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Abstract

The amygdala is critically involved in processing emotion. Through bidirectional connections, the 

prefrontal cortex (PFC) is hypothesized to influence amygdala reactivity. However, research that 

elucidates the nature of amygdala-PFC interactions – through mapping amygdala-prefrontal tracts, 

quantifying variability among tracts, and linking this variability to amygdala activation – is 

lacking. Using probabilistic tractography to map amygdala-prefrontal white matter connectivity in 

142 adolescents, the present study found that white matter connectivity was greater between the 

amygdala and the subgenual cingulate, orbitofrontal (OFC), and dorsomedial (dmPFC) prefrontal 

regions than with the dorsal cingulate and dorsolateral regions. Then, using a machine-learning 

regression, we found that greater amygdala-PFC white matter connectivity related to attenuated 

amygdala reactivity. This effect was driven by amygdala white matter connectivity with the 

dmPFC and OFC, supporting implicit emotion processing theories which highlight the critical role 

of these regions in amygdala regulation. This study is among the first to map and compare specific 
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amygdala-prefrontal white matter tracts and to relate variability in connectivity to amygdala 

activation, particularly among a large sample of adolescents from a well-sampled study. By 

examining the association between specific amygdala-PFC tracts and amygdala activation, the 

present study provides novel insight into the nature of this emotion-based circuit.
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The amygdala is critical to processing emotion. Altered amygdala function is implicated in a 

range of emotion-based traits and conditions, including inhibited temperament, depression, 

and anxiety (Monk, Telzer, Mogg, & et al, 2008; Schwartz, Wright, Shin, Kagan, & Rauch, 

2003; Yang et al., 2010). Core to many theories of amygdala function and related behavioral 

and psychiatric outcomes is the hypothesis that, through bidirectional connections, the 

prefrontal cortex (PFC) influences amygdala reactivity (Etkin, Büchel, & Gross, 2015). 

However, research that elucidates the nature of amygdala-PFC interactions – through 

mapping amygdala-PFC tracts, quantifying variability in strength among tracts, and linking 

this variability to amygdala activation – is lacking. Adolescence is a salient period for 

studying this interaction because amygdala-PFC connections continue to develop throughout 

adolescence (Lenroot & Giedd, 2006; Olson, Heide, Alm, & Vyas, 2015) and individual 

variability in these connections are implicated in adolescent morbidity and mortality (Casey, 

Duhoux, & Cohen, 2010). The present study aims to precisely map the relation between 

structure of the amygdala-PFC circuit and amygdala function in a relatively large sample of 

adolescents.

Neural tract tracer studies in non-human primates have detailed amygdala-PFC connections 

(Amaral & Price, 1984; Ghashghaei, Hilgetag, & Barbas, 2007). However, in humans, such 

approaches are not feasible, so evaluation of amygdala-PFC white matter connectivity is 

accomplished using non-invasive diffusion MRI (dMRI). Though a wealth of studies have 

used dMRI to examine broad white matter tracts in humans (Von Der Heide, Skipper, 

Klobusicky, & Olson, 2013), few have examined these connections using more precise 

dMRI methods (e.g., probabilistic tractography) (Eden et al., 2015; Greening & Mitchell, 

2015). Probabilistic tractography uses dMRI data to approximate a probability density 

function for each voxel that quantifies white matter connectivity between a seed region and 

the rest of the brain. Additionally, probabilistic tractography can account for multiple fiber 

directions in a voxel which more precisely maps connections compared to traditional 

deterministic tractography (Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007). These 

features make probabilistic tractography an ideal method to quantify human amygdala-PFC 

white matter connectivity.

Previous research combining dMRI and functional MRI (fMRI) has linked large fiber 

bundles, such as the uncinate fasciculus – the major white matter tract connecting the limbic 

system and PFC – with amygdala activation (Hein et al., in press; Swartz et al., 2014). 

However, non-human primate neural tract tracer studies have found a large amount of 

variability in the strength of specific tracts connecting the amygdala with different PFC 
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regions (Barbas, 2015; Ray & Zald, 2012). This variability, which is critical for a fuller 

understanding of the neural basis of emotion, is relatively uncharted in humans. While 

amygdala-PFC white matter has been examined (Eden et al., 2015), the variability in those 

tracts has not been explored or related to modulation in amygdala activation. This important 

information would fundamentally deepen our understanding of how specific tracts vary 

across the PFC and contribute to neural function.

The present study had two objectives. First, we used probabilistic tractography to quantify 

the maximum-likelihood of amygdala white matter connectivity with seven PFC regions that 

share structural connections with the amygdala based on tract tracer studies of non-human 

primates: Brodmann’s Area (BA)9, BA10, BA11, BA24, BA25, BA32, BA47. This powerful 

dMRI metric quantifies the likelihood that there are white matter connections between the 

amygdala and each targeted region of the PFC. It utilizes a Bayesian probability approach 

that more accurately models the complex white matter structure in the brain than traditional 

deterministic tractography and provides estimates of the probability that two regions of the 

brain are structurally connected (Behrens et al., 2007). Following nonhuman primate 

findings, we hypothesized that the subgenual cingulate (BA25), orbitofrontal (BA11, BA47), 

dorsal cingulate (BA24, BA32), and dorsomedial (BA10) regions of the PFC would have 

greater connectivity with the amygdala relative to dorsolateral (BA9) regions. Second, we 

used a machine-learning regression approach to examine the relation between the probability 

of amygdala white matter connectivity with the specified PFC regions and amygdala 

activation from an emotional faces fMRI task. Additionally, we used a bootstrapping 

procedure to determine if white matter tracts between the amygdala and specific PFC 

regions explained amygdala reactivity above and beyond the other regions. We hypothesized 

that increased amygdala-PFC connectivity, particularly within medial and orbitofrontal PFC 

regions, would correspond to attenuated amygdala activation to threat. By examining the 

association between specific amygdala-PFC tracts and amygdala activation, the present work 

elucidated the nature of this emotion-based circuit.

Materials & Methods

Participants

Participants included in the analysis for this study (N=141) were adolescents ages 15-17 

years recruited from the Detroit, MI, Toledo, OH, and Chicago, IL of the Fragile Families 

and Childhood Wellbeing nation-wide study (FFCWS). The FFCWS is a population-based 

sample of children born in large US cities, with an oversample of non-marital births 

(Reichman, Teitler, Garfinkel, & McLanahan, 2001). FFCWS families were interviewed at 

the birth of the focal child, and when the child was 1, 3, 5, 9, and 15 years of age. The 

FFCWS was sampled to represent children born at the turn of the century in American cities 

of 200,000 or more with an oversample of non-marital births to capture families that might 

face more economic and social challenges. Given the demographics and sample sizes in 

Detroit, Toledo and Chicago (Hein et al., 2018), a majority of the sample identified as 

African American, a group that has been underrepresented in neuroscience research (Falk et 

al., 2013). The total number of participants recruited for this study was 237. See Table 1 for, 

participant demographic information, reasons for participant exclusion, and for a comparison 
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of the participant demographics for the included sample and the full sample. These data 

overlap with prior work from our research group (Hein et al., 2018). The University of 

Michigan Medical School Institutional Review Board approved this study. All adolescent 

participants provided written informed assent, and their primary caregivers provided written 

consent for both themselves and their adolescent children, after the study was explained and 

questions were answered.

Procedure

Following informed consent from the parent/legal guardian and informed assent from the 

subject (UM IRBMED: HUM00074392), participants completed a practice version of a 

Gender Identification (Faces) Task outside of the scanner. After task training, structural, 

functional, and diffusion MRI data were collected.

Experimental Design: Gender Identification Task (Faces Task)

During fMRI data collection, participants completed an implicit emotion task in which they 

were instructed to attend to the gender of emotional faces from the NimStim set (Tottenham 

et al., 2009) and respond to the gender of the face (Swartz et al., 2014). A trial consisted of a 

500 ms fixation cross followed by a face presented for 250 ms. A black screen then appeared 

for 1500 ms, during which participants indicated the gender of the face by pressing a button 

(thumb for male, index finger for female). Total trial duration was 2250 ms with an inter-

trial interval that was jittered and ranged from 2000 to 6000 ms at intervals of 2000 ms (See 

Figure 1). There were a total of 100 trials with 20 trials of each of the following emotions: 

happy, sad, angry, fearful, neutral. There were equal numbers of males and female faces and 

an equal number of faces from individuals identified as White/Caucasian-American and 

Black/African-American. The Faces task was conducted using E-Prime version 2.0 

(Psychology Software Tools, Pittsburgh, PA) and was projected onto a screen using a 

BrainLogics MR Digital Projector (Psychology Software Tools, Pittsburgh, PA). Participants 

used a periscope to see the screen. Responses to the task were collected using a non-metallic 

fiber optic transducer linked to a response box. Participants who achieved less than 70% 

accuracy on the Faces Task were excluded (N=9). Average task accuracy was 94.74%. 

Incorrect trials were modeled as a separate condition and excluded from analysis. Prior to 

scanning, participants completed a practice session of the Faces Task with a different set of 

faces from the Ekman and Friesen set (Ekman & Friesen, 1975).

MR Acquisition

MRI images were acquired using a GE Discovery MR750 3T scanner with an 8-channel 

head coil located at the UM Functional MRI Laboratory. Head movement was minimized 

through: (a) instructions to the participant and (b) padding and pillows placed around the 

head, which are well-tolerated, yet limit motion.

Structural MRI Acquisition.—Two structural image sets were acquired: T1-weighted 

gradient echo images were taken before the functional scans using the same field of view 

(FOV) and slices as the functional scans (TR = 9.0 seconds, TE = 1.8 seconds, TI = 400 ms, 

flip angle = 15°, FOV = 22 cm; slice thickness = 3 mm; 256 × 256 matrix; 40 slices); and a 

high-resolution, T1 axial overlay acquired after the functional scans (TR = 250, TE = 5.7, TI 
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= 400 flip angle = 90°, FOV = 26 cm, slice thickness = 1.4 mm, 100 slices; matrix = 256 × 

256).

Diffusion MRI Acquisition.—Diffusion MRI identifies the microstructural properties of 

white matter tracts (Jones, Knösche, & Turner, 2013). Data was collected using spin-echo 

EPI diffusion sequence (scan parameters: TR 7250ms, Minimum TE, 128×128 acquisition 

matrix, 22 cm FOV, 3 mm thick slices (no gap), 40 slices acquired, b value = 1000 s/mm2, 

64 directions, five b=0s/mm2 T2 images (b0) acquired).

fMRI Acquisition.—Functional T2*-weighted BOLD images were acquired using a 

reverse spiral sequence (Glover & Law, 2001) of 40 contiguous axial 3 mm slices (TR = 

2000 ms, TE = 30 ms, flip angle = 90°, FOV = 22 cm, voxel size = 3.44mm × 3.44mm × 

3mm, sequential ascending acquisition). Slices were prescribed parallel to the AC-PC line 

(same locations as structural scans). Images were reconstructed into a 64×64 matrix. Slices 

were acquired contiguously, which optimized the effectiveness of the movement post-

processing algorithms. Images were reconstructed off-line using processing steps to remove 

distortions caused by magnetic field inhomogeneity and other sources of misalignment to the 

structural data, which yields excellent coverage of subcortical areas of interest.

Imaging Data Analysis

MRI Pre-processing.—Anatomical images were homogeneity-corrected using SPM2, 

then skull-stripped using the Brain Extraction Tool in FSL (version 5.0.7) (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012; Smith, 2002). The functional imaging data 

then had the following preprocessing steps applied: removal of large temporal spikes in k-

space data (> 2 std dev), field map correction and image reconstruction using custom code in 

MATLAB; and slicetiming correction using SPM8 (Wellcome Department of Cognitive 

Neurology, London, UK; http://www.fil.ion.ucl.ac.uk). Functional images were realigned to 

the AC-PC plane in the mean image. Using SPM12 (v.6906), anatomical images were co-

registered to the functional images. Functional images were normalized to the MNI Image 

space using parameters from the T1 images segmented into gray and white matter, 

cerebrospinal fluid, bone, soft tissue and air using a Tissue Probability Map created in 

SPM12. Images were then smoothed using an isotropic 8 mm full width at half maximum 

Gaussian kernel. Following preprocessing, Artifact Detection Tools (ART) software (http://

www.nitrc.org/projects/artifact_detect) identified motion outliers (>2mm movement or 3.5° 

rotation). Outliers were censored from individual participant models using a single regressor 

for each outlier volume. The mean percentage of outlier volumes regressed for included 

participants was 0.18% (SD = 0.71) with a range of 0-6.2%. Given the low range of outliers, 

we did not exclude any participants based on these outliers.

Diffusion MRI Analysis.—Diffusion images were converted from DICOM to NIFTI 

format using MRIcron (dcm2niix – 2MAY2016) for offline analysis using the FSL (v. 5.0.9) 

FMRIB's Diffusion Toolbox (FDT) (v. 3.0) (Jenkinson et al., 2012). Diffusion data were 

manually checked and corrected for white pixel and other forms of artifact as described 

previously by Hein and colleagues (Hein et al., 2018). Diffusion MRI data were then 

corrected for head motion and eddy currents using affine registration to a reference volume 
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(ref. volume b = 0) (eddy_correct: FSL). Since exclusion criteria were based on manual 

review of data, mean relative framewise displacement was calculated for all included 

participants to ensure adequate quality control (Mark Jenkinson, Bannister, Brady, & Smith, 

2002). Mean relative framewise displacement was 0.42mm (SD=0.09mm). Using FSL's 

Brain Extraction Tool (Smith, 2002), a mask of the brain was made from a non-diffusion 

weighted image with a fractional intensity threshold of f = 0.25. A diffusion model was then 

calculated at each voxel to ensure the correct orientation of the principal eigenvector and 

confirm the quality of the BET mask.

Following these preprocessing steps, bedpostx (bedpostx_gpu: (Hernández et al., 2013) was 

performed using the standard settings (number of fibers modeled per voxel = 2, 

multiplicative factor weight = 1, burn in = 1000) to build up a distribution of diffusion 

parameters using Markov Chain Monte Carlo sampling at each voxel (Behrens et al., 2007). 

The diffusion data were then registered using FLIRT (Jenkinson & Smith, 2001; Jenkinson 

et al., 2002) to allow for the linear transformation between diffusion, standard, and structural 

space.

FSL's probtrackx2 (nsamples per voxel = 5000; nsteps per sample = 2000; step length = 

0.5mm; curvature threshold = 0.2; fibthresh = 0.01; distthresh = 0.1) (probtrackX2_gpu: 

(Hernandez-Fernandez et al., 2016) was used to estimate the probability of white matter 

connectivity between the prefrontal cortex and the amygdala (Behrens et al., 2007; Behrens, 

Johansen-Berg, et al., 2003; Behrens, Woolrich, et al., 2003; Eickhoff et al., 2010; Johansen-

Berg et al., 2004). In this analysis, the amygdala, defined using masks created using WFU 

Pick Atlas (v 3.0.5b) (Maldjian, Laurienti, Kraft, & Burdette, 2003), was the seed region and 

seven Brodmann's Areas (BA) where anatomical connectivity associated with emotion 

processing has been established in non-human primate neural tract tracer studies (Barbas, 

2015; Ghashghaei et al., 2007; Ray & Zald, 2012) were specified as the target regions. 

Those areas were BA9, BA10, BA11, BA24, BA25, BA32, BA47. Individual masks were 

made for the included regions for each hemisphere using WFU Pick Atlas (v 3.0.5b) 

(Maldajian et al., 2003). During the probabilistic tractography analysis, each mask was 

transformed to the individual subject’s diffusion space using FSL’s FLIRT (M. Jenkinson & 

Smith, 2001; Mark Jenkinson et al., 2002). Seven separate probabilistic tractography 

analyses were run in each participant’s native diffusion space for the anatomical regions in 

each hemisphere (14 probabilistic tractography analyses total). Only ipsilateral connections 

between the amygdala and PFC regions were targeted in this analysis because neural tracer 

studies in non-human primates suggest that first order amygdala connections are primarily 

ipsilateral (Ghashghaei et al., 2007).

Following the individual probabilistic tractography analyses, the resulting amygdala images 

representing the probability of white matter connectivity with the specified PFC targets were 

transformed to MNI space for further analysis. Prior to the group-level analysis, each of the 

individual amygdala images were divided by the total number of samples per voxel (5000) 

which scaled the probability value at each voxel to a range between 0 and 1. Based on the 

group-level analysis outlined in Greening and Mitchell (Greening and Mitchell, 2015), an 

average amygdala image was created for each PFC target using fslmaths (FMRIB, Oxford, 

UK) and the peak voxel in that image was identified using the cluster command in FSL. 
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Following the automatic identification of a maximum value, or peak, we manually 

confirmed that the identified voxel had the highest likelihood of connectivity with the target 

region in the group-level map. This peak voxel represents the maximum probability of white 

matter connectivity between the amygdala and the specified PFC region at the group level. 

We identified group-level peaks to avoid different individual peak locations which could 

potentially be an artifact of statistical noise in the data. A 6mm sphere mask was then 

created centered around the peak voxel (see Table 2 for MNI coordinates for each amygdala-

target pair). Once each of the amygdala-target peak voxel group-level masks were created, 

the average probability of connectivity for each mask was extracted at the individual 

participant level. This extracted value represents the maximum likelihood estimate of 

probability for each of the 14 amygdala-target pairs.

Functional Activation.—First-level statistical analyses for functional activation were 

performed using the general linear model implemented in SPM12. For each participant, 

conditions were modeled with the SPM12 canonical hemodynamic response function. 

Incorrect trials were modeled as a separate condition and were not included in subsequent 

analysis. A statistical image for each condition contrast in the Faces Task at each voxel were 

generated. Mean activation was extracted for both the left and right amygdala using 

MarsBaR (v. 0.44) (Brett, Anton, Valabregue, & Poline, 2002) from the contrast image 

representing a combination of fear and anger trials (threat) vs. baseline. ROI masks used in 

the extraction were created using the left and right amygdala from the AAL Atlas in WFU 

Pickatlas (Maldjian et al., 2003).

Adolescent Pubertal Development

To address potential confounding effects of pubertal status, gender, family income, and child 

internalizing symptoms, we controlled for these constructs in analyses. Self-report of 

pubertal status by the adolescent was collected using the Pubertal Development Scale 

(Petersen, Crockett, Richards, & Boxer, 1988). When the adolescent report was not available 

(N=5), the parent report was used. Pubertal development scores reported by parents were not 

significantly different from those reported by the adolescent (t(5.41)=−1.36, p=0.23). 

Pubertal development was on a scale of 1 (no pubertal development) to 4 (completed 

pubertal development).

Adolescent Gender

Adolescent self-report of gender was determined using the Pubertal Development Scale; 

specifically, if they answered female- or male-specific questions on the scale. Gender was 

used as a covariate in the present analysis.

Family Annual Income

Annual income was reported by the parent and included salary/wages, child support, and any 

other financial aid for the household. Parents chose a range of income from 14 categories: 1) 

$4,999 or less; 2) $5,000-$9,999; 3) $10,000-$14,999; 4) $15,000-$19,999; 5) $20,000-

$24,999; 6) $25,000-$29,999; 7) $30,000-$39,000; 8) $40,000-$49,999; 9) $50,000-

$59,999; 10) $60,000- $69,999; 11) $70,000-$79,999; 12) $80,000-$89,000; 13) $90,000 or 
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more; 14) N/A. Nine families did not report their annual income or marked N/A and were 

excluded from analyses using annual income as a covariate.

Adolescent Internalizing Symptoms

Symptoms of current internalizing disorders (e.g. anxiety and depression) were quantified 

using adolescent self-report on the Mood and Feelings Questionnaire (MFQ) (Angold, 

Costello, Pickles, & Winder, 1987) for depression and the Screen for Child Anxiety Related 

Disorders (SCARED) (Birmaher et al., 1997) for anxiety. Sum scores for both the MFQ and 

the SCARED were used as covariates to control for current anxiety and depression 

symptoms.

Analytic Plan

The data utilized in the present study have been shared through the NIMH RDoC data 

archive (https://data-archive.nimh.nih.gov/rdocdb). The code used in data processing and 

analysis are not publicly available; however, they are available upon request.

Quantify and describe white matter connectivity between the amygdala and 
PFC.—To quantify the white matter connectivity between the amygdala and the seven ROIs 

in the PFC, the participant level means and standard deviations for the probability of white 

matter connectivity for each ROI mask were collected and compared against zero. An 

independent sample t-test was done in R (v. 3.3.1) to compare each of the seven ROI regions 

per hemisphere to zero using a Bonferroni corrected threshold of p<0.004 (0.05/14 tests). 

Additionally, independent sample t-tests were done to compare the maximum likelihood of 

amygdala white matter connectivity between PFC regions to determine which regions had 

the highest likelihood of amygdala connectivity using a hemisphere level Bonferroni 

corrected threshold of p<0.002 (0.05/21 tests). Correlations were calculated to determine if 

there were significant associations between gender, pubertal development, current family 

annual income, and internalizing symptoms (MFQ and SCARED and likelihood of 

amygdala-PFC connectivity.

Evaluate the relationship between amygdala-PFC microstructures and 
amygdala activation.—To evaluate the relationship between amygdala-PFC 

microstructures and amygdala activation, multiple linear regression was done using the ridge 

regression model from the Python-based (v. 2.7.11) Scikit-learn toolbox (v 0.19.0) 

(Pedregosa et al., 2011). The analysis in the study was adapted from Greening and Mitchell 

(Greening & Mitchell, 2015). Ridge regression was used in the place of ordinary lease 

squares because it is better able to handle collinearity of predictors in a regression (Hoerl & 

Kennard, 1970), which was present in the predictors in the analysis. To select the 

regularization, alpha, parameter for the ridge regression model, an automated cross-

validation function, ridgeCV, from the Scikit-learn toolbox was used. In this function, the 

regression model is fit onto the data using leave-one-out cross-validation to determine the 

optimized alpha parameter. The optimized regularization parameter was selected from a 

vector of alpha values from 0.001 to 10 in steps of 0.1. Based on the output of this function, 

the mean α=0.1 was selected.

Goetschius et al. Page 8

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://data-archive.nimh.nih.gov/rdocdb


To estimate the full model where the amygdala-PFC structural connectivity for the seven 

PFC regions predicted ipsilateral amygdala activation (one model per hemisphere) a 

stratified six-fold cross-validated approach was done using the permutation_test_score 

function in the Scikit-learn toolbox. We based our decision to use a six-fold cross-validated 

approach off of a previous probabilistic tractography study from the literature (Greening and 

Mitchell, 2015). This was the only train:test ratio we performed. In this approach, the data is 

randomly split into six groups without replacement. Five of the six groups are then used as a 

training group with the sixth group acting as a test group. The function iterates through the 

data such that each group acts as the test group one time. Accuracy of each test iteration was 

measured by computing the mean squared error (MSE) between the observed and predicted 

amygdala activation values. To test the statistical significance of the full model, this function 

used random permutation sampling where the predictors were randomly paired with an 

amygdala activation value a total of 5000 times. The p-value is calculated based on the 

percentage of samples where the regression model fit better in the random data than in the 

observed data (Greening & Mitchell, 2015; Ojala & Garriga, 2010). As a check of linear 

model assumptions, prior to running the machine-learning regression models, we used the 

gvlma command in R (https://cran.r-project.org/web/packages/gvlma/gvlma.pdf) which tests 

the assumptions for linear regression in our planned models for both the left and the right 

hemisphere (Peña and Slate, 2006). In the models for both hemispheres, the global statistic, 

skewness, kurtosis, link function, and heteroscedasticity assumptions were acceptable.

To assess which tracts were reliably contributing to the full model, a bootstrapping 

procedure utilized in Greening and Mitchell (Greening & Mitchell, 2015) was used. The 

data was split into training and tests datasets 1000 times with 84% of the cases assigned to 

the training set and 16% assigned to the test data set. These percentages were chosen 

because they approximate the training and test percentages used in the six-fold cross-

validated approach used to test the full model. This allowed for the creation of 1000 

independent models with beta weights for each of the connectivity values for the seven 

amygdala-PFC seed-target pairs. These weights were then sorted to determine if 95% (950) 

or more were above or below zero. This provided a 95% confidence interval (CI) for each 

predictor. Predictors were considered to be reliable contributors if their 95% CI did not 

include zero. See Table 2 for the median coefficient value and the 95% CI for each predictor.

As a secondary analysis, we ran two additional models per hemisphere using the same 

machine-learning ridge regression method to ensure that our effects were not confounded by 

demographic covariates (gender, pubertal development, family income), or internalizing 

symptoms (MFQ and SCARED sum scores). The first analysis controlled for demographic 

covariates (gender and pubertal development) and internalizing symptoms. The second 

added annual income as a covariate in addition to the previously included covariates. Annual 

income was added in a second model because nine families did not report annual income 

and thus the included sample and statistical power for that model was reduced. The unique 

contribution of specific white matter tracts was assessed for each additional model using the 

same bootstrapping method.

To assess if associations between amygdala-PFC white matter connectivity and amygdala 

activation generalized beyond threatening facial stimuli to general emotion processing, we 
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tested whether amygdala-PFC connectivity was predictive of amygdala reactivity to happy 

and sad faces controlling for gender, pubertal development, and symptoms of internalizing 

disorders. If models were significant, we ran the same bootstrapping procedure to determine 

if any regions were reliable predictors.

Results

White matter connectivity with the amygdala was widespread across the PFC

The maximum likelihood of white matter connectivity for each of the seven PFC regions in 

both hemispheres (BA9, BA10, BA11, BA24, BA25, BA32, BA47) and the ipsilateral 

amygdala were statistically different from zero using a Bonferroni corrected p-value for 14 

comparisons (p < 0.004) (see Table 2 for mean maximum likelihood probability for each 

region and for the results of the individual t-tests). See Figure 2 for visual representation of 

the maximum likelihood probability values for each region in both hemispheres.

When we compared the maximum likelihood of amygdala connectivity across PFC regions, 

in both hemisphere, subgenual cingulate cortex (SCC – BA25) in the ventromedial PFC and 

lateral orbitofrontal cortex (OFC – BA47) had the highest likelihood of amygdala 

connectivity followed by ventral medial OFC (BA11) and dorsomedial PFC (dmPFC – 

BA10) (see Table 3 for independent t-test results and Figure 3 for boxplots comparing 

maximum likelihood of white matter connectivity between regions). The areas that showed 

the lowest likelihood of amygdala connectivity across both hemispheres were dorsolateral 

PFC (dlPFC – BA9), dorsal cingulate cortex (dACC – BA24 and BA32). These results 

suggest that, as hypothesized, amygdala white matter connectivity was more likely in the 

PFC regions where non-human primate literature supported amygdala connectivity (i.e., 

subgenual cingulate, OFC, dmPFC) and less likely where previous research has observed 

less connectivity (dlPFC). Contrary to our hypothesis, however, amygala connectivity with 

dACC regions was significantly less than the subgenual cingulate, OFC, and dmPFC 

regions. These results elucidate the heterogeneity of amygdala connectivity across major 

regions of the PFC which contributes to a finer grain understanding of the structure-function 

relation in these emotion processing regions.

We tested for potential associations between the maximum-likelihood of amygdala-PFC 

white matter connectivity and demographic variables (gender, pubertal status, annual 

income) as well as level of internalizing symptoms (MFQ and SCARED sum scores). There 

were no significant correlations between amygdala-PFC white matter connectivity and the 

listed covariates when using a Bonferroni-corrected threshold of p<0.003 (0.05/14 total tests 

per variable). When using a more liberal p<0.05 threshold, pubertal development was 

positively correlated with amygdala-BA32 connectivity in the right hemisphere (r(140) = 

0.17, p=0.04), and there was a gender difference in left amygdala-BA24 connectivity 

(t(113.34) = 2.49, p = 0.01) and right amygdala-BA25 connectivity (t(136.15) = 2.38, p = 

0.02) with females having a higher likelihood of white matter connectivity. There were no 

associations with internalizing symptoms or annual income at the more liberal p<0.05 

threshold.
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Increased maximum likelihood of amygdala-PFC white matter connectivity was related to 
attenuated amygdala reactivity driven by the OFC and dmPFC.

Task-Related Amygdala Activation.—To ensure that the Faces Task engaged the 

amygdala as expected, we confirmed that there was a main effect of task for the threat (fear 

& angry faces) > baseline contrast in both the left (t = 19.08, p < 0.0001, MNI Coordinates = 

−24, - 2, −12) and right hemispheres (t = 16.25, p < 0.0001, MNI Coordinates = 22, 0, −12). 

The p-values reported in this section have been corrected for multiple comparisons using 

family-wise error (FWE) correction.

Full Model Estimation.—Consistent with our hypothesis, the ridge regression model with 

the maximum likelihood of white matter connectivity between seven regions of the PFC and 

the ipsilateral amygdala significantly predicted ipsilateral amygdala activation better than 

chance in both hemispheres. For the left hemisphere model (mean α=0.1), MSE for the full 

model was 0.29, p = 0.006 (Figure 4) compared to the mean MSE from the randomized 

permutations of 0.32, meaning that our model fit the data better than the scrambled data. The 

mean extracted contrast value for threat faces (fearful & angry) compared to baseline in the 

left amygdala was 0.795 (SD = 0.548). The observed amygdala activation values and those 

predicted from the full model were significantly correlated using Pearson’s R (r(139) = 

0.372, p = 0.000) (see Figure 5. For the right hemisphere (mean α=0.1), MSE for the full 

model was 0.33, p = 0.001 (Figure 4) compared to the mean MSE from the randomized 

permutations of 0.39. The mean extracted contrast value for threat faces compared to 

baseline in the right hemisphere was 0.850 (SD = 0.603). Additionally, the observed 

amygdala activation values and those predicted from the full model were significantly 

correlated using Pearson’s R (r(139) = 0.417, p = 0.000) (see Figure 5). These results 

suggest that increased overall likelihood of amygdala-PFC white matter connectivity was 

related to attenuated amygdala reactivity. These results held when controlling for gender, 

pubertal development, family income, and internalizing symptoms (Right Hemisphere: 

MSE=0.34, p=0.002; Left Hemisphere: MSE=0.29, p=0.014). The next step was to examine 

if there were specific PFC regions that were driving this association.

Reliable Predictors.—Based on the above chance predictive capabilities of the full 

models for both the left and right hemispheres, each predictor was evaluated to determine if 

they reliably contributed to the full model using the 95% confidence intervals outlined in the 

methods section (see Table 4 for the median coefficient value and the 95% CI for each 

predictor and Figure 6 for scatterplot). For the right hemisphere, the maximum likelihood of 

white matter connectivity between the amygdala and lateral OFC (BA47) and the amygdala 

and dmPFC (BA10) were the most reliable contributors to the full model. For the left 

hemisphere, the maximum likelihood of white matter connectivity between the amygdala 

and dmPFC (BA10) and the amygdala and ventral medial OFC (BA11) were the most 

reliable contributors to the full model. Overall, these results suggest that increased likelihood 

of amygdala-PFC connectivity was related to amygdala inhibition and that this association 

as driven by the dmPFC and OFC.
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Secondary Analyses

As a secondary analysis, we determined that the same PFC regions remained unique 

predictors of amygdala reactivity to threat faces when controlling for gender, pubertal 

development, and symptoms of internalizing disorders. The added covariates were not 

significant predictors of amygdala reactivity as part of the full model. When we added 

annual income as a covariate in the model, it was not a significant predictor of amygdala 

reactivity to threat faces; however, one predictor in each hemisphere (left BA11 and right 

BA10) was no longer uniquely predicting a significant amount of variance in amygdala 

reactivity.

To determine whether our results were specific to amygdala reactivity to threat faces, we 

tested whether amygdala-PFC white matter connectivity was associated with amygdala 

reactivity to happy and sad faces. We found that the models were significant in both 

hemispheres for happy faces (Left Hemisphere: MSE = 0.15, p=0.013; Right Hemisphere: 

MSE=0.23, p=0.019) when controlling for gender, pubertal development, and internalizing 

symptoms. Additionally, we found that amygdala-PFC white matter connectivity was 

associated with amygdala reactivity to sad faces in the right hemisphere (MSE=0.17, 

p=0.006), but not the left (controlling for gender, pubertal development, and internalizing 

symptoms). We then determined which PFC regions were unique predictors of amygdala 

reactivity using the same bootstrapping procedures to build a 95% confidence interval for 

the significant models. Similar to the findings for threat faces, in the right hemisphere, the 

maximum likelihood of white matter connectivity between the amygdala and lateral OFC 

(BA47) (95% CI: −3.52 −0.45) and the amygdala and dmPFC (BA10) (95% CI: −4.67 

−0.30) were reliable contributors to the full model. For the left hemisphere, white matter 

connectivity with the dmPFC was the only tract that was a reliable predictor of amygdala 

reactivity to happy faces (95 CI: −24.00 −2.24). The model predicting amygdala reactivity to 

sad faces was only significant in the right hemisphere and the lateral OFC (BA47) (95% CI: 

−2.15 −0.16) and dorsolateral PFC (BA9) (95% CI: −35.66 −1.49) were reliable predictors. 

Thus, amygdala connectivity with BA47 in the right hemisphere broadly predicted amygdala 

reactivity to emotional faces, whereas amygdala connectivity with bilateral BA10 and left 

BA11 did not.

Discussion

The present investigation provided two main findings. First, the amygdala had widespread 

white matter connectivity with most regions of the PFC (BA9, BA10, BA11, BA24, BA25, 

BA32, BA47), but the degree of connectivity among these regions differed substantially. 

Specifically, subgenual cingulate (BA25), orbitofrontal (BA11, BA47), and dorsomedial 

(BA10) regions of the PFC had greater connectivity with the amygdala relative to the 

dorsolateral (BA9) region and, contrary to our original hypothesis, the dorsal cingulate 

(BA24, BA32) regions. This study is the first, to our knowledge, to quantify and compare 

patterns of amygdala white matter connectivity across the PFC in humans, providing a 

roadmap that charts white matter tracts between these emotion-relevant regions in a 

relatively large sample of adolescents. Second, in relating microstructural differences in 

white matter connectivity to amygdala function using a machine-learning ridge regression 
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algorithm, we found that greater amygdala-PFC white matter connectivity related to 

attenuation of amygdala activation in response to threatening facial stimuli. Specifically, 

greater white matter connectivity between the amygdala and dmPFC (BA10) and OFC 

(BA11) in the left hemisphere and with the dmPFC and lateral OFC (BA47) in the right 

hemisphere related to reduced amygdala activation. Moreover, these findings were not due to 

gender, pubertal development, or current internalizing symptoms. The present findings 

indicate that amydala white matter connectivity with these dorsomedial and orbital PFC 

structures may be involved in the regulation of the amygdala.

Our examination of variability in amygdala white matter connectivity across subregions of 

the PFC yielded findings that compliment and augment those from non-human primate 

neural tract-tracer studies (Ongür, Ferry, & Price, 2003). In non-human primates, the 

amygdala has substantial connections to the subgenual cingulate (SCC – BA25) and dmPFC 

(BA10), as well as the OFC (BA11, BA47) and the dACC (BA24, BA32) (Amaral & Price, 

1984; Barbas, 2015; Ghashghaei et al., 2007; D. Ongür & Price, 2000). Indirect connections 

from the OFC, dmPFC, and dlPFC to the amygdala have also been documented in non-

human primates and are posited to pass through waystation regions in the cingulate cortex 

(BA25 and BA24) (Price, 2006; Ray & Zald, 2012). Complementing these findings, we 

found that the SCC, OFC, and dmPFC displayed greater connectivity with the amygdala 

compared to dorsolateral PFC regions. In addition, consistent with non-human primate work 

(Ray & Zald, 2012; Stefanacci & Amaral, 2002), we found that amygdala white matter 

connectivity was less likely in the dlPFC (BA9). Interestingly, in contrast to the non-human 

primate work, amygdala white matter connectivity with the dACC was less likely than the 

SCC, OFC, and dmPFC in our community sample of 15-17 year olds. Amygdala-PFC white 

matter microstructure continues to develop through early adulthood (Huttenlocher & 

Dabholkar, 1997; Yeatman, Wandell, & Mezer, 2014), so perhaps, amygdala connectivity 

with the dACC will continue to strengthen as our sample matures. Alternatively, it is 

possible that the white matter microstructure seen in non-human primates is not conserved in 

humans due to gray and white matter differences (Donahue, Glasser, Preuss, Rilling, & 

Essen, 2018). Clarifying this discrepancy is an important avenue for future research.

Overall, amygdala-PFC connectivity was not associated with our measures assessing current 

symptoms of internalizing disorders (MFQ and SCARED sum scores) or with current annual 

income. However, there were some small differences associated with gender and pubertal 

development. We found that amygdala-BA32 connectivity was positively associated with 

pubertal development in the right hemisphere and there was a gender difference in 

amygdala-BA24 connectivity in the left hemisphere and in amygdala-BA25 connectivity in 

the right hemisphere with females having a higher likelihood of connectivity. These are not 

surprising given that previous work has identified gender differences and differences related 

to pubertal development in amygdala reactivity (Moore et al., 2012; Tahmasebi et al., 2012) 

and in the amygdala’s structural connections with other regions of the brain (Hasan et al., 

2009; Hein et al., 2018). Future research unpacking the associations seen with gender and 

pubertal development, perhaps utilizing longitudinal imaging data, would greatly contribute 

to our understanding of this critical circuit. In contrast to the present findings in an 

adolescent sample, previous research has found that differences in amygdala-PFC 

connectivity were associated with trait anxiety in adults (Greening & Mitchell, 2015). 
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Perhaps an association with symptoms of anxiety and depression will develop as this sample 

develops into adulthood or our results differ based on our sample composition (i.e., a well-

sampled community cohort). Additionally, amygdala-PFC connectivity was not associated 

with current family income. Future research using a more robust, potentially longitudinal, 

measure of socioeconomic status (SES) would be important given the many SES-related 

changes in brain development that have been found in previous studies (e.g. Brito & Noble, 

2014; Hackman & Farah, 2009).

Our finding that greater amygdala-PFC white matter connectivity was related to decreased 

amygdala reactivity to threatening faces controlling for gender, pubertal development, and 

symptoms of internalizing disorders supports theories suggesting the PFC plays a role in 

behavioral regulation (Casey, 2015; Phillips, Ladouceur, & Drevets, 2008). In these theories, 

the PFC is posited to regulate or suppress output from the amygdala to control emotional 

responses. Findings from the present study were consistent with multimodal imaging studies 

which found that the structural integrity of large white matter structures, such as the uncinate 

fasciculus, were associated with amygdala reactivity (Hein et al., 2018; Kim & Whalen, 

2009; Swartz et al., 2014). Additionally, our results compliment dMRI studies linking 

weaker amygdala-PFC white matter connectivity with increased trait anxiety, a characteristic 

associated with increased amygdala activation (Eden et al., 2015; Greening & Mitchell, 

2015; Jalbrzikowski et al., 2017; Kim & Whalen, 2009).

Interestingly, amygdala-PFC white matter connectivity several, but not all PFC regions, was 

not uniquely related to amygdala reactivity to threat, but rather more broadly to amygdala 

reactivity to emotional faces. We found similar patterns in the associations between white 

matter connectivity and amygdala reactivity to happy faces relative to threat faces, 

suggesting some generalization to broader emotion processing. However, a different pattern 

of findings were seen when examining amygdala reactivity to sad faces. Specifically, 

amygdala-dorsolateral PFC, not dmPFC and amygdala-OFC, white matter connectivity 

related to amygdala reactivity to sad faces selectively in the right hemisphere, but not 

bilaterally. Previous research has shown that the amygdala is reactive to a wide array of 

emotional faces (Somerville, Kim, Johnstone, Alexander, & Whalen, 2004; van den Bulk et 

al., 2013), suggesting that there is no reason that the tracts studied here should only shape 

amygdala reactivity to threat. Rather, they may more broadly guide the regulation of 

emotion (Cunningham, Van Bavel, & Johnsen, 2008; Janak & Tye, 2015). Future research 

may wish to more fully examine common and distinct patterns in amygdala-PFC white 

matter connectivity and amygdala activation to different emotional faces.

Through the combination of probabilistic tractography and fMRI, we found that amygdala 

white matter connectivity with PFC regions that are posited to be involved in sensory 

integration – dmPFC and OFC – were uniquely associated with attenuated functional 

amygdala activation, which compliments current theoretical models of implicit emotion 

processing (Barbas, 2015; Ray & Zald, 2012). In models of implicit emotion processing, the 

dmPFC and OFC have direct and indirect, bidirectional connections with the amygdala and 

influence amygdala regulation through the integration of internal and external sensory 

information thus influencing the control of attention (Banks, Eddy, Angstadt, Nathan, & 

Phan, 2007; Barbas, 2015; Eden et al., 2015; Phillips et al., 2008; Ray & Zald, 2012). 
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Interpreting our results through the lens of this model where automatic regulation of the 

amygdala is facilitated by the dmPFC and OFC, increased amygdala connectivity with the 

dmPFC and OFC may relate to more efficient communication with regions responsible for 

sensory integration. More efficient amygdala-dmPFC and amygdala-OFC communication 

may then increase attentional control and facilitate the regulation of the amygdala (Barbas, 

2015; Phillips et al., 2008).

Models of the neural underpinnings of emotion regulation suggest that the SCC plays a 

primary inhibitory role in the regulation of the amygdala due to the large number of direct 

neural connections with the amygdala (Quirk & Beer, 2006; Ray & Zald, 2012). Although 

the present study found strong amygdala white matter connectivity with the SCC, the degree 

of connectivity did not account for a significant amount of variability in amygdala reactivity. 

In non-human primates, communication between the sensory integration regions and the 

amygdala is facilitated by direct amygdala connections and by indirect connections that pass 

through waystation regions, such as the SCC (Carmichael & Price, 1996; Price, 2006; Ray & 

Zald, 2012). Considering that the present probabilistic tractography analysis cannot 

discriminate between direct and indirect connections, white matter tracts detected from the 

dmPFC and OFC may have passed through the SCC on their way to the amygdala. Thus, 

consistent with the non-human primate work, the present study found a high level of 

microstructural connectivity between the amygdala and SCC; however, it is connectivity 

from the dmPFC and OFC, possibly passing through the SCC, that contribute to variation in 

amygdala activation.

There are a few limitations to the present work. First, due to the population sampling used in 

the FFCWS study (i.e., participants were not selected based on their ability or willingness to 

undergo an MRI), a relatively large number of our participants (N=44) were either not 

eligible or chose not to participate in the MRI (N=31), or were unable to complete the full 

session (N=13). Additionally, due to the multi-modal approach, 27 participants were also 

excluded based on data quality for both fMRI and the dMRI. Despite these limitations, our 

sample size is considerably larger than most studies examining the relationship between 

structure and function in the amygdala-PFC circuit. Additionally, the demographic 

characteristics of the included vs. total recruited sample for this analysis were not 

statistically different, which suggests that we were not excluding participants with 

potentially salient demographic differences. Further, our sample contained substantial 

representation of Black/African American youth and families living in low SES contexts, 

populations often missing in neuroimaging research (Falk et al., 2013). This is a strength of 

our study; however, it may limit the generalizability of this study to other populations.

A second limitation of the present study is that this multimodal analysis was correlational 

and thus we cannot determine either direction of influence of the amygdala-PFC association 

or if this association could be explained by an unmeasured variable. We provisionally place 

our results in the context of the PFC regulating the amygdala; however, it is also tenable that 

the direction of influence may be reversed (e.g. stronger input from the amygdala may 

improve sensory integration in the PFC). Additionally, previous research identified regions 

outside of the PFC that may influence emotion, emotion regulation, and related traits, such 

as anxiety. These regions include the thalamus, hippocampus, insula, and midbrain 
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(Castagna et al., 2018; Silvers et al., 2017), areas that we did not examine in the present 

study. A logical avenue for future research would be to work towards understanding the 

direction, or directions, of influence in this circuit and how connections with other regions of 

the brain may affect amygdala function perhaps utilizing an effective functional connectivity 

analysis approach. Third, the relation between structural connections and functional 

variability in the amygdala was examined during only one emotion processing task. Future 

research could examine the relation between amygdala-PFC structural connectivity and 

variability in amygdala functional activation during other emotion regulation tasks to 

determine how that influences the structure-function association. Finally, we know that 

prefrontal cortex white matter continues to develop into adulthood (Mills et al., 2016), so it 

is not possible for the present study to make claims regarding how amygdala-PFC white 

matter relates to amygdala function in adults based on our adolescent sample. An excellent 

avenue for future research would be to acquire longitudinal diffusion and functional MRI 

data following adolescents into early adulthood (Casey et al., 2018). This analysis would 

allow for the analysis of the development of these white matter pathways and how their 

development relates to amygdala function in adulthood.

In conclusion, using probabilistic tractography, the present study mapped the widespread 

white matter between the amygdala and PFC. We found greater connectivity between the 

amygdala and the subgenual cingulate, orbitofrontal, and dorsomedial regions of the PFC 

compared to the dorsal cingulate and dorsolateral regions. Additionally, by using a 

machinelearning regression approach, we found that overall, greater maximum likelihood of 

amygdala-PFC white matter connectivity was associated with attenuation of functional 

amygdala activation to threatening facial stimuli. This relation was driven by amygdala 

white matter connectivity with the OFC and dmPFC – areas of the PFC posited to be 

responsible for sensory integration of internal and external stimuli during automatic emotion 

processing (Barbas, 2015; Phillips et al., 2008). To our knowledge, the present study is the 

first to precisely map and compare amygdala white matter connectivity across the PFC in 

humans. Further, we put forth novel evidence that amygdala white matter connectivity with 

regions of the PFC involved in sensory integration may play a role in regulation of the 

amygdala. By examining the association between specific amygdala-PFC tracts and 

amygdala activation, the present work helped to elucidate the nature of this emotion-based 

circuit.
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Figure 1: 
Task schematic of the gender identification (faces) task. A trial consisted of a 500 ms 

fixation cross followed by a face presented for 250 ms. A black screen then appeared for 

1500 ms, during which participants indicated the gender of the face by pressing a button 

(thumb for male, index finger for female). Total trial duration was 2250 ms with an inter-

trial interval that was jittered and ranged from 2000 to 6000 ms at intervals of 2000 ms. 

There was a total of 100 trials with 20 of each of the following emotions: happy, sad, angry, 

fearful, neutral.
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Figure 2: 
Maximum likelihood of connectivity with the amygdala. Top: Left hemisphere regions; 

Bottom: Right Hemisphere regions. Low to high maximum likelihood is represented by red 

to yellow color scale.
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Figure 3: 
Comparison of the maximum likelihood of amygdala white matter connectivity across the 

seven prefrontal cortex (PFC) Brodmann’s Areas. These plots provide an approximate 

ranking of probability of white matter connectivity. Significant differences in maximum 

likelihood of amygdala connectivity are denoted by a *.
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Figure 4: 
Figure comparing mean squared error (MSE) for the specified model compared to the MSE 

for the models fit using random permutations. Top: Threat amygdala activation (left) 

predicted by prefrontal probabilistic tractography; Bottom: Threat amygdala activation 

(right) predicted by prefrontal probabilistic tractography. P-values are calculated based on 

the percentage of random permutations that fit the data better than the hypothesized model.
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Figure 5: 
Correlation between the observed amygdala activation to threat vs. predicted amygdala 

activation based on the model where the seven prefrontal cortex (PFC) Brodmann’s Areas 

predict amygdala activation to threat. Top: Left Hemisphere; Bottom: Right Hemisphere.
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Figure 6: 
Graphs depicting the zero-order correlations between the reliable Brodmann’s Areas (BAs) 

and ipsilateral amygdala activation to threat. To assess which tracts were reliably 

contributing to the full model we used a bootstrapping procedure where the data was split 

into training and tests datasets 1000 times with 80% of the cases assigned to the training set 

and 20% assigned to the test data set. This allowed for the creation of 1000 independent 

models with beta weights for each of the connectivity values for the seven amygdala-

prefrontal cortex seed-target pairs. This provided a 95% confidence interval (CI) for each 

predictor. Predictors were reliable contributors if their 95% CI did not include zero. Top: 

Left BA 10 and Left BA 11; Bottom: Right BA 10 and Right BA 47.
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Table 1:

Participant characteristics including: (upper) reasons for exclusion from analysis and the number of 

participants excluded for that reason; (lower) comparison between the demographic characteristics and 

symptoms of internalizing disorders of the included and full samples.

Exclusions

Reason Number Excluded

No Data or Incomplete Data Collection (Both dMRI & fMRI)/pilot participants 46

Significant Artifacts in dMRI Data 24

Significant Artifacts in fMRI Data 2

Significant Artifacts in Structural MRI Data 3

Behavioral Accuracy <70% on Faces Task 9

Number of Included Amygdala Voxels in Functional Data <70% of Total 4

Statistically Influential Outlier using Cook’s Distance – exceeded 
4

N − k − 1 6

Diagnosis of Autism Spectrum Disorder 2

Included vs. Full Sample Comparison

Included Sample (N=141) Full Sample (N=237) Statistically Different?

Age M = 15.85 yrs | SD = 0.52 yrs M = 15.88 yrs | SD = 0.54 yrs No
t(307.45) = 0.11, p=.91

Puberty M = 3.27 | SD = 0.58 M = 3.24 | SD = 0.59 No
t(296.82) = 0.59, p=0.56

Gender F = 78 | M = 63 F = 125 | M = 112
No

X2 (1) = 0.00, p=.95

Race

Black / African American: 102
White / Caucasian: 22
Asian American: 2
Biracial/Multiracial: 7
Unknown/Not Reported: 7

Black / African American: 170
White / Caucasian: 35
Asian American: 2
Biracial/Multiracial: 16
Unknown/Not Reported: 14

No
X2(4) = 0.01, p=.99

Anxiety Symptoms
1 M = 17.84 | SD = 11.54 M = 16.97 | SD = 11.21 No

t(289.51) = 0.71, p=0.48

Depression Symptoms
2 M = 16.01 | SD = 10.25 M = 15.37 | SD = 10.05 No

t(291.74) = 0.59, p=0.56

1
Anxiety symptoms measured using the Screen for Child Related Anxiety Disorders (SCARED)-adolescent report

2
Depression symptoms measured using the Mood and Feelings Questionnaire (MFQ)-adolescent report
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Table 2:

Montreal Neuroimaging Institute (MNI) coordinates for the peak probability of white matter connectivity with 

the amygdala for each PFC Brodmann’s Area (BA) in both the left and right hemispheres, mean maximum 

likelihood of amygdala white matter connectivity for each BA with the standard deviations in ( ), and results of 

the one-sample t-tests which compared the mean maximum likelihood of white matter connectivity for each 

amygdala-BA pair to zero.

Left Hemisphere

Region
Peak Coordinates in

MNI Space 
1

Mean Maximum
Likelihood Different from Zero?

BA9 −26 −2 −14 0.002 (0.004) t(140) = 4.69, p=0.000

BA10 −32 −6 −16 0.008 (0.015) t(140) = 6.54, p=0.000

BA11 −32 −6 −16 0.017 (0.026) t(140) = 7.63, p=0.000

BA24 −20 −2 −30 0.003 (0.006) t(140) = 7.25, p=0.000

BA25 −18 −2 −16 0.087 (0.065) t(140) = 15.88, p=0.000

BA32 −26 −2 −14 0.002 (0.004) t(140) = 5.93, p=0.000

BA47 −32 −6 −16 0.020 (0.024) t(140) = 10.04, p=0.000

Right Hemisphere

Region
Peak Coordinates in

MNI Space 
1

Mean Maximum
Likelihood Different from Zero?

BA9 30 −4 −14 0.004 (0.007) t(140) = 6.54, p=0.000

BA10 30 −4 −14 0.045 (0.046) t(140) = 11.59, p=0.000

BA11 32 −2 −22 0.068 (0.063) t(140) = 12.85, p=0.000

BA24 22 −2 −14 0.004 (0.006) t(140) = 7.05, p=0.000

BA25 16 −2 −16 0.090 (0.076) t(140) = 14.13, p=0.000

BA32 30 −4 −14 0.004 (0.007) t(140) = 6.82, p=0.000

BA47 32 0 −22 0.100 (0.081) t(140) = 14.65, p=0.000

Note: Bonferroni corrected p-value = 0.003 (0.05/14 tests).

1
Peak voxels were identified at the group level by averaging together all participants’ results from each probabilistic tractography seed-target pair 

(1 BA with the ipsilateral amygdala per hemisphere) and finding the maximum probability at the group-level. These peaks were used to create 6mm 
sphere masks for extracting maximum likelihood of white matter connectivity for each seed-target pair.
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Table 4:

Mean coefficient values and 95% confidence intervals for the bootstrapping significance test of reliable 

predictors of functional amygdala activation by amygdala white matter connectivity.

Left Hemisphere

BA9 −16.71 [−103.57 6.78]

BA10* −7.35 [−28.29 −2.93]

BA11* −3.67 [−10.00 −0.10]

BA24 −6.52 [−36.01 6.00]

BA25 −0.43 [−2.23 0.51]

BA32 2.30 [−50.54 28.20]

BA47 0.70 [−6.74 4.82]

Right Hemisphere

BA9 −6.28 [−28.89 5.68]

BA10* −2.15 [−5.60 −0.42]

BA11 −0.36 [−2.75 0.94]

BA24 −1.28 [−29.05 8.32]

BA25 −0.15 [−1.83 0.86]

BA32 1.13 [−23.68 12.06]

BA47* −1.79 [−4.19 −0.90]

*
Denotes reliable contributor to hemisphere specific full model predicting amygdala activation from amygdala white matter connectivity with the 7 

prefrontal cortex (PFC) regions.
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