo, regional homogeneity; FCS, functional 
connectivity strength. 
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Table 7. Relationship between functional measurements and clinical variables 

Dataset Region Metric Clinical variables T-value P-Value Bonferroni Corrected P-value 
Pooled Right precuneus FCS 80-100 mm Episode number 3.02 .003 .037 
Pooled Right postcentral gyrus ReHo HDRS-17 -2.32 .021 .270 
       
CSU Right inferior frontal gyrus, opercular part FCS 60-80 mm Illness duration 2.66 .009 .111 
CSU Right supramarginal gyrus FCS 20-40 mm Onset age -2.10 .038 .499 
SCU Right postcentral gyrus ReHo Onset age -2.24 .034 .442 
CMU Right postcentral gyrus ReHo HDRS-17 -2.63 .010 .125 

 
Abbreviations: FCS, functional connectivity strength; ReHo, regional homogeneity; HDRS, Hamilton 
depression rating scale; CMU, China Medical University; CSU, Central South University; SCU, Sichuan 
University. 
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Figure Legends 
Figure 1. Differences in functional measurements between patients with MDD and healthy 
controls in data without GSR (not thresholding). The figure illustrates group effects on functional 
measures without thresholding using the stepwise regression analysis and Liptak-Stouffer z-score 
method in data without GSR. Warm and cold colors indicate higher and lower functional measurements 
in patients with MDD than in the HCs, respectively. MDD, major depressive disorder; HC, healthy 
controls; s-w, stepwise; nGSR, nonglobal signal regression; L-S, Liptak-Stouffer; ALFF, amplitude of 
low-frequency fluctuations; ReHo, regional homogeneity; FCS, functional connectivity strength. 
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Figure 2. Differences in functional measurements between patients with MDD and healthy 
controls in data with GSR (not thresholding). The figure illustrates group effects on functional 
measures without thresholding using the stepwise regression analysis and Liptak-Stouffer z-score 
method in data with GSR. Warm and cold colors indicate higher and lower functional measurements in 
patients with MDD than in the HCs, respectively. MDD, major depressive disorder; HC, healthy 
controls; s-w, stepwise; L-S, Liptak-Stouffer; ALFF, amplitude of low-frequency fluctuations; ReHo, 
regional homogeneity; FCS, functional connectivity strength. 
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Figure 3. Differences in functional measurements between patients with MDD and healthy 
controls. The figure illustrates significant between-group effects on functional measurements from local 
voxel to distant brain connections using the stepwise regression analysis and Liptak-Stouffer z-score 
method on data with and without GSR. Warm and cold colors indicate higher and lower functional 
measurements in patients with MDD than in the HCs, respectively. The surface rendering was created 
using BrainNet Viewer (www.nitrc.org/projects/bnv/) (Xia et al., 2013). MDD, major depressive disorder; 
HC, healthy controls; s-w, stepwise; nGSR, nonglobal signal regression; L-S, Liptak-Stouffer; GSR, 
global signal regression; ALFF, amplitude of low-frequency fluctuations; ReHo, regional homogeneity; 
FCS, functional connectivity strength; GRF, Gaussian random field. 
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Figure 4. Conjunction maps across centers on functional differences between MDD and control 
groups. The figure illustrates the number of centers showing significant between-group differences 
within each cluster across five centers. Warm and cold colors indicate higher and lower functional 
measurements in patients with MDD than in the HCs, respectively. MDD, major depressive disorder; 
HC, healthy controls; s-w, stepwise; nGSR, nonglobal signal regression; GSR, global signal regression; 
ALFF, amplitude of low-frequency fluctuations; ReHo, regional homogeneity; FCS, functional 
connectivity strength. 
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Figure 5. Effects of clinical variables on clusters showing significant between-group differences. 
The number of each clinical variable represents the number of patients in each group. Mean Cohen’s d 
and P-values were calculated across the voxels within each cluster showing significant between-group 
differences identified in all patients. ALFF, amplitude of low-frequency fluctuations; ReHo, regional 
homogeneity; FCS, functional connectivity strength; IFGTriang, inferior frontal gyrus, triangular part; 
PoCG, postcentral gyrus; SMG, supramarginal gyrus; OFCmed, medial orbitofrontal cortex; CUN, 
cuneus; IFGOperc, inferior frontal gyrus, opercular part; PCUN, precuneus; SFG, superior frontal gyrus. 
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Figure 6. Robust fitting of functional measurements and clinical variables in pooled dataset. Each 
dot represents a subject, and its color indicates its weight in the robust regression analysis. A color map 
of blue to gray indicates the regression weight from high to low, respectively. Dashed lines indicate the 
confidence interval of the regression. The functional measurements and clinical variables were fitted by 
age, sex and centers. PCUN, precuneus; PoCG, postcentral gyrus; HDRS, Hamilton depression rating 
scale; FCS, functional connectivity strength. 
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Figure 7. Influence of sample size on reproducibility rate. (A) This figure illustrates the relationship 
between the sample size in each group and the reproducibility rate of identifying each region with 
significant between-group differences. Each dot indicates the percentile in 1,000 bootstrapping 
simulations of n subjects in each group. (B) This figure shows brain maps of the least number of 
participants in each group required to reach a reproducibility rate of 50% for identifying significant 
between-group differences at different significance levels. The reproducibility rate for each voxel was 
estimated as the percentage of times with significance in 1,000 bootstrapping simulations.  
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