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A B S T R A C T

Real-time functional magnetic resonance imaging (rt-fMRI) enables the update of various brain-activity measures
during an ongoing experiment as soon as a new brain volume is acquired. However, the recorded Blood-oxygen-
level dependent (BOLD) signal also contains physiological artifacts such as breathing and heartbeat, which
potentially cause misleading false positive effects especially problematic in brain-computer interface (BCI) and
neurofeedback (NF) setups. The low temporal resolution of echo planar imaging (EPI) sequences (which is in the
range of seconds) prevents a proper separation of these artifacts from the BOLD signal. MR-Encephalography
(MREG) has been shown to provide the high temporal resolution required to unalias and correct for physiolog-
ical fluctuations and leads to increased specificity and sensitivity for mapping task-based activation and functional
connectivity as well as for detecting dynamic changes in connectivity over time. By comparing a simultaneous
multislice echo planar imaging (SMS-EPI) sequence and an MREG sequence using the same nominal spatial
resolution in an offline analysis for three different experimental fMRI paradigms (perception of house and face
stimuli, motor imagery, Stroop task), the potential of this novel technique for future BCI and NF applications was
investigated. First, adapted general linear model pre-whitening which accounts for the high temporal resolution
in MREG was implemented to calculate proper statistical results and be able to compare these with the SMS-EPI
sequence. Furthermore, the respiration- and cardiac pulsation-related signals were successfully separated from the
MREG signal using independent component analysis which were then included as regressors for a GLM analysis.
Only the MREG sequence allowed to clearly separate cardiac pulsation and respiration components from the
signal time course. It could be shown that these components highly correlate with the recorded respiration and
cardiac pulsation signals using a respiratory belt and fingertip pulse plethysmograph. Temporal signal-to-noise
ratios of SMS-EPI and MREG were comparable. Functional connectivity analysis using partial correlation
showed a reduced standard error in MREG compared to SMS-EPI. Also, direct time course comparisons by down-
sampling the MREG signal to the SMS-EPI temporal resolution showed lower variance in MREG. In general, we
show that the higher temporal resolution is beneficial for fMRI time course modeling and this aspect can be
exploited in offline application but also, is especially attractive, for real-time BCI and NF applications.
1. Introduction last years made it possible to use higher spatial and temporal resolutions
Recent technological advances in computational power and the
advent of more sophisticated image reconstruction techniques over the
Maastricht, the Netherlands.
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in functional brain imaging with MRI (Feinberg et al., 2010; Poser and
Setsompop, 2018; Rabrait et al., 2008). However, these new possibilities
also require more advanced preprocessing and statistical computations,
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such as handling auto-correlations across many volumes, to fulfill the
requirements for the commonly used parametric statistical analyses
(Fadili et al., 2003). Specific advancements in the field of functional
magnetic resonance imaging (fMRI) provided new acquisition methods
such as simultaneous multi-slice (SMS, also known as multi-band, MB)
(Feinberg et al., 2010; Feinberg and Setsompop, 2013), blipped
controlled aliasing (CAIPI) EPI blipped-CAIPI-EPI) (Moeller et al., 2010;
Setsompop et al., 2012), echo volumar imaging EVI) (Rabrait et al.,
2008), multi-slab EVI (Posse et al., 2012) or simultaneous multi-slice
inverse imaging (SMS-InI) (Hsu et al., 2017), allowing to acquire fMRI
data using repetition times (TR) in the range of hundreds of milliseconds
and are also suitable for real-time applications. The method used in this
article to perform fMRI is called MR-Encephalography (MREG) (Hennig
et al., 2007). It is of particular interest for real-time applications because
it allows to use a very high temporal resolution of 100ms (and possible
even up to 25ms). To be more precise, the higher temporal resolution is a
crucial factor to increase sensitivity, specificity and signal-to-noise ratios
(SNR) with respect to confounding signals, as physiological noise can be
separated from the signal of interest (Assl€ander et al., 2013; Feinberg and
Setsompop, 2013; Feinberg and Yacoub, 2012; Lee et al., 2013; Lewis
et al., 2016; Lin et al., 2012; Posse et al., 2013; Zahneisen et al., 2011).
This is possible since the high temporal resolution allows to record these
confounding signals and with this gives the possibilty to remove these
components from the signal of interest. Additionally, since most se-
quences that allow sub-second TRs are also suitable for real-time fMRI
data analysis (possible image reconstruction within a TR), MREG should
be regarded as a potential candidate in real-time setups. MREG combines
the sampling efficiency of non-Cartesian trajectories with under-sampled
variable density read-outs to achieve ultra-fast fMRI acquisition
(Assl€ander et al., 2013; Hennig et al., 2007; Zahneisen et al., 2011, 2012).
In conjunction with recent parallel receiver arrays this permits repetition
times below 100ms for whole-brain fMRI. This approach trades off some
spatial resolution and introduces susceptibility artifacts in the presence of
strong off-resonance gradients to achieve the ultra-fast read-out
(Assl€ander et al., 2013). The clear downside of highly-undersampled
non-Cartesian acquisition is their significantly higher computational
burden compared echo-planar acquisitions. As a consequence, for MREG
there is currently no solution to fully reconstruct each frame in real-time
(i.e., in less than 100ms). Even strong cluster computers are not able to
fulfill the criteria of reconstructing data within a single TR. To overcome
this computational issue, a novel real-time MREG (rtMREG) method was
recently introduced, which creates a time course of interest from pre-
selected brain areas using one individual reconstruction vector per ROI
(LI, 2014; Riemenschneider et al., 2019; Riemenschneider et al., 2015).
The real-time access of predefined areas is made possible through min-
imal reconstructions that only extract mean values from ROIs by an
incomplete basis change of the reconstruction matrix. The minimal re-
constructions, which are performed by one simple dot product per ROI
per frame, require pre-calculations that are independent of the main
experiment's signal data and can be performed beforehand.

In the current study, we performed an offline analysis to demonstrate
the potential of MREG and specifically encourage the use for real-time
applications such as brain-computer interfaces (BCI's) and, more specif-
ically, neurofeedback (NF). To be able to identify specific differences
between MREG and SMS-EPI-sequence parameters, we conducted three
different experiments, each of them twice in a counter-balanced fashion
across participants which were then analyzed offline: Once with a SMS-
EPI sequence using a TR of 2000ms and once using an MREG sequence
with a temporal resolution of 100ms. This allowed to directly investigate
the individual differences in single subjects as well as group differences
using the two sequences. In addition, we examined the overall differ-
ences of both sequences with respect to co-registration of anatomical and
functional data as well as preprocessing and analysis methods. A first
analysis focused on the statistical properties of SMS-EPI and MREG data
using the standard general linear model (GLM), which is commonly used
in fMRI data analyses (Monti, 2011). A second analysis focused on the
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temporal signal to noise ratio (tSNR) of SMS-EPI and MREG data.
Eventually, a third analysis explored the potentials of high temporal
resolution acquisitions with respect to functional connectivity analysis.
The functional connectivity analysis has become more popular in recent
years in real-time fMRI applications (Bastos and Schoffelen, 2016; Karl J.
Friston, 2011; Hutchison et al., 2013; Zilverstand et al., 2014). The
connectivity between different brain regions can be used to strengthen
functional connections to support rehabilitation processes (Canuet, 2015;
Díez-Cirarda et al., 2017; Ochmann et al., 2017) or can give different
insights than standard univariate analysis. Having a higher temporal
resolution can be beneficial, e.g., for dynamic functional connectivity in
event-based paradigms as shown by (Sahib et al., 2018) and gives more
reliable connectivity results (Karahano�glu & Van De Ville, 2017). We
aimed to show the direct benefit of MREG for real-time applications
along the preprocessing and analysis pipeline, since this method was not
yet applied in a BCI environment. Even the possibility to provide NF in a
common (e.g., thermometer (Krause et al., 2017); fashion, but use MREG
with this very high temporal resolution will certainly have benefits for
offline analysis as we will show in this article.

1.1. Proposed real-time study setup

Due to the computationally extensive image reconstruction time of
MREG it is not possible to analyze a functional localizer within the cur-
rent session. A dedicated functional localizer session is advised, unless
only anatomical information will be used, to define a target region. When
opting for a functional target region of interest (ROI) localizer session on
a different day, as described below, the data needs to be analyzed offline
before the actual real-time session. This way, potential signal shifts,
which are characteristic for any k-space trajectory, are already accounted
for in the extracted target regions. On both scanning days, anatomical
reference datasets need to be acquired for the co-registration of the ROIs.
On the second day, the previously localized ROIs can be aligned to the
current position of the subject using a transformation matrix created by
registering the anatomical datasets from day one and day two as shown in
Fig. 1.

The matrix of the ROI-specific targeted partial reconstruction can be
pre-computed right at the beginning of the actual real-time session and
will then be applied for NF purposes during subsequent functional runs.
The targeted Partial Reconstruction was applied using a partial SENSE
method for the MREG acquisition. This generates minimal re-
constructions of the sums over one or several freely selected ROI's (Rie-
menschneider et al., 2019). One reconstruction vector is computed per
target, each obtained by a full iterative reconstruction prior to the
experiment. Each reconstruction vector then allows to reconstruct the
signal from its target region as a scalar product. More details about the
partial SENSE method and the partial reconstruction can be found in the
corresponding publication (Riemenschneider et al., 2019).

The reconstruction results can be exported in real-time using e.g., a
direct TCP/IP stream, which avoids potential delays possible when using
a usual file transfer. To be able to receive the data directly a re-routing
(e.g., ‘tunneling’) from the image reconstruction computer through the
MRI console computer needs to be integrated, which can be realized by
port forwarding from the image reconstruction computer to the real-time
processing computer via the MRI console.

2. Methods

In this section we will cover the methods used to point out the dif-
ferences between SMS-EPI and MREG data with respect to future real-
time processing and the differences introduced by the high sampling rate.

2.1. Participants

Twelve healthy volunteers (six females; all recruited at Maastricht
University, Maastricht, the Netherlands) aged between 23 and 39 years



Fig. 1. Workflow of rtMREG experiments. During the first day a localizer and anatomical scan is performed. At day two another anatomy is scanned for corregistration
and localizing the region defined on the first day.
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(mean¼ 28; SD¼ 4.97) participated in the three experiments. All par-
ticipants had normal or corrected-to-normal vision and had no history of
neurological or psychological disorders. The volunteers were informed
about the details of the study and the two different sequences. The study
was approved by the local ethics committee, and participants gave their
written informed consent before participating in the study.
2.2. Study design

All participants performed the same three tasks in pseudo-
randomized order. The first task was a motor imagery paradigm con-
sisting of eight task and nine rest blocks each lasting 24s. During the task
blocks the participants were asked to draw a simple figure or object in
their mind using the right hand (Lührs et al., 2017; Sorger et al., 2012).
Objects were for example stars, trees or cars that were easy to imagine for
each person individually. The second task was a passive viewing task
where the participants had to focus on the center of the screen while
pictures of faces or houses were shown (Kanwisher et al., 1997). Picture
blocks had alternating faces and houses every 500ms, with a total
duration of 16s. The rest blocks in between the picture blocks lasted 16s
as well. The third paradigm was a standard color-based Stroop task
(Peterson et al., 1999). Participants had to press either the index finger
for red colored text or the middle finger if the text color was green, while
ignoring the semantic meaning of the text (“RED” or “GREEN) which was
presented in the center of the screen. The slowest reaction time was set to
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1.5s and randomized stimulus interval ranging from 500ms to 16s.
Each run lasted 400 s for SMS-EPI and MREG. Each experiment was

performed twice, once with SMS-EPI sequence and once with MREG. The
whole experiment took approximately one hour for each participant
including an additional anatomical scan.
2.3. MRI data acquisition

All data were acquired using a 3T MRI full body scanner (PRISMA fit,
MR_VE11C, Siemens Healthcare, Erlangen, Germany) equipped with a
64-channel head coil. All sessions were scanned with the same scanning
parameters for all participants. For the EPI data a simultaneous multislice
sequence (Barth et al., 2016; Feinberg et al., 2010; Moeller et al., 2010;
Setsompop et al., 2012) was used where the scanning parameters were as
follows: 200 vol, TR/TE¼ 2000ms/30ms, flip angle 77�, matrix
size¼ 64� 64 using a 192� 192mm field of view (FOV), multiband
factor 2, 50� 3.0-mm slices without gap. The MREG acquisition covered
the exact same FOV as the SMS-EPI, with an isotropic nominal resolution
of 3mm resulting in a matrix size of 64� 64� 50, TR¼ 100ms, flip
angle of 23�, for 4000 volumes. We used a single-shot spherical
stack-of-spirals trajectory for the read-out, as described in (Assl€ander
et al., 2013). The data was reconstructed offline after the recording. The
reference scans were based on a gradient echo sequences (GRE) used for
anatomical reference and calculation of the sensitivity maps for the
MREG reconstruction had the following parameters:
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TR/TE¼ 381ms/2.46ms, flip angle 25�, matrix¼ 128� 128 using a
192� 192mm field of view (FOV), 100� 0.5-mm slices without gap.

Physiological signals (pulse oximetry, and respiratory depth) were
recorded using the MR system's built-in wireless fingertip pulse
plethysmograph and respiratory belt at 50 Hz. For each participant, a
MPRAGE T1-weighted anatomical data set encompassing the whole
brain was acquired following the localizer experiment (scan parameters:
TR¼ 2250ms, TE¼ 2.21ms, FA¼ 9�, FOV¼ 256� 256mm2, matrix
size¼ 256� 256, number of slices¼ 192, slice thickness¼ 1mm, total
scan time¼ 8min and 26s).

SMS-EPI and MREG data preprocessing included motion correction
and temporal filtering using BrainVoyager 20.6 (Brain Innovation B.V.,
Maastricht, Netherlands). For the MREG data an additional dynamic off
resonance correction (DORK (Pfeuffer et al., 2002); using MATLAB (the
MathWorks, Natick, MA) was performed. A temporal high-pass filter of
three cycles per time course was applied. The high-pass filtering was
performed on the native data before the transformation to Montreal
Neurological Institute (MNI) space to remove low frequency drifts from
the data. In addition, linear trends were removed. No spatial smoothing
was applied.

Vascular and anatomical data were collected in a separate session for
participants P02, P05, P07, P08, P09 from a 3T scanner (PRISMA fit,
MR_VE11C, Siemens Healthcare, Erlangen, Germany) using 2D- and 3D-
Time-Of-Flight (TOF; FA¼ 60�/18�, TR¼ 21ms/20ms, TE¼ 4.83/
3.3 ms, 0.7 mm isotropic resolution) and MPRAGE sequences, respec-
tively (TR¼ 2250ms, TE¼ 2.21ms, FA¼ 9�, number of slices¼ 192,
1mm isotropic resolution).

2.4. MREG co-registration

Unlike MREG, GRE data is relatively easy to co-register to individual
anatomical datasets. For this reason, we first acquire a brief GRE refer-
ence scan shortly before MREG data is acquired and co-register GRE data
to the anatomical dataset. Due to the temporal proximity of both MREG
and GRE scans, the resulting transformation matrix can be then used on
the MREG data.

More specifically, first the GRE data was stored as a fMRI (fmr)
dataset in BrainVoyager. This format allows automatic boundary based
registration (BBR) (Greve and Fischl, 2009) of the functional and
anatomical reference. Using this automatic procedure all GRE datasets
were mapped to each subject's individual anatomical dataset in native
space. After co-registration of the GRE images, the resulting trans-
formation parameters were used to map theMREG data to the anatomical
image. After transforming the MREG data into MNI standard space, the
functional coverage was verified by overlaying all functional runs of all
twelve participants on top of theMNI Colin27 standard template (Holmes
et al., 1998). We also applied the BBR corregistration procedure to the
SMS-EPI data to have maximally comparable results. The quality of the
latter was also verified using the method described above, i.e., trans-
forming the data into the MNI space and overlay all functional runs on
top of the MNI Colin27 standard template.

2.5. General linear model analysis

fMRI data is most commonly analyzed using a general linear model
(GLM; (Fadili et al., 2003). To ensure correct GLM analysis of the MREG
data, global assumptions of model and noise (e.g., independence of
repeated measurements over time (Barker et al., 2013)) were
re-evaluated. Since both sequences measured BOLD-related signals, we
further investigate only the possibly violated assumptions that were
caused by the higher sampling rate of MREG (Hao et al., 2017; Uga et al.,
2014).

One assumption of the GLM is that there is no autocorrelation in the
residuals (Eklund et al., 2011). However previous work has shown that,
this assumption is not always met (K. J. Friston et al., 2000). There are
different sources causing the temporal autocorrelation in fMRI, e.g.,
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trends, scanner imperfections or physiological noise (Boynton et al.,
1996; Eklund et al., 2011). As for the latter, since heartbeat and respi-
ration are clearly visible in the MREG data, we were able to model them
as confounds. The beta estimates are not directly affected by autocorre-
lation, but the serial correlation can result in biased estimates of the error
variance and this can lead to inflated test statistic (Tak and Ye, 2014).

To remove these correlations, the fMRI time series needs to be pre-
processed. Here, we only focus on one of the most common processes,
namely the pre-whitening, which should also perform best in block based
stimuli paradigms (Friman and Westin, 2005). To whiten the residuals,
multiple steps need to be performed and different models can be used for
the pre-whitening method, like auto-regressive (AR), moving-average
(MA) or auto-regressive-moving-average models (ARMA, ARIMA or
“Box-Jenkins”) (Locascio et al., 1997). As the ARmodel is very often used
in fMRI analysis, we decided to use this method (Rogers et al., 2010).

Due to the high sampling rate of MREG data, higher order AR models
may be required to sufficiently remove autocorrelation from the re-
siduals. The AR model of a higher order p can be described as:

xðtÞ ¼ α1xðt � 1Þ þ ::: þ αpxðt � pÞ þ eðtÞ
The parameter eðtÞ is the white noise and parameters α1;…; αp are the

AR parameters to be estimated for the different model orders (Eklund
et al., 2011).

A model order needs to be selected objectively. This was done by
selecting the model that minimizes an information criterion function.
The Bayesian information criterion was used in this study:

BICðPÞ ¼ �2 LLþ P lnðnÞ
The BIC consists of the following parts: P is the model order; LL is the

log-likelihood of the model fit; and n is the number of time points (Barker
et al., 2013). It has been shown that this criterion worked well for fNIRS
analysis (Barker et al., 2016; Uga et al., 2014) which has a similar tem-
poral resolution as MREG.

After the selection of the AR(p) order the AR parameters was esti-
mated using Burg's maximum entropy method. Although very often used,
we decided not to use the Yule-Walker approach because it may lead to
incorrect parameter estimates in case of nearly periodic signals. Instead,
we used Burg's method (Burg, 1975; De Hoon, Van Der Hagen, Schoon-
ewelle and Van Dam, 1996; Kay and Marple, 1981), which is a recursive
algorithm aiming to finding a sequence of values so that it constitutes the
(empirical) partial autocorrelation function that is also described as
reflection coefficients (Pollock and Green, 1999).

The estimated AR parameters are then used to whiten the time series
and model predictors using the following equation (Eklund et al., 2011):

wðtÞ ¼ xðtÞ �
Xp

i¼1

bαixðt � iÞ

Here p is the order of the AR model and bαi are the model parameter
estimates.

To further investigate the relation to the explained variance in the
model we conducted GLM analysis with and without additional confound
predictors. More details about the added confounds can be found in the
following section.

2.5.1. Adding confound predictors using independent component analysis
A suitable tool to improve the GLM model is to add additional pre-

dictors which only explain non-task relevant information of the data, so
called confound predictors. These predictors can be generated using
mathematical models or by extracting information from the data itself,
provided that it is not part of the underlying paradigm used in the study.

The BOLD fMRI signal arises from a complex mixture of neuronal,
metabolic and vascular processes, and it is further corrupted by multiple
non-neuronal fluctuations of instrumental, physiological (including mo-
tion) and subject-specific (psychophysiological) origin. Particularly,
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motion-related and physiological noise fluctuations are the main noise
components of the signal, and data-driven multivariate approaches, such
as principal and independent component analysis (PCA and ICA,
respectively), strongly benefit from the information available in the
shared task-independent phases of multi-voxel time courses. This in turn
allows to robustly separate the spatially structured (noise) components
from the data sets. After the extraction, the components need to be first
classified as either signal or noise, thereby, a denoised fMRI time-series is
usually reconstructed based only on the independent components clas-
sified as signal.

As a viable alternative, here we used ICA to create and add confound
predictors to the GLM, in a sort of hybrid GLM-ICA analysis (see, e. g.,
(McKeown et al., 1998).,). This was done by first running the FastICA
algorithm (Hyv€arinen, 1999) on a given fMRI data set as implemented in
BrainVoyager (ICA plugin), and then selecting the component time
courses as candidate confounds for the GLM. When applied to the
multivariate fMRI time-series, the FastICA algorithm allows to extract (up
to) a predefined number of independent components, which can then be
classified as either task-related or non-task-related signal sources (De
Martino et al., 2007; McKeown et al., 1998) according to the correlation
coefficient with the GLM task predictors. As we were only interested in
non-task-related components, which do not (or only minimally) explain
the multivariate (co)variance according to the experimental paradigm,
each ICA component time course was correlated with the task predictor
time courses and was only selected as a confound predictor in the GLM if
the absolute value of the correlation coefficient was below the mean
absolute correlation of all components or lower than 0.2. Given the high
temporal dimensionality of the MREG time-series, up to 30 ICA compo-
nents were extracted from each run of each participant using the defla-
tion version (i.e., one by one) of the FastICA algorithm, both for the
SMS-EPI and MREG sequence. This approach ensured the computa-
tional feasibility of the procedure, even for future real-time applications
(see, e. g., (Lührs et al., 2017).,), because spatial maps are not used for
reconstruction and the selected confound predictors are by definition not
correlated to the GLM predictors (see, e. g., (McKeown, 2000; McKeown
et al., 2003). To verify that the extracted components included heartbeat
and respiration signal information, it was correlated to the acquired
physiological data using the fingertip pulse plethysmograph and respi-
ratory belt. Additionally, for participant P02, P05, P07, P08 and P09, the
respiration and pulse components were combined with the pial vessels
reconstructed from the time of flight sequence. Only the passive viewing
data was used in this analysis step and the number of ICA components
was limited to 30 in this analysis subset. First, 2D and 3D TOF data were
aligned individually to an up sampled version (0.7mm isotropic resolu-
tion) of the anatomical data of the same session for each participant.
Vascular data were segmented using a two-stage approach: the first stage
involved using automatic segmentation tools in Brainvoyager QX v3.2
(intensity-based segmentation) and Segmentator (intensity gradient
based segmentation) (Gulban and Schneider, 2016) and a second step
focused on polishing the resulting segmentations manually. The
segmented vascular structures from 2D and 3D TOF data were then
combined in one dataset and were down sampled to 1mm isotropic
resolution. To show that the selected components for pulse and respira-
tion are not only correlated with the heartbeat and respiration signal the
individual pulse and respiration component maps were masked with
each individual vessel reconstruction. The components were automati-
cally selected by correlating them with the pulse and respiration signal
recorded during the measurement. Afterword's the component with the
highest correlation was chosen as a reference and all components having
a correlation within one standard deviation apart from the maximum
correlation. To test the spatial properties of the components all selected
pulse and respiration components were combined into one map and
masked with the vessel reconstruction. The same procedure was applied
to the task relevant components. Afterwards the combined number of
voxels in the ICA pulse and respiration maps were compared to the
amount of voxel in the task component, also after masking with the vessel
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reconstruction.

2.6. Temporal signal to noise comparison

To compare the overall signal quality, we conducted a comparison of
the signal-to-noise ratio of the SMS-EPI and MREG data. This ratio can be
seen as a comparison of the global signal level related to noise were the
global signal is comprised of baseline and activation periods (Murphy
et al., 2007; Welvaert and Rosseel, 2013). This gives an indication of the
overall signal quality compared to the background noise. Additionally,
temporal filtering was applied using Gaussian full width half maximum
kernel of 2s low pass filter. This way the cleaned time course only con-
sisted of the information of interest. Because this also inflates the noise
term correlations of the GLM, we applied the filtering only to run a tSNR
comparison between MREG and SMS-EPI data. The following equation
was used:

tSNR ¼ S
σN

where S is the average voxel time course and σN the standard error of the
mean.

The resulting tSNR maps contain a statistical difference between all
SMS-EPI runs of all twelve participants compared to all MREG runs of all
participants further described in the results section. For MREG data, tSNR
values were computed using filtered and unfiltered data in order to see
the effects of temporal filtering on the MREG data containing physio-
logical information. This was also done for the SMS-EPI (400 ms TR, MB
8).

2.7. Functional connectivity analysis

We investigated the potential benefits for functional connectivity
analysis of a sequence with higher temporal resolution using both,
simulated and real data (Akin et al., 2017). For the former, a partial
correlation between two simulated time courses was modeled first. This
was done using a double gamma hemodynamic response functions (HRF)
(Glover, 1999) and convolving it with a box car function according to the
block design protocol. Then, white noise was added to mimic a fMRI
signal, resulting in an SNR of the simulated time course of ~ -3 db. A
control region was formed by only a white noise signal with zero mean.
The partial correlation of two simulated time courses controlled for the
white noise only signal was repeated 1000 times to model the difference
in connectivity shape. This step was performed using (1) a temporal
resolution of 2s simulating the SMS-EPI repetition time; (2) a temporal
resolution of 100ms simulating the MREG sampling rate. This simulation
focuses on the differences in temporal resolution and points out the direct
effect of a sampling rate. The results of this analysis can be found in
section 3.4. To verify the results of the simulated data we also extracted
time course information from the motor imagery experiment of all par-
ticipants. We selected left sensorimotor (LSM) and left premotor (LPM)
areas based on the SMS-EPI and MREG Stroop experiment run respec-
tively and used a control region in white matter to control for global noise
and physiological artifacts using the partial correlation analysis. Select-
ing the region in a different run is important to avoid misleading statistics
caused by double dipping. The analysis should show the difference in
partial correlation between LSM and LPM controlling for general signal
fluctuations using a white matter ROI between the MREG and SMS-EPI
sequence.

2.8. Temporal down sampling of MREG to EPI resolution

To be able to compare both signals in a direct application as a signal
source for NF applications, the MREG time course was down sampled to
the temporal resolution used for the SMS-EPI sequence (2s). Down
sampling was applied to create data as close as possible to hypothetically



M. Lührs et al. NeuroImage 194 (2019) 228–243
acquired data which are also only snapshots of specific time points. The
down sampling was performed by decreasing the sample rate of the
MREG data by keeping the first sample and then every 20th sample after
the first. Similar to the functional connectivity analysis the time course of
LPM was extracted in both MREG and SMS-EPI for all participants in the
motor imagery experiments.

3. Results

Since real-time reconstruction of MREG signal yields to virtually
identical signal (i.e., the magnitude sums over the ROIs), as compared to
the standard reconstruction (Riemenschneider et al., 2019), only offline
reconstructed data was used in this manuscript.

3.1. GLM and ICA analysis

The GLM results mainly focus on the estimated AR model orders and
the effect of adding additional confound predictors using ICA.

3.1.1. ICA confound predictors
ICA was used to obtain additional confound predictors that were

added to the GLM analysis. As shown in Fig. 2 the respective ICA com-
ponents for respiration and cardiac pulsation significantly correlated
with the recorded cardiac pulsation and respiration data. For example,
the respiration data for participant P07 gave a Pearson correlation of
r¼ 0.4943 with the respective ICA component. After filtering (lowpass
0.7hz) the correlation increased to r¼ 0.87. Looking at heartbeat a
Pearson correlation of r¼ 0.89 for the specific ICA component was found.
Both were significant (p< 0.001).

Fig. 2 depicts the ICA component maps for cardiac pulsation (red) and
respiration (blue), as well as their respective time course are shown,
together with the respective reference time course of the respiratory belt
and fingertip pulse plethysmograph.

For the subset of participants were an additional vessel reconstruction
was available the mean Pearson correlation were r¼ 0.67 for respiration
compared to the respective ICA component and for the heartbeat an
average Pearson correlation of r¼ 0.71 with the specific ICA component
was achieved, both being significant (p< 0.001). A detailed plot of the
Fig. 2. ICA components for respiration (top) and cardiac pulsation (bottom). On the
cardiac pulsation in red. On the right one can see the respective time course for the h
time course represents the recorded heartbeat and respiration using pulse plethysmo
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single correlations and picked components is shown in Fig. 3. On average
3.8 components were selected from the pulsation correlation and 1.4
from the respiration signal correlation.

The comparison of the voxel count after masking with the vessel
reconstruction showed a median of 563 voxels (min 524, max 708) for
the combination of the pulse and respiration components and a median of
387 voxels (min 220, max 400) for the passive viewing task component.
The difference was significant (p< 0.005). A detailed boxcar represen-
tation is shown in Fig. 4.

3.1.2. GLM AR orders
For all MREG experiments, BIC analysis estimated an average AR

order across runs and participants of 21.30 without incorporating the ICA
confound predictors. If the confound predictors were incorporated the
estimated AR order was reduced to 17.97 (1.798s). Fig. 6 depicts the
Bayesian information criteria for participant P05 of all three experiments
using the MREG sequence.

Comparing individual AR order maps of each voxel for all participants
showed a significant decrease of the estimated autocorrelation order
(p< 0.05) in 61.32% of all voxels and a t-value below 0 (comparing
MREG including ICA confound>MREG without confounds) in 97.8%.

To illustrate the effect of the statistical inflation using no or low
models for the autocorrelation correction, different AR models were
used. Statistical maps for the motor imagery task are presented for sub-
ject P04 in Fig. 7.

As shown in Fig. 7A, no additional confound predictors were used and
only the t-statistics of motor-imagery vs. rest are presented (Bonferroni
corrected at pbonf< 0.0001) using different AR orders (0, 2, 20) (0s, 0.2s,
2.0s). Fig. 7B shows additional ICA confound predictors were added and
the t-statistics of the contrast motor-imagery> rest is shown (Bonferroni
corrected at pbonf< 0.0001) for different AR orders (0,2,18) (0s, 0.2s,
1.8s). The high AR orders (20 and 18) (2.0s, 1.8s) differ because they
were estimated using BIC. Although, in individual participants this
decrease is not significant (p> 0.05) across individual voxels. At the
bottom of Fig. 6, the SMS-EPI analysis results are shown using a standard
AR (2) model, with (B) and without ICA confound predictors (A). Unlike
for SMS-EPI data, MREG data shows an increase in t-statistics when
adding additional confound predictors. To show this effect in a specific
left side the respective IC-maps are shown. Respiration is presented in blue and
eartbeat (bottom) and respiration (top) component both drawn in blue. The red
graph and respiration belt respectively.



Fig. 3. ICA components correlated against recorded cardiac pulsation signal (left) and respiration (right). The letter “P” on top of a correlation bar points out the
selected pulsation component. The letter “R” on top of a correlation bar shows the selected respiration component. As a reference the component with the highest
correlation to the passive viewing task is indicated by a “T” on top of the correlation bar.
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volume of interest, we performed a ROI GLM analysis on the motor im-
agery run of P07 (10mm radius cube centered at MNI coordinate: 6, �5,
57; Right BA 6, primary motor cortex). For MREG, the explained variance
increased from 50.84% to 72.76%. This effect was smaller for SMS-EPI
data, which increased from 63.20% to 71.74%. Here the t-values
decreased when adding the ICA confound predictors to the GLM. Overall
the decrease in statistical inflation using higher AR(p) orders can clearly
be seen when looking at the different t-maps. The t-values for SMS-EPI
and MREG data were both Bonferroni corrected (pbonf< 0.0001).

A detailed time course plot of the selected ROI is shown in Fig. 8
which includes the model and error terms, as well as autocorrelation
functions (ACF) for no AR correction and AR (2) correction. The ACF of
the residuals using the estimated AR based on BIC was a nearly flat line
and therefore not included in the plot because of no visible differences in
the lags of the ACF.

The explained variance of the GLM significantly increased (p< 0.001)
for both the SMS-EPI and MREG sequence when ICA confound predictors
were included. On average the explained variance increased from
26.91% to 48.42% for the SMS-EPI sequences and from 26.37% to
51.30% for MREG sequence. There was no significant difference between
the increase of the SMS-EPI and MREG sequences. A detailed plot of all
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runs and the individual R2 is presented in Fig. 9.

3.2. RFX analysis

The RFX analysis revealed an overall consistency of SMS-EPI and
MREG data. The comparison of the t-statistic of each map was based on
Spearman RHO (Kornbrot, 2014). For the motor imagery run RHO was
0.4469, for passive viewing 0.4762 and for the response (Stroop) task
0.4910, all three of them were significant at p< 0.01. An overview of the
individual maps is shown in Fig. 10.

Even though the correlation results are not significantly different, the
overall overlap between the different experiments is diverse. As for the
motor imagery paradigm the overlap is quite consistent and only differed
minimally with a higher statistical power for the MREG data. The overlap
is comparable to the passive viewing paradigm with the difference of a
higher statistical power in the SMS-EPI data. Whereas in the STROOP
task we found a much stronger statistical power and a wider spread ac-
tivity in the SMS-EPI as compared to the MREG data. Differences in the
point spread function (PSF) of the SMS-EPI and the MREG sequences
show potential explanations especially in the sinus frontalis and the
temporal nodes (Assl€ander et al., 2013; L. Chen et al., 2015).



Fig. 4. Box plot of the number of pial vessel voxel of pulse and respiration
components (left) compared to the passive viewing task component (right). The
difference was significant (p< 0.005). The absolute average of all selected pulse
and respiration IC-maps masked with each individual vessel reconstruction was
descriptively compared to the average vasculature data in Fig. 5.

Fig. 6. Bayesian information criteria and AR order. Based on the three different
runs (Imagery, Passive viewing, Stroop) of participant P05. BIC against AR order
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3.3. tSNR

The tSNR maps were compared using a pairwise t-test of the SMS-EPI
and MREG runs (motor imagery, passive viewing, Stroop task) for each
participant. The results are shown in Fig. 11. Fig. 11 left shows the SMS-
EPI runs compared to the unfiltered MREG runs whereas Fig. 11 right
shows the filtered SMS-EPI runs compared to the filtered MREG runs
using temporal smoothing with a gaussian kernel FWHM of 2s.

Primary and supplementary motor areas as well as the ventrolateral
prefrontal cortex, dorsal anterior cingulate and inferior temporal cortex
show significantly higher tSNR for SMS-EPI compared to the unfiltered
MREG runs (p< 0.05 Bonferroni corrected). After temporal filtering
(Fig. 11 right) the Primary and supplementary motor areas don't show
any difference in tSNR, whereas the difference is maintained in parts of
the dorsal anterior cingulate and the inferior temporal cortex.
Fig. 5. Average absolute pulse and respiration components overlaid on top of the av
pulse and respiration components were masked with the subjects individual TOF re
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3.4. Functional connectivity

The partial correlation of the generated white noise time courses
convolved with the HRF (green time course in Fig. 12) showed lower
standard deviation for the high sampling rate (100ms sampling, blue
time course) compared to the low temporal resolution (2s sampling, red
time course). The 2-s sampling was up-sampled to display the results in
one graph. On the left side of Fig. 11 a correlation window of 20s was
used and on the right-hand side, a correlation window of 32s was used.
The blue curve (100-ms sampling) shows a lower standard deviation
compared to the red curve (2s sampling), which was significant at
p< 0.01. This finding was true for the short (10s) and long (20s) window
(see left and right upper part of Fig. 12). We also found this effect for the
SMS-EPI (green curve) and MREG data (blue curve). High sampling
MREG data showed significant lower standard deviation in the partial
correlation (p< 0.01) for both for the short (10s) and long (20s) window
(see C) and D) in Fig. 12).
3.5. Temporal down sampling of MREG to SMS-EPI resolution

The down sampled MREG time course (to match the SMS-EPI tem-
poral resolution) resulted in a significantly lower variance compared to
the SMS-EPI (p< 0.05). As an example, a motor imagery trial with both
time courses is shown in Fig. 13.
erage pial vessel reconstruction of the described participants subset. Individual
construction and afterwards averaged.

was average across all brain voxels were.



Fig. 7. MREG AR correction using different AR orders. A) AR correction of standard GLM residuals without additional confound predictors (only motor imag-
ery> rest). Different orders were used to investigate the effect of proper AR correction. The higher the order the lower the calculated t-values. B) AR correction of GLM
including additional confound predictors for heartbeat and respiration extracted using ICA. The t-values are overall higher compared to the maps shown in part A. In
the bottom of the figure a SMS-EPI analysis result is shown as a reference, once with (B) and once without (A) additional ICA based confound predictors.
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3.6. Comparison to higher order multiband SMS-EPI

One participant (P07) was additionally scanned in a separate session
using the SMS-EPI sequence described earlier with adjusted scanning
parameters: 1000 vol, TR/TE¼ 400ms/30ms, flip angle 42�, 3 mm
isotropic nominal resolution, matrix size of 64� 64� 48 resulting in a
192� 192mm FOV, multiband factor 8, 48� 3.0-mm slices without gap.
This was done to explore whether a higher MB-factor combined with a
lower TR of 400ms allows to separate cardiac and respiratory signal
sources. Appendix A. Fig. 1 depicts the resulting ICA component maps of
participant P07 for cardiac pulsation (red) and respiration (blue) as well
as their respective time courses, in addition to the reference time course
of the respiratory belt and fingertip pulse plethysmograph. The selected
ICA components showed a Pearson correlation of r¼ 0.82 with the
respiration data of participant P07 as well as r¼ 0.77 with the time
course of the recorded heartbeat, with both correlation coefficients being
highly significant (p< 0.001). An overview of the selected independent
components for this extra scan can be found in Appendix A, Fig. 2. The
tSNR differences between SMS-EPI 400 ms TR, MB 8, and the MREG
sequences are shown in Appendix A. Fig. 3. The calculations were the
same as described in section 3.3. There was a widespread significant gain
in tSNR for MREG as compared to SMS-EPI 400 ms TR, MB8 runs
(p< 0.05 Bonferroni corrected), encompassing mostly parietal, posterior
temporal and occipital regions as well as parts of the frontal lobe. After
temporal filtering most of these differences are diminished, leaving only
few local spots in the anterior temporal lobe and the cerebellum with
increased tSNR for the SMS-EPI sequence.
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4. Discussion

In this work we investigated the potential benefits of a recently
developed parallel imaging technique MREG particularly for a possible
use in real-time BCI and NF applications and compared it to a SMS-EPI
sequence. Several parts of the analysis pipeline were investigated to
point out specific differences in the pre- and post-processing of the fMRI
time-series generated by these sequences.

Generally, higher sampling rates (lower TRs) enable more detailed
models of the HRF, e.g., for detecting the initial dip (Hu and Yacoub,
2012) and to observe sub-second timing differences in task-based pro-
cesses. However, higher sampling rates result in lower spatial resolution
or brain coverage in non-parallel image acquisitions. It has been shown
that higher acceleration factors for SMS-EPI reduce the tSNR (L. Chen
et al., 2015). As discussed in a recent paper by Hsu and colleagues (Hsu
et al., 2017) the reduction in tSNR with each acceleration factor might be
a limiting factor for very low TR's around 100ms so that SMS-EPI is
potentially not suited for the comparison of differences and improve-
ments at a higher temporal resolution (Feinberg and Setsompop, 2013;
Hsu et al., 2017). In the additionally scanned dataset using the SMS-EPI
with 400 ms TR andMB8we didn't see this strong limitation as described
in the discussion from Hsu and colleagues. Also in a very recent article
from Chen and colleagues (J. E. Chen, Polimeni, Bollmann and Glover,
2019) it is suggested that the use of higher multiband factors and lower
repetition times using SMS-EPI relies on multiple factors and can't be
trivially explained or judged. As shown in Appendix A, Fig. 1, the 400ms
SMS-EPI also allows to disentangle the physiological information from



Fig. 8. Time courses, models and residuals of an ROI GLM (P07, Motor Imagery). The left part of the figure shows the time course for SMS-EPI (top) and MREG
(bottom) The upper plot (a and c) shows the GLM results without additional IC based confound predictors. The lower part (b and d) includes IC based confound
predictors. The data is presented in blue, the model in green and in red the residuals (error) of the GLM. In the center the ACF for the residuals of the plot next to is
shown. On the right the individual ACF's after AR (2) correction are presented.
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the BOLD signal. But it is also clear, that the shape of the heartbeat signal
is not as clearly described as shown in Fig. 2 using the MREG sequence
with 100 ms TR. This effect could be explained by the higher temporal
resolution and allows no judgment of the quality of the two different
sequences but clearly shows the potential of high temporal resolutions for
these types of physiology. Also, when looking at the individual detected
IC components (see appendix A, Fig. 2) the results suggest a similar po-
tential of SMS-EPI using higher temporal resolutions to reveal these
components in the fMRI signal. Comparing the tSNR of the SMS-EPI with
400ms and MB8 and the MREG sequence (see Appendix, Fig. 3), the
difference in tSNR is mainly visible in the unfiltered data. Other tech-
niques like inverse imaging (InI) (Lin et al., 2012) or simultaneous
multi-slice inverse imaging (SMS-InI) (Hsu et al., 2017) are potentially
less affected by the tSNR reduction using higher MB-factors and might be
potential alternatives. The depicted structures of the IC components
shown in Appendix A, Fig. 1, left hand side, also differs between MREG
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and 400ms SMS-EPI. The respiration component is clearly visible in both
sequences (maybe even stronger in the SMS-EPI), whereas the pulse
component is very different in both sequences. Suggesting that both, the
MREG sequence and the 400ms SMS-EPI might include additional in-
formation. Future studies are warranted to provide a full comparison of
MREG with SMS-EPI over a wide range of TR and MB on a larger cohort
of subjects and data sets.

Overall the tSNR of the SMS-EPI (2s TR, MB 2) and MREG were
comparable after low-pass filtering. For the tSNR the mean of the signal is
divided by its standard deviation. Thus, a higher sampling rate which will
implicitly include physiological noise in the signal will decrease the
tSNR. Since this physiological signal is not clearly visible in the SMS-EPI
with 2s TR but smeared through the time series it is necessary to bring
both sequences into the same temporal space for a fair comparison. The
decision to filter the data instead of down sampling the MREG data was
practical decision since we didn't expect huge differences between



Fig. 9. Explained variance of SMS-EPI and MREG ROI GLMs. In the left plot R2 of the SMS-EPI GLM without additional confounds compared to the GLM including ICA
confound predictors. On the right the same plot for MREG. Red being the motor imagery runs, green the passive viewing experiments and blue the response (Stroop)
task sessions. Three ROI's were selected anatomically for each task.
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filtering or down sampling with respect to the tSNR results.
In frontal (above sinus frontalis) and inferior temporal regions a lower

tSNR of MREG was present.
Since for most NF applications the signal time course is used as a

feedback source, the lower spatial resolution or coverage may be not
necessarily a problem especially if the brain areas of interest can be
targeted using a spatial resolution of 5–6mm (or less).

Anyway, these drawbacks potentially resolve over time with the
advent of parallel imaging techniques (Akin et al., 2017; Assl€ander et al.,
2013; Hennig et al., 2007; Zahneisen et al., 2011, 2012).

The proposed real-time setup described in the introduction needs two
session to first localize the region of interest offline and use this area in
the second session for real-time neurofeedback. This seems to be a huge
disadvantage compared to other real-time techniques allowing high
sampling rates. To overcome this issue the localizer could be shortened to
only include two trials of one task or two different tasks (e.g., to perform
a contrasting). This was already done by (Nicholson et al., 2017) who
included two trials in the beginning of the neurofeedback run to select
the 33% best voxels within a predefined anatomical mask with respect to
the task or contrast. Combined with a method described in a previous
study (Lührs et al., 2017) it would be possible to automatically select this
areas within the same session. This could be done since all the steps, from
reconstruction to the final region of interest selection can be
automatized.

MREG required adjustments to the standard fMRI processing pipeline,
mainly, (1) functional/anatomical co-registration accounting for the
lower spatial resolution of MREG, (2) adjusted statistical GLM analysis to
correct for the higher temporal autocorrelation and (3) temporal filtering
adaptations to remove heartbeat and respiration confounding signals.
These differences will be discussed in the following sub-sections.
4.1. MREG co-registration to anatomical data

A short GRE sequence was used right before the MREG scan was
collected and the time between both scans was set to 10s. It was assumed
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that during this period the head motion was absent or was very small
between. To reduce potential motion in this interval and to keep its
duration constant, we informed the participant before the start of the
GRE sequence and did not communicate between GRE andMREG to keep
the time low in which potential motion can occur. Even though this
approach does not completely prohibit the potential of motion-related
misalignment, it seemed to be a good starting point and can be
improved in following experiments by adding a (e.g., non-linear (Klein
et al., 2009); alignment step.
4.2. ICA confound predictors

To separate task-related signals from physiological fluctuations of no
interest, ICA was used to identify noise components. The number of in-
dependent components is still a debate in current literature (Kairov et al.,
2017). However, since the overall goal in this case was to only include
confound predictors in the model, and not to find task relevant predictors
or to spatially model functional networks, the question of the best
number of ICA components is less relevant. Particularly, there were at
least three reasons for keeping the number of ICA components very low:
(i) the risk of losing physiological components is inversely related to the
variance contribution of these components; thereby, the higher the
contribution of physiological components, the better these will be
extracted using relatively less temporal dimensions, whereas the lower
the contribution of physiological components the lower the impact of
potentially missing these components as confounds in the GLM; (ii) if two
physiological components are not well separated (spatially) the removal
of the (mixed) effects will operate as one, instead of two, confound
predictors; (iii) the residual presence of task-related variance in a phys-
iological component will be controlled by the increased correlation with
the task predictor.

Apart from these qualitative expectations, we still checked for each
participant that we found (at least) one heartbeat and one respiration
component which were of most interest in this study. Indeed, the current
results show that even when only using a few components, clear patterns



Fig. 10. t-statistics of RFX GLM's comparing SMS-EPI (green) and MREG (red). Top part show RFX results for the motor imagery paradigm (imagery> rest). In the
center the passive viewing experiment is shown (faces & houses> rest) and in the bottom the Stroop task (congruent & incongruent> rest).

Fig. 11. tSNR t-maps for SMS-EPI>MREG. The left side of the figure shows the t-test of SMS-EPI>MREG. On the right the same t-test is shown with an added
temporal low pass filter for the MREG sequence. The maps are Bonferroni corrected (pbonf< 0.05).
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for cardiac pulsation and respiration are quickly selected, as indicated in
Fig. 2. Interestingly, we were able to discern arterial structures like the
circle of Willis when mapping these specific ICA confound components
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from theMREG data. As for the respiration component, a clear superficial
pattern of the component map was visible. The further analysis of the
vessel reconstructions from a subset of participants showed the further



Fig. 12. Functional connectivity analysis using partial correlation. Top: simulated partial correlation for A) 10s moving window and B) 20s moving window. The
partial correlation consisted of two double gamma HRF with added white noise controlled for an only white noise time course. Red curve, 2s sampling, blue curve
100ms sampling (the red curve was up sampled to match the plot). Bottom: partial correlation of LSM and LPM (controlled by using a white matter ROI) in SMS-EPI
(green curve) and MREG (blue curve) for C) 10s and D) 20s. In red and green, as a reference, the standard double gamma HRF is depicted.

Fig. 13. Down sampled MREG time course compared to the standard 2s TR SMS-EPI sequence. MREG time course has significant less variance compared to the SMS-
EPI time course (P< 0.05).
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potential of high sampling rates for fMRI data analysis. We could show
that when using more independent components in this subset analysis
(30 components) that multiple components were present which covered
the pulse and respiration signal. We found on average more components
for the pulse signal compared to the respiration signal. This could have
been cause by the slice positioning whichmay not covered the superficial
layers in all participants properly. Furthermore, we could show that the
selected components shared more voxels with the reconstructed vessels
compared to the found task component. This, in combination with the
overall very high correlation of the ICA component time courses should
be enough evidence that it is possible to extract pulse and respiration
information directly from the MREG signal. For the pulse components we
could see very often a clear temporal high frequency noise (tHFN) pattern
as described by (De Martino et al., 2007). As they also reported that the
tHFN was consistently represented across the runs with a clear finger-
print. Since we could now show the source of this component the noise
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part might be replaced by physiology, temporal high frequency physi-
ology (tHFP). Being able to clearly reconstruct the pulse and respiration
signal the use of RETROICOR might be not necessary for this high sam-
pling rates.

This is particularly encouraging for real-time BCI applications in
which it is very important to control for respiration artifacts to ensure
that participants did not achieve to reach a certain NF goal only by
changing the respiration rate. Using MREG this could be implicitly
controlled extracting the ICA component even without acquiring addi-
tional respiration information using a respiration belt. Nevertheless,
further investigation is needed to further improve the selection of
confound predictors especially for SMS-EPI and MREG studies using a
very high sampling rate, and possibly build more abstract and general
models to correct for physiological artifacts, eventually including spatial
information. Such investigations will likely benefit from the use of
several ICA component features (see, e. g., De Martino et al., 2007) that,
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besides the task correlation, have proven useful to separate BOLD-related
components from noise components, independently from the task
activities.

4.3. GLM analysis

Because of the high temporal resolution, the parameters for the
autocorrelation correction of the residuals were expected to be higher in
MREG as compared to the SMS-EPI scanning parameters. The difference
in temporal resolution of SMS-EPI and MREG data was the most impor-
tant factor to consider in the GLM analysis, since their spatial properties
did not differ notably. To ensure correct calculation of the t-values and
avoid a statistical inflation caused by the high autocorrelation of the
residuals in the MREG data, properties and assumptions of the GLM were
investigated.

In fMRI data analysis with conventional TRs in the order of 1–3s the
autocorrelation of the residuals can be corrected using low AR model
orders (1–2; (Lenoski et al., 2008), whereas for MREG we found that
much higher model orders are necessary (e.g., 18) to correct for serial
correlations. This is in line with recent reports on fast sampling fMRI
experiments (Bollmann et al., 2018; Corbin et al., 2018). In our study, we
observed an increase in the AR model orders using a TR of 100ms. This
goes in line with a recent work by (Corbin et al., 2018) where they
concluded that a TR of 350ms results in a ARmodel of around 12 to 15 to
correct for serial correlations in the residuals. Moreover, they showed
that the serial correlation is reduced when additional physiological re-
gressors are used. This we also found in this study and observed an ex-
pected increase in the AR model orders using an even shorter TR.
Different to modeling the physiological regressor (e.g., using RETRO-
ICOR (Bollmann et al., 2018)) we showed that with a TR of 100ms, it is
actually possible to extract physiological components directly from the
MREG signals via spatial independent component analysis, thereby
avoiding the potential inaccuracies of a priori models of physiological
confounds. We as well observed that a higher explained variance (e.g., by
adding physiological confound predictors to the model) was linked to a
lower estimated AR orders, which reflected a lower autocorrelation in the
residuals. This is an important difference compared to sequences using a
low TR and it is crucial to fully take advantage of the high temporal
resolution of MREG sequence whenmodeling the expected time course in
the design matrix by including specific confound predictors for cardiac
pulsation and respiration related signals. Even though the inclusion of
ICA component time courses as model predictors is in some cases diffi-
cult, the overall effect of improving the explained variance is expectedly
the same with respect to including externally measured pulse and
respiration data because of the high correlation of these time courses.

Because additional ICA component confound predictors were added
to both sequences the explained variance in both sequences is highly
comparable. But MREG is more sensitive to capture heartbeat and
respiration information suggesting that this sequence is far more sensi-
tive than conventional fMRI where the heartbeat information can not
directly be separated from the signal because of the low temporal
resolution.

While these effects are clearly visible in the single-subject analyses,
the differences in the RFX group results between SMS-EPI and MREG
sequences are less straightforward to explain or display. In fact, they can
be caused by both the different sensitivity of the two sequences and by
individual subject performance variability. All in all, more studies are
necessary to clarify this matter.

In standard fMRI analysis pipelines, the detection of motion remains a
problem which needs further investigation (Leonard, Flournoy, Lewis-de
los Angeles andWhitaker, 2017; Todd et al., 2015; Yakupov et al., 2017).
Two different correction methods, retrospective and prospective, are
most often used in fMRI. Prospective motion correction shows better
results in correction of motion artifacts, especially in the intra volume
motion, which cannot be corrected using standard retrospective correc-
tion methods (Todd et al., 2015; Zaitsev et al., 2017). For MREG the intra
241
slice and volume motion correction problem is intrinsically reduced by
the higher temporal resolution allowed by the acquisition method. For
real-time applications prospective motion correction would be a poten-
tial solution to handle motion in real-time (Riemenschneider et al.,
2019).

5. The impact on real-time BCI/neurofeedback experiments

Due to more and more attention to applications of real-time neuro-
imaging methods, specifically in the field of fMRI (Sulzer et al., 2013;
Thibault et al., 2018), the implementation of a higher temporal resolu-
tion is a very important goal. We showed that physiological components
are clearly visible in the MREG data and exhibited that they can be
extracted to correct the measured brain signal in real-time. This allows to
control for brain-modulation effects caused by changes in cardiac pul-
sation or respiration. This is especially important to ensure that possible
improvements in behavior by using BCI/NF setups are not just caused by
learning to regulate breathing but due to a real cognitive control.

6. Conclusion

In this manuscript we investigated the different impact of a SMS-EPI
sequence and the more recently developed MREG sequence on high
temporal resolution fMRI. For both sequences the same coverage and
spatial resolution was used. The temporal resolution of the MREG
sequence was, however, 20 times higher than the SMS-EPI sequence
using a conventional TR of 2s as typically used in (real-time) fMRI re-
cordings. Overall the results of SMS-EPI and MREG data analysis were
comparable even though different preprocessing and analysis techniques
needed to be adapted for the MREG compared to SMS-EPI data pro-
cessing. Most importantly, a much higher AR model order of ~20 was
required to correct for serial correlations in the GLM residuals. Thereby,
the higher temporal resolution of MREG allows disentangling explicitly
physiological influences from cardiac pulsation and respiration.

tSNR was also comparable between sequences, although known
sequence-specific geometric image distortions were observed. Further
research is necessary to create more detailed models for sequences using
such a high temporal resolution to explain more variance which, as we
showed, lowers the temporal autocorrelation in the residuals and in-
creases the power of the statistical analysis.

This exploratory research serves a more comprehensive utilization of
the findings for following rt-MREG based NF/BCI research.
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