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A B S T R A C T

Functional connectivity analysis techniques have broadly applied to capture phenomenological aspects of the
brain, e.g., by identifying characteristic network topologies for healthy and disease-affected populations, by
highlighting several areas important for the global efficiency of the brain during some cognitive processing and at
rest. However, most of the known methods for quantifying functional coupling between fMRI time series are
focused on linear correlation metrics. In this work, we propose a multidimensional framework to extract multiple
descriptors of the dynamic interaction among BOLD signals in their phase space. A set of metrics is extracted from
the cross recurrence plots of each couple of signals to form a multilayer connectivity matrix in which each layer is
related to a specific complex dynamic phenomenon. The proposed framework is used to characterize functional
abnormalities during a working memory task in patients with schizophrenia. Some topological descriptors are
then extracted from both multilayer connectivity matrices and the most used Pearson-based connectivity net-
works to perform a binary classification task of normal controls and patients. The results show that the proposed
connectivity model outperforms the statistical correlation-based connectivity in accuracy, sensitivity and speci-
ficity. Moreover, the statistical analysis of the selected features highlights that several dynamic metrics could
better identify disease-related dynamic states in brain activity than the statistical correlation among physiological
signals.
1. Introduction

Physiological and biological systems involve complex processes whose
dynamics exhibit nonlinear interactions (Deisboeck and Kresh, 2007). In
particular, the complexity of the brain arises from different aspects.

In recent decades, scientists have tried to incorporate the dense
network of relationships and mechanisms of large-scale synchronization
that are the basis of the functioning of neuronal networks by using the
complex network framework (Sporns, 2010). The network formulation
describes the brain as a graph composed by nodes (i.e., brain regions)
linked by edges (their functional connectivity) (Bullmore and Sporns,
2009; Sporns, 2010, 2011). Neuroimaging techniques have been
garo).
extensively applied to investigate the macroscale functional organization
of the human brain (Fornito et al., 2016). Many functional connectivity
(FC) analysis techniques have been proposed to uncover different dy-
namic neural mechanisms such as communication, information pro-
cessing and neural integration from functional magnetic resonance
imaging (fMRI) scans (Sporns et al., 2005).

The functional connectome indicates the complete map of the func-
tional links among all the regions of interest in which the total brain is
partitioned. Such connections usually quantify the statistical similarity
between the time series at each pair of regions, i.e., the functional con-
nectivity (Bullmore and Bassett, 2011). Although the high spatial reso-
lution of the fMRI data allows a detailed mapping of the connections, the
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low temporal resolution limits the number of methods than can be
applied to assess the statistical dependences between the time series.
Typically, linear correlation metrics such as Pearson correlation and
partial correlation are used to estimate the FC (Van Den Heuvel and Pol,
2010). Dynamic FC analysis aims at describing simultaneously the dy-
namic relations in time and space of brain activity by observing the
evolution of statistical similarity among the fMRI time series into a spe-
cific domain (time or frequency) (Calhoun et al., 2014; Bassett et al.,
2011; Betzel et al., 2015; De Domenico, 2017).

For example, dynamic FC analysis of fMRI data has been used to
detect changes in FC measurements both in healthy populations and
across diagnoses and relate such changes to behavioral and cognitive
outcomes (Cohen, 2018). Temporal fluctuations have been examined
both in rest conditions and in the presence of specific tasks (Gonza-
lez-Castillo and Bandettini, 2018), to such an extent that the term
“chronnectome” has been specifically defined to indicate a connectivity
analysis model to investigate nodal activity and time-varying connec-
tivity patterns (Calhoun et al., 2014). Commonly, time series data
collected from multiple brain regions are windowed in time of in fre-
quency and statistical similarity through correlation metrics is inferred
between the ROIs for each window. A multilayer network is finally built
where each layer represents the connectivity pattern for a specific win-
dow. Connectivity matrices can be then compared across windows to
assess dynamical changes of FC.

The multilayer formulation of dynamic connectivity enables the
application of multilayer community detection algorithms which can
track a given community over time allowing the definition of newmetrics
to quantify the flexibility and stability of community formation across
layers (Betzel and Bassett, 2017). Such new metrics have been success-
fully used to study the reconfiguration of functional organization during
learning (Bassett et al., 2011), aging (Betzel et al., 2015) and increased
cognitive loads (Braun et al., 2015).

These findings suggest some important aspects concerning FC: (i) the
mathematical framework of multilayer networks extends some concepts
of complex networks (De Domenico et al., 2013) and offers a series of
metrics to comprehensively analyze the different interactions between
brain components at multiple scales (De Domenico, 2017; De Domenico
et al., 2016); (ii) both temporal- and frequency-based multilayer FC
analysis could highlight salient topological properties of the brain, which
are not detectable by univariate approaches.

However, most of the FC techniques adopt linear correlation metrics,
including Pearsons correlation and partial correlation, to assess the sta-
tistical interactions between the physiological time series, assuming
linear functioning. This hypothesis could represent a limitation for the FC
analysis as neurodynamics are actually characterized by complex and
nonlinear phenomena that arise from feedback responses to environ-
mental stimuli and physiological interactions among various subsystems
that comprise the brain (Marmarelis, 2004). Nonlinear dynamic princi-
ples and nonlinear time series tools have been exploited for in-depth
investigation of neuronal transient responses and coupling mechanisms
with the goal of enhancing the understanding of human cognition and
dynamic processes underlying normal and pathological brain states
(Rabinovich et al., 2006). A key aspect of dynamical analysis of a system
is the reconstruction of its phase space, i.e. the identification of all the
dynamic trajectories of the system from which the time series is sampled.

Dynamical analysis methods have been extended for bivariate char-
acterization of coupled interactive systems. Specifically, generalized
synchronization measures have been suggested to assess the dynamic
interaction of neurophysiological signals in their reconstructed phase
space (Pereda et al., 2005; Stam, 2005; Sauer et al., 1991). In detail,
generalized synchronization between pairs of signals is measured by
mapping the trajectories of the signals into a common phase space and
then comparing their local neighboring states. Recently, an efficient way
to explore the dynamic behaviour of the trajectories of interacting sys-
tems in phase space has been proposed (Lombardi et al., 2017). The
proposed method quantifies the functional coupling between fMRI time
series by embedding pairs of ROI time series into a common phase space
and by using cross recurrence plots (CRPs) (Marwan and Kurths, 2002) to
define a new synchronization index. Besides the proposed synchroniza-
tion metric, several complex metrics exist to perform a formal quantifi-
cation of graphical patterns of recurrence plots (RPs) and CRPs that have
been proven to be useful in a great variety of context (Webber and
Marwan, 2015; Lombardi et al., 2016). Recurrence Quantification
Analysis (RQA) is a model-free analysis that includes a set of generalized
indices, each related to specific complex phenomena occurring in phase
space (Webber and Zbilut, 2005). Hence, its application to brain signal
analysis could reveal changing dynamics, critical events and distinctive
features of cognitive states and diseases.

In this work, we present a framework based on both CRPs and graph
analysis aimed at capturing dynamic changes of functional connectivity
and providing straightforward markers of the dynamic states in brain
activity to characterize pathological conditions. The principal idea un-
derlying this analysis is that if each RQA metric is representative of
different dynamic phenomena in the phase space, a multivariate model
that uses simultaneously all the measurements extracted from the CRP,
could describe more completely the dynamic behaviour of the interacting
systems. We used the fMRI data of a cohort of subjects including controls
and schizophrenic patients acquired during a working memory task, to
verify whether the new markers could be associated with different
cognitive loads and detect differences between the groups of subjects. In
brief, we applied the multilayer cross-recurrence framework to fMRI data
of the two groups of subjects performing both a 2-back and 0-back
experiment to define task-evoked networks. Thus, some topological de-
scriptors of the multilayer networks were extracted and a supervised
classification pipeline was applied to identify the set of features that
achieve the best classification accuracy of the two groups of subjects. The
reasons for the N-back task fMRI data selection are twofold: (i)
schizophrenia-affected areas related to working memory are documented
in literature, so a comparison between the set of identified features and
the known areas is simplified; (ii) by using the two task-evoked datasets it
is possible to verify if group differences in connectivity change as func-
tions of task conditions in order to detect dynamic descriptors that reflect
different cognitive loads in the two populations.

FC was also assessed by using the Pearson correlation coefficient
between couple of time series. The connectivity matrices obtained with
the Pearson coefficient are used as a benchmark to which the other
complex dynamic indices are compared. Indeed, these matrices represent
connectivity patterns obtained with simple statistical similarity between
pairs of time series. Similarly, topological descriptors were extracted
from these networks, and the predictive power of the features to classify
the two groups of subjects was evaluated.

2. Materials

2.1. Subjects

49 participants and 42 patients with schizophrenia were included in
this study. Control subjects were evaluated using the Non-Patient Struc-
tured Clinical Interview for DSM-IV (DATA, 1997) to exclude any psy-
chiatric condition. Other exclusion criteria were: a significant history of
drug or alcohol abuse, active drug abuse in the previous year, experience
of a head trauma with loss of consciousness and any other significant
medical condition. We also reported handedness (Edinburgh Inventory)
(Oldfield, 1971), total IQ (TIB), PANSS symptoms scores and equivalent
medication scores (Gardner et al., 2010) (see Table 1). The present study
was approved by the local ethics committee.1 Written informed consent
was obtained by all participants after a complete description of the pro-
cedures, in accordance with the Helsinki Declaration.



Table 1
Demographic data and clinical information of patients and healthy controls.

Controls Patients P valuea

Demographics
Mean age (years) (range) 30ð23� 62Þ 34ð23� 50Þ 0.07
Gender (male/female) 26=23 32=10 0.02
Handedness (Median � SD) 0:80� 0:2 0:80� 0:3 0.78
IQ (Median � SD) 107:8� 13:8 83:7� 20:10 < 0:001

Head motion
mFD 0-back (Median � SD) 0:16� 0:09 0:17� 0:10 0.23
mFD 2-back (Median � SD) 0:13� 0:07 0:14� 0:09 0.13

Task performance
0-back (Median � SD) 100� 6:67 98� 7:12 0.02
2-back (Median � SD) 85� 20:59 47� 23:35 < 0:0001

Medication
Equivalent (Median � SD) NA 550� 258

Symptoms
Total PANSS (Median � SD) NA 36� 7:5

a Resulting from the Wilcoxon rank sum test except for Gender, for which the
Chi-square test was adopted.
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2.2. Task

Participants performed the N-Back working memory task, in which a
sequence of stimuli is presented and the subject has to remember the
stimulus from “N” steps earlier (Bertolino et al., 2004). The stimuli
consisted of numbers (1–4) presented in random sequence and displayed
at the points of a diamond-shaped box. The control condition (0-back)
simply required the subjects to identify the current stimulus. In the
working memory condition, the task required the collection of a stimulus
seen two stimuli earlier (2-Back). The task was organized in a block
design, consisting of eight alternating 0-back and 2-back conditions, each
lasting 30 s. Each 30 s block includes 14 n-back trials with an
inter-stimuli interval of 2000ms. Each run lasted 4min and 8 s, from
which dummy scans were acquired and discarded, obtaining 120 vol-
umes. Information about task performance accuracy for both cohorts are
reported in Table 1.
2.3. fMRI data

Blood oxygen level-dependent (BOLD) signal was recorded by a GE
Signa 3T scanner (General Electric, Milwaukee, WI), using a gradient-
echo planar imaging sequence (repetition time, 2000ms; echo time,
28ms; 20 interleaved axial slices; thickness, 4 mm; gap, 1 mm; voxel size,
3:75� 3:75� 5 mm; flip angle, 90∘; field of view, 24 cm; matrix, 64�
64). The first four scans were discarded to allow for equilibration effect.

We performed standard fMRI preprocessing steps using SPM12.2 The
images were realigned to correct for motion artifacts. Movement pa-
rameters were extracted to exclude data affected by excessive head mo-
tion (2.5mm of translation or 2:5∘ of rotation). Realigned images were
resliced to a 3.75mm isotropic voxel size, co-registered to high-
resolution T1-weighted structural images, spatially normalized into a
standard space (Montreal Neurological Institute), smoothed with a
10mm full-width at half-maximum isotropic kernel and temporal band-
pass filtered (0:01� 0:25 Hz). Additionally, nuisance signal correction
was done on the data by regressing out (1) linear trends in the time series;
(2) mean time-series from the white matter (WM) and the cerebrospinal
fluid (CSF); (3) 24 motion parameters obtained by motion correction (as
specified in the Friston24 model (Friston et al., 1996)); and (4) signals
extracted using the CompCor algorithm (Behzadi et al., 2007). We used
five components for CompCor-based nuisance regression. To extract
mean time-series from the WM, gray matter, and CSF the anatomical MR
data were automatically segmented. Mean frame-wise displacement
(mFD) (Power et al., 2012) is also reported in Table 1 for both conditions
2 (http://www.fil.ion.ucl.ac.uk/spm).
in order to compare head motion between the two groups.

3. Methods

3.1. General framework

The general framework is shown in Fig. 1. The brain volume of each
subject was divided in 246 non-overlapping anatomical regions of in-
terest according to the Brainnetome Atlas (Fan et al., 2016). Thirty re-
gions from the most ventral part of the brain not acquired during scans
were discarded and are not included in the following analysis. For each of
the 216 remaining ROIs, a single time series was extracted by averaging
the fMRI time series over all the voxels within the ROI.

As in (Lombardi et al., 2017), we firstly reconstructed the phase space
of each time series by using its m-dimensional time delay embedded
vector:

x!i ¼
�
ui; uiþτ;…; uiþðm�1Þτ

�
(1)

where fuigNi¼1 is the BOLD time series,m ¼ 6 is the embedding dimension
end τ ¼ 1 is the time delay.

For each participant, functional connectivity between all pairwise
combinations of ROI time series was assessed by computing their CRP
and then by calculating the 17 RQA metrics as described in the following
subsection resulting in 17 connectivity matrices.

A tensor structure with 17 undirected weighted networks as layers is
finally composed of all the 17 connectivity matrices.

In order to assess the importance of the regions with respect the rest
of the network, the following graph metrics have been extracted from

each weighted graph layer W ½α� ¼ fw½α�
ij g; α ¼ 1;…;17 and for each node

of the network i ¼ 1;…;216:

� strength sαi :

sαi ¼
XN
j¼1

wα
ij (2)

� betweenness centrality bαi :

bαi ¼
X
i6¼j 6¼t

σα
jtðiÞ
σα
jt

(3)

where σαjt denotes the number of shortest paths from j to t and σαjtðiÞ de-
notes the number of shortest paths from j to t that pass through i
(Freeman, 1977);

� clustering coefficient:

cαi ¼
2

kαi
�
kαi � 1

�X
j;k

�
wα

ijw
α
jkw

α
ki

�1=3
(4)

where
P

j;kw
α
ijw

α
jkw

α
ki is sum of triangle intensities attached to the node i

(Onnela et al., 2005);

� pagerank centrality pαi , an iterative centrality metric that assigns the
importance to each node by random walking on the network. At first,
each node has p ¼ 1; then each node spreads the centrality value to its
neighbours according to the link weights along the output connec-
tions. Finally, the importance of a node is determined by both criteria
of quality and quantity of the pages linked to it. The pi value of the
node i at the step t is defined as:

http://www.fil.ion.ucl.ac.uk/spm


Fig. 1. Flow-chart showing the multi-recurrence framework and the comparison with the Pearson-based functional connectivity.
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pαi ðtÞ ¼
XN wα

ijp
α
j ðt � 1Þ

α (5)

j¼1 sj

where the iterations will stop if the steady state of the p values of all the
nodes is reached.

At the end, a 91� 14688 matrix is constructed, in which each feature
is labelled as: rqa layer - graph metric - roi according to the layer from
which it belongs, the graph metric and the node (ROI) of the network.

In order to compare the phase space approach to the temporal anal-
ysis, functional connectivity for each subject was also assessed by
computing the Pearson correlation coefficient between all pairwise
combinations of ROI time series:

r ¼
PN

n¼1ðxn � xÞðyn � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1ðxn � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1ðyn � yÞ2

q (6)

where fxigNi¼1 and fyigNi¼1 are the two time series and x and y denote their
sample means. Then, the same local graph metrics were extracted from
the connectivity matrices resulting in a 91� 864 matrix, in which each
feature is labelled as: graph metric - roi.
3.2. RQA metrics

As already mentioned, a CRP enables the comparison of the trajec-
tories of two distinct systems in the same embedding space (Marwan and
Kurths, 2002). A CRP provides information on the degree of similarity of
each state of a system with any other state of the second system. For two
systems with trajectories respectively x!i ði ¼ 1;…;NÞ and y!j ðj ¼ 1;…;

NÞ, the CRP is defined as:

CRi;jðεÞ ¼ Θ
�
ε� ���� x!i � y!j

����� (7)

where Θ is the Heaviside function, ε is a threshold for closeness, N is the
number of considered states for each system and jj �jj a norm function. A
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generic entry CRi;j in the resultingN � N array is set to one if the distance
between the points x!i and y!j is smaller than the threshold ε or to zero
elsewhere.

The graphical patterns of a CRP are related to similarities and dif-
ferences between the dynamic evolutions of the couple of systems under
investigation. Single, isolated recurrence points indicate rare states that
can appear due to noise. Diagonal lines occur when the evolution of the
states is similar at different times. Vertical and horizontal black lines
mark time periods in which the sequence of states changes very slowly or
do not change at all, while vertical and horizontal white bands result
from states which occur rarely.

The analytical evaluation of the geometric structures of the CRPs
involves a set of complex measures, mostly based on the distribution of
the lengths of the diagonal and vertical/horizontal lines in the plot
(Zbilut and Webber, 1992; Marwan et al., 2007).

In this work, five major classes of measures defined as follows are
considered:

1. Recurrence density - based measures, i.e. metrics based on the density
of the points in a CRP.

2. Measures based on the distribution PðlÞ of lengths l of the diagonal
lines. These metrics mostly quantify the period during which the two
systems visit close orbits in the phase space.

3. Measures based on the distribution PðvÞ of vertical line lengths v. This
distribution is used to quantify laminar phases during which the states
of the systems change very slowly.

4. Recurrence network - based measures. A CRP can be also interpreted
as the adjacency matrix of a graph GðV ;EÞ, whose links E connect the
set of vertices V that represent neighbor points in phase space. To-
pological properties of recurrence networks have been related to
statistical properties of the phase space density, revealing further
complex dynamical aspects of time series. In particular, some
network-based metrics have been associated with invariant charac-
teristics of phase space, i.e., independent from a particular embedding
(Donner et al., 2010).

5. Line of synchronization (LOS) - based measures. A CRP can also
exhibit the main diagonal known as LOS. The presence of LOS implies
the identity of the states of the two systems in the same time intervals,
so its structure can be analyzed to extract information about the
synchronization of the two time series.
More details and a qualitative description of the measures can be
found in Appendix.
Fig. 2. Statistical framework to select the most discriminative features for both
the experiments. A nested feature selection was performed on the training set in
each round of the k-fold validation. Then 100 stepwise SVM models were
trained by progressive increasing the training set size. A consensus ranking
procedure was used to select the most stable features with the highest accuracy.
3.3. The statistical framework

A statistical framework was developed in order to select only the most
significant features among the 14688 of the multilayer recurrence con-
nectivity and among the 864 features from the Pearson's matrices for the
binary classification problem (i.e., healthy versus patients) and for each
of the two conditions. Indeed, mass univariate hypothesis tests detect the
cross-group differences by comparing each feature individually across
the two populations. This technique is effective in describing the most
important differences between two classes but has some limitations
(Arbabshirani et al., 2017).

We stress that in this context the classification of subjects for the 0-
back and 2-back conditions and for the two analyses (multi-recurrence
framework and Pearson correlation) is used to verify the presence of
particular dynamic phenomena in the phase space that characterize the
interactions among the brain regions in the two populations beyond the
statistical correlation among their activity. In this context, the selection
of the features showing the greatest predictive power is of paramount
importance: indeed, these features indicate which dynamic metric and
which area is particularly relevant to explain the differences between the
two groups as the cognitive load increases.

Hence, a multivariate machine learning approach has been integrated
with statistical techniques to ensure the stability of the performance
values achieved by the model and the set of the most predictive features.
A Support Vector Machine (SVM) classifier was used to identify multi-
variate patterns of multi-recurrence connectivity related to the diagnostic
groups. A k-folds validation procedure was repeated to perform a robust
feature selection. The best subset in terms of classification performances
was selected to evaluate the final set of most predictive features to
identify the dynamic phenomena which characterize the two populations
during both cognitive conditions. The main steps of the framework are
shown in Fig. 2 and are described in the following subsections more in
details.

3.3.1. Feature selection
Feature selection techniques are powerful tools that attempts to:

� removing irrelevant, noisy and redundant features, with the aim to
avoid overfitting and improving classification performance;

� reducing the computational complexity of the learning algorithm;
� providing a deeper insight into the data, highlighting which features
are most informative for classification.

Feature selection algorithms are divided into three categories: filters,
wrappers and embedded methods (Guyon and Elisseeff, 2003). Filters
evaluate each feature without interaction with classifiers by using several
criteria related to correlations among features or amount of shared in-
formation. Wrappers find a feature subset that has the minimum
cross-validation error on the training data, treating the classifier as a
black box. Searching methods such as sequential forward selection and
simulate annealing are examples of wrappers. Embedded methods
incorporate variable selection as part of the training process.

In this work, Support Vector Machine-Recursive Feature Elimination
(SVM-RFE), which integrates in a single consistent framework both
feature selection and pattern classification, was selected to perform
feature selection. SVM-RFE is an embedded method, introduced by
Guyon et al. (2002) in the context of gene selection for cancer
classification.

Themain intuition of SVMs is to find a separating hyperplane with the
largest possible margin on either side (Cortes and Vapnik, 1995). A
particularity of the algorithm is that the weights wi of the decision
function DðxÞ are a function of only a small subset of the training ex-
amples, called support vectors.

Recursive feature elimination, in its broad sense:

1. Trains the classifier;
2. Computes a ranking criterion for all features;
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3. Removes the feature with smallest ranking criterion, as it has the least
effect on classification.

This process is iteratively computed until all the features have been
removed. SVM-RFE is intimately related to the SVM model, as the
ranking criterion for feature k is the square of the k-th element of w:
JðkÞ ¼ w2

k . In particular, in this work, the SVM-RFE with correlation bias
reduction, as proposed in (Yan and Zhang, 2015), has been adopted. In
the original formulation of SVM-RFE, one problem is not addressed:
when some of the features are highly correlated, the assessing criteria of
these features will be influenced, so their importance will be under-
estimated. The authors called this phenomenon correlation bias. When a
subset of features is removed in one iteration of RFE, a group of corre-
lated features may be removed entirely. This may happen either because
the features are truly irrelevant, or because their ranking criteria have
been incorrectly underestimated. In both conditions, the method pro-
posed in (Yan and Zhang, 2015) moves representative feature of the
group back to the surviving feature list. In this way, the group can be
evaluated again in the next iteration without the influence of the corre-
lation bias. The group representative can be chosen as the feature with
the highest criterion in this iteration. Therefore, this strategy does not
change the candidate feature set or the ranking criterion, but monitors
and corrects the potentially wrong decisions due to the correlation bias.

The output of SVM-RFE is a list of ranked features. Feature selection
can be achieved by choosing a group of kopt top-ranked features. Since
kopt is not known a priori, the RFE algorithm was performed in each fold
of a cross-validation procedure. In this way, a nested feature selection
was obtained since the ranking of the features is blind to the test set. This
approach was chosen in order to avoid the “double dipping” problem.
Indeed, performing the feature selection on the whole dataset could
introduce bias in the final classification model. The dangerous effects of
the double dipping have been widely described and result essentially in
overestimating the values of accuracy and area under the ROC curve
(AUC) (Singhi and Liu, 2006; Kriegeskorte et al., 2009). In some neuro-
imaging studies different recommendations have been provided to avoid
the bias introduced by this procedure (Pereira et al., 2009; Olivetti et al.,
2010; Eskildsen et al., 2013).

In particular, here 10 re-sampling of a 10-fold cross-validation were
executed producing 100 bootstraps of the train set. In each iteration, 9-
folds of the original training set were input to RFE and then stepwise
SVMmodelswere trained for ranked subsets of increasing size (e.g., the top
10, 20, 30, and so on up to 14688 ranked features for the multilayer cross-
recurrence connectivity). Each stepwise model was tested on the left fold
and the performances of each model were stored for successive evalua-
tions. For the classification analysis the LIBSVM software version 3.233

used with the default parameters (cost c ¼ 1). The purpose of stepwise
analysis is to identify the particular subset of features that maximizes
classification performance. Consequently, the output of the analysis is a
performance curve fromwhich the number of features kopt can be assessed.

3.3.2. Stability of the features
Some measures are usually employed to assess the predictive power

of a classifier. Given the output statistics of a classifier in terms of true
positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN), we used:

1. Accuracy (ACC):

ACC ¼ TPþ TN
TPþ FPþ TN þ FN

(8)

2. Sensitivity or true positive rate (TPR):
3 https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
TPR ¼ TP
TPþ FN

(9)
3. Specificity or true negative rate (TNR):

TNR ¼ TN
TN þ FP

(10)

Here, the number of features kopt to be selected was chosen as the one
yielding the highest accuracy of all the stepwise models. Since, in prin-
ciple, the features of each subset corresponding to the top kopt elements of
each model can be different from one cross-validation round to another, a
consensus ranking algorithmwas used to select the most common features
across all the 100 models. In particular, we adopted a rank aggregation
procedure to combine the multiple ranked lists, (i.e., the base rankers),
into a final aggregated ranked list, which is considered more reliable than
the base rankers (Deng et al., 2014). This problem is of a critical relevance
in genomic applications, where it is often required to combine large
amounts of genetic data collected by multiple laboratories with different
sources of variability and batch effects (Li et al., Xiao). To determine the
stability of the selected subset of features, we adopted the robust rank
aggregation algorithm (Kolde et al., 2012). Briefly, this approach com-
putes the position of each item in the final ranking by comparing its po-
sition in all the ranked lists to a non-informative null model of random
permutations of the items. A numerical score for each item is then
assigned according to the reference beta distributions of order statistics
and the Bonferroni correction is applied to compute P-values and find
statistically significant items. The P-values are then sorted to obtain the
final ranking. The algorithm was also extended for accounting partial
rankings, i.e., lists where only k top elements are available.

3.4. Prediction of task performance from connectivity

Table 1 shows the in-scanner task accuracy of the participants. For
both 0-back and 2-back, schizophrenic subjects had lower accuracy
compared to controls. In order to explore relation between the selected
connectivity features and the subjects’ task performance, we predicted
task accuracy scores from the most significant connectivity features of
each condition as well as from both methods (Pearson and multi-
recurrence framework). In particular, a general linear model was used
to predict the accuracy score of each subject during each task condition
with a leave-one-out validation scheme.

3.5. Statistical analysis of phenotypic information

We performed a Wilcoxon rank-sum test to compare age and hand-
edness between the two cohorts and Chi-square test for the gender. As
shown in Table 1, only a significant difference in gender between the two
groups of subjects was found, suggesting that this factor might affect the
discrimination power of the classification models. So we performed the
classification by including the gender variable as an additional feature.
Results are displayed in SI-Fig. 2 and reveal that the performance did not
significantly improve compared with the classification accuracy achieved
by neglecting this information.

4. Results

4.1. Classification performance

Fig. 3 shows the mean accuracy achieved by all the stepwise models
with the standard error for both conditions respectively for the multi-
recurrence framework (Fig. 3a) and Pearson correlation (Fig. 3b). If on
the one hand the trend of curves shows a decay in performance after a
significant peak and therefore the presence of poorly informative and
redundant features, on the other hand it is interesting to note that the 0-
back multi-recurrence features provide always a better discrimination

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/


Fig. 3. Shadow performance curves with the mean accuracy achieved by all the stepwise models with the standard errors for both conditions for (a) the multi-
recurrence framework and (b) Pearson correlation.

Table 2
Performances of the classifications for the most discriminative features for each
experiment.

Experiment ACC (%) TPR (%) TNR (%)

2-back multi-recurrence 87:25� 0:67 94:16� 0:99 78:76� 1:23
2-back Pearson 78:38� 0:95 87:01� 1:40 67:87� 1:68
0-back multi-recurrence 91:91� 0:52 97:24� 0:58 85:29� 1:12
0-back Pearson 75:26� 0:93 80:82� 1:38 68:47� 1:89
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between normal controls and patients. The accuracy curves for Pearson
connectivity reported in Fig. 3b show similar performances for the two
conditions. The analysis of the averaged performances revealed kopt ¼
200 for the multilayer cross-recurrence framework and kopt ¼ 60 for the
Pearson connectivity. Hence the top 200 features of the 100 SVMmodels
trained with the cross-recurrence features and the top 60 of the 100 SVM
models trained with the graph metrics extracted from the Pearson cor-
relation matrices were selected for the stability analysis. Fig. 4 shows the
mean values with standard errors of the accuracy, sensitivity and speci-
ficity of all the 100 stepwise SVMs models for the selected kopt for each
experiment. Numerical values of the same performances are also re-
ported in Table 2. In both the experiments (i.e., 0-back and 2-back) the
multi-recurrence connectivity features have been shown to be signifi-
cantly more effective than those extracted from the Pearson's matrices in
discriminating patients against controls. Average values resulting from
5000 permutations of the labels of subjects for each experiment are also
reported for comparison to the chance level. The performance values of
all the experiments resulted significantly different from the empirical
chance level. The confusion matrices are listed in SI-Section 1 of Sup-
plementary Information file.
4.2. Ranked features

In order to obtain the final set of ranked features, the stable kopt
Fig 4. Mean values and standard errors of the accuracy, sensitivity and specificity o
condition and (b) the 0-back condition. The asterisks denote statistically significant d
indicated groups (Wilcoxon's rank sum test). The black crosses denote chance level
features were selected through the robust rank aggregation algorithm.
Since the multilayer recurrence model implicitly defines hierarchical
features, it is possible to calculate global statistics, i.e., defined on a single
hierarchical level of the features independently of the others, or local
statistics, i.e., by selecting a sequence of the hierarchical levels. Here, the
global statistics concerning the levels of the multi-recurrence graphs and
the most important ROIs are shown.

Specifically, the frequency of occurrence of the layers across the
features' labels are used to show importance ranking of the layers at
global level. Similarly, the occurrence frequency of each ROI of the
partition across the kopt features’ labels are employed to rank the most
important regions.

The ranking of the layers are shown in Fig. 5. Synchronization metrics
(HARD SYNC, SYNC) are among the top ranked layers for the 2-back
condition (rates: 12% and 10%, respectively); only the HARD SYNC
f the stepwise SVMs obtained for the first kopt ranked features for (a) the 2-back
ifferences (� � � � p < 0:00001, � � �p < 0:0001, � � p < 0:001, �p < 0:01) for the
resulted from 5000 permutation of subjects' labels.



Fig. 5. Ranking of the multi-recurrence layers derived from the frequency of occurrence of the stable features according to the layer from which they belong for both
the experiments.
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index among the diagonal-based RQA metrics prevails in the 0-back
experiment (14%). The LLV layer exhibits high frequencies of occur-
rence across the features for both experiments (14% for 2-back and 11%
for 0-back). It is worth noting that determinism is prevalent among the
most important features only for the visual-motor task (13%), while the
occurrence percentage is negligible in the working memory task (5%).

In Fig. 6 are shown the most significant ROIs for the 2-back condition.
Fig. 6. Slice view of the most significant ROIs for the classification o
Table 3 also reports the same regions with MNI coordinates. Fig. 7 and
Table 4 show the most significant ROIs and relative coordinates for the 0-
back condition.
4.3. Prediction of task performance from connectivity

We performed a correlation analysis between the true task accuracy
f the control/schizophrenic subjects during the 2-back condition.



Table 3
Significant ROIs with MNI coordinates for the classification of the control/
schizophrenic subjects during the 2-back condition.

ROI MNI coordinates

x y z

A46, area 46 L � 28 56 12
A44op, opercular area 44 R 42 22 3
A41/42, area 41/42 L � 54 � 32 12
TE1.0 and TE1.2 L � 50 � 11 1
A22c, caudal area 22 R 66 � 20 6
aSTS, anterior superior temporal sulcus L � 58 � 20 � 9
cpSTS, caudoposterior superior temporal sulcus R 57 � 40 12
A7c, caudal area 7 L � 15 � 71 52
A2, area 2 R 48 � 24 48
cCunG, caudal cuneus gyrus R 8 � 90 12
GP, globus pallidus R 22 � 2 3
NAC, nucleus accumbens L � 17 3 � 9
vmPu, ventromedial putamen L � 23 7 � 4
vmPu, ventromedial putamen R 22 8 � 1
dlPu, dorsolateral putamen R 29 � 3 1

Table 4
Significant ROIs with MNI coordinates for the classification of the control/
schizophrenic subjects during the 0-back condition.

ROI MNI coordinates

x y z

A9/46v, ventral area 9/46 R 42 44 14
A1/2/3ll, area1/2/3 (lower limb region) L � 8 � 38 58
A35/36c, caudal area 35/36 L � 25 � 25 � 26
dmPOS, dorsomedial parietooccipital sulcus(PEr) L � 12 � 67 25
A1/2/3ulhf, area 1/2/3 L � 50 � 16 43
A1/2/3tonIa, area 1/2/3 L � 56 � 14 16
dIa, dorsal agranular insula L � 34 18 1
dId, dorsal dysgranular insula R 38 5 5
rCunG, rostral cuneus gyrus L � 5 � 81 10
cCunG, caudal cuneus gyrus L � 6 � 94 1
vmPOS, ventromedial parietooccipital sulcus L � 13 � 68 12
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scores during the two conditions and the predicted scores for both Pearson
and multi-recurrence framework in order to evaluate the prediction per-
formance. As shown in Table 5, none of the prediction performance was
statistically significant. Further details are provided in SI-Fig. 3.

5. Discussion

5.1. Significant RQA layers

In this work a novel approach to investigate the interacting behaviour
of neural dynamics is shown. In particular, a multidimensional
Fig. 7. Slice view of the most significant ROIs for the classification o
framework to map the coupling interaction of fMRI time series into a
common phase space and extract dynamic descriptors by means of cross
recurrence quantification analysis is proposed. The aim of this study was
to demonstrate that generalized indexes of synchronization computed
from CRP together with a complex network-based approach could be
effectively used to reveal further insights into different cognitive mech-
anisms in the presence of psychiatric disorders such schizophrenia.

Many studies have explored the brain at various levels of details,
confirming its multi-scale nature (Betzel and Bassett, 2017). In particular,
the brain has shown multiple temporal scales with behaviour ranging
from milliseconds to the entire lifespan and can be explored at different
topological scales ranging from individual nodes to the whole network.

Recently, the phase space reconstruction has been used to perform a
mutual connectivity analysis (MCA) to estimate directed links among
f the control/schizophrenic subjects during the 0-back condition.



Table 5
Correlation between the true accuracy scores of the participants during the two
conditions and the predicted scores obtained by using a general linear model
with the most discriminating features for both Pearson and multi-recurrence
framework.

Experiment R p-value

2-back multi-recurrence 0.15 0.14
2-back Pearson 0.14 0.18
0-back multi-recurrence 0.03 0.76
0-back Pearson � 0:15 0.13
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fMRI time series by quantifying the cross-prediction between the dy-
namic trajectories of each pair of signals (DSouza et al., 2018). The
analysis showed that the nonlinear modelling of the phase space recon-
struction could offer an useful hypotheses-free method to assess effective
connectivity. Here, the multidimensional phase space approach has been
compared with the linear temporal correlation analysis. Indeed, by
means of the cross recurrence analysis it is possible to compare a specific
state of the dynamic system, i.e., the values of the variables that describe
it at a given time, with any other state of another system. With the
Pearson correlation between pairs of signals, a linear temporal analysis is
performed by comparing the two systems in the same time intervals. The
multilayer cross-recurrence analysis represents a generalization of the
temporal analysis since trajectory segments of the two systems are
compared not necessarily for successive temporal instants. In fact, RQA
metrics quantify “recurrent” dynamic behaviors of two systems, or rather
identify reciprocal patterns in the entire phase space. In addition,
recurrence metrics are linked to some invariant measurements in the
phase space but has been found to be useful for analyzing also biological
short, noisy and non-stationary data (Webber and Marwan, 2015; Zbilut
et al., 2002; Marwan et al., 2007). For example, RQA have been used to
detect N400 ERP components in EEG data (Schinkel et al., 2009), extract
nonlinear information from EEG signals strongly related to severity of
autism spectrum disorder (ASD) and predict early stages of ASD (Bosl
et al., 2018). RQA has been also adopted to find activation patterns in
fMRI data in an univariate data-driven fashion by detecting autocorre-
lated and recurrent time series (Bianciardi et al., 2007).

The classification results show that the multivariate approach is
significantly more effective in classifying control subjects and patients. It
should be noted that the classification performances are used to select the
optimal subset of features for each experiment (0-back and 2-back with
both Pearson correlation and multi-recurrence approach) and that the
greater predictive power of the multi-recurrence features may indicate
that other dynamic phenomena in the phase space could characterize
differently the two populations besides the simple temporal synchroni-
zation. This is also confirmed by the analysis of occurrence of the layers
of the multi-recurrence structure resulting most significant for the clas-
sification between schizophrenic subjects and controls. In details, the two
synchronization-related metrics (HARD SYNC and SYNC) exhibits high
percentage of occurrence in the 2-back condition. The HARD SYNC is one
of the most frequent layer for both the experiments. The metric HARD
SYNC emphasizes the concept of synchronization expressed by the SYNC
as it is a binary metric that indicates the connectivity between a pair of
ROIs only in case of perfect synchronization between the two areas (i.e.,
in case of the presence of the LOS) and it assigns a zero value otherwise. It
is worth noting that metrics that assess averaged quantities such as TT,
ADL, LAM and RR, are the least frequent among all the levels, so the two
populations do not show any significant differences with respect to these
metrics. In contrast, among the most frequent levels, there is the LLV for
both conditions. These findings suggest that the two groups of subjects
have similar dynamic behaviors over the entire observation time interval,
but differ over the maximum time intervals in which the couple of re-
gions are synchronized (or desynchronized). The layer DET resulted also
important in classify the two groups during the 0-back condition. This
metric is related to the “predictability” of a system, as it indicates the
percentage of points of the RP that form diagonal lines. In the bivariate
case, a high level of determinism could imply a large amount of time
intervals during which two systems are mutually synchronized. Higher
determinism in electro-physiological signals was found to be associated
with absence of some diseases such as epilepsy and autism (Bosl et al.,
2017).

5.2. Significant ROIs

Functional connectivity studies on whole-brain activity or specific
seed-based analysis have shown alterations in brain systems such as
fronto-temporal networks, cingulo-opercular circuits (implicated in
salience processing), default mode network and fronto-parietal networks
(involved in high cognitive functions) (Mamah et al., 2013). In addition,
several studies have also associated the schizophrenia disease with
abnormal configurations of hub regions (van den Heuvel and Fornito,
2014). Most connectivity studies refer to resting state data, aimed at
assessing intrinsic functional brain connectivity (Lynall et al., 2010;
Alexander-Bloch et al., 2010; Damaraju et al., 2014). Task-based studies
have mainly addressed the detection of communities during several tasks
and their functional reorganization over time (Ma et al., 2012). Here, the
classification analysis revealed the involvement of different brain regions
according to the working memory task condition used for classification
purposes. Indeed, ROIs better discriminating between controls and pa-
tients during the higher working memory load condition are represented
by the dorsolateral prefrontal cortex (DLPFC) and by parietal and striatal
nodes (see Fig. 6). This brain pattern is coherent with previous in-
vestigations highlighting key areas for working memory processing
(Linden, 2007) and with previous reports of brain phenotypes associated
with schizophrenia diagnosis, both at the structural and functional level
(Callicott et al., 1999; Bertolino et al., 2000, 2003). Specifically, DLPFC
function appears impaired in schizophrenia. In patients with this brain
disorder, DLPFC efficacy in generating and maintaining the neural
network underlying working memory function is compromised. Patients
show abnormal DLPFC activation while performing working memory
tasks (Arnsten, 2011). It is therefore relevant that we found a high in-
formation content related with control-patient discrimination in DLPFC
regions, such as BA46, BA9, or BA44. Specifically, BA46 is part of the
DLPFC, which together with the hippocampus has been reported as a
central hub in several models of schizophrenia pathophysiology (Dean
and Murray, 2005). In addition, DLPFC activity is strongly related with
basal ganglia signaling during cognitive engagement. Striato-prefrontal
connectivity patterns have also been associated with schizophrenia
(Bertolino et al., 2008). On the other hand, the pattern of brain regions
showing higher significance levels in classifying patients from controls
based on the 0-back condition reported in Fig. 7 is mainly constituted by
the BA9 and by several brain regions of the attentional network involved
in attentional control processing. This is coherent with other in-
vestigations supporting both the centrality of these regions within this
specific task condition (Callicott et al., 1999, 2003; Bertolino et al., 2000,
2003) and differential activity and connectivity in attentional networks
between psychosis patients and controls (Blasi et al., 2009; Sambataro
et al., 2010). Taken together, we believe that our results are consistent
with previous investigation and reveal the brain functional dysregulation
of patients with schizophrenia during working memory performance,
thus corroborating the hypothesis that the proposed method can capture
also nonlinear connectivity patterns reflecting a coherent clinical
meaning.

5.3. Prediction of task performance from connectivity

As reported in literature (Barch and Sheffield, 2014), cognitive
dysfunction in schizophrenia is reflected in decreased performance in
several cognitive domains. Since the task performance wouldn't be fully
comparable across cohorts (healthy/patients), a classification bias could
be introduced when task-based functional connectivity features are
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involved to discriminate between the two cohorts. The correlation
analysis between the accuracy scores and the predicted ones, reveals that
there are no significant relationships between the accuracy scores and the
predicted values using the connectivity features. It is worth noting that
the lack of significant predictions of cognitive domain scores from the
selected connectivity features could reflect the independence of these
features from the performance of the subjects during each task.

6. Limitations

Our study presents some limitations that may influence our findings.
First, this study was designed to assess both linear and non-linear dy-
namics of the neural activity during different cognitive loads. Never-
theless, the BOLD signals result from mixed contributions of different
sources like vascular and metabolic activities due to the change of the
relative levels of oxyhemoglobin and deoxyhemoglobin, so fMRI is only
related to global correlates of neural activity. These properties should be
considered in order to interpret the results: even if the proposed frame-
work can effectively classify the two groups of subjects, the most
discriminating features cannot be ascribed to a differentiation of local
neural properties. Other techniques such as EEG and MEG could result
more sensitive to local neural variations, so further analyses may be
needed to extend the validity of the framework to other functional con-
nectivity methods. Second, in this study we adopted a cross-validation
framework to classify 49 healthy individuals and 42 patients with
schizophrenia and extract the most significant connectivity features.
Although cross-validation is commonly used to test the models ability to
generalize to an independent dataset while avoiding problems like
overfitting or selection bias (Cawley and Talbot, 2010), independent tests
on an external validation set should be required in order to make the
results more robust and to ensure a better generalization of the classifi-
cation models. Future work will include collecting more data to further
strengthen the effectiveness of our results. Third, the current study is
conducted using BOLD data during a working memory task. Given the
cognitive dysfunction in schizophrenia, the patients' task performance
wouldn't be fully comparable to that of healthy individuals, and this
could potentially introduce classification bias. In fact, although we have
not identified significant predictions of cognitive domain scores from the
selected connectivity features, it is possible that several factors, such as
awareness or subjects' anxiety levels, may have had an impact on the final
performance. The antipsychotic treatment of patients may also influence
neuroimaging-related findings during working memory tasks (Schla-
genhauf et al., 2008). Our additional correlation analysis between each
connectivity feature and PANSS/medication scores reported in SI-Section
4 of Supplementary Information do not show significant connectivity
features-symptom scores and connectivity features-medication scores
correlations, however a more accurate analysis could highlight specific
effects of medication on task-based connectivity. Finally, in this work we
compared the classification performance of the proposed
multi-recurrence framework and the statistical correlation-based con-
nectivity. The rationale underlying this choice is that here we explored
the effectiveness of a phase-space based approach to compare recurrent
behaviour of BOLD time series for describing the level of interaction
between the physiological activity of the different regions of interest so
the simple statistical correlation index represents a “baseline” against
which to compare the set of dynamic descriptors. Other methods, based
on dynamic connectivity analysis (Allen et al., 2014) have been proven to
outperform the static connectivity approach in classifying schizophrenia
(Rashid et al., 2016). They mainly aim at capturing the time variability of
connectivity, by using several indexes such as those related to the
reconfiguration of communities over time. Future work will address a
more complete comparison between the proposed framework and dFC
methods through the identification of specific dynamic metrics.

7. Conclusion

In this work, we present a framework based on both CRPs and graph
analysis to fully describe dynamic functional connectivity. The frame-
work was used to describe dynamic states in fMRI data of two clinical
populations: a group of controls and a pathological group of subjects
affected by schizophrenia performing a visual-motor and a working
memory task. The effectiveness of the method in identifying dynamic
states characterizing the two populations during the two conditions was
validated with a supervised classification procedure. The results high-
light that the multivariate framework can actually reveal brain dynamics
that are significantly related to schizophrenia. Such dynamic behaviors
are also different from the simple statistical correlation between time
series. This study represents an exploratory step in which nonlinear
metrics have been evaluated as possible indexes of functional connec-
tivity for prediction of schizophrenia. Further research will be required to
fully explore the neurophysiological meaning of fMRI signal complexity
through RQA metrics and their possible application in broader clinical
contexts.

Conflicts of interest

AB is a stockholder of Hoffmann-La Roche Ltd. He has also received
consulting fees from Biogen and lecture fees from Otsuka, Janssen,
Lundbeck. GB has received honorary by Lundbeck and Otsuka for lec-
tures. All other authors declare no biomedical financial interests and no
potential conflicts of interest.

Ethics statement

All experiments were performed with the informed consent of each
participant or caregiver, in line with the Code of Ethics of the World
Medical Association (Declaration of Helsinki). Local institutional ethics
committees approved the study.

Research data for this article

Data not available/Data will be made available on request. Code
available upon request from the corresponding author.

Acknowledgments

This work was partially supported by the Italian Ministry of Health
(grant PE-2011-02347951) and by Regione Puglia. This project has
received funding from the European Union Seventh Framework Pro-
gramme for research, technological development and demonstration
under grant agreement no. 602450 (IMAGEMEND). GPs position is fun-
ded by the European Unions Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agreement no. 798181
(FLOURISH). This paper reflects only the authors' views and the Euro-
pean Union and Research Executive Agency are not liable for any use that
may be made of the information contained therein.

The authors gratefully acknowledge Dr. Tiziana Quarto and Roberta
Passiatore for their help with data collection.
Appendix A. Supplementary data



A. Lombardi et al.
Appendix

1. Recurrence density - based measures. The simplest measure is the recurrence rate ðRRÞ, a generalization of the cross correlation sum:

RR ¼ 1
N2

XN
i;j¼1

CRi;j (11)

2. Measures based on the distribution PðlÞ of lengths l of the diagonal lines. Among these:

� the determinism ðDETÞ is the ratio of the recurrence points that form diagonal structures to all points:

DET ¼
PN

l¼lmin
lPðlÞPN

l¼1lPðlÞ
(12)

� The average diagonal line length ðADLÞ is the average time in which two segments of the trajectory move close together:

ADL ¼
PN

l¼lmin
lPðlÞPN

l¼1PðlÞ
(13)

� The length of the longest diagonal line ðLLDÞ found in the CRP is related to maximal time period in which the two systems are synchronized:

LLD ¼ �fligNl
i¼1

�
; (14)

where Nl is the total number of diagonal lines.

� The entropy of diagonal length ðEDLÞ shows the complexity of the diagonal lines in a CRP. It is the Shannon entropy of the probability pðlÞ to find a
diagonal line of length l in the plot:

EDL ¼ �
XN
l¼lmin

pðlÞln pðlÞ (15)

3. Measures based on the distribution PðvÞ of vertical line lengths v.

� The ratio of recurrence points forming vertical structures to all recurrence points of the CRP is called laminarity ðLAMÞ:

LAM ¼
PN

v¼vmin
vPðvÞPN

l¼1vPðvÞ
(16)

where Nv is the total number of diagonal lines.

� The average length of vertical lines ðTTÞ is the trapping time and represents the average time in which the systems are trapped into a specific state:

TT ¼
PN

v¼vmin
vPðvÞPN

v¼1PðvÞ
(17)

� The length of the longest vertical line ðLLVÞ is analogous to LLD for the vertical lines:

LLV ¼ �fvlgNv
l¼1

�
(18)

� From a CRP it is possible to extrapolate the recurrence times. Let's consider the recurrence points of the ith row fCRi;jgNj¼1 which correspond to the set

of points of the trajectory which fall into the ε-neighborhood of an arbitrary chosen point at i. The recurrence times between these recurrence points
(recurrence times of first type) are:



A. Lombardi et al.
fRT1k ¼ jkþ1 � jkgk2ℕ (19)
Removing all consecutive recurrence points with RT1k ¼ 1 to avoid tangential motion the recurrence times of second type are:

�
RT2k ¼ j

0
kþ1 � j

0
k

	
k2ℕ (20)

where the set of the remaining recurrence points is used. It turns out that RT2 measures the time distance between the beginning of subsequent
recurrence structures in the CRP along the vertical direction and it can be considered as an estimate of the average of the lengths of white vertical lines in
a column of the plot.

� The normalized entropy of the recurrence time distribution (RPDE) of the time series PðtÞ is defined as:

RPDE ¼ �ðlnTmaxÞ�1
XTmax
t¼1

PðtÞlnPðtÞ (21)

where Tmax is the largest recurrence value.

4. Recurrence network - based measures.

� The clustering coefficient (CLUST) is the average of the local clustering coefficient which gives the probability that two neighbours (i.e. recurrences) of
any state are also neighbours (Marwan et al., 2009):

CLUST ¼
XN
v¼1

1
kvðkv � 1Þ

PN
i;j¼1CRv;iCRi;jCRj;v

N
(22)

where kv is the number of neighbours of node v.

� The transitivity (TRANS) of a CRP is defined as the ratio of the number of close triangles λG to the number of subgraphs with 2 edges and 3 vertices τG
in the network:

TRANS ¼ 3λG
τG

(23)

It can be seen as a quantitative measure of the geometric structural complexity of the trajectories in phase space (Donner et al., 2011).

5. LOS - based measures. In addition to the SYNCmetric, other twometrics were defined to quantify the temporal synchronization behaviour of the two
systems. In detail:

The mean period of synchronization (MEAN SYNC) simply quantifies the mean period during which the two systems are synchronized:

MEAN SYNC ¼ 1
N

XNd

j¼1

lj (24)

� SYNC is proportional to the ratio of the sum of the lengths of the subsegments lj along the LOS to the total number of samples N:

SYNC ¼ 1
N

PNd
j¼1lj
Nd

(25)

where Nd is the total number of subsegments.

� Hard Synchronization (HARD SYNC), a binary response variable that gives information about the presence/absence of the LOS:

HARD SYNC ¼


1; if CRi;i ¼ 1; 8i ¼ 1;…;N
0; otherwise

(26)

� The entropy of LOS (ENTR LOS) is the Shannon entropy of the probability pðdÞ to find a subsegment of length d along the LOS and is an index of the
complexity of the synchronization periods of the two time series:

ENTR LOS ¼ �
XN
d¼1

pðdÞln pðdÞ (27)



A. Lombardi et al.
References De Domenico, M., Sasai, S., Arenas, A., 2016. Mapping multiplex hubs in human
Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F.,
Lenroot, R., Giedd, J., Bullmore, E.T., 2010. Disrupted modularity and local
connectivity of brain functional networks in childhood-onset schizophrenia. Front.
Syst. Neurosci. 4, 147.

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014.
Tracking whole-brain connectivity dynamics in the resting state. Cerebr. Cortex 24
(3), 663–676.

Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., 2017. Single subject prediction of brain
disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165.

Arnsten, A.F., 2011. Prefrontal cortical network connections: key site of vulnerability in
stress and schizophrenia. Int. J. Dev. Neurosci. 29 (3), 215–223.

Barch, D.M., Sheffield, J.M., 2014. Cognitive impairments in psychotic disorders:
common mechanisms and measurement. World Psychiatr. 13 (3), 224–232.

Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T., 2011.
Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad.
Sci. Unit. States Am. 108 (18), 7641–7646.

Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A component based noise correction
method (compcor) for bold and perfusion based fmri. Neuroimage 37 (1), 90–101.

Bertolino, A., Esposito, G., Callicott, J.H., Mattay, V.S., Van Horn, J.D., Frank, J.A.,
Berman, K.F., Weinberger, D.R., 2000. Specific relationship between prefrontal
neuronal n-acetylaspartate and activation of the working memory cortical network in
schizophrenia. Am. J. Psychiatry 157 (1), 26–33.

Bertolino, A., Sciota, D., Brudaglio, F., Altamura, M., Blasi, G., Bellomo, A., Antonucci, N.,
Callicott, J.H., Goldberg, T.E., Scarabino, T., et al., 2003. Working memory deficits
and levels of n-acetylaspartate in patients with schizophreniform disorder. Am. J.
Psychiatry 160 (3), 483–489.

Bertolino, A., Caforio, G., Blasi, G., De Candia, M., Latorre, V., Petruzzella, V.,
Altamura, M., Nappi, G., Papa, S., Callicott, J.H., et al., 2004. Interaction of comt
val108/158 met genotype and olanzapine treatment on prefrontal cortical function in
patients with schizophrenia. Am. J. Psychiatry 161 (10), 1798–1805.

Bertolino, A., Fazio, L., Caforio, G., Blasi, G., Rampino, A., Romano, R., Di Giorgio, A.,
Taurisano, P., Papp, A., Pinsonneault, J., et al., 2008. Functional variants of the
dopamine receptor d2 gene modulate prefronto-striatal phenotypes in schizophrenia.
Brain 132 (2), 417–425.

Betzel, R.F., Bassett, D.S., 2017. Multi-scale brain networks. Neuroimage.
Betzel, R.F., Mi�si�c, B., He, Y., Rumschlag, J., Zuo, X.-N., Sporns, O., 2015. Functional

Brain Modules Reconfigure at Multiple Scales across the Human Lifespan.
1510.08045.

Bianciardi, M., Sirabella, P., Hagberg, G.E., Giuliani, A., Zbilut, J.P., Colosimo, A., 2007.
Model-free analysis of brain fmri data by recurrence quantification. Neuroimage 37
(2), 489–503.

Blasi, G., Taurisano, P., Papazacharias, A., Caforio, G., Romano, R., Lobianco, L., Fazio, L.,
Di Giorgio, A., Latorre, V., Sambataro, F., et al., 2009. Nonlinear response of the
anterior cingulate and prefrontal cortex in schizophrenia as a function of variable
attentional control. Cerebr. Cortex 20 (4), 837–845.

Bosl, W.J., Loddenkemper, T., Nelson, C.A., 2017. Nonlinear eeg biomarker profiles for
autism and absence epilepsy. Neuropsych. Electrophy. 3 (1), 1.

Bosl, W.J., Tager-Flusberg, H., Nelson, C.A., 2018. Eeg analytics for early detection of
autism spectrum disorder: a data-driven approach. Sci. Rep. 8 (1), 6828.

Braun, U., Sch€afer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L.,
Schweiger, J.I., Grimm, O., Heinz, A., Tost, H., et al., 2015. Dynamic reconfiguration
of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci.
Unit. States Am. 112 (37), 11678–11683.

Bullmore, E.T., Bassett, D.S., 2011. Brain graphs: graphical models of the human brain
connectome. Annu. Rev. Clin. Psychol. 7, 113–140.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186.

Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T., 2014. The chronnectome: time-varying
connectivity networks as the next frontier in fmri data discovery. Neuron 84 (2),
262–274.

Callicott, J.H., Mattay, V.S., Bertolino, A., Finn, K., Coppola, R., Frank, J.A.,
Goldberg, T.E., Weinberger, D.R., 1999. Physiological characteristics of capacity
constraints in working memory as revealed by functional mri. Cerebr. Cortex 9 (1),
20–26.

Callicott, J.H., Egan, M.F., Mattay, V.S., Bertolino, A., Bone, A.D., Verchinksi, B.,
Weinberger, D.R., 2003. Abnormal fmri response of the dorsolateral prefrontal cortex
in cognitively intact siblings of patients with schizophrenia. Am. J. Psychiatry 160
(4), 709–719.

Cawley, G.C., Talbot, N.L., 2010. On over-fitting in model selection and subsequent
selection bias in performance evaluation. J. Mach. Learn. Res. 11 (Jul), 2079–2107.

Cohen, J.R., 2018. The behavioral and cognitive relevance of time-varying, dynamic
changes in functional connectivity. Neuroimage 180, 515–525.

Cortes, C., Vapnik, V., 1995. Support vector machine. Mach. Learn. 20 (3), 273–297.
Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D., Mueller, B.,

Pearlson, G., Potkin, S., Preda, A., et al., 2014. Dynamic functional connectivity
analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage:
Clinic 5, 298–308.

DATA, D., 1997. Structured Clinical Interview for DSM-IV axis I Disorders. American
Psychiatric Press, Washington.

De Domenico, M., 2017. Multilayer modeling and analysis of human brain networks.
GigaScience 6 (5), 1–8.

De Domenico, M., Sol�e-Ribalta, A., Cozzo, E., Kivel€a, M., Moreno, Y., Porter, M.A.,
G�omez, S., Arenas, A., 2013. Mathematical formulation of multilayer networks. Phys.
Rev. X 3 (4), 041022.
functional brain networks. Front. Neurosci. 10.
Dean, K., Murray, R.M., 2005. Environmental risk factors for psychosis. Dialogues Clin.

Neurosci. 7 (1), 69.
Deisboeck, T., Kresh, J.Y., 2007. Complex Systems Science in Biomedicine. Springer

Science & Business Media.
Deng, K., Han, S., Li, K.J., Liu, J.S., 2014. Bayesian aggregation of order-based rank data.

J. Am. Stat. Assoc. 109 (507), 1023–1039.
Donner, R.V., Heitzig, J., Donges, J.F., Zou, Y., Marwan, N., Kurths, J., 2011. The

geometry of chaotic dynamics–a complex network perspective. 1102.1853.
Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J., 2010. Recurrence networksa

novel paradigm for nonlinear time series analysis. New J. Phys. 12 (3), 033025.
DSouza, A.M., Abidin, A.Z., Chockanathan, U., Schifitto, G., Wismüller, A., 2018. Mutual

connectivity analysis of resting-state functional mri data with local models.
Neuroimage 178, 210–223.

Eskildsen, S.F., Coup�e, P., García-Lorenzo, D., Fonov, V., Pruessner, J.C., Collins, D.L.,
Initiative, A.D.N., et al., 2013. Prediction of alzheimer's disease in subjects with mild
cognitive impairment from the adni cohort using patterns of cortical thinning.
Neuroimage 65, 511–521.

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A.R.,
et al., 2016. The human brainnetome atlas: a new brain atlas based on connectional
architecture. Cerebr. Cortex 26 (8), 3508–3526.

Fornito, A., Zalesky, A., Bullmore, E., 2016. Fundamentals of Brain Network Analysis.
Academic Press.

Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry
35–41.

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R., 1996. Movement-
related effects in fmri time-series. Magn. Reson. Med. 35 (3), 346–355.

Gardner, D.M., Murphy, A.L., O'Donnell, H., Centorrino, F., Baldessarini, R.J., 2010.
International consensus study of antipsychotic dosing. Am. J. Psychiatry 167 (6),
686–693.

Gonzalez-Castillo, J., Bandettini, P.A., 2018. Task-based dynamic functional connectivity:
recent findings and open questions. Neuroimage 180, 526–533.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach.
Learn. Res. 3 (Mar), 1157–1182.

Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer
classification using support vector machines. Mach. Learn. 46 (1), 389–422.

Kolde, R., Laur, S., Adler, P., Vilo, J., 2012. Robust rank aggregation for gene list
integration and meta-analysis. Bioinformatics 28 (4), 573–580.

Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., Baker, C.I., 2009. Circular analysis in
systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12 (5), 535–540.

Li, X., Wang, X., Xiao, G., 2017. A comparative study of rank aggregation methods for
partial and top ranked lists in genomic applications. Briefings Bioinf. 20 (1),
178–189.

Linden, D.E., 2007. The working memory networks of the human brain. Neuroscientist 13
(3), 257–267.

Lombardi, A., Guccione, P., Guaragnella, C., 2016. Exploring recurrence properties of
vowels for analysis of emotions in speech. Sensors & Transducers 204 (9), 45.

Lombardi, A., Tangaro, S., Bellotti, R., Bertolino, A., Blasi, G., Pergola, G., Taurisano, P.,
Guaragnella, C., 2017. A novel synchronization-based approach for functional
connectivity analysis. Complexity.

Lynall, M.-E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U.,
Bullmore, E., 2010. Functional connectivity and brain networks in schizophrenia.
J. Neurosci. 30 (28), 9477–9487.

Ma, S., Calhoun, V.D., Eichele, T., Du, W., Adalı, T., 2012. Modulations of functional
connectivity in the healthy and schizophrenia groups during task and rest.
Neuroimage 62 (3), 1694–1704.

Mamah,D., Barch, D.M., Repov�s, G., 2013. Resting state functional connectivity offiveneural
networks in bipolar disorder and schizophrenia. J. Affect. Disord. 150 (2), 601–609.

Marmarelis, V.Z., 2004. Nonlinear Dynamic Modeling of Physiological Systems, vol 10.
John Wiley & Sons.

Marwan, N., Kurths, J., 2002. Nonlinear analysis of bivariate data with cross recurrence
plots. Phys. Lett. 302 (5), 299–307.

Marwan, N., Romano, M.C., Thiel, M., Kurths, J., 2007. Recurrence plots for the analysis
of complex systems. Phys. Rep. 438 (5), 237–329.

Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J., 2009. Complex network
approach for recurrence analysis of time series. Phys. Lett. 373 (46), 4246–4254.

Oldfield, R.C., 1971. The assessment and analysis of handedness: the edinburgh
inventory. Neuropsychologia 9 (1), 97–113.

Olivetti, E., Mognon, A., Greiner, S., Avesani, P., 2010. Brain decoding: biases in error
estimation. In: Brain Decoding: Pattern Recognition Challenges in Neuroimaging
(WBD), 2010 First Workshop on. IEEE, pp. 40–43.

Onnela, J.-P., Saram€aki, J., Kert�esz, J., Kaski, K., 2005. Intensity and coherence of motifs
in weighted complex networks. Phys. Rev. 71 (6), 065103.

Pereda, E., Quiroga, R.Q., Bhattacharya, J., 2005. Nonlinear multivariate analysis of
neurophysiological signals. Prog. Neurobiol. 77 (1), 1–37.

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fmri: a
tutorial overview. Neuroimage 45 (1), S199–S209.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity mri networks arise from subject
motion. Neuroimage 59 (3), 2142–2154.

Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D., 2006. Dynamical
principles in neuroscience. Rev. Mod. Phys. 78 (4), 1213.

Rashid, B., Arbabshirani, M.R., Damaraju, E., Cetin, M.S., Miller, R., Pearlson, G.D.,
Calhoun, V.D., 2016. Classification of schizophrenia and bipolar patients using static
and dynamic resting-state fmri brain connectivity. Neuroimage 134, 645–657.

http://refhub.elsevier.com/S1053-8119(19)30255-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref42
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref42
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref42
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref66
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref66
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref67


A. Lombardi et al.
Sambataro, F., Blasi, G., Fazio, L., Caforio, G., Taurisano, P., Romano, R., Di Giorgio, A.,
Gelao, B., Bianco, L.L., Papazacharias, A., et al., 2010. Treatment with olanzapine is
associated with modulation of the default mode network in patients with
schizophrenia. Neuropsychopharmacology 35 (4), 904.

Sauer, T., Yorke, J.A., Casdagli, M., 1991. Embedology. J. Stat. Phys. 65 (3), 579–616.
Schinkel, S., Marwan, N., Kurths, J., 2009. Brain signal analysis based on recurrences.

J. Physiol. Paris 103 (6), 315–323.
Schlagenhauf, F., Wüstenberg, T., Schmack, K., Dinges, M., Wrase, J., Koslowski, M.,

Kienast, T., Bauer, M., Gallinat, J., Juckel, G., et al., 2008. Switching schizophrenia
patients from typical neuroleptics to olanzapine: effects on bold response during
attention and working memory. Eur. Neuropsychopharmacol. 18 (8), 589–599.

Singhi, S.K., Liu, H., 2006. Feature subset selection bias for classification learning. In:
Proceedings of the 23rd International Conference on Machine Learning. ACM,
pp. 849–856.

Sporns, O., 2010. Networks of the Brain. MIT press.
Sporns, O., 2011. The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224

(1), 109–125.
Sporns, O., Tononi, G., K€otter, R., 2005. The human connectome: a structural description

of the human brain. PLoS Comput. Biol. 1 (4), e42.
Stam, C.J., 2005. Nonlinear dynamical analysis of eeg and meg: review of an emerging
field. Clin. Neurophysiol. 116 (10), 2266–2301.

van den Heuvel, M.P., Fornito, A., 2014. Brain networks in schizophrenia. Neuropsychol.
Rev. 24 (1), 32–48.

Van Den Heuvel, M.P., Pol, H.E.H., 2010. Exploring the brain network: a review on
resting-state fmri functional connectivity. Eur. Neuropsychopharmacol. 20 (8),
519–534.

Webber Jr., C.L., Marwan, N., 2015. Recurrence Quantification Analysis. Springer.
Webber Jr., C.L., Zbilut, J.P., 2005. Recurrence quantification analysis of nonlinear

dynamical systems. In: Tutorials in Contemporary Nonlinear Methods for the
Behavioral Sciences, pp. 26–94.

Yan, K., Zhang, D., 2015. Feature selection and analysis on correlated gas sensor data with
recursive feature elimination. Sensor. Actuator. B Chem. 212, 353–363.

Zbilut, J.P., Webber, C.L., 1992. Embeddings and delays as derived from quantification of
recurrence plots. Phys. Lett. 171 (3–4), 199–203.

Zbilut, J.P., Thomasson, N., Webber, C.L., 2002. Recurrence quantification analysis as a
tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 24
(1), 53–60.

http://refhub.elsevier.com/S1053-8119(19)30255-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref73
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref75
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref75
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref75
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref79
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref83
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref83
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref83
http://refhub.elsevier.com/S1053-8119(19)30255-1/sref83

	Modelling cognitive loads in schizophrenia by means of new functional dynamic indexes
	1. Introduction
	2. Materials
	2.1. Subjects
	2.2. Task
	2.3. fMRI data

	3. Methods
	3.1. General framework
	3.2. RQA metrics
	3.3. The statistical framework
	3.3.1. Feature selection
	3.3.2. Stability of the features

	3.4. Prediction of task performance from connectivity
	3.5. Statistical analysis of phenotypic information

	4. Results
	4.1. Classification performance
	4.2. Ranked features
	4.3. Prediction of task performance from connectivity

	5. Discussion
	5.1. Significant RQA layers
	5.2. Significant ROIs
	5.3. Prediction of task performance from connectivity

	6. Limitations
	7. Conclusion
	Conflicts of interest
	Ethics statement

	Research data for this article
	Acknowledgments
	Appendix A. Supplementary data
	Appendix A. Supplementary data
	References




