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Abstract 

Faces transmit a wealth of important social signals. While previous studies have elucidated the network 

of cortical regions important for perception of facial expression, and the associated temporal 

components such as the P100, N170 and EPN, it is still unclear how task constraints may shape the 

representation of facial expression (or other face categories) in these networks. In the present 

experiment, we used Multivariate Pattern Analysis (MVPA) with EEG to investigate the neural 

information available across time about two important face categories (expression and identity) when 

those categories are either perceived under explicit (e.g. decoding facial expression category from the 

EEG when task is on expression) or incidental task contexts (e.g. decoding facial expression category 

from the EEG when task is on identity). Decoding of both face categories, across both task contexts, 

peaked in time-windows spanning 91-170ms (across posterior electrodes). Peak decoding of expression, 

however, was not affected by task context whereas peak decoding of identity was significantly reduced 

under incidental processing conditions. In addition, errors in EEG decoding correlated with errors in 

behavioral categorization under explicit processing for both expression and identity, but only with 

incidental decoding of expression. Furthermore, decoding time-courses and the spatial pattern of 

informative electrodes showed consistently better decoding of identity under explicit conditions at 

later-time periods, with weak evidence for similar effects for decoding of expression at isolated time-

windows. Taken together, these results reveal differences and commonalities in the processing of face 

categories under explicit Vs incidental task contexts and suggest that facial expressions are processed to 

a richer degree under incidental processing conditions, consistent with prior work indicating the relative 

automaticity by which emotion is processed. Our work further demonstrates the utility in applying 

multivariate decoding analyses to EEG for revealing the dynamics of face perception. 
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Introduction 

Successful categorization of facial expressions of emotion is an important social skill in humans. Hence 

understanding the neural mechanisms underlying this feat is an important question and the focus of 

much research. Studies using functional imaging have revealed a network of regions both within and 

beyond the core face network (Haxby et al., 2000) that show enhanced activity for emotional vs neutral 

face stimuli (e.g Vuilleumier et al., 2001; Engell and Haxby, 2007). More recently, studies have 

investigated whether facial expression categories lead to different patterns of brain activity within 

regions of the face network (see Wegrezyn et al, 2015; Zhang et al, 2016; Greening et al 2018). These 

studies revealed that particular expression categories can be differentiated in multiple face and emotion 

brain regions, including superior temporal sulcus (STS - Wegrezyn et al, 2015; Zhang et al, 2016; 

Greening et al 2018), amygdala (Wegrezyn et al, 2015; Zhang et al, 2016) but also in the fusiform gyrus 

(FG) and inferior occipital gyrus (IOG) in particular contexts (Wegrezyn et al 2015; see also Greening et al 

2018).  

Interestingly, two of the aforementioned studies (Wegrezyn et al., 2015; Zhang et al., 2016), used 

orthogonal tasks which did not require participants to focus on expression to solve the task: i.e. a 

gender categorization task (Wegrezyn et al) or a fixation task (Zhang et al.), while Greening et al (2018) 

used an explicit emotion categorization task. Previous activation-based fMRI studies using univariate 

analyses have shown that the nature of the task performed while viewing facial expressions (i.e. an 

explicit or incidental expression focus) can have a significant influence on the resulting brain activity 

observed (esp. e.g. in the amygdala; Critchley et al., 2000; Hariri et al 1999; see also Fusar-Poli et al 

2009). However, at present it is still unclear how task may shape the neural representation – indicted via 
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the multivariate information contained in distributed brain activity patterns (Krigeskorte, 2008) - of 

important face categories, such as facial expression in visual cortex (see Petro et al 2013; Kay & 

Yeatman, 2017). In the present work, we explicitly address this question using the complementary time-

sensitive neuroimaging technique of EEG together with multivariate pattern analysis (MVPA: see Haynes 

2015, for a review).  

It is well known that neurons in the visual system, even extending back to primary visual cortex, receive 

significant amounts of top down influence via cortical feedback connections from multiple higher brain 

regions. It has been argued that these top down influences can effectively change the information 

conveyed by neurons by, for example, altering their response tuning (Gilbert & Li, 2013). The perceptual 

task an observer is asked to perform is one such top down influence that can change the activity of 

neurons in the visual system – even in V1 – to identical visual stimuli (Li et al 2004; Kay & Yeatman, 

2017). This in turn allows for boosting of sensory representations that have behavioral relevance in a 

particular task context (Desimone & Duncan, 1995; see also Peelen et al 2009). While some evidence of 

task demands altering the response of early visual areas (Li et al 2004; Petro et al 2013) and higher visual 

areas (Kay & Yeatman, 2017) to identical visual stimuli exist, it is unclear to date how task may shape the 

dynamically evolving neural representation of important face categories such as expression (and 

identity). 

While studies using fMRI have provided much valuable information about which brain regions code 

facial expressions, they are necessarily limited in their ability to speak to the time course of neural 

processing of facial expressions. Much research has been carried out using EEG and MEG, however, to 

address this question (see e.g. Eimer, 2011). Traditional ERP analyses have demonstrated a specific 

component related to face processing, the N170, that is thought to be generated in regions of the core 

face network, i.e. IOG, FG, STS or some combination thereof (see Eimer, 2011). Although the face 
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sensitivity of the N170 is not in doubt, it is still unclear to what extent this component is sensitive to 

facial expression. Some studies did not report any sensitivity to emotion in the N170 (e.g. Eimer & 

Holmes, 2002; Pourtois et al 2005; Eimer & Holmes, 2007; Rellecke, Sommer & Schact, 2013; Neath-

Tavares & Itier, 2016) and this is in keeping with a long-standing idea that the N170 indexes structural 

encoding of a face (see Eimer & Holmes, 2002). Other studies, however, do find some evidence of some 

sensitivity to emotion on the N170 (Batty & Taylor, 2003; Leppanen et al., 2007, 2008; Schyns et al., 

2007; M. Smith 2012; Turano et al 2017) and in fact a recent meta-analysis demonstrates that the N170 

is greater for specific emotions (happy, angry and fear) as opposed to neutral (Hinojosa et al 2015). 

Recent evidence suggests that the earlier discrepancy could in part be driven by methodological 

differences including both the choice of reference electrodes (with linked mastoids dampening any such 

effect, Rellecke et al, 2013; Hinojosa et al 2015) and crucially, also by attentional focus (with indirect 

attention on expression leading to larger effects, Hinojosa et al 2015). In sum, at present it is still unclear 

to what extent the N170 component may carry discriminative information regarding each of the basic 

facial expressions (i.e. beyond emotion > neutral) across both explicit and incidental task contexts. In 

particular, within-subject designs directly comparing the effect of task on identical stimuli are ideally 

required to compellingly answer this question (Itier & Neath-Tavares, 2017).   

While the N170 has received arguably the most attention as a marker of face processing, visually-evoked 

components of interest typically begin around the P1, a positivity occurring 100ms post stimulus onset 

over extra-striate visual regions that is typically linked to low-level stimulus properties and attention 

(Rossion & Jacques, 2012; Luck et al, 2000).  Although early emotion effects have been observed on the 

P1 in some studies (e.g. Batty & Taylor, 2003; Luo et al 2010; E. Smith et al, 2013), they are by no means 

consistently observed (see e.g. Itier & Neath-Tavares, 2017; Vulluimier & Pourtois, 2007) and do not 

necessarily indicate sensitivity to discrete emotions (e.g. though see Luo et al 2010). The early posterior 
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negativity (EPN) component, occurring around 200-350ms is thought to reflect enhanced processing of 

emotion in extra-striate areas, likely reflecting feedback from higher brain areas (e.g. Itier & Neath-

Tavares, 2017; Recio et al 2017; Pourtois et al 2012; Schupp et al 2003).  This component is observed for 

emotional faces, words and pictures (see Itier & Neath-Tavares, 2017, for review) with higher 

amplitudes to emotional vs neutral content and is therefore not thought to be face specific per se but 

rather linked to the encoding of emotional content in general. In particular some studies have found the 

EPN discriminates valence though not always in a consistent manner (see Itier & Neath-Tavares, 2017 

for review). In addition, it has been shown to be sensitive to task demands on identical facial expression 

stimuli (Itier & Neath-Tavares, 2017). These authors showed that differences between tasks were not 

evident until 200ms (on lateral occipito-temporal sites) and 300ms (on occipital sites) and showed a 

different pattern of task effects in each case (Itier & Neath-Tavares, 2017). Thus from the evidence 

reviewed so far it is not clear whether neural activity encoded within the first 200-300ms post-stimulus 

will show sensitivity to permit the discrimination of the basic facial expressions of emotion, and whether 

such sensitivity may be modified by task demands – particularly whether expressions are processed in 

an explicit vs incidental manner. In the present work we apply more sensitive multivariate analysis 

techniques (MVPA; see Grootswagers et al 2017, for a review) to determine the neural information 

contained in the EEG signal about facial expressions (and identities) when processed in an incidental or 

explicit manner (see Nemrodov et al., 2016). 

It is important to point out that a very limited number of prior EEG studies have investigated the effects 

of task on neural processing of facial expressions using within-subject designs (Itier & Neath-Tavares, 

2017; Rellecke et al 2012; Wronka & Walentowska, 2011; DaSilva et al 2016), and they have produced 

partially contradictory findings. Wronka & Walentowska (2011) found higher N170 for emotional than 

neutral stimuli but only in an explicit emotion perception task whereas Rellecke et al (2012) found 
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higher N170 to angry faces in both explicit and incidental emotion perception tasks (they also found 

emotion > neutral on the later EPN component across both face tasks). Finally we note that DaSilva et al 

(2016) showed an effect of emotion (happiness and pride) over neutral regardless of task on the N170, 

while later components such as the P250 showed task influences. Crucially none of these prior studies 

has investigated what neural information may be contained in the distributed pattern of neural activity 

for each of the basic expression categories as a function of task with MVPA.  

Recently researchers have begun applying multivariate analytic techniques (MVPA) to investigate the 

dynamic evolution of neural representations revealed by time-sensitive neuroimaging methods, such as 

EEG or MEG (see Grootswagers et al 2017, for a review). Carlson et al (2013), for instance showed that 

visual object categories can be decoded from all-channel MEG from around 80-100ms after stimulus 

onset, and that onset and peak decoding occur earlier for lower (e.g. face Vs object) than higher tier 

categories (e.g. animate Vs inanimate).  Carlson et al (2011), using all-channel MEG, further 

demonstrated object representations that were invariant to stimulus position by around 200ms. In 

addition, Cauchoix et al (2014) revealed that faces could be reliably detected within natural scenes at < 

100ms and that read out was related to behavior already at 125ms post stimulus. They further argued 

that the decoding time-course revealed discrete stages of neural information processing. Hence, as 

these studies show, time-sensitive neuroimaging methods can reveal important insights into the 

dynamics of visual object and face processing in the brain.  

In the present work we combine MVPA decoding with EEG to investigate how task shapes the neural 

representation of facial expression. Participants completed both an identity and an expression 

categorization task on the same stimulus set. One hypothesis is that visual representations of faces may 

be enhanced for task relevant dimensions relatively early, e.g. within the first 200ms, which would lead 

to enhanced processing of expression in the same expression task, and identity in the identity task at 
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this time of processing (e.g. Schyns 1998). On the other hand, visual representations may be sensitive to 

the same stimulus information regardless of task at early time windows, with task sensitivity only 

emerging later (see e.g. Itier & Neath-Tavares, 2017; M Smith et al 2004). This view would predict that 

each face attribute (expression or identity) could be discriminated equally across the different tasks 

within the first 200ms. A third possibility (not mutually exclusive) is that facial expressions may be a 

specifically salient class of face information (compared to identity or gender) such that they are 

prioritized for neural processing even when they are not task relevant (e.g. Vuilleumier et al 2001; 

Anderson et al 2003).  
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Methods 

Subjects 

A total of 15 right-handed (via self-report) participants (age range 18-35yrs, 8 female) took part in the 

present study. Participants were recruited from the undergraduate and postgraduate student 

population at Birkbeck College and University College London and paid £20 for their participation. All 

participants gave written, informed consent in accordance with procedures approved by the ethics 

committee of the School of Psychological Sciences, Birkbeck College, University of London.  

 

Stimuli & Design 

Participants completed both a facial expression and an identity recognition task in a single testing 

session lasting approximately 2 hours. We used 6 faces (3 males, 3 females) from the California Facial 

Expression database (Dailey et al., 2001) each posing the six basic expressions (Ekman, 1999; happy, sad, 

fearful, disgusted, angry, and surprised) plus neutral. The same image set of 42 images (6 identities X 7 

expressions) was used for both tasks, under different categorization instructions. In the expression task, 

participants were instructed to categorize the images by facial expression (7AFC: happy, sad, fearful, 

disgusted, angry, surprised or neutral) by pressing a corresponding key (Z-N) whereas on the identity 

task, they had to categorize the images by identity (6AFC) by pressing a corresponding key (Z-M). 

Response keys were not counterbalanced across participants. Images were repeated 20 times per task, 

for a total of 840 trials per task (120 trials per expression, 140 trials per identity), 1680 trials in total over 

the course of the testing session. Importantly the identity task was always completed first so as to 

maximize the chance of expression processing being incidental in this case (as our main focus here is on 

facial expression perception under explicit and incidental task conditions).  Participants were introduced 
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to the six new identities via pictures showing their neutral face, an associated name (Alan, Daniel, Peter, 

Helen, Louise, Susan) and with two fictitious facts about the person (e.g. in her spare time Louise plays 

guitar in a folk band).  

Each trial began with a fixation cross, presented for 500ms, followed by a face stimulus from the 

set for 500ms followed by a response interval of 2s. Breaks were interposed every 140 trials in each task 

(for 6 short blocks per task). A longer break (minimum 10 minutes) separated the two tasks. Participants 

were seated at a fixed distance of 70cm from a standard CRT monitor (distance fixed by the use of a chin 

rest), such that the faces spanned 2.54 by 3.84 degrees of visual angle. Participants indicated their 

categorization choice via labeled keyboard keys. Prior to each task participants completed a short 

familiarization phase (42 trials) where they practiced the task and the keyboard responses.   

 

EEG Data Acquisition & Analysis  

EEG data was recorded from a BrainVision BrainAmp System comprising 64 Ag/AgCl electrodes mounted 

according to the international 10:20 system in an electrode cap, electrode AFz served as ground and a 

single mastoid as reference. Horizontal and vertical eye movements were recorded from electrodes 

positioned at the outer canthi of the eyes (HEOG) and above and below the dominant eye (VEOG). 

Electrode impedance was lowered to <10k. EEG activity was continually recorded at a sampling rate of 

1000Hz (low cutoff 10s, High cutoff 1000Hz). Online software filters had a low cutoff of 10s and a high 

cutoff of 300Hz (slope 12dB/Octave). EEG data was off-line re-referenced to average reference 

(excluding the EOG channels), filtered between 0.01 and 35Hz using the built-in EEGLAB function eegfilt 

which uses two-way least squares FIR (finite impulse response filtering), implemented within the 

MATLAB signal processing toolbox.  Epochs were created around the stimulus onset (-200ms:700ms) for 
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each trial and baseline corrected using the 200ms prior to stimulus onset. Channels identified as 

contributing excessive noise to the signal by the automatic EEGLAB routines according to a joint 

probability estimate of each specific channel (Kurtosis threshold 5) were removed from any further 

analysis (Identity task: M=4, STD=2, Expression task: M=3, STD=2) and hence not included in any of the 

MVPA analyses described below. Trials containing artifacts were identified using standard routines in 

the MATLAB EEGLAB toolbox (Delorme & Makeig, 2004) that remove trials containing large signal values 

(75 V threshold). This resulted in the following number of trials being excluded from each task: Identity 

task: M = 98.1 trials (SD = 97.5, 11.7%), Expression task: M=89.9 (SD = 95, 10.6%). 

 

 

Multivariate Pattern Classification Analysis (MVPA) 

We trained a linear classifier (Linear Support Vector Machine - SVM) to learn the mapping 

between a set of multivariate EEG observations of brain activity and the particular facial expression (7) 

or identity (6) that had been presented. We then tested the classifier on an independent set of test data. 

Importantly we decoded both expression and identity from both the expression and identity task data. 

We used cross-validation to assess the performance of the classifier, with a 70% train to 30% test 

random split of the data (see Hausfeld et al., 2012; Cauchoix et al., 2014; Tsuchiya et al., 2008) repeated 

20 times to form 20 cross-validation iterations (see e.g. Tsuchiya et al 2008). Importantly we sampled 

the same number of trials per class so as not to bias the classifier (see also Cauchoix et al 2014) and thus 

note if there were different numbers of trials present in each class (i.e. after EEG preprocessing) we 

randomly sub-sampled the same number of trials as in the smallest class from each class with a larger 

number of trials. The training data always consisted of single trial EEG activity patterns while the test 
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data consisted of an average EEG activity pattern taken across the single trials comprising the test data 

to increase signal to noise (‘average trial analysis’, see Smith & Muckli, 2010; Petro et al., 2013). As 

single trial EEG (or fMRI) data are inherently noisy, averaging across trials can cancel out the noise and 

hence improve classification performance as we have found empirically for fMRI data (Smith & Muckli 

2010; Petro et al 2013; Muckli et al 2015) and we would expect it to do likewise for EEG data (see 

Grootswagers et al 2017 for a related demonstration with MEG data). The features input to the classifier 

consisted of the preprocessed EEG voltages from a 60ms wide time window across either all posterior 

electrodes (all posterior to and including PZ that were not rejected in pre-processing), or all electrodes 

(that were not rejected in pre-processing and excluding channels used to measure eye movements, see 

above). Importantly data were never averaged within a given time-window in any of the analyses 

conducted, only across trials. The analysis was repeated across the whole epoch of the time course by 

sliding the time window in 10ms offsets (thus the onset of the time windows ranged from -200 to 

641ms, with 10ms offsets, giving 85 windows to cover the epoch). We note that this method of shifting 

time-windows has been proposed by some authors to be optimal for revealing the temporal aspects of 

information processing in the brain (Hausfeld et al 2012). 

We tested whether group level decoding accuracy for each time-window was above chance by 

performing one-tailed t-tests against the chance level of 1/7 or 1/6 (for expression or identity, 

respectively; see e.g. Smith & Goodale, 2015; Walther et al. 2009; Chen et al. 2011). Control for multiple 

tests at multiple time windows was implemented by using the False Discovery Rate with q < .05 

(Benjamini & Hochberg, 1995). The linear SVM algorithm was implemented using the LIBSVM toolbox 

(Chang and Lin 2011), with default parameters (notably C=1). Note that the activity of each feature in 

the training data was normalized within a range of -1 to 1 prior to input to the SVM. The test data were 

normalized using the same parameters (min, max) as obtained from the training set normalization in 
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order to optimize the classification performance (see Chang and Lin 2011; Smith & Muckli, 2010; Smith 

& Goodale, 2015; Vetter et al., 2014).  

 

Brain Behavior Correlations 

From the decoding analysis above we also extracted a confusion matrix (see e.g. Greening et al 2018; 

Smith & Goodale 2015; Vetter et al 2014) at each time-window that reveals the pattern of errors made 

by the classifier (i.e. it reveals the probability of a correct response per class plus the probability of 

incorrectly assigning each other class, for all classes). For each participant in turn, we correlated the 

errors in decoding (i.e. the non-diagonal elements of the confusion matrix) for each time-window with 

the errors that participant made in each categorization task. Note we computed these correlations for 

each face attribute (expression or identity) under both explicit and incidental processing conditions. Our 

rationale for computing correlations even under incidental processing was that this would give a 

measure of the quality of higher level information that is available under these conditions. We used 

Spearman correlation to mitigate against the risk of outliers affecting the Pearson correlation coefficient 

(see e.g. Pernet et al., 2012; Greening et al 2018). We Fisher transformed the Spearman rho values to 

allow averaging across participants. Control for multiple tests across time was again implemented by 

using the False Discovery Rate with q < .05. 

 

Spatially Resolved Classification Analysis 

In order to address which electrodes drove classification performance at what time-windows, we 

performed an additional classification analysis (see e.g. Nemrodov et al., 2016). In this analysis, we ran 
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the classification analysis as described above except that the analysis was performed independently for 

each electrode in turn. Thus the features input to the classifier were the EEG signal amplitudes over a 

given time-window for one particular electrode (see Nemrodov et al., 2016). This allowed us to create a 

scalp map of where facial expression or identity information can be read out at specific time-windows. 

We ran this analysis using the same time-window width as the main analyses (i.e. 60ms) but with non-

overlapping offsets of 60ms (see also Nemrodov et al 2016).  We then computed a spatial map of t-

values (one tailed, as above) quantifying where decoding accuracy was significantly above chance (FDR 

corrected q < .05 across electrodes at each time window) for each face property under both explicit and 

incidental task conditions. We further computed a difference map revealing the spatial locations at 

which significant differences were present across tasks, independently for each respective face property 

(again FDR corrected q < .05 across electrodes at each time window). We chose this method, as opposed 

to visualizing the weights of the multi-channel SVM classifier, because the weights of any linear classifier 

that takes into account interactions between voxels, such as a linear SVM, are typically hard to interpret 

when projected back into brain space (see Pereira et al 2009; but see also the correction method 

proposed in Haufe et al., 2014). Note that electrodes marked as bad channels in EEG preprocessing were 

not included in these analyses, and as such, the number of participants contributing towards the group 

decoding accuracy varied slightly across electrodes and tasks (mean 14.7, range 13-15).   
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Results 

Analysis of Behavior 

Average performance on the expression task reached 69% correct (SD = 10) whereas performance 

reached 92% correct (SD = 9) on the identity task. As the chance levels were different we did not 

explicitly compare performance across tasks. The confusion matrices underlying this performance can 

be seen in Figure 1. For the expression categorization task, a one-way repeated measures ANOVA 

revealed that the effect of emotion was highly significant, F(6,84) = 13.72, p < .001, η2p = 0.495. Follow-

up paired sample t-tests with a Bonferonni correction revealed that happy faces were recognized 

significantly more accurately than fearful, disgusted, angry and sad faces (all t’s > 4.31, all p’s < .0007, all 

d’s >= 1.11) while there was a trend for happy faces to be better recognized than both surprised (t (14) = 

3.40, p = .0043, d = .88) and neutral faces (t (14) = 3.28, p = .0055, d = .85), which did not survive 

multiple comparison correction. Neutral faces were recognized significantly better than fearful faces 

(t(14) = 5.23, p = .0001, d = 1.34) and displayed a trend for better recognition than sad (t (14) = 2.99, p = 

.0097, d = .77) and disgusted faces (t (14) = 2.23, p = .042, d = .58). Disgusted, surprised, angry and sad 

faces were all better recognized than fearful faces (all t’s > 3.90, all p’s < .0016, all d’s >= 1.01). Thus 

agreeing with previous research, happy faces were generally the best recognized facial expression (e.g. 

Smith & Schyns, 2009; Smith & Rossit, 2018). 

 

Decoding Analyses 

We computed decoding performance across a sliding time window (60ms long, 10ms offset: see 

Methods) to reveal how well facial expression (or identity) category can be read out from multi-channel 

EEG activity, under both explicit and incidental processing conditions (Figure 2). We computed 
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performance both across all electrodes and for a posterior subset of electrodes (see Methods) as a 

proxy for those more related to visual processing. We focus on the results obtained with the posterior 

subset below, but note that a very similar pattern emerged using all electrodes (see Supplementary 

Figures 1 & 2).  

 

Explicit Decoding of Expression 

For decoding of facial expression under explicit conditions (i.e. when participants perform an expression 

categorization task), decoding was first significant within the 31-90ms time-window and remained 

significant across almost the entire whole epoch (Figure 2A). We note, moreover, that decoding peaked 

both in an earlier (91-150 ms) and later time window (611-670ms), with a trough in between. Thus facial 

expression information contained within the EEG signal does not simply increase monotonically with 

time, which highlights the possibility of several discrete processing stages being revealed in the decoding 

time-course (see also Cauchoix et al 2014). Figure 2A, second panel, depicts the confusion matrix 

underlying this classification performance (averaged across all time windows that led to FDR q <.05) and 

shows that most expressions could be well discriminated except sadness. Figure 2A, third panel, shows 

the time-windows that led to a significant correlations (averaged across participants) between errors in 

the neural decoding of expression with errors in behavioural categorization of expression (see 

Methods). Under explicit processing of expression, significant correlations were evident at three discrete 

stages of the epoch with onsets of 41, 371 and 571ms respectively. 

Incidental Decoding of Expression 

We repeated the same analyses (i.e. decoding expression) from the data acquired while participants 

performed the identity task (Figure 2B).  Decoding was first significant within the 41-100ms time 
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window, and peaked at 111-170ms. It remained significant across the entire epoch although gradually 

declining across the epoch. Figure 2B, second column, depicts the relevant confusion matrix highlighting 

that again most expressions are well discriminated, except sadness. Figure 2B, third column, shows the 

correlation between errors in neural decoding of expression under incidental conditions with errors in 

participants explicit categorization of expression. This revealed significant correlations were again 

evident at three discrete stages of the epoch with onsets of 81, 351 and 511ms respectively, indicating a 

relatively rich representation of expression even under incidental conditions.  

Explicit Decoding of Identity 

Reliable decoding of identity under explicit task conditions began within the 21-80ms time window and 

remained significant across the whole epoch (Figure 2C).  As in explicit expression decoding, the time 

course of decoding contained two separate peaks, one in an earlier (101-160ms) and one in a later (591-

650ms) time window, with a trough in between. Figure 2C, second column, depicts the confusion matrix 

underlying this classification, and shows that all identities (6) could be well discriminated. Figure 2C, 

third column, shows the correlation between errors in neural decoding of identity with errors in 

participants’ categorization of identity. This revealed reliable correlations with onsets at both earlier 

(onset 31ms) and later (391ms) stages of the epoch. 

Incidental Decoding of Identity 

Reliable decoding of identity began slightly later within the 41-100ms time window, peaked at 111-

170ms time-window, and extended across almost the entire epoch (Figure 2D). However, the decoding 

magnitude dropped considerably after peaking (from ~40 to ~20% at 451-610ms), but identity read-out 

rebounded towards the end of the epoch (601-660ms, ~30%). Figure 2D, third column, shows the 

correlation between errors in neural decoding of identity under incidental conditions with errors in 
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participants explicit categorization of identity. In this case no reliable correlations could be detected at 

any time-window (we note a similar pattern is evident on the All Electrode analysis, see Supplementary 

Text). 

 

Effects of Task on Decoding Expression and Identity 

The effect of task on decoding of expression and identity is shown on Figure 3 (A & B respectively). This 

revealed no significant difference could be detected in decoding expression under explicit or incidental 

conditions at earlier time periods, only at isolated very late time-windows (Figure 3A: onsets 571-

581ms). In contrast, significantly higher decoding of identity under explicit conditions was present in 

both earlier (Figure 3B: onsets at 91-121ms, 161-181ms and 271-281ms) and later time periods (onsets 

from 351 – 591ms). Importantly this analysis demonstrates that peak decoding of identity is weaker 

under incidental processing.   

To complement this analysis, we also conducted a further analysis where peak decoding was defined in 

a subject-specific manner (computed per participant across time-window onsets covering 50 – 200ms, 

see Methods). Figure 3C shows the single participant data underlying these analyses in the form of a 

strip-chart (see e.g. Rousselet et al 2017). These analyses revealed no change in peak decoding of 

expression as a function of task (t(14) = 0.53, p = .61, two-tailed; d = 0.14;  Explicit = 24%, Incidental = 

25%) but a significant decline in decoding of identity in the incidental task (t(14) = 3.66, p = .0026, two-

tailed; d = .95; Explicit = 39%, Incidental = 32%). Thus these results again reveal that identity information 

is not as well represented during incidental conditions whereas no difference could be detected in peak 

decoding of expression as a function of task (i.e. explicit Vs incidental).  
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We note that the same pattern of results is present if we use all electrodes rather than just the posterior 

subset for both the analyses of task effects considered here – see Supplementary Figures 1 & 2. 

 

Spatially-Resolved Decoding of Face Information 

In order to investigate which specific electrodes may be contributing to the successful decoding 

reported above, we re-ran our classification analyses independently per electrode using the same time-

window length (60ms; see Nemrodov et al, 2016). Figures 4 and 5 shows the results of these analyses.  

In explicit decoding of expression (Figure 4A), central electrodes showed significant decoding initially, 

although there were strong trends present at posterior sites in the same (161-220ms) and earlier (101-

160ms) time windows, which did not survive multiple comparison correction. By 221-280ms posterior, 

central and frontal electrodes all showed reliable decoding of expression. Reliable decoding was again 

present at 401-460ms and from 521-580ms onwards, presumably for response related read-out. 

In incidental decoding of expression (Figure 4B), initially (41-100ms, 101-160ms) posterior electrodes 

showed the most robust decoding. Between 221-280ms robust decoding was present at frontal sites, in 

addition to some central and many posterior electrodes. Significant decoding was absent from onsets of 

401ms onwards. 

Furthermore, there were no significant effects of task on decoding expression (Figure 4C), except one 

isolated frontal electrode which showed higher decoding of expression under explicit task conditions in 

the final time window (640-700ms).  This concurs with the main decoding analyses reported earlier, in 

that no effects of task on expression decoding were detected in earlier time periods, only during very 

late, likely response related, stages of the epoch. 
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For explicit decoding of identity (Figure 5A), initially posterior sites showed most robust decoding (41-

100ms) before gradually moving bilaterally and anteriorly (101-160ms). From 341-400ms time window 

onwards, very robust decoding was present throughout most of the scalp. For incidental decoding of 

identity (Figure 5B), on the other hand, decoding was robustly present at posterior and central sites 

initially (101-160ms) and then became more robust at frontal sites (161-220ms time-windows). 

Decoding was largely absent from 341-580ms onwards but was significant again at 581-640ms onwards, 

mirroring the pattern seen in the main decoding timecourse analyses (Figure 2D).  

Significant effects of task on decoding identity was found from 401-460ms time window onwards (Figure 

5C), demonstrating that identity information was better decodable under explicit than incidental 

processing conditions (including over posterior sites), which again concurs with our main decoding 

analyses reported earlier. Thus task affects neural coding of identity at late stages of processing over 

posterior sites. Notably however no effects of task on decoding identity were detected at earlier time 

periods in these single channel analyses, highlighting the likely increased sensitivity gained by combining 

data across electrodes in our main analyses (Grootswagers et al 2017; Haynes 2015). 
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Discussion 

In the present study we investigated how task shapes neural representations of facial expression and 

facial identity, using EEG with MVPA. Our findings show that peak decoding for expression is not 

affected by task set whereas peak decoding of identity is affected by task set. Moreover decoding of 

identity is better under explicit conditions at multiple points across the entire decoding time-course, 

whereas decoding of expression was only better under explicit conditions at very late time periods. We 

report reliable correlations of the errors in neural decoding with errors in human categorization at both 

earlier and later periods during explicit tasks but only for expression in an incidental task. Finally, 

spatially-resolved decoding analyses further revealed better decoding of identity under explicit task 

conditions but only at later time periods (400ms post-stimulus). 

 

Incidental task context weakens peak decoding of identity but not expression  

We report reliably greater decoding of identity when identity is task relevant than task-irrelevant (i.e. 

decoding identity in the identity vs expression task), across two independent analyses within the first 

200ms (incorporating the time periods of the traditional P1 and N170 ERP components). However, for 

expression, we did not find any difference as a function of task (i.e. decoding expression in the 

expression vs identity task) until very late in the decoding time-course (571ms post-stimulus). These 

findings are consistent with two accounts of how task shapes visual processing of face categories. First, 

the change of performance for identity may be due to top down attentional mechanisms boosting 

processing of identity when it is a task relevant dimension comparable to effects reported in early visual 

areas for simpler dimensions (see e.g. Maunsell, 2015) and to those recently reported in face areas for 
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identity (Gratton et al., 2013; see also Kay & Yeatman, 2017). This is also consistent with the greater 

BOLD responses observed in ventral regions for attending to identity Vs expression, whereas STS shows 

the opposite pattern (see Hoffman & Haxby 2000). Such effects of attention on high level visual regions 

may be driven by regions in the IPS (Kay & Yeatman, 2017). 

If we assume the same account applies to expression perception, then this would imply that the failure 

to find a significant difference for expression across tasks, is due to the absence of such top down 

mechanisms operating during explicit expression decoding within the first 200ms. That is, expression 

perception would be determined by the same bottom-up stimulus processing in both cases. However 

there are several reasons why we do not think this is the case: First, top-down influences on emotion 

perception are known to occur and generate feedback to visual cortex (e.g. Furl et al 2013; Vuilleumier 

et al 2004). Second, we found reliable correlations of the incidental neural representation of emotion 

with participants’ explicit emotion perception– implying that a relatively rich representation of emotion 

is constructed even when emotion is non-task relevant. In fact, a long-standing body of work on emotion 

and attention, has revealed that it is difficult to ignore the emotion presented in sensory stimuli, unless 

attention is very highly loaded on a different attribute: something that would be rather unlikely given 

the present experimental design (see e.g. Pessoa & Ungerleider, 2004; Phelps et al 2006).  

Hence we argue that due to the evolutionary importance of facial expressions as high-value signals - that 

transmit information about the mental states, intentions and environment of the expresser (Darwin 

1872; Fridlund,1994; Matsumoto, 2001) - relative to that of facial identity signals – our results may 

actually reveal no difference in the early neural processing of expressions in explicit and incidental task 

contexts because emotions are preferentially processed even in incidental task contexts, whereas facial 

identities are not (perhaps particularly in the case of very simply and recently learned identities as used 

in the present experiment). While previous neuroimaging studies have revealed that different brain 
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areas may be active in incidental Vs explicit emotion perception, overall the pattern is still unclear and in 

need of further investigation (e.g. Critchley et al., 2000; Chi-Hua Chen et al., 2006; Hariri et al 1999; 

Lange et al., 2006; but see also Gur et al 2002).  

A recent fMRI study (Dobs et al 2018), however, directly addressed how task shapes neural 

representation of facial expression and identity revealed that surprisingly, both early visual areas (V1-

V4) and STS discriminated facial expressions better when participants performed an expression task, 

while both FFA and STS showed better decoding of identity in an identity task. Thus in this case, clear 

effects of task shaping visual representations were found for both face attributes, albeit in different 

brain areas. While the Dobs et al study is admirable for equating task difficulty and stimulus differences 

precisely across key comparisons, the study used quite a limited set of facial expressions (just angry and 

happy) and facial identities (two females), and employed stimuli that are clearly artificial. Hence it is 

unclear to what extent the findings are truly generalizable across different expression categories in the 

different task contexts (here, we use the full set of six basic expressions plus neutral, and six identities 

comprising both males and females). Future studies, in any case, will be necessary to reveal the extent 

to which facial expressions may be preferentially encoded independent of task. 

 

Identity and Expression were maximally decodable within time-windows centered around 100ms over 

posterior electrodes 

Despite the key difference noted above in how task set affected peak decoding for expression vs 

identity, there were similarities in the overall shape of decoding time-courses for each face attribute 

when perceived in explicit Vs incidental task contexts. First, decoding was maximal in a 90-170ms time-

period post-stimulus with very slight differences due to task and face attribute.  Thus for the posterior 
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set of electrodes used in our main analyses (posterior to and including Pz), this demonstrates that 

maximal face information about identity and expression is present around 90-170ms post-stimulus time-

window. Previous work has revealed that read-out of face exemplar information from whole brain MEG 

is present across an ~ 80-200ms time-period (Carlson et al 2013; see also Carlson et al., 2011).  In 

addition, Nemrodov et al (2016), revealed a clear peak in decoding around 150ms for decoding both 

face identity and gender from all scalp EEG (initial smaller peak at 70ms). Thus the present findings are 

in broad agreement with the limited previous literature that has attempted to decode fine-grained 

properties about human faces from high temporal resolution neuroimaging techniques. Importantly the 

present study goes beyond this literature by systematically quantifying the information available about 

both the expression and identity of human faces across time, in both explicit and incidental task 

contexts.  

 

Decoding of identity was better under explicit than incidental conditions at later time-periods in both the 

decoding time-course and in the spatially-resolved analyses 

Decoding of identity under explicit task conditions was also consistently higher than such decoding 

under incidental conditions at later time periods (onsets between 351 and 591ms). This phase of the 

decoding time-course may reflect the maintenance of the available face information in higher level 

visual areas important in face processing such as OFA, FFA and STS in preparation for response related 

read-out (see e.g. Cauchoix et al 2014). Importantly a similar pattern was also apparent in the spatially-

resolved analyses where reliable effects of task on decoding of identity were seen from 400ms post-

stimulus onwards across posterior, but also central and frontal, sites. On the other hand, effects of task 

on decoding of expression were only sparsely present at very late time-windows in both the main 
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decoding analyses (591ms onset) and also in the spatially-resolved analyses (641ms onset, single 

electrode). Thus while effects of task on decoding of expression were sparse at later time-periods, they 

were in the same direction as found for identity: i.e. better decoding under explicit than incidental task 

conditions (we note that somewhat stronger effects of task on decoding of expression were present on 

the analysis using all electrodes at later time-periods). This suggests that at least at some later time-

periods effects of task may act to maintain the sensory representation of both face categories for 

response-related processing (Cauchoix et al., 2014).  

 

 

 

Conclusion 

In summary, the present study reveals robust effects of task context on both earlier and later stages of 

neural processing of face identity but only weak effects of task at late stages for expression. This 

suggests that facial expressions are processed to a richer degree even under incidental processing 

conditions, consistent with prior work indicating the relative automaticity by which emotion is 

processed. Our results further demonstrate evidence of discrete processing stages in the dynamically 

evolving representation of two important face categories in visual cortex. Finally our work shows the 

utility in applying multivariate decoding analyses to EEG for revealing the dynamics of face perception. 
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Figure 1: Human Categorization Performance 

A) Confusion matrix pertaining to Expression Task. Rows represent expression category and columns 

represent the response chosen by the participant (N=Neutral, H=Happy, Su.=Surprise, F=Fear, 

D=Disgust; A=Anger; Sa.=Sad). The diagonal hence represents correct responses, and the off diagonal 

errors. The colour scale indicates the percentage of times a particular stimulus and response pair were 

chosen on average across participants.  

B) As in A) but for the Identity Task. Rows and columns here hence represent identity (M=Male, 

F=Female). 

 

 

Figure 2: Decoding of Facial Expression and Facial Identity in Explicit and Incidental Tasks 

A) Left Panel: Decoding of facial expression in explicit task (while participants categorized the faces by 

expression) for each time-window (60ms wide, 10ms offsets, covering the whole epoch). Red stars 

represent significant decoding FDR corrected q < .05 (chance =14.29%, solid black line). Blue circles 

represent uncorrected p < .001. Middle panel: Confusion matrix pertaining to the decoding results at 

left, averaged across all time-windows that led to FDR corrected significant decoding. Rows represent 

expression category and columns the response chosen by the decoder.   The diagonal hence represents 

correct decisions and the off-diagonal reflects the errors made by the decoder. Right Panel: Average 

Spearman correlation (across participants) between errors in human behavioral categorization of 

expression and errors in decoding. 
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B) As above but for incidental decoding of facial expression (i.e. decoding identity while participants 

categorized the faces by identity). Chance = 14.29%. 

C) As above but for explicit decoding of identity (i.e. decoding identity while participants categorized the 

faces by identity). Chance = 16.67%. 

D) As Above but for incidental decoding of identity (i.e. decoding identity while participants categorized 

the faces due to expression). Chance =16.67%. 

 

Figure 3: Effects of Task on Decoding Expression and Identity 

A) Decoding accuracy for expression in both explicit (green) and incidental (blue) task contexts is shown 

together with the difference (explicit – incidental: gray line, black dashed line represents 1 standard 

error of the mean). Red stars represent a significant difference in decoding at FDR corrected at q < .05 

(two-tailed t-test). 

B) As in A but for decoding of identity. 

C) Strip-chart showing single participant peak decoding accuracies for decoding each face property 

(ID=Identity; Expr=Expression) in both task contexts (Exp. = Explicit; Inc. = Incidental). Peak decoding 

accuracy was computed independently per participant across 0-200ms time-window onsets (see 

Methods and Results). 

 

Figure 4: Spatially-Resolved Decoding of Facial Expression in Explicit and Incidental Tasks 
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A) Decoding of facial expression in the explicit task. Each map shows the t-values for whether 

decoding is above chance at each electrode for a given time-window. Blue stars indicate FDR 

corrected q < .05. 

B) As in A, but for decoding of facial expression in the incidental (identity) task. 

C) Difference in decoding expression in explicit and incidental tasks (explicit – incidental). Each map 

shows the t-values for where there is a significant difference between decoding performance 

across the two tasks. Blue stars indicate FDR corrected q < .05. 

Figure 5: Spatially-Resolved Decoding of Facial Identity in Explicit and Incidental Tasks 

A) Decoding of facial identity in the explicit (identity) task. Each map shows the t-values for 

whether decoding is above chance at each electrode for a given time-window. Blue stars 

indicate FDR corrected q < .05. 

B) As in A, but for decoding of facial identity in the incidental (expression) task. 

C) Difference in decoding identity in explicit and incidental tasks (explicit – incidental). Each map 

shows the t-values for where there is a significant difference between decoding performance 

across the two tasks. Blue stars indicate FDR corrected q < .05. 
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Figure 2 
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Figure 4: Spatially resolved expression decoding across tasks 
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Figure 5: Spatially resolved identity decoding across tasks 
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Exemplar No. Across expression (within identity) Across identities (within expression) 

1  4.29     7.50 

2  4.78     7.34 

3  5.02     7.44 

4  5.76     6.61 

5  4.90     7.30 

6  6.46     6.70 

7       7.30 

 

Grand Mean 5.21     7.17 

 

Supplementary Table 1: Low level stimulus properties 

The table shows the mean Euclidean distance, calculated on a pixel wise basis from the images used in 

the experiment, across each expression (first column) for each identity in turn (exemplars 1-6), and the 

mean Euclidean distance across identities (second column) for each facial expression in turn (1-7). The 

grand means are reported at the bottom of the table. The data shows that identity is more easily 

discriminable from the low level stimulus properties than is expression and this holds for every exemplar 

considered.  

 

 

 

 

 

 


