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A B S T R A C T

Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spec-
troscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the
quantification of metabolite data acquired at different sites and on different platforms poses an additional
methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed
and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned
across 25 research sites were collected using GABAþ (GABA þ co-edited macromolecules (MM)) and MM-
suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concen-
tration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray
matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were
fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of
variation was 17% for the GABA þ data and 29% for the MM-suppressed GABA data. The mean within-site co-
efficient of variation was 10% for the GABA þ data and 19% for the MM-suppressed GABA data. Vendor dif-
ferences contributed 53% to the total variance in the GABA þ data, while the remaining variance was attributed
to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was
attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an
exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acqui-
sition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar
levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal
tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.
1. Introduction

In vivo 1H magnetic resonance spectroscopy (MRS) allows noninva-
sive measurement of brain metabolite concentrations, but it does so only
in a relative manner. Measurements usually rely on an internal reference
signal and assumptions about the concentration of the reference com-
pound. Common reference signals include the CH3 singlets of the me-
tabolites creatine (Cr) and N-acetylaspartate (NAA), or the unsuppressed
brain tissue water signal from the same volume. Opinion in the field
suggests that there is no reference signal that is optimal in all applica-
tions, and discussion is ongoing about their relative merits (Alger, 2010;
Mullins et al., 2014).

The theory and empirical feasibility of the absolute quantification of
metabolites as measured by MRS is well established (Barker et al., 1993;
Christiansen et al., 1993; Danielsen and Henriksen, 1994; Ernst et al.,
1993; Hennig et al., 1992; Kreis et al., 1993a; Thulborn and Ackerman,
1983). Later work has further refined these approaches, particularly with
respect to using brain tissue water as an internal concentration reference
(Gasparovic et al., 2018, 2006; Gussew et al., 2012; Knight-Scott et al.,
2003). The typical procedure for using tissue water as an internal refer-
ence is to acquire an unsuppressed water signal using the same MRS
acquisition protocol as used for the water-suppressed metabolite acqui-
sition in a voxel co-localized to the volume of interest. With proper
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assumptions about certain properties of the metabolite and water signals
in the various tissue compartments in the volume of interest, one may
infer absolute metabolite concentrations from the acquired metabolite
and reference signals. This is supported by the well-characterized prop-
erties of MR-visible water in the brain and its high concentration/strong
signal. On the other hand, using an endogenousmetabolite signal, such as
Cr, as a reference to derive metabolite ratios avoids the need for a
separate water acquisition and may reduce error propagation that arises
during more involved signal scaling procedures, but possibly at the
expense of lower signal quality. Additionally, Cr is confined to brain
tissue, whereas water is in brain and cerebrospinal fluid (CSF), making
accurate corrections for CSF when using water as a concentration refer-
ence particularly important. At present, while strong opinions exist on
the matter, both metabolite and water referencing have advantages and
disadvantages (Jansen et al., 2006), and either approach is defensible.
Indeed, the reliability of each approach has been shown to be similar
(Bogner et al., 2010; Saleh et al., 2016), although in relatively small
studies.

It is important to note that the concentration and relaxation proper-
ties of water, Cr and NAA can change in disease (Grasso et al., 2002;
Huang et al., 2001; Kantarci et al., 2000; Laule et al., 2004; Rackayova
et al., 2017), aging (Marja�nska et al., 2017; Neeb et al., 2006; Reyngoudt
et al., 2012) and brain development (Kreis et al., 1993b; Tk�a�c et al.,
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2003). Phantom replacement, that is, scanning a phantom of a reference
compound of known concentration for comparison to in vivo measure-
ments (Buchli and Boesiger, 1993; Duc et al., 1998; Michaelis et al.,
1993; Soher et al., 1996), can – with careful attention to differences in
B0/B1 inhomogeneities, amplifier transmitter/receiver gains and RF coil
loading factors – also be used to determine in vivo concentrations in
absolute units. This method is technically challenging, involving addi-
tional experiments before or after the scan session, and is not commonly
used given the difficulties of constructing a phantom with electric con-
ductivity similar to human tissue and the extra time that is required for
scanning the phantom (Jansen et al., 2006). An alternative approach is
the ERETIC (electronic reference to access in vivo concentrations)
method (Barantin et al., 1997; Zoelch et al., 2017), which relies on a
synthetic RF reference signal. This approach is also challenging and re-
quires specialized hardware. For all its limitations, internal concentration
referencing remains the most practicable and widely used approach in in
vivo 1H MRS.

In addition to the nuances of different quantification methodologies,
systematic differences in acquisition implementation and system hard-
ware will have an impact on quantitative outcomes. This makes
comparing MRS measurements collected across different sites and on
different platforms non-trivial. If multi-site and multi-platform MRS
studies are to be maximally useful, particularly in the era of “big data”
(Bearden and Thompson, 2017; Miller et al., 2016; Van Essen et al.,
2013), then the systematic effects on measurement variance must be
assessed, understood and accounted for. This would then be followed by
strategies for standardizing data acquisition, data processing and
metabolite quantification methods.

The authors recently acquired a large multi-vendor, multi-site data-
set, the purpose of which was to study the sources of variance in γ-ami-
nobutyric acid (GABA) measurements collected by edited MRS. In the
first paper describing this dataset (Mikkelsen et al., 2017), quantification
was performed relative to the total Cr signal in the edit-OFF spectrum. In
the current paper, GABA was quantified relative to brain tissue water,
which additionally required accounting for individual differences in
voxel tissue composition. In particular, this investigation aimed to
determine whether quantification relative to water increases or decreases
total variance (compared to Cr referencing) and to discuss the impact of
site- and vendor-related differences in structural image segmentation.

2. Methods

A fuller description of the acquisition and data processing method-
ology can be found in the original publication (Mikkelsen et al., 2017).
Relevant details for this study, especially regarding quantification and
tissue segmentation, are reported below.

2.1. Data collection

Data were acquired at 25 independent research sites, with each site
contributing 5–12 datasets collected from consenting adult volunteers
(cohort total: 284). Participants at each site were 18–35 years old, ~50%
female and had no known neurological or psychiatric illnesses. Site-by-
site participant demographics are provided in Table 1 in Mikkelsen
et al. (2017). Scanning was conducted in accordance with ethical stan-
dards set by the institutional review board (IRB) at each site, including
the sharing of anonymized data. Anonymized data files were shared
securely with and analyzed by the co-authors at the Johns Hopkins
University School of Medicine with local IRB approval.

2.2. Data acquisition

GABA-edited MEGA-PRESS data (Mescher et al., 1998; Rothman
et al., 1993) were collected at 3T at each site using a standard scan
protocol. The MRI vendor breakdown was: eight GE; nine Philips;
eight Siemens. Both GABAþ-edited and macromolecule- (MM-)
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suppressed GABA-edited acquisitions were performed (Edden et al.,
2012b; Henry et al., 2001). Complete details of the edited MRS acquisi-
tions, including site-to-site idiosyncrasies, can be found in the earlier
paper. Briefly, the GABAþ acquisition parameters were: TE ¼ 68 ms;
ON/OFF editing pulses ¼ 1.9/7.46 ppm; editing pulse duration ¼ 15 ms.
The MM-suppressed GABA acquisition parameters were: TE ¼ 68 ms
(Siemens) or 80 ms (GE and Philips); ON/OFF editing
pulses ¼ 1.9/1.5 ppm; editing pulse duration ¼ 20 ms. Common pa-
rameters were: TR ¼ 2000 ms; 320 averages; 30 � 30 � 30 mm3 medial
parietal lobe voxel (Fig. 1A). Six outer-volume saturation bands were
applied in GE acquisitions (as is standard for GE PRESS-based sequences)
but not in Philips or Siemens acquisitions (except for site S3, which used
six saturation bands). Water suppression bandwidth scan parameters (not
reported in Mikkelsen et al., 2017) were 140Hz for Philips, 50 Hz for
Siemens and 150Hz for GE. Although some degree of control over the
slice-selective gradient polarity (and the assignment of the three
slice-selective pulses to the three physical dimensions of the voxel) is
possible on all three vendors, no attempt was made to standardize these
across vendors, nor were sites explicitly instructed to standardize
gradient polarities (this was left at the discretion of scanner operators).

Unsuppressed water signal acquisitions were collected for internal
tissue water referencing. For the GE and Philips MEGA-PRESS imple-
mentations, the water reference was automatically acquired as part of the
water-suppressed metabolite scans. For GE, the reference was acquired at
the end of the water-suppressed acquisitions; 16 water averages were
acquired. For Philips, the reference was acquired in an interleaved
manner as the water signal was also used for real-time center frequency
correction (Edden et al., 2016); a single water average was acquired for
every 40 water-suppressed acquisitions (8 averages in total). Acquiring a
water reference on the Siemens platform requires running a separate scan
with identical receiver and transmitter gains. For this, the Siemens
MEGA-PRESSWIP was used, where the water suppression RF pulses were
turned off but the water suppression gradients and editing pulses were
left on (“Only RF off” option); 8 or 16 water averages (depending on
acquisition parameters) were acquired. The TE/TR of these acquisitions
were the same as the corresponding water-suppressed acquisitions.
Water reference acquisitions were acquired with the transmitter fre-
quency shifted to the water frequency (as opposed to 3.0 ppm for
water-suppressed acquisitions) on Philips and Siemens. For GE, both
reference and water-suppressed data were acquired with the transmitter
at 2.68 ppm.

Whole-brain 3D T1-weighted structural images were acquired for
accurate voxel placement and partial volume tissue correction. Se-
quences used were fast spoiled gradient-echo imaging (FSPGR; GE) (Low
et al., 1993) and magnetization-prepared rapid gradient-echo imaging
(MPRAGE; Philips/Siemens) (Mugler and Brookeman, 1990) (see Table 1
for acquisition parameters). Site-standard structural imaging protocols
were used, with less effort to standardize acquisitions than the MRS
protocols. Imaging data were saved in DICOM (GE and some Siemens
sites) or NIfTI format (Philips and some Siemens sites). DICOM files were
converted into NIfTI format for voxel segmentation and tissue segmen-
tation purposes (see Section 2.4) using SPM12 (https://www.fil.ion.ucl.a
c.uk/spm/software/spm12/).

2.3. Data processing

MRS data were processed in Gannet (Edden et al., 2014) using the
pipeline described in the earlier report (Mikkelsen et al., 2017). Unsup-
pressed water acquisitions were processed in the same manner as the
water-suppressed acquisitions and averaged. Briefly, processing steps
included: frequency-and-phase correction by spectral registration (Near
et al., 2015) (water-suppressed data only); 3-Hz exponential line
broadening; zero-filling to yield a nominal spectral resolution of
0.061 Hz/point; and fast Fourier transformation into the frequency
domain. Quality control and quality metrics were conducted and calcu-
lated as before. The linewidth of the water reference was measured as the

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Fig. 1. (A) Representative MRS voxel placement on a T1-
weighted structural image and probabilistic partial volume
voxel maps following tissue segmentation for one participant.
Corresponding tissue fractions of gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) are shown. (B)
Vendor-mean GABA-edited difference spectra acquired by
GABAþ and MM-suppressed GABA editing. The gray patches
represent �1 standard deviation. The associated sample sizes
are shown in parentheses.
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full-width at half-maximum (FWHM) of the modeled water signal (see
Section 2.5). As an independent measure of spectral linewidth, NAA
FWHM linewidth was also measured from a Lorentzian-model fit of the
NAA signal in the OFF spectrum.
2.4. Voxel co-registration and tissue segmentation

MRS voxels were co-registered to each volunteer's structural image
using the GannetCoRegister module in Gannet (Harris et al., 2015),
CG ¼ IG
IW

�HW

HG
�MM

κ
�
8<
:

PGM;WM;CSF
i fi;volβi exp

�
� TEW
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�h
1� exp
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�i

�
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�
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�
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�h
1� exp

�
� TRG

T1G

�i
9=
; �CW (1)
which produces binary voxel masks in individual structural space.
Structural images were segmented into gray matter (GM), white matter
(WM) and CSF probabilistic partial volume maps using the unified tissue
segmentation algorithm in SPM12 (Ashburner and Friston, 2005),
executed through the GannetSegment module (Harris et al., 2015). GM,
WM and CSF voxel volume fractions were calculated by multiplying the
whole-brain partial volume maps for each tissue type by the corre-
sponding binary voxel mask, summing over the partial volume estimates
within each tissue-segmented voxel and then dividing these totals by the
total over all three tissue-segmented voxels.
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2.5. Quantification

The 3.0 ppm edited GABA signal was modeled as described previously
(Mikkelsen et al., 2017). The water spectrum was modeled between 3.8
and 5.6 ppm with a Gaussian-Lorentzian function with phase and linear
baseline parameters using nonlinear least-squares fitting. GABA mea-
surements were quantified in pseudo-absolute molal units (approxi-
mating moles of GABA per kg of solute water) and corrected for partial
volume effects (Gasparovic et al., 2006) based on the following equation:
where CG is the GABA concentration in institutional units (i.u.) and CW is
the assumed molal concentration of MR-visible solute water
(55.51mol/kg); IG and IW are the GABA and water signal integrals,
respectively;HW andHG are the number of 1H protons that give rise to the
water and 3.0 ppm GABA signals (both 2), respectively; MM is a correc-
tion factor for the contribution of the co-edited macromolecule signal in
the GABAþ signal, assumed to be 0.45 for GABAþ acquisitions and 1 for
the MM-suppressed acquisitions; and κ is the editing efficiency, assumed
to be 0.5. TEG, TEW, TRG and TRW are the echo and repetition times of the
GABA-edited and water acquisitions, respectively. T1W,i is the longitu-
dinal relaxation time of water in GM (assumed to be 1331ms), WM



Table 1
Hardware and acquisition parameters used to collect 3D T1-weighted structural images at each site.

Site
ID

Tx/Rx hardware Voxel resolution
(mm3)

TE/TI/TR
(ms)

Scan time
(m:ss)

Flip angle
(deg)

Slices FOV
(mm2)

Matrix size Acceleration
(factor)

G1 Body coil/32-ch head coil 0.94� 0.94� 1 2.68/600/
7.42

4:07 10 226 256� 256 256� 256 ASSET (2)

G2 Body coil/8-ch head coil 0.9� 0.9� 1 2.73/650/
6.24

2:54 8 180 256� 256 256� 256 ARC (2)

G3 Body coil/32-ch head coil 1� 1� 1 2.6/500/6.4 4:37 11 180 256� 256 256� 256 ASSET (2)
G4 Body coil/8-ch head coil 1� 1� 1 2.98/450/

6.89
9:35 12 192 256� 256 256� 256 None

G5 Body coil/32-ch head coil 0.5� 0.5� 0.8 2.1/450/7.09 5:39 12 232 256� 256 512� 512 None
G6 Body coil/8-ch head coil 1� 1� 2 2.66/400/

6.24
6:22 12 124 240� 240 240� 240 None

G7 Body coil/8-ch head coil 1� 1� 1 3.2/450/8.2 4:30 12 176 256� 256 256� 256 ARC (2)
G8 Body coil/8-ch head coil 1� 1� 1 4.17/450/

10.19
5:27 12 180 256� 256 256� 256 ARC (2)

P1 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P2 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P3 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P4 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P5 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 170 256� 256 256� 256 SENSE (2)
P6 Body coil/8-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P7 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P8 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 204 256� 256 256� 256 SENSE (2)
P9 Body coil/32-ch head coil 1� 1� 1 3.1/865/6.9 7:10 8 176 256� 256 256� 256 SENSE (2)
S1 Body coil/32-ch head coil 1� 1� 1 2.52/900/

1900
4:18 9 176 250� 250 256� 256 GRAPPA (2)

S2 Body coil/32-ch head coil 1� 1� 1 2.85/1050/
1900

5:43 9 176 256� 256 256� 256 GRAPPA (2)

S3 Body coil/20-ch head/neck
coil

1� 1� 1 1.77/900/
1900

4:05 8 160 256� 256 128� 256 GRAPPA (2)

S4 Body coil/64-ch head coil 1� 1� 1 4.11/1000/
2000

3:36 12 160 256� 256 256� 256 GRAPPA (2)

S5 Body coil/12-ch head coil 1� 1� 1 4.6/900/1950 4:01 9 176 192� 256 192� 256 GRAPPA (2)
S6 Body coil/32-ch head coil 1� 1� 1 2.26/900/

1900
4:26 9 192 256� 256 256� 256 GRAPPA (2)

S7 Body coil/32-ch head coil 1� 1� 1 3.03/900/
2300

5:21 9 192 256� 256 256� 256 GRAPPA (2)

S8 Body coil/64-ch head coil 1� 1� 1 3.02/900/
1900

4:01 9 160 256� 256 256� 256 GRAPPA (2)
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(assumed to be 832ms) (Wansapura et al., 1999) or CSF (assumed to be
3817ms) (Lu et al., 2005); T2W,i is the transverse relaxation time of water
in GM (assumed to be 110ms), WM (assumed to be 79.2ms) (Wansapura
et al., 1999) or CSF (assumed to be 503ms) (Piechnik et al., 2009). T1G
and T2G are the longitudinal and transverse relaxation times of GABA,
assumed to be 1310 and 88ms, respectively (Edden et al., 2012a; Puts
et al., 2013). The tissue-dependent water contents βi (as defined in Ernst
et al., 1993) are assumed to be 0.78, 0.65 and 0.97 for GM, WM and CSF,
respectively. fi,vol is the volume fraction of GM, WM or CSF in the MRS
voxel. Note that this equation equates to the molality equation in Gas-
parovic et al. (2006), with additional terms to account for MM fraction
and editing efficiency that are particular to edited MRS of GABA.

Fit quality for the water peak model (the fit error) was assessed by
normalizing the standard deviation (SD) of the model fit residuals to the
amplitude of the modeled signal (Edden et al., 2014). This metric, the
degree to which the measured signal cannot accurately be modeled as a
Gaussian-Lorentzian, captures eddy current artifacts and some aspects of
sub-optimal shimming.

To examine whether systematic effects on the variance of the GABAþ
and MM-suppressed GABA data were attributed to the water acquisition,
water-referenced Cr measurements were also quantified. The 3.0 ppm Cr
signal in the OFF spectrum was modeled as described in the original
publication. The longitudinal and transverse relaxation times of Cr were
assumed to be 1350 and 154ms, respectively (Mlyn�arik et al., 2001).MM
and κ were not applied. Finally, the degree of association between par-
ticipants’ water-referenced, tissue-corrected GABA values and their
previously quantified GABA/Cr values as reported in Mikkelsen et al.
(2017) was examined. It should be noted that these measurements are
not independent (the GABA integral being a common factor) and,
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therefore, a strong correlation was expected.

2.6. Exploratory analysis

The results revealed systematically higher water-referenced
GABAþ measurements from the Siemens sites as compared to the GE
and Philips measurements (see Section 3). This level of variation was not
apparent in the Cr-referenced GABAþ measurements that were previ-
ously reported (Mikkelsen et al., 2017). To reconcile this, an unplanned
exploratory analysis was conducted in which the Siemens GABA mea-
surements were referenced to a water signal acquired by a separate
unsuppressed short-TE PRESS acquisition. These separate data were
collected alongside the MEGA-PRESS data for the purpose of studying
conventional MRS data acquired across the sites. The water reference
data from this dataset enabled the unplanned exploratory analysis re-
ported here. This acquisition was acquired at TE/TR¼ 35/2000ms from
a voxel in the same location as the MEGA-PRESS acquisition. Concen-
trations were quantified according to Eq. (1) without additional correc-
tion for any amplifier gain differences as it was assumed that the gain
would not have changed between the PRESS and MEGA-PRESS
acquisitions.

2.7. Statistical analysis

Linear mixed-effects models were fit to the water-referenced GABA
data in R (version 3.5.2; R Core Team, 2018) using the lme4 package
(Bates et al., 2015) and maximum likelihood for parameter estimation.
An unconditional model (Eq. (1) in Mikkelsen et al., 2017) was fit to
calculate variance partition coefficients (VPCs) to estimate the
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proportion of total variance attributed to vendor-, site- and
participant-related effects. Secondary, conditional linear mixed-effects
models (Eq (5) in Mikkelsen et al., 2017). were also fit to the data to
assess the impact of NAA linewidth, fGM,vol, age and sex, and to test the
association with GABA/Cr measurements. Goodness-of-fit was calculated
as a log-likelihood statistic. Significance testing was performed using
chi-square likelihood ratio tests, which were bootstrapped 2000 times
using parametric bootstrapping (Halekoh and Højsgaard, 2014). Effects
were tested in the following order: vendor and site; NAA linewidth and
fGM,vol; age and sex. If an effect was significant, the relevant variable was
retained in the next model; if not, it was removed. Unconditional linear
mixed-effects models were also fit to the voxel tissue fractions to test for
site and vendor effects. Post-hoc pairwise comparisons were corrected for
multiple comparisons using the Holm-Bonferroni method (Holm, 1979).
A p-value less than 0.05 was considered significant.

3. Results

GABAþ data from seven volunteers and MM-suppressed GABA data
from 19 volunteers were removed from further analysis following quality
control (largely due to excessive lipid contamination). All MM-
suppressed GABA data from site G3 were excluded as consistent, exces-
sive center frequency offsets (approximately �0.1 ppm on average)
resulted in extremely small or absent GABA signals. One further dataset
was removed because the unusually small water reference signal
Fig. 2. (A) Water-referenced GABAþ and (B) MM-suppressed GABA measurements
boxes shaded with lighter colors represent �1 standard deviation and the darker box
while the dashed white lines denote the median. Sites are colored by vendor (GE si
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indicated an acquisition error. Vendor-mean GABA-edited difference
spectra are shown in Fig. 1B.

Fig. 2A shows the GABAþ values arranged by site and by vendor.
Mean � 1 SD (standard error of the mean, SEM) GABAþ measurements
were 3.32� 0.42 (0.04) i.u. for GE, 3.32� 0.36 (0.04) i.u. for Philips and
4.29� 0.49 (0.05) i.u. for Siemens. Siemens values were on average 29%
higher than the GE (pholm< 0.001) and Philips (pholm< 0.001) values.
The cohort-wide average was 3.61� 0.61 (0.04) i.u. Coefficients of
variation (CVs) were 12.7%, 10.8% and 11.3% for GE, Philips and
Siemens, and 16.9% across all sites and vendors. Themean within-site CV
was 9.5%. Fig. 2B shows the MM-suppressed GABA values arranged by
site and by vendor. Mean� 1 SD MM-suppressed GABA measurements
were 3.22� 1.02 (0.12) i.u. for GE, 3.52� 1.20 (0.12) i.u. for Philips and
3.60� 0.59 (0.07) i.u. for Siemens. Siemens MM-suppressed values were
on average 12% higher than the GE (pholm> 0.9) and only 2% higher
than the Philips (pholm> 0.9) values. The cohort-wide average was
3.46� 1.00 (0.06) i.u. CVs were 31.7%, 34.0% and 16.4% for GE, Philips
and Siemens, and 28.8% across all sites and vendors. The mean within-
site CV was 18.7%. GM, WM and CSF fractions are displayed in Fig. 3.
Across the cohort, the average (and CV of) fGM,vol, fWM,vol and fCSF,vol was
0.59 � 0.04 (6.9%), 0.28 � 0.04 (14.0%) and 0.13 � 0.05 (36.7%),
respectively. Values of GABAþ, MM-suppressed GABA, fGM,vol, fWM,vol
and fCSF,vol for each site are listed in Table 2.

Water fit errors, water linewidths and Cr measurements (for
TE¼ 68ms data) are displayed in Fig. 4, with site- and vendor-averaged
fully corrected for partial volume effects, displayed by site and by vendor. The
es represent the 95% confidence interval. The solid white lines denote the mean,
tes in green, Philips sites in orange, Siemens sites in blue).



Fig. 3. Gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) voxel tissue fractions, displayed by site and by vendor. GM¼ gray fill; WM¼white fill;
CSF¼ black fill. The red lines denote the mean. Sites are colored by vendor (GE sites with a green background, Philips sites with an orange background, Siemens sites
with a blue background).

Table 2
Quantification, tissue fractions and (TE¼ 68ms) water data quality metrics, displayed by site and by vendor (shown as mean� 1 standard deviation (coefficient of
variation)).

Site ID GABAþ (i.u.) MM-s GABA (i.u.) Cr (i.u.) fGM,vol fWM,vol fCSF,vol Water fit error (%) Water linewidth (Hz)

G1 3.33� 0.20 (6.1%) 4.40� 0.61 (13.9%) 15.78� 1.36 0.60� 0.05 0.26� 0.04 0.14� 0.03 0.95� 0.09 9.43� 0.48
G2 3.70� 0.26 (7.1%) 4.04� 0.78 (19.3%) 15.21� 0.84 0.56� 0.02 0.29� 0.03 0.15� 0.03 0.57� 0.11 9.98� 0.73
G3 2.92� 0.26 (9.0%) DE 13.77� 0.99 0.60� 0.03 0.29� 0.02 0.11� 0.03 0.43� 0.09 9.46� 0.76
G4 3.31� 0.39 (11.7%) 2.95� 0.93 (31.6%) 14.28� 0.72 0.60� 0.03 0.28� 0.02 0.12� 0.04 0.42� 0.06 9.34� 0.40
G5 2.96� 0.20 (6.9%) 2.23� 0.54 (24.1%) 13.91� 0.54 0.65� 0.05 0.26� 0.01 0.09� 0.04 0.55� 0.11 9.79� 0.63
G6 3.22� 0.59 (18.2%) DNA 13.17� 1.04 0.54� 0.04 0.32� 0.02 0.15� 0.04 0.65� 0.07 9.80� 0.92
G7 3.44� 0.38 (11.1%) 2.83� 0.84 (29.7%) 15.20� 0.79 0.57� 0.05 0.23� 0.02 0.19� 0.06 0.47� 0.11 8.72� 0.88
G8 3.46� 0.41 (11.7%) 2.81� 0.43 (15.2%) 14.96� 0.58 0.57� 0.03 0.23� 0.05 0.21� 0.05 0.41� 0.09 8.40� 0.42
All GE 3.32± 0.42 (12.7%) 3.22± 1.02 (31.7%) 14.58± 1.20 0.58± 0.05 0.27± 0.04 0.15± 0.05 0.56± 0.19 9.37± 0.84
P1 3.30� 0.37 (11.1%) 3.47� 0.33 (9.6%) 15.49� 0.95 0.60� 0.03 0.27� 0.04 0.13� 0.04 0.47� 0.07 8.78� 0.53
P2 3.18� 0.25 (7.8%) 3.16� 0.71 (22.4%) 15.70� 0.92 0.56� 0.03 0.29� 0.02 0.15� 0.04 0.43� 0.07 8.74� 0.40
P3 3.29� 0.26 (7.8%) 3.66� 0.88 (24.1%) 15.25� 1.29 0.58� 0.02 0.29� 0.03 0.13� 0.03 0.84� 0.11 9.02� 0.43
P4 3.48� 0.58 (16.5%) 2.05� 0.65 (31.7%) 16.02� 0.74 0.59� 0.02 0.26� 0.02 0.15� 0.03 0.32� 0.06 8.78� 0.38
P5 3.03� 0.25 (8.1%) 2.61� 0.32 (12.3%) 15.27� 1.07 0.63� 0.03 0.27� 0.02 0.11� 0.03 0.75� 0.08 9.06� 0.24
P6 3.56� 0.27 (7.7%) 4.07� 1.42 (34.9%) 17.81� 1.58 0.57� 0.02 0.25� 0.03 0.18� 0.05 0.67� 0.17 8.71� 0.53
P7 3.10� 0.22 (7.0%) 2.87� 0.55 (19.3%) 16.02� 0.51 0.63� 0.03 0.27� 0.03 0.10� 0.03 0.69� 0.11 10.21� 0.62
P8 3.59� 0.33 (9.1%) 5.70� 0.40 (7.1%) 18.69� 0.69 0.61� 0.04 0.28� 0.03 0.11� 0.04 0.40� 0.04 9.03� 0.29
P9 3.31� 0.22 (6.7%) 4.10� 0.40 (9.6%) 15.09� 1.26 0.59� 0.02 0.28� 0.04 0.12� 0.03 0.50� 0.06 8.77� 0.31
All Philips 3.32± 0.36 (10.8%) 3.52± 1.20 (34.0%) 16.16± 1.55 0.59± 0.04 0.27± 0.03 0.13± 0.04 0.56± 0.19 9.01± 0.62
S1 4.17� 0.23 (5.5%) 3.39� 0.56 (16.5%) 20.13� 1.12 0.57� 0.03 0.30� 0.03 0.12� 0.05 0.39� 0.08 9.40� 0.72
S2 4.74� 0.39 (8.1%) 3.76� 0.52 (13.7%) 23.57� 0.44 0.55� 0.02 0.33� 0.02 0.12� 0.03 0.38� 0.03 9.22� 0.36
S3 3.87� 0.41 (10.6%) 3.75� 0.76 (20.1%) 20.28� 1.33 0.56� 0.03 0.33� 0.04 0.11� 0.04 0.30� 0.06 8.63� 0.39
S4 4.28� 0.48 (11.1%) 3.22� 0.55 (17.1%) 19.02� 0.71 0.61� 0.03 0.29� 0.02 0.10� 0.04 0.33� 0.05 8.81� 0.31
S5 4.46� 0.72 (16.2%) 3.73� 0.63 (17.0%) 19.66� 2.21 0.59� 0.05 0.31� 0.04 0.10� 0.07 0.42� 0.11 9.45� 0.92
S6 4.08� 0.17 (4.2%) 3.86� 0.37 (9.5%) 19.77� 0.73 0.59� 0.04 0.30� 0.03 0.11� 0.03 0.44� 0.08 9.12� 0.28
S7 4.43� 0.34 (7.8%) 3.55� 0.52 (14.7%) 18.81� 1.22 0.58� 0.03 0.28� 0.03 0.14� 0.04 0.46� 0.08 8.98� 0.39
S8 4.50� 0.50 (11.0%) 3.46� 0.61 (17.6%) 21.08� 0.70 0.58� 0.03 0.29� 0.03 0.13� 0.02 0.33� 0.07 8.84� 0.36
All Siemens 4.29± 0.49 (11.3%) 3.60± 0.59 (16.4%) 20.03± 1.64 0.58± 0.04 0.30± 0.04 0.12± 0.04 0.38± 0.10 9.04± 0.57
Overall 3.61± 0.61 (16.9%) 3.46± 1.00 (28.8%) 16.83± 2.66 0.59± 0.04 0.28± 0.04 0.13± 0.05 0.51± 0.19 9.14± 0.70

DE, data excluded; DNA, data not acquired; MM-s, MM-suppressed.
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values given in Table 2. On average, fit errors were small, and lower for
Siemens (0.38%) compared to GE (0.56%) and Philips (0.56%). Water
linewidths were similar across the vendors, with Philips (9.01� 0.62 Hz)
and Siemens (9.04� 0.57 Hz) showing slightly smaller linewidths
compared to GE (9.37� 0.84 Hz). Average water-referenced Cr mea-
surements were 14.6� 1.2 i.u. for GE, 16.2� 1.6 i.u. for Philips and
20.0� 1.6 i.u. for Siemens, based on TE¼ 68ms data. The Siemens MM-
suppressed acquisition, also acquired at TE¼ 68ms, gave an average Cr
measurement of 21.7� 2.1 i.u. Cr measurements from MM-suppressed
acquisitions acquired at TE¼ 80ms were 16.9� 1.2 i.u. for GE and
18.1� 1.7 i.u. for Philips.
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3.1. Linear mixed-effects analyses

A summary of the linear mixed-effects analyses on the
GABAþ measurements is given in Table S1. The unconditional linear
mixed-effects model showed that vendor and site effects contributed
significantly to the total amount of variance in the data: χ2(1)¼ 28.36,
pboot¼ 0.001 and χ2(1)¼ 28.89, pboot< 0.001, respectively. Based on the
calculated VPCs, 53.6% of the variance was accounted for by vendor-
level differences, while 10.7% was accounted for by site-level differ-
ences. The remaining proportion of variance (35.7%) was attributed to
individual differences in participants (see Table 3). The same model



Fig. 4. Quality metrics and water-referenced Cr measurements (from the TE¼ 68ms data), displayed by site and by vendor. (A) water fit error; (B) water linewidth;
(C) Cr measurements fully corrected for partial volume effects. The boxes shaded with lighter colors represent �1 standard deviation and the darker boxes represent
the 95% confidence interval. The solid white lines denote the mean, while the dashed white lines denote the median. Sites are colored by vendor (GE sites in green,
Philips sites in orange, Siemens sites in blue).

Table 3
Summary of variance partition analyses. Cr-referenced values are reproduced
from Mikkelsen et al. (2017).

GABAþ
(i.u.)

MM-suppressed
GABA (i.u.)

GABAþ/
Cr

MM-suppressed
GABA/Cr

Vendor 53.6% – 8.2% –

Site 10.7% 53.6% 19.7% 50.4%
Participant 35.7% 46.4% 72.1% 49.6%
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applied to MM-suppressed GABA showed that site effects contributed
significantly to the total variance: χ2(1)¼ 131.53, pboot¼ 0.001, but
vendor did not: χ2(1)< 0.1, pboot¼ 0.65 (see Table S2). The
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corresponding VPCs were 53.6% (site level) and 46.4% (participant
level) (see Table 3).

The voxel tissue fractions exhibited significant site-related effects for
fGM,vol [χ2(1)¼ 56.33, pboot¼ 0.001], fWM,vol [χ2(1)¼ 46.77,
pboot< 0.001] and fCSF,vol [χ2(1)¼ 47.22, pboot< 0.001], but only fWM,vol

showed an additional vendor-related effect [χ2(1)¼ 4.08, pboot¼ 0.01].
Corresponding VPCs for fGM,vol were: vendor <0.1%; site¼ 31.4%;
participant¼ 68.6%. For fWM,vol these were: vendor¼ 12.8%;
site¼ 24.9%; participant¼ 62.3%. For fCSF,vol these were:
vendor¼ 1.8%; site¼ 28.5%; participant¼ 69.7%. Pairwise comparisons
showed that, at the vendor level, the Siemens fWM,vol values were
significantly higher than the GE (pholm¼ 0.001) and Philips
(pholm¼ 0.003) values.
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Based on the conditional linear mixed-effects analyses, neither
GABAþ nor MM-suppressed GABA levels were significantly impacted by
the effects of NAA linewidth [χ2(5)¼ 4.65, pboot¼ 0.21; χ2(3)¼ 1.19,
pboot ¼ 0.61]. GABAþ levels did, however, show a relationship with
fGM,vol [χ2(5)¼ 10.28, pboot¼ 0.02], whereas MM-suppressed GABA
levels did not [χ2(3)¼ 5.50, pboot¼ 0.08]. There were no significant ef-
fects of age [χ2(5)¼ 1.19, pboot¼ 0.75; χ2(3)¼ 0.85, pboot¼ 0.69] or sex
[χ2(5)¼ 1.56, pboot¼ 0.67; χ2(3)¼ 2.34, pboot ¼ 0.35] on the GABAþ or
MM-suppressed data, respectively. As shown in Fig. 5, the water-
referenced and Cr-referenced measurements were strongly related, for
both GABAþ and MM-suppressed acquisitions [χ2(5)¼ 257.2,
pboot< 0.001; χ2(3)¼ 495.7, pboot< 0.001] as expected.
Fig. 5. Scatterplots illustrating the relationship between (A) water-referenced
GABAþ measurements and GABAþ/Cr ratios and (B) water-referenced MM-
suppressed GABA measurements and MM-suppressed GABA/Cr ratios. Individ-
ual measurements are color-coded by vendor (GE in green, Philips in orange,
Siemens in blue). The black regression line shows the relationship between
GABAþ/Cr and water-referenced GABAþ over the entire dataset. Additional
color-coded regression lines are shown for each site. R2 values (i.e., the effect
sizes) are also displayed.
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3.2. Exploratory analysis

Using the Siemens short-TE water reference brought down the
Siemens GABAþ values to an average of 3.65 � 0.44 i.u. (an 18%
reduction), reducing the discrepancy with the other vendors to 10%
(boxplots plotted in Fig. S1). Corresponding VPCs were: vendor¼ 12.0%;
site¼ 24.2%; participant¼ 63.8%, with vendor and site effects remain-
ing significant: χ2(1)¼ 3.92, pboot¼ 0.01 and χ2(1)¼ 32.77,
pboot< 0.001, respectively. The short-TE-referenced Siemens Cr mea-
surements were also reduced on average (by 18%, to 17.1� 2.1 i.u.)
compared to the initial analysis, again closer to the GE and Philips Cr
measurements (Fig. S2).

4. Discussion

In this second paper describing a large multi-vendor, multi-site
GABA-edited MRS dataset, it has been shown that water-referenced
GABA measurements, including tissue correction based on variously ac-
quired T1-weighted structural images, can be applied across sites and
vendors with relatively low levels of variance. Water-referenced quan-
tification shows very similar levels of performance to Cr referencing, as
reported previously (Mikkelsen et al., 2017), with the notable exception
of an additional vendor-related effect.
4.1. Water vs. Cr referencing

One objective of this study was to compare quantitative outcomes of
water and Cr referencing. Within site, water- and Cr-referenced
GABAþ measurements both show variance of 9.5%. Levels of site-
related variance are also similar (mean within-vendor CV: 11.6% vs.
11.3%, respectively). The major difference between the water- and Cr-
referenced results was the systematic effect of vendor in the water-
referenced data.

It is not clear why the water-referenced GABAþ values from the
Siemens data were larger than the estimates from the other two vendors.
This substantial vendor-related difference was not observed in the Cr-
referenced data reported previously (Mikkelsen et al., 2017). Higher
GABAþ values suggest a lower-than-expected water signal. Referencing
to a short-TE PRESS water acquisition attenuated the discrepancy
somewhat, suggesting that the Siemens MEGA-PRESS WIP water refer-
ence signal is most likely at issue. It is notable that the water fit errors
were lower in the Siemens data, suggesting that the water signal is closer
to a Gaussian-Lorentzian lineshape than the other vendors, and that the
data undergo differing degrees of preprocessing (e.g., downsampling
from the analog-to-digital converter sampling rate to the specified
acquisition rate), with potentially different dynamic range performance –
the water reference signal is ~10,000 times larger than the GABA signal
and acquired with the same receiver gains. MM-suppressed data on
Siemens were acquired with TE¼ 68 ms, compared to TE¼ 80 ms on the
other vendors, a decision made in response to the TE-independent timing
of editing pulses in that sequence. This clear difference in acquisition
approach (which can only really be avoided by further sequence stan-
dardization; see, e.g., Saleh et al., 2019) means the MM-suppressed data
offer little insight on the vendor water signal scaling effect. At this stage,
it has not been possible to isolate the cause of this discrepancy, and
communication with Siemens experts has not yielded a conclusive
explanation.

Aside from this vendor effect, it was clear that the variation in the
water-referenced GABAþ measurements was similar to the GABAþ/Cr
measurements. This suggests that the reliability of the two referencing
strategies is comparable, consistent with previous smaller studies
(Bogner et al., 2010; Saleh et al., 2016). This is perhaps surprising as
several additional corrections were performed to obtain the
water-referenced values, which introduces more sources of error into the
quantification.
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4.2. Water referencing approach

Quantification in this study used a best-practice approach, whereby
the water reference signal was corrected for partial volume effects and
relaxation. It has been shown that failing to account for these effects will
lead to quantification errors (Gasparovic et al., 2006, 2018). These er-
rors can be particularly pronounced at longer TEs (Gasparovic et al.,
2006) or when there is large variability in tissue compartment fractions
across cohorts (Harris et al., 2015; Mato Abad et al., 2014; Mikkelsen
et al., 2016; Tal et al., 2012). The relatively low level of variance in the
present dataset suggests that incorporating image-based voxel segmen-
tation into the quantification routine did not add significant variance
into the data.

Nonetheless, subtle differences in quantification and tissue correction
methodologies can have important consequences on reported results. For
instance, the linear relationship between GABAþ levels and age, seen
when applying a simple CSF tissue correction, can largely be attributed to
the dependency of GABAþ levels on tissue composition (Maes et al.,
2018; Porges et al., 2017). Additionally, the units of measurement of
water-referenced metabolite concentrations, and the information content
of the values, will depend on the quantification approach used. Metab-
olite concentrations have been reported in molar, molal and institutional
units (Gasparovic et al., 2018; Jansen et al., 2006; Knight-Scott et al.,
2003; Kreis et al., 1993a). Interpretation of stated concentrations, and
particularly comparisons across studies, can be challenging. In this study,
measurements were reported in institutional units of molality.

Not every source of variance was captured in the statistical analysis.
In the statistical model used here, participant-level variance not only
accounts for true biological differences between individuals but also
measurement error. One systematic site-level factor was the diversity of
the T1-weighted structural imaging protocols, leading to heterogeneity in
T1-weighted contrast and image signal-to-noise ratio, which lead to small
but significant site-to-site differences in voxel segmentation. There is an
extensive literature on the successes and limitations of image segmen-
tation (Clark et al., 2006; Eggert et al., 2012; Klauschen et al., 2009), and
while segmentation algorithms aim to be robust against the effects of
imaging parameters, segmentation remains a challenging undertaking.
The substantial tissue differences in water T2, particularly given the
medium TE of the water acquisitions (68ms), and in GABA and
MR-visible water concentrations, suggest that accurate segmentation is
important for reproducible water-referenced quantification. It should
also be noted that the MRS voxel masks that are generated for tissue
segmentation purposes correspond to the nominal excited volume,
which, because of acquisition parameters, voxel placement and chemical
shift displacement errors, will not necessarily be centered on the excited
signals of interest. In this study, the Philips and Siemens voxel masks
were centered on the GABA and water reference signals, whereas the GE
voxel masks centered on the 2.68 ppm signals (see Section 2.2). This
variation will have introduced a degree of error in the water-referenced
GABA measurements.

4.3. Macromolecular contamination

In quantifying the 3.0 ppm GABAþ signal in this work, a fixed signal
fraction of co-edited MM contribution to the peak was assumed, an
assumption that may not be valid for studies in neurological and psy-
chiatric disorders. As presented previously (Mikkelsen et al., 2017) for
Cr-referenced values, MM-suppressed measures showed greater relative
variance than GABAþ measures. The degree of similarity between
Cr-referenced and water-referenced measurements was similar for the
MM-suppressed and GABAþ datasets.

4.4. Towards further standardization

As highlighted previously (Mikkelsen et al., 2017), it is likely that
differences in acquisition sequence contribute to variance at the level of
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both vendor (e.g., factors inherited from vendor PRESS sequences) and
site (e.g., differences in implementation of MEGA editing), which might
be removed/attenuated by further standardization. In a parallel piece of
work, we have implemented a cross-vendor standardized MEGA-PRESS
sequence on GE, Philips, Siemens and Canon systems (Saleh et al.,
2019), which addresses some of these issues.
4.5. Conclusion

In summary, GABAþ levels were quantified using brain tissue
water as an internal concentration reference across 25 sites and low
levels of within-site variance were observed. This level of variability is
similar to that seen for GABAþ measurements quantified relative to Cr.
Given the concern that observed effects might be driven by changes in
the reference signal, it is often helpful to quantify both water- and
metabolite-referenced measurements. Study-specific expectations of
reference signal stability (e.g., between-group differences in clinical
populations or known changes in water content and signal relaxation)
might suggest one concentration reference a priori. That said, the
present results do not show a clear reason to prefer one reference signal
for MRS quantification, and it can be concluded that water-referenced
measurements of GABAþ are sufficiently reliable to be applied in
multi-site studies.

Appendix

A subset of the data presented in this work has been made available
on the NITRC portal in the “Big GABA” project repository (https://www
.nitrc.org/projects/biggaba/) and is distributed freely under a non-
commercial Creative Commons license. Community members are
encouraged to make use of this resource for developing and optimizing
new MRS methods. This data resource can also serve as a normative
dataset against which clinical data may be compared or for quality
assurance purposes.
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