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A B S T R A C T

The human brain is functionally organized into large-scale neural networks that are dynamically interconnected.
Multiple short-lived states of resting-state functional connectivity (rsFC) identified transiently synchronized
networks and cross-network integration. However, little is known about the way brain couplings covary as rsFC
states wax and wane. In this magnetoencephalography study, we explore the synchronization structure among the
spontaneous interactions of well-known resting-state networks (RSNs). To do so, we extracted modes of dynamic
coupling that reflect rsFC synchrony and analyzed their spatio-temporal features. These modes identified tran-
sient, sporadic rsFC changes characterized by the widespread integration of RSNs across the brain, most promi-
nently in the β band. This is in line with the metastable rsFC state model of resting-state dynamics, wherein our
modes fit as state transition processes. Furthermore, the default-mode network (DMN) stood out as being
structured into competitive cross-network couplings with widespread DMN-RSN interactions, especially among
the β-band modes. These results substantiate the theory that the DMN is a core network enabling dynamic global
brain integration in the β band.
1. Introduction

The large-scale organization of the human brain is based on the ex-
istence of functional networks, which reflect the preferential integration
of distant neural assemblies needed to support various functions, from
sensory perception and motor behaviors to complex cognitive processes.
At the macroscopic level, spatial patterns of interaction between segre-
gated brain areas can be disclosed during the performance of dedicated
tasks, but also in the absence of any explicit task (i.e., the so-called resting
state). These background couplings are thought to represent a fingerprint
of this organization into functional networks and to reflect the intrinsic
functional architecture of the human brain (for a review, see, e.g., Deco
and Corbetta, 2011).

One method to map functional brain networks from experimental
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measurements is functional connectivity (FC) analysis, where the
coupling among network nodes is estimated via measures of statistical
similarity between their activities (Bastos and Schoffelen, 2015; Friston,
2011; O'Neill et al., 2015a). This approach generally assumes that net-
works are temporally stable. Multiple static interaction pat-
terns—conventionally referred to as resting-state networks (RSNs)—have
been identified in this way, some overlapping primary systems such as
the sensorimotor, the auditory, and the visual networks and others
involving higher-level systems such as the attentional, the
executive-control, and the default-mode networks. These observations
have been consistently reproduced across neuroimaging studies and
modalities, from functional magnetic resonance imaging (fMRI) (Beck-
mann et al., 2005; Biswal et al., 1995; Damoiseaux et al., 2006; Fox et al.,
2005; Smith et al., 2009) to magnetoencephalography (MEG) (Brookes
Neuroimaging, Service of Nuclear Medicine, CUB – Hôpital Erasme, 808 route de
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et al., 2011, 2012a, b; Hall et al., 2013; Hipp et al., 2012; Liu et al., 2010;
Luckhoo et al., 2012; Wens et al., 2014a, b, 2015) and electroencepha-
lography (EEG) (Knyazev et al., 2016, 2017; Liu et al., 2017; Siems et al.,
2016; Sockeel et al., 2016).

However, this static picture of RSNs—i.e., fixed networks without
time-dependent coupling modulations within and across them—hardly
mirrors the functional landscape of the human brain. Rather, it has been
hypothesized that RSNs represent an average of temporally varying
interaction patterns, which would transiently fragment into sub-
networks to bind different systems together, hence bringing about a
richer repertoire of functional integration (Deco et al., 2011). This hy-
pothesis was supported by dynamic FC studies, which disclosed a large
body of time-dependent interaction patterns fluctuating over relatively
short timescales (from seconds to tens of seconds), including transient
cross-network couplings (Allen et al., 2014; Brookes et al., 2014; Chang
and Glover, 2010; de Pasquale et al., 2010, 2012; Handwerker et al.,
2012; Hutchison et al., 2012; Kiviniemi et al., 2011; O'Neill et al., 2015b,
2017b; Zalesky et al., 2014). Still, many aspects of dynamic FC remain to
be investigated (for reviews, see Hutchison et al., 2013; O'Neill et al.,
2017a).

In this work, we explore the existence and the properties of sponta-
neous temporal synchrony among dynamic brain couplings and consider
the hypothesis that coupling synchronization is a correlate of the gen-
eration of sub-networks and cross-network integration. We started with
resting-state FC measured via MEG power envelope correlation from key
nodes of well-established RSNs, and submitted the time-dependent FC
data to an independent component analysis (ICA) so as to disclose “modes
of dynamic coupling” that reflect patterns of synchronous fluctuation
among brain interactions. This approach has already been used to
disclose task-related transiently synchronized networks (O'Neill et al.,
2017b). An extra challenge here was to identify physiologically relevant
modes of dynamic coupling in the absence of any controlled,
goal-directed task. To do this and test our main hypothesis, we sought to
relate each mode to a combination of template RSNs (henceforth referred
to as “network mixture models”). This would establish an association be-
tween coupling synchrony and the phenomenon of cross-RSN integra-
tion. The framework of network mixture modeling also allows to
investigate the key hypothesis that resting-state activity emerges from a
spontaneous switching among diverse network configurations, which can
be interpreted effectively as a “dynamical competition” among RSNs (Deco
and Corbetta, 2011). We sought to identify competitive modes of dy-
namic coupling by comparing their mixture model to a similar model
explicitly constrained to display no competition. Establishing their exis-
tence would provide empirical support to the theory of Deco and Cor-
betta (2011).

2. Material and methods

2.1. Data acquisition

The dataset used in this work consists of MEG resting-state recordings
of 100 healthy adult volunteers (48 females and 52males, mean age: 26.5
years, age range: 18–41 years) gathered from nine experiments con-
taining a rest session (5min, eyes open) intermingled with task-driven
sessions. Results related to task-positive phenomena have been pub-
lished previously (Bourguignon et al., 2011, 2013; Clumeck et al., 2014;
Marty et al., 2015; Mary et al., 2015; Vander Ghinst et al., 2016). Par-
ticipants were all right-handed as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971), had no history of neurologic or psychiatric
disease, and signed a written informed consent prior to data acquisition.
All nine studies were approved by the CUB – Hôpital Erasme Ethics
Committee.

Neuromagnetic activity at rest was acquired using a 306-channel
whole-scalp-covering MEG system (Vectorview, Elekta Oy, Helsinki,
Finland) placed in a lightweight magnetically shielded room (Max-
shield™, Elekta Oy, Helsinki, Finland). Signals were band-pass filtered at
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0.1–330Hz and sampled at 1 kHz. Subjects were sitting comfortably in
the MEG armchair with the head inside the MEG helmet, and were asked
to relax and fixate the gaze at a point on the wall or on a screen. Their
head position was tracked with four indicator coils. An electromagnetic
digitalization system (Fastrack, Polhemus, Colchester, VT, USA) was used
before MEG data acquisition to locate these coils relative to anatomical
fiducials, as well as at least 150 head-surface points. A high-resolution 3D
T1-weighted cerebral magnetic resonance image (MRI) of each subject
was also acquired using a 1.5 T MRI scanner (Intera, Philips, The
Netherlands) after the MEG recordings.

2.2. Data preprocessing

Resting-state MEG data were preprocessed offline for noise reduction
and extraction of band-limited activity. The temporal extension of signal
space separation was first applied using the Maxfilter software (Maxfil-
ter™, Elekta Oy, Helsinki, Finland; version 2.2 with default parameters)
in order to suppress external magnetic interferences and correct for head
movements (Taulu et al., 2005). Remaining cardiac, ocular, and system
artifacts were then removed via an ICA (FastICA algorithm with dimen-
sion reduction to 30 and nonlinearity tanh, see Hyv€arinen and Oja, 2000)
applied to band-pass filtered (0.5–45 Hz) MEG signals. Components
corresponding to these artifacts were visually selected (number of iden-
tified components per subject: 5.0� 1.4, mean� SD) and projected out of
the full-rank data (Vigario et al., 2000). Of note, this ICA decomposition
did not isolate high-frequency muscle artifacts, but their contribution
below 45Hz was subdominant. The cleaned MEG data were finally
filtered in four frequency bands (θ: 4–8Hz, α: 8–12Hz, β: 12–21 Hz, β':
21–30Hz) and Hilbert transformed to obtain their analytic signals.

Individual MRIs were also preprocessed in order to build the MEG
forward model needed for source reconstruction. First, the coordinate
system associated with MEG was coregistered manually to that of MRI
using the digitized fiducials for initial estimation and the head-surface
points for manual refinements. The MRI was then segmented using the
FreeSurfer image analysis suite (Fischl, 2012). Sources in three orthog-
onal directions were also placed at each node of a cortically-constrained
grid (inter-sources distance: 5 mm, total number of nodes: 13229). The
grid was built on theMontreal Neurological Institute (MNI) templateMRI
and mapped onto each individual MRI via a non-linear spatial defor-
mation algorithm implemented in the SPM8 toolbox (Friston et al.,
2007). Finally, the MEG forward model was computed at these sources
using the one-layer boundary element method of the MNE-C software
suite (Gramfort et al., 2014).

2.3. Sliding-window connectivity estimation

We evaluated FC between the main nodes of RSNs and the rest of the
cortex using sources envelope correlation, which was chosen here for its
established ability to uncover all RSNs typically disclosed with fMRI (de
Pasquale et al., 2010; Brookes et al., 2011; Hipp et al., 2012; Wens et al.,
2014b). The FC analysis used here relied on minimum norm estimation
(MNE) for source reconstruction and the geometric correction scheme for
the suppression of spatial leakage effects, which yield spurious contri-
butions to both static and dynamic FC (Wens, 2015). The pipeline has
been described in Wens et al. (2015), to which we refer for further de-
tails. The main difference is that FC was estimated here within short time
windows sliding across the recording (i.e., dynamic FC) rather than
within a single window covering the entire recording (i.e., static FC).
Specifically, the correlation between source envelopes (low-pass filtered
at 2 Hz to improve the connectivity-to-noise ratio; see de Pasquale et al.,
2010; Hipp et al., 2012) was estimated within 10s-long windows (de
Pasquale et al., 2010) sliding with a step of 5 s, leading to 57 windows per
subject. Note that leakage-corrected dynamic FC was computed using
one-dimensional projected sources (as in O'Neill et al., 2015b, 2017b)
rather than the Euclidean norm of three-dimensional sources (as in Betti
et al., 2018).
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The seed sources used for the computation of seed-based dynamic FC
were chosen as key nodes of six well-known RSNs: the default-mode
(DMN), the sensorimotor (SMN), the auditory (AN), the visual (VN),
and the left and right fronto-parietal (L/RFPN) networks (see Table 1).
The resulting RSN-specific sets of seed-based envelope correlation maps
fluctuating from window to window represent the time development of
couplings between each RSN node and the rest of the cortex.
2.4. Identification of modes of dynamic coupling

To detect modes of dynamic coupling that reflect synchronous fluc-
tuations in the dynamic FC of each RSN, we assumed these modes to be
mutually temporally independent (asynchronous) and thus estimated
them using group ICA decomposition, as in O'Neill et al. (2017b). The
method is illustrated in the top part of Fig. 1. Further background is
provided in the Supplementary Methods S1 to S3.

To design a group-level analysis, we first standardized individual FC
time series to zero mean (to ensure that the sought dynamical effects are
not confounded with inter-individual variability in static FC) and unit
variance (to ensure that each individual subject is given a similar weight)
and concatenated them temporally across subjects. We also concatenated
spatially the seed-basedmaps associated with the nodes of the RSN under
consideration (see Table 1) in order to consider all its interactions at
once. The resulting FC dataset was then decomposed into temporally
independent components (ICs), each IC thus representing one mode of
dynamic coupling. Parameters of the ICA were similar to those used in
static FC analyses of MEG resting-state data (Brookes et al., 2011; Wens
et al., 2014b). The dimensionality was first reduced to 50, which
removed approximately 50% of the total variance in all cases. Of note, a
similar proportion of variance was discarded as well in the previous MEG
envelope ICA that successfully disclosed RSNs (see Supplementary Re-
sults S1). The ICA itself was performed using the FastICA algorithm with
nonlinearity tanh and the number of ICs to compute was set to 20
(Hyv€arinen and Oja, 2000).

We next proceeded with a detailed characterization of the modes of
dynamic coupling. Each mode was associated with one IC time series and
multiple IC spatial maps (one per seed belonging to the RSN under
consideration). The maps were obtained by temporal correlation be-
tween FC and IC time series (see the raw IC maps in Fig. 1). We then
applied various statistical analyses to

(i) identify for each mode the spatial location and the temporal
characteristics of the couplings involved,

(ii) decompose its IC maps into combinations of template RSNs using
a network mixture model, and
Table 1
List of seed locations used in dynamic FC mapping. Coordinates were taken from de
Pasquale et al. (2012) and Hipp et al. (2012). PCC: posterior cingulate cortex;
MPFC: mesio-prefrontal cortex; TPJ: temporo-parietal junction; SM: sensori-
motor; A: auditory; V: visual; FEF: frontal eye field; IPS: intra-parietal sulcus; L:
left; R: right.

seed RSN key nodes MNI coordinates (mm)

DMN PCC � 3; � 54;31
MPFC � 2;51; 2
LTPJ � 43; � 76;35
RTPJ 51; � 64;32

SMN LSM � 42; � 26;54
RSM 38; � 32;48

AN LA � 54; � 22;10
RA 52; � 24;12

VN LV � 20; � 86;18
RV 16; � 80;26

LFPN LFEF � 26; � 12;53
LIPS � 25; � 67;48

RFPN RFEF 30; � 13;53
RIPS 23; � 69;49
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(iii) determine whether the mode is indicative of a “competitive”
behavior between RSNs.
2.5. Spatial mapping and temporal properties

To locate the couplings involved in eachmode, wemasked all ICmaps
statistically using a parametric correlation test based on the null hy-
pothesis that Fisher-transformed correlation values follow a normal dis-
tribution with mean zero and SD 1 =

ffiffiffiffiffiffiffiffiffiffiffi
ν� 3

p
. Here, the number of

temporal degrees of freedom ν was estimated as the total number of time
windows across subjects divided by two to take into account windows
overlap. The significance level was set to p < 0:05 with the family-wise
error rate (FWER) controlled via Bonferroni correction for the S seeds
(see Table 1), the twenty ICs, and the effective number (here, ρ ¼ 46) of
independent cortical sources estimated as the rank of the MEG forward
model (see Wens et al., 2015). Both positive and negative correlations
were considered (two-tailed test), leading to significance thresholds of �
0:081 (when S ¼ 4) and �0:078 (when S ¼ 2) used to mask the IC maps
(see the masked IC maps in Fig. 1). The volume fraction (across the S
maps) of these statistical masks was used to assess the cortical coverage
of those couplings identified for each mode. Note that our simple
approach might a priori overestimate the parameter ν (because of tem-
poral autocorrelations in FC time series) and lead to lenient statistical
masking. However, this was not the case, as estimates based on
Fourier-phase surrogates, which preserve temporal autocorrelation, led
to lower statistical thresholds (about �0:06).

We also examined some temporal characteristics of the IC time series
(see Fig. 1). To detect possible oscillatory dynamics, their power spectral
density was estimated by applying the discrete Fourier transform to the
single-subject parts of these time series and group averaging of the
resulting magnitude-squared Fourier coefficients. We also considered
higher-order statistics of IC time series, i.e., their skewness and kurtosis.
Significance was assessed using a parametric test based on the null,
approximately normal distribution obtained in the case of Gaussian sig-
nals. The null mean and SD were respectively zero and

ffiffiffiffiffiffiffiffi
6=ν

p
for the

skewness, and 3 and
ffiffiffiffiffiffiffiffiffiffiffi
24=ν

p
for the kurtosis. The significance level was

set to p < 0:05 with Bonferroni correction for the twenty ICs. We tested
for both positive and negative skewness (two-tailed test, threshold:
�0:14) and for the excess kurtosis (i.e., one-tailed test above 3, threshold:
3.26).

It is useful to explain how the skewness and the kurtosis inform the
interpretation of the modes of dynamic coupling. The IC skewness elu-
cidates the meaning of maps sign. Indeed, positivity and negativity have
no absolute meaning because of the sign ambiguity inherent to ICA
(Hyv€arinen and Oja, 2000) but they do have a relative meaning among
the four maps and the skewness. Within a given mode, two connections
(i.e., two seed-target pairs) with the same sign in the corresponding IC
maps represent two couplings that fluctuate in synchrony. If they have
opposite sign, the two couplings are anticorrelated, which hints at a
“dynamical competition” in this mode. A positive (negative) skewness
indicates a tendency of the mode to increase connections with positive
(negative) map values and concomitantly decrease those with opposite
sign, whereas a vanishing skewness indicates the absence of such a
preferential direction in FC changes.

The IC excess kurtosis estimates to what extent these FC modulations
arise in sharp peaks but does not inform on the temporal unfolding of
these peaks per se. To quantify their transient character, we used the
mean lifetime of large-deviation events in IC time series. The identifi-
cation of those large deviations driving the IC kurtosis was based on a
threshold defined heuristically as follows. We increased candidate
thresholds from 1 by step of 0.5 (recall here that IC time series are
standardized to zero mean and unit SD), computed for each mode, RSN,
and frequency band the probability of supra-threshold events within IC
time series, and retained the smallest threshold for which there was a
significantly positive (p < 0:05) Pearson correlation (across the



Fig. 1. Schematic illustration of the analysis pipeline. (Example for the dynamic integration of the DMN) Top: Identifying modes of dynamic coupling. The stan-
dardized seed-based FC time series are concatenated temporally across subjects (S1;S2;…;S100) and spatially across seeds (indicated by colored discs in the left insert)
and then submitted to a temporal ICA. This outputs several IC time series, whose power spectrum, higher-order temporal statistics, and large-deviation events are then
analyzed, as well as associated IC maps (one per seed), which are masked statistically. Bottom: Network mixture modeling. Nine template RSN maps are used as
regressors for a spatial GLM applied to each raw (unmasked) IC map. This results into a set of GLM weights defining a mixture model for each mode of dynamic
coupling. Statistical inferences are then derived to establish model significance, univariate maps correlations, and dynamical competition. The significance of detection
rates across modes of dynamic coupling is further quantified using occurrence statistics.
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20�9� 4 ICs) between this tail probability and the kurtosis. This
approach led to a threshold of 2.5. To assess the recurrent character of IC
large deviations and their tendency to happen in isolation (notwith-
standing the temporal independence constraint of ICA that penalizes
simultaneous events, see also Supplementary Methods S1), we also
estimated the distribution of (co-)occurrences, i.e., the number of events
identified in each time window.

The effects of the frequency band (θ, α, β, β') and seed RSN (Table 1)
on the distributions across modes of the IC kurtosis, the IC events life-
time, and the volume fraction of IC masks were assessed using a non-
parametric two-way ANOVA (Friedman test) and post-hoc Wilcoxon
rank tests.
2.6. Network mixture modeling

To identify modes of dynamic coupling that involve cross-network
integration between RSNs, we sought to establish a relationship be-
tween each raw IC map and a mixture of one or more static RSN maps.

Template RSN maps were derived from ten standard RSNs identified
via a twenty-component ICA of fMRI resting-state data available at https
://www.fmrib.ox.ac.uk/datasets/brainmapþrsns (Smith et al., 2009).
These fMRI maps were smoothed with a Gaussian kernel of 8mm
full-width-at-half-maximum using SPM8 (Friston et al., 2007) and
resampled to the MEG cortical grid to obtain same size and comparable
spatial smoothness across the two modalities. Of notice, the cerebellar
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RSN of Smith et al. (2009) was discarded since it does not involve cortical
areas, resulting in nine template RSN maps: the visuo-medial (VMN),
visuo-occipital (VON), and visuo-lateral (VLN) networks, the DMN, the
SMN, the AN, the executive-control network (ECN), and the R/LFPN (see
the template RSN maps in Fig. 1).

We then used general linear modeling (GLM) with these template
RSN maps as regressors (bottom part of Fig. 1). This analysis differs from
the standard use of GLM in neuroimaging (typically established voxel by
voxel using sampling over subjects or time, see, e.g., Friston et al., 1994)
by the fact that sampling is here over the cortical sources. Estimation of
the GLM weights followed a standard procedure without regularization
since the resulting design matrix was full rank (see Supplementary
Methods S4). Statistical inference was based on our assessment of the
effective number of spatial degrees of freedom in MNE source maps, i.e.,
ρ ¼ 46. This setup takes into account the autocorrelation structure due to
spatial leakage (Wens et al., 2015) and thus avoids wrongly inflating
significance (see, e.g., Monti, 2011, for a review of the consequences of
sample autocorrelation for GLMs in the context of fMRI time series).

The network mixture model of a mode of dynamic coupling was then
defined as the set of GLM weights associated with the S seed nodes and
the nine template RSNs (see the GLM weights in Fig. 1). For each mode
and seed, model significance was established using F tests (Friston et al.,
2007) at p < 0:05 with false discovery rate (FDR) correction to control
for multiple comparisons (i.e., 20 modes � S seeds). Modes associated
with significant mixture models for at least one seed were interpreted as

https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns
https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns
https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns
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indicative of a cross-network interaction. To obtain a clearer picture of
which RSNs are involved in significant mixtures, we also investigated
post hoc the univariate (partial) correlations between each raw IC map
and each template RSN map via two-tailed t tests (Friston et al., 2007) at
p < 0:05 corrected for the same amount of multiple comparisons as done
for the F tests. All statistical inferences were based on a fixed-effect
design since the regressors were built upon deterministic template RSN
maps.

Full details on this spatial GLM and the associated statistical tests are
provided in the Supplementary Methods S4.

2.7. Dynamical competition testing

We also used the framework of network mixture modeling to inves-
tigate the idea that different RSNs “compete dynamically” to establish
functional connections. Based on our discussion above about the relative
sign of IC maps, we reasoned that such competitive behavior must
involve substantial temporal anticorrelations among the cross-network
couplings identified in a given mode of dynamic coupling. This situa-
tion is reflected by the presence of both positive and negative weights in a
mixture model. To investigate formally the existence of dynamical
competition in this sense, we thus compared statistically each network
mixture model to a “non-competitive” model built under the constraint
that all GLM weights have the same sign (i.e., weights are all positive or
all negative), which idealizes the absence of competition. Importantly,
imposing the same sign across the seeds considered (Table 1) was
necessary to include the effect of relative sign across the IC maps and
detect at once any instance of competition (i.e., among RSNs for fixed
seed, among seeds for fixed template RSN, or between different seed-RSN
pairs). Further background is provided in the Supplementary Methods S5
and S6.

We derived the exact solution of these sign-constrained GLMs using a
semi-analytical approach detailed in the Supplementary Methods S7. Our
technique combines (i) the observation that the sign-constrained prob-
lem corresponds to an ordinary, analytically solvable GLM under certain
(but a priori unknown) zero-weight constraints, with (ii) a numerical
approximation of the solution via a projected gradient descent algorithm
(whose convergence can be analyzed using fixed-point methods; see, e.g.,
Jung, 2017) to determine the zero-weight constraints.

For each mode and seed, we then assessed statistically whether the
original (unconstrained) GLM provided a significantly better model than
the sign-constrained GLM. The model comparison was performed using F
tests (at p < 0:05 corrected for the same amount of multiple comparisons
as done for the model assessment F tests) since the two GLMs are nested
(Friston et al., 2007). Modes associated with significantly better uncon-
strained GLM for at least one seed were deemed to exhibit significant
RSN competition. The only exception to this claim was when the un-
constrained GLM did satisfy the sign condition since the associated F
statistic was then ill-defined. In this case, however, the mode was clearly
non-competitive.

The technical details are developed fully in the Supplementary
Methods S4, S7, and S8.

2.8. Occurrence of cross-network integration and competition

We quantified the tendency of modes to be structured into cross-
network interactions, to target specific RSNs, and to exhibit dynamical
competition. The occurrence rate for cross-network coupling was esti-
mated as the proportion of modes with a significant network mixture
model, that for RSN detection, as the proportion of significant mixture
models with a significant correlation t test with the corresponding tem-
plate RSN for at least one seed, and that for dynamical competition, as the
proportion of significant mixture models with significant model com-
parison F test for at least one seed. Significance testing for these pro-
portions was based on the binomial distribution associated with the
expected false positive rate (i.e., the FDR-corrected critical p value) of
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these tests. We report one-tailed significance at p < 0:05 with Bonferroni
correction, but also consider uncorrected significance in cases of small
sample sizes where the sensitivity of these statistics is limited (see, e.g.,
Krzywinski and Altman, 2014).

We further applied Friedman and Wilcoxon tests to identify possible
effects of frequency band or seed RSN on the proportion of cross-network
coupling occurrence.

3. Results

To examine temporal synchrony among the cortical interactions of
each RSN (Table 1), we used an ICA that decomposed the band-limited
FC data into twenty modes of dynamic coupling. Each mode was asso-
ciated with a number of IC maps that locate synchronously varying
couplings with the seed nodes of the RSN under consideration (Table 1)
and one IC time series encoding their temporal dynamics. Their spatial
and temporal signatures were then analyzed statistically as outlined in
Fig. 1.

To ease the understanding and interpretation of the quantitative re-
sults, we start by describing qualitatively two example modes obtained
from the α-band FC data of the DMN.We then consider the distribution of
key spatio-temporal characteristics of the modes across all RSNs and
frequency bands. An analysis of the modes is developed with more detail
in the Supplementary Results S2 for the case of the α- and the β-band
DMN.
3.1. Example modes of dynamic coupling

Figure 2 (left) summarizes the characteristics of the mode α2 (i.e., the
2nd IC obtained in the α band) for the DMN. The positive part of its raw IC
maps (Fig. 2, left, top) was strongest over the occipital, the occipito-
temporal, and the posterior parietal cortices bilaterally and also peaked
over the pre-frontal area. Their negative part covered the central sulci
bilaterally. These FC topographies could also be explained in terms of
cross DMN-RSN integration using network mixture modeling. The GLM
weights (Fig. 2, left, bottom left) disclosed a positive contribution of vi-
sual networks (VNs)—most prominently the VLN—and of the DMN (cross
DMN-VN and intra-DMN couplings) mainly, and a negative contribution
of the SMN (cross DMN-SMN coupling). This corresponds to a situation
where cross DMN-SMN integration competes with intra-DMN and DMN-
VN integration. The sign of the IC maps and their GLM weights could be
interpreted by considering the skewness of the IC time series, which was
positive (see the arrow on the maps scale in Fig. 2, left). This means that
the mode α2 is associated with increases of cross DMN-VN and intra-DMN
couplings and concomitant decreases of cross DMN-SMN couplings,
rather than the opposite. Further analysis of the IC time series showed
that these FC modulations were non-periodic and occurred as recurrent,
sporadic transient events (Fig. 2, left, bottom right).

As a second example, we consider the DMN mode α20 (Fig. 2, right).
Spatially, the SMN emerged clearly from the four IC maps but with
opposite signs in the left and the right hemispheres. Temporally, this
mode also exhibited aperiodicity, transience, and recurrence, but now IC
skewness was close to zero (indicated by a double-headed arrow on the
maps scale in Fig. 2, right). The mode α20 thus corresponds to a non-
periodic, competitive mode of cross DMN-SMN integration wherein
transient events of increased coupling with the right-hemispheric part of
the SMN and decreased coupling with the left-hemispheric part alternate
with events of decreased coupling with the right-hemispheric SMN and
increased coupling with the left-hemispheric part. However, network
mixture modeling failed to detect this cross DMN-SMN integration. In
fact, this example illustrates the two caveats of this approach. First, the
GLMweights corresponding to the SMNwere close to zero because the IC
maps asymmetry destroyed any correlation with the full SMN map.
Generally, the sensitivity to template RSN maps identification is lessened
in cases where the target RSN is split into sub-networks. Second, the GLM



Fig. 2. Example modes of dynamic coupling. Qualitative characteristics are shown for two ICs of the DMN-based FC data in the α band, here without statistical
assessment. Spatial aspects encompass the four raw IC maps (top) and the associated network mixture model weights (bottom left). Seeds are color coded (red: MPFC,
blue: PCC, violet: LTPJ, green: RTPJ). Temporal properties include the skewness (sign of non-zero skewness indicated by a single arrow on maps scale, approximately
zero skewness indicated by a double-headed arrow), the kurtosis and the corresponding large-deviation events (emphasized in red on the IC time course), and the
power spectrum (bottom right) of the IC time series. Scales and units are set consistently across the two modes but are otherwise arbitrary.
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weights associated with the FPNs emerged with opposite signs because
the SMN peaks leaked towards the frontal and the posterior parietal
cortices, leading to a spurious interpretation of the mode in terms of
alternating cross DMN-R/LFPN integration. This is due to the intrinsic
blurriness of MEG-based FC mapping that persists after leakage correc-
tion (see, e.g., Wens et al., 2015) and limits the specificity of RSN
identification.
3.2. Temporal dynamics of the modes

The aperiodicity and the transient character of IC time series observed
in the two preceding examples (Fig. 2) generalized to all the modes. The
IC skewness was significant for about half of the modes and the IC kur-
tosis, for all of them. The latter result confirms that each mode exhibited
large deviations. Further, comparing the distributions of IC kurtosis
across modes obtained with different RSNs and frequency bands (Fig. 3,
top left), we identified an effect of the band (p ¼ 2:2 � 10�19, Friedman
test) but not of the RSN (p ¼ 0:09). The band effect was due to a larger
median across the α-band modes, indicating that some of these modes
exhibited higher IC kurtosis than in the other bands, irrespectively of the
seed RSN.

The transience of the large-deviation events (implied by high IC
kurtosis) was confirmed by considering their lifetime distribution (Fig. 3,
bottom left), whose median was only slightly above the windows step
size. We observed a band effect (p ¼ 2:3� 10�7) without RSN effect (p ¼
0:49) reflecting a tendency for longer-lived events in the α band and for
shorter-lived events in the β band. The latter was explained by the fact
that no β-band mode exhibited lifetimes above 6.4 s, whereas longer
lifetimes emerged in the other bands (maximum lifetime across θ-band
modes: 7.3 s, α: 7.5 s, β': 6.9 s). The former was explained by a higher
number of α-band modes with lifetimes above those of the β band (pro-
portion across θ-band modes: 5%, α: 8%, β': 1%). This is illustrated
explicitly in the Supplementary Results S3.

Table 2 shows that large-deviation events occur fairly often, since
35% of the time windows contained at least one event. Simultaneous
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occurrences are scarce, as 77% of large deviations were isolated and 20%
consisted of two simultaneous events. The co-occurrence of more than
two events turned out to be rare (about 3% of the time windows).

Finally, we note that the combination of higher kurtosis and longer
lifetimes for α-band modes also implicates a tendency for larger de-
viations (see Supplementary Results S3).
3.3. Spatial organization of the modes

We now consider the spatial structure of the modes of dynamic
coupling (notwithstanding the specificity/sensitivity issues identified
above). All IC maps involved significant contributions to the FC data.
Further, they all exhibited positive and negative significant values, which
indicates that coupling synchronization is typically accompanied with
coupling anticorrelation. We assessed the spatial extent of the significant
FC patterns associated to each mode by measuring the fraction of volume
filled by the IC statistical masks (Fig. 3, top right). Comparing their
distributions showed that the DMN modes tended to be more focused
spatially (RSN effect, p ¼ 2:1� 10�8) and that the β-band modes tended
to be more extended (band effect, p ¼ 3:2� 10�10).

We also determined whether these FC patterns could be understood in
terms of cross-network integration using network mixture modeling. The
detection rate of significant mixtures was higher than expected by chance
in all cases (p < 10�3, binomial tests) except for the VN and the RFPN in
the θ band (p > 0:04). This means that most FC datasets revealed some
cross-RSN interactions. This occurrence rate appeared substantial for the
DMN, where a large majority of modes could be classified in terms of
cross-network coupling patterns, but smaller for the other RSNs (Fig. 3,
bottom right). This was confirmed statistically by a RSN effect on these
proportions (p ¼ 2:9� 10�18, Friedman test). We also disclosed a band
effect (p ¼ 5:7� 10�4) due to higher occurrence rates in the α and the β
bands compared to the θ and the β' bands. Note in Fig. 3 (bottom right)
that the comparison for the β and the β' bands was only barely non-
significant (p ¼ 0:06, Wilcoxon test).

We further sought to identify which RSNs were predominantly



Fig. 3. Effects of seed RSN and frequency band on
characteristics of the modes of dynamic coupling. The
distributions across modes of the IC kurtosis (top
left), the IC large-deviation events lifetime (bottom
left), the volume fraction of IC statistical masks (top
right), and the proportion of significant network
mixture models (bottom right) are compared across
frequency bands (θ, α, β, β') and seed RSNs (see
Table 1). The bar plots show the median values
computed over RSNs (right side) or bands (bottom
side). Significant effects identified via post-hoc Wil-
coxon rank tests are indicated on these bar plots by
red stars.
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involved among the cross-network couplings obtained in mixture models
(Fig. 4, top). For the DMN modes, we detected a wide range of cross
DMN-RSN interactions more often than expected by chance, particularly
in the β band where RSN occurrence was significant for all the template
RSNs. Interestingly, cross-network integration appeared more restricted
in the α band where only the DMN-VMN, DMN-VLN, and DMN-SMN
couplings were detected with significant rate. Patterns of RSN occur-
rence were comparably scarcer with the other seed RSNs (in line with
Fig. 3, bottom right). It is noteworthy that the VON occurred significantly
often only among the DMN modes in the β band, and not at all in the
other cases (bar a non-significant occurrence for the β'-band DMN).
3.4. Competition among cross-network couplings

The detection rates for dynamical competition among the significant
mixture models are shown in Fig. 4 (bottom). A significant majority of
DMN modes exhibited competitive cross-network couplings, with the
highest occurrence rates among the α- and the β-band modes. Competi-
tion also emerged with the other seed RSNs, although significance was
more variant. This could merely reflect the scarcer occurrence of signif-
icant mixture models in these cases (Fig. 3, bottom right), which limits
statistical power. No competition was detected for the VN modes in the θ
band and for the LFPN modes in the θ and the β bands, and the detection
rate for the α-band LFPN was below the uncorrected significance level.

Interestingly, this widespread detection of dynamical competition
contrasts with a similar analysis performed at the level of static FC, where
no significant RSN map appeared to display RSN competition (see Sup-
plementary Results S1).
Table 2
Probability distribution Pn that n large-deviation events occur simultaneously. The
probability was estimated by pooling (co-)occurrence counts across all frequency
bands (θ, α, β, β') and all RSNs (see Table 1). The counting process is illustrated in
the Supplementary Results S3.

n 0 1 2 3 4 5 6 � 7

Pn (%) 65 27 7 1 0.2 0.01 0.003 0
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4. Discussion

4.1. Summary of findings

This paper investigates spontaneous synchronization patterns of dy-
namic FC with RSN nodes, or in short, modes of dynamic coupling. These
modes corresponded to recurrent and sporadic transient events of FC
changes involving varied and widespread coupling patterns. The α band
disclosed longer lived FC events with larger deviations. The β-band
modes involved spatially more extended coupling patterns. Cross-
network integration was predominant among the DMN modes but
scarcer among the others, and it was more common in the α and the β
bands. The dynamic integration of the DMN with other RSNs involved
mostly the SMN and the VL/MN in the α band, most RSNs in the θ and the
β' bands, and all of them in the β band. Importantly, and in contradis-
tinction with static FC, dynamical competition among these cross DMN-
RSN couplings was ubiquitous.
4.2. Resting-state dynamics and coupling synchrony

While the nature and function of spontaneous brain interactions
remain difficult to investigate experimentally, the picture emerging from
empirical FC studies is one of a dynamic integration involving transient
RSN fragmentation into sub-networks, cross-network binding, and
alternation of core hubs (for reviews, see, e.g., Hutchison et al., 2013; de
Pasquale et al., 2018). This entails a resting-state dynamics that has been
mainly conceptualized as a jump process between discrete, temporally
non-overlapping FC states that recur at random times. Two notions of FC
states have been devised: transiently synchronized networks at the
supra-second timescale (Allen et al., 2014; O'Neill et al., 2015b) and
sub-second states detectable using hidden Markov models (Baker et al.,
2014; Vidaurre et al., 2018). The latter have been suggested to underlie
the former (Baker et al., 2014), however they are inaccessible to
sliding-window FC and will thus not be discussed in detail hereafter. The
supra-second jump dynamics is also compatible with the observation
(within periods of concomitant strong intra-RSN coupling and high RSN
centrality) of a few core networks playing in alternation, and swiftly



Fig. 4. Occurrence of RSNs and dynamical competition among network mixture models. Top: The proportion of significant models disclosing RSN contribution is shown for
each RSN template, frequency band (θ, α, β, β'), and seed RSN (see Table 1). White entries indicate the absence of occurrence. *: p < 0:05 Bonferroni corrected within
each column (i.e., for nine comparisons), **: p < 0:05 corrected for all factors. Bottom: The proportion of significant models disclosing dynamical competition is also
shown for each band and seed RSN. *: p < 0:05 uncorrected, **: p < 0:05 Bonferroni corrected. Significance of occurrence rates is based on binomial tests.
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shifting, the role of global brain integrator (de Pasquale et al., 2012,
2016).

The concept of coupling synchrony differs from these aspects and thus
reveals novel properties of dynamic functional integration, but it is also
compatible with the existing picture. We make four general inferences
about resting-state dynamics:

(i) Spontaneous brain activity is characterized by coordinated
coupling fluctuations around its RSN backbone.

(ii) These synchronized couplings reflect transition events between
transiently synchronized networks.

(iii) Coupling synchronization is transient and covers large cortical
areas, especially in the β band.

(iv) Events of coupling synchronization outside the β band can be
longer lived, especially in the α band.

Inference (i) is based on the result that all modes of dynamic coupling
disclosed significant IC maps, i.e., they explained a significant fraction of
FC variance. This reveals that not only is resting-state activity structured
into RSNs, but its functional interactions themselves are spontaneously
organized into modes, which may thus be viewed by analogy as “net-
works of couplings” (O'Neill et al., 2015a). State analysis (Allen et al.,
2014; O'Neill et al., 2015b) could not lead directly to this observation
since it is geared towards the detection of stable patterns rather than their
transition per se (because of the strict temporal exclusion constraint).

Inference (ii) asserts that the coupling synchrony we uncovered re-
lates specifically to these FC state transitions. This is inevitable if we take
state models literally (since FC changes can only occur at state jumps),
but then they represent a simplification of the underlying neural dy-
namics. Empirically too, the spatio-temporal characterization of our
modes depicts them as transition processes between successive tran-
siently synchronized networks. Indeed, all the modes corresponded to
transient events of FC changes that were recurrent, aperiodic, and mostly
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isolated, which fits with random state jumps (Allen et al., 2014). They
also involved both increases and decreases as may be expected for
transitions reflecting the difference between two successive states.
Furthermore, in this context, the modes associated with preserved FC
change sign can be interpreted as encoding non-reversible state transi-
tions (i.e., they are more likely to occur in one direction than its opposite)
and those with alternating sign, as reversible transitions. Therefore, our
results are not only compatible with the jump process theory of
resting-state dynamics but actually complements it. Still, this claim
should be taken with two provisos. First, our confirmation is not
completely unbiased because our ICA seeked transient, temporally sparse
dynamics (see Calhoun et al., 2013; Daubechies et al., 2009, for a dis-
cussion of this point in the context of fMRI). This bias alone cannot
explain the strongly transient character of our modes (see below and
Supplementary Methods S2) but, critically, it may render our analysis
insensitive to possible modes of dynamic coupling associated with less
prominent temporal sparsity. Second, further study is required to prove
the link between modes of dynamic coupling and FC state transitions.

The association between modes of dynamic coupling and transient FC
events can also be validated with simulations. In the Supplementary Re-
sults S4, we used synthetic MEG data generated from a simple two-state
system and identified a single mode corresponding to their transition. It
also fits well within the framework of Deco et al. (2011) based on
large-scale neurocomputational models of the human connectome. Their
simulations suggested that resting-state activity is generated by a
near-critical, multistable system composed of attractors corresponding to
network configurations tightly constrained by anatomybut destabilized by
local, stochastic or chaotic fluctuations within neural populations (Deco
et al., 2009; Deco and Jirsa, 2012; Hansen et al., 2015). This generates a
metastable dynamics characterized by fast transitions between attractors,
which we suggest are captured empirically by the modes of dynamic
coupling (the stable periods in between transitions being presumably
encoded in FC states, see, e.g., Hutchison et al., 2013). Besides, our analysis
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indicates a mixture of reversible and non-reversible processes. It would be
interesting to confront this finding with computational models and see if
(non)reversibility is an emergent property of the human connectome.

Inference (iii) refers to the fact that the modes of dynamic coupling
involved FC events that are short lived (less than 10 s) and cover a sub-
stantial fraction of the cortex, and significantly more so for the β-band
modes. This preferential implication of β activity agrees with its sug-
gested role as a functional background facilitating long-range neural
synchronization (Bressler and Richter, 2015; Kopell et al., 2000) and
with the “statu-quo signal” theory of Engel and Fries (2010) according to
which β activity maintains the current behavioral state, e.g., the
exploratory state generated by metastability (Deco et al., 2011).
Accordingly, β-band FC appears to be the best (but not the only) elec-
trophysiological correlate of this functional exploration. In fact, Deco and
Corbetta (2011) proposed that this exploration ensures responsiveness to
future behavioral changes by retaining active representations of possible
stimuli or tasks built upon past experiences. This led to two hypotheses
that have been corroborated specifically in the β band, i.e., resting-state
FC predicts task performance (Mary et al., 2015) and resembles
task-positive FC in naturalistic paradigms (Betti et al., 2018). On this
ground, we propose to interpret the β-band modes of dynamic coupling
as reflecting the exploration at rest of complex, ecological activity pat-
terns. Such a process would presumably require the integration of neural
activity within widespread cortical areas. This also fits with the specific
role played by the β band in the theory of de Pasquale et al. (2016)
whereby global brain integration is sustained dynamically by a few core
networks (the DMN, the SMN, and the bilateral FPN).

The tendency of β-band modes to exhibit shorter lifetimes and wider
coupling patterns does not preclude contributions from the other bands
to the functional exploration generated by metastability. For instance,
there is no reason to expect the emergence of β rhythms only in the
computational models of Deco et al. (2011), although it would be
interesting to see if refined models (Hansen et al., 2015) could account
for their special role. Further, large-deviation events were highly tran-
sient in all cases, which is indicative of metastability for the other bands
as well. Actually, the fact that lifetimes were close to the lowest limit
accessible to our sliding-window FC data suggests to extend our findings
to finer timescales. In any case, we hypothesize that our functional
interpretation above generalizes to the other bands.

Still, our inference (iv) highlights a peculiarity of the other bands and
most prominently of the α band, namely, they exhibit modes with slightly
longer lived FC events (by a couple of seconds, which is small compared
to the timescale of our FC data but was sufficient to generate significant
band effects). This suggests smoother state transitions that could reflect
an increased stability of some FC states. This hypothesis is in line with,
e.g., the proposed function of α rhythms for the top-down modulation of
attention, perception, and consciousness level (Jensen et al., 2012; Kli-
mesch, 2012) and that of θ rhythms for memory (Colgin, 2013; Klimesch
et al., 2010). Indeed, state stabilisation occurs when the brain departs
from its exploratory state and is engaged into cognitive processes (Deco
and Corbetta, 2011). As attentional or perceptual drifts happen, we may
thus expect certain FC states (i.e., the transiently synchronized networks
that support such function) to partially stabilize. Based on this, we sur-
mise that some non-β-band modes (specifically, those exhibiting higher
kurtosis or longer lifetimes than the β-band modes) correspond to
spontaneous drifts in mentation and the others, to the aforementioned
functional exploration of metastable states.

That said, these hypotheses remain to be confirmed in behaviorally
controlled experiments. Further, it would be interesting to generalize our
analysis using a data-driven frequency band selection, as done in
Vidaurre et al. (2018).

4.3. Functional integration of the default-mode network

So far, our interpretations of spontaneous coupling synchrony were
not tied up to RSNs. The DMN stood out when we analyzed the
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relationship between coupling synchrony and cross-network integration.
We make two inferences specifically involving the DMN:

(v) The DMN is a core network specialized in the transient integration
with other RSNs.

(vi) Several RSNs compete to bind with the DMN.

Inference (v) is based on our observation that the large majority of
DMN modes involved cross-network couplings. Some modes derived
from the other RSNs shared this feature but many others did not. So the
DMN appeared as the sole RSN that is systematically bound to other
RSNs, which presumably endows it with a central role in the functional
exploration generated by metastability.

This property specific to the DMN has, to our knowledge, never been
emphasized. It is closely related to the core network theory of de Pas-
quale et al. (2016) that highlights the DMN as a global brain integrator, at
least half of the time and mostly in the β band. In fact, the alternating
dynamics of core networks was partially reflected in our data. Indeed, the
variety of cross DMN-RSN couplings appeared widespread among the
β-band modes, with significant occurrence of all RSNs (in opposition to
the α-band modes). The highest occurrence rates across β-band modes
spotted the two other core networks identified by de Pasquale et al.
(2016), i.e., the SMN and the R/LFPN (combining both FPNs, the rate for
the bilateral FPN even reached 60%), as well as the VMN. The emergence
of these two core networks may be explained by the fact that their
high-centrality periods must overlap (as each spends 40–50% of their
time as hub, de Pasquale et al., 2016), increasing their likelihood to
participate in β-band cross-network integration. On the other hand, the
substantial involvement of DMN-VMN couplings and the lesser involve-
ment of intra-DMN couplings may seem contradictory, as the VN is not
part of the core networks and high DMN centrality periods overlap with
strong intra-DMN FC periods (de Pasquale et al., 2016). Sill, given the
difficulty with MEG to discriminate the PCC part of the DMN and the
VMN, it may be that the DMN-VMN couplings reflect intra-DMN integra-
tion instead. One additional possible inconsistency is that neither the
SMN nor the FPNs emerged from our data as the DMN did. Further work
is needed to clarify this point.

Inference (vi) rests on our finding that a large majority of DMNmodes
involved a dynamical competition among cross DMN-RSN couplings. In
fact, competition was not limited to the DMN and emerged with other
RSNs too (although somewhat less consistently). This property fits well
with the functional interpretation of metastability as a spontaneous
competition among RSNs for the allocation of neural resources and op-
timum processing of future sensory, motor, or cognitive demands (Deco
and Corbetta, 2011). Our data bring two major inputs to this hypothesis.
First, this competition emerges predominantly (but not solely) at the
level of DMN-RSN integration. Second, it was observable at the short
timescale of dynamic FC but not in static FC (see Supplementary Results
S1), which makes sense as cross-network integration is transient by na-
ture. This last observation contrasts with fMRI studies identifying nega-
tive static FC between the DMN and the bilateral FPN (Fox et al., 2005),
but they are in line with others (see, e.g., Smith et al., 2009) as well as all
MEG-based RSN studies (see, e.g., de Pasquale et al., 2010, for a dis-
cussion). Actually, detecting this anticorrelation requires a global signal
regression (Fox et al., 2009) that was not used here. So we cannot exclude
the existence of static RSN competition, but it is presumably subtler.

Functionally speaking, competitive cross DMN-RSN integration may
play a major role in the main functions of the DMN, i.e., inner-directed
cognition (e.g., spontaneous thoughts, mind wandering, or the menta-
tion of past or hypothetical events, see, e.g., Buckner et al., 2008) and
conscious awareness (Baars et al., 2003; Giacino et al., 2014). In this
respect, the α-band DMN modes may be particularly informative, given
their putative relation with spontaneous drifts in mentation. We specu-
late that the associated FC changes enable the neural communication
between the DMN and other RSNs needed for, e.g., motor (DMN-SMN
coupling), auditory (DMN-AN), or visual (DMN-VM/LN) imagery. It is
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noteworthy that DMN-SMN and DMN-VM/LN interactions stood out as
those occurring the most among the α-band modes, usually in competi-
tion (see Supplementary Results S2). This hints at a possible predomi-
nance at rest of a cognitive alternation between motor and visual
mentations. Also of interest is the complete absence of DMN-VON
coupling, which is in line with data suggesting that the primary visual
cortex is not necessary for visual imagery (de Gelder et al., 2015). This
appears plausible as no direct retinal stimulation is involved, but this
remains a matter of debate (see, e.g., Pearson et al., 2015).

4.4. Methodological considerations

Our analysis pipeline (Fig. 1) was split into two separate main steps:
(i) an ICA of dynamic FC data to identify spatio-temporal patterns of
synchrony among brain couplings, and (ii) network mixture modeling for
their classification in terms of cross-network integration and dynamical
competition.

A general issue with dynamic FC is that short-time correlations are
affected by large random estimation errors, leading to difficulties in
distinguishing genuine dynamics from statistical variability (Hindriks
et al., 2016). One question about our ICA is thus whether the decom-
position into modes was driven by FC noise rather than coupling syn-
chronization. This was not the case because the likelihood that the
distribution of excess kurtosis across our modes (which were all signifi-
cantly positive) emerges from correlation errors only, was extremely
small (p < 10�7 based on numerical estimates). In fact, ICA entailed a
reduction of FC noise because the modes disclosed large patterns of
coupling synchrony that cannot be explained by correlation errors
(which do not exhibit spatial coordination beyond the intrinsic blurriness
of MEG FC), so that their contribution within each mode averaged out.
These two analytical arguments are developed fully in the Supplementary
Methods S2 and S3. The ability of our ICA to detect coupling synchrony
among noisy dynamic FC data is also illustrated in the simulation re-
ported in the Supplementary Results S4. Finally, note that the seminal
study of O'Neill et al. (2017b) provided a proof of concept as they used a
similar ICA of sliding-window correlations to identify task-related tran-
siently synchronized networks, which appeared meaningful in view of
the brain processes expected in their experimental design.

Another general confound of dynamic FC is that variations in sliding-
window correlations could be driven by transient modulations of local
activity (i.e., power changes) rather than couplings per se. We show in the
Supplementary Results S5 that sliding-window power estimates (with
sLORETA for depth bias correction, see Pascual-Marqui, 2002) only
poorly correlated with the IC time series (absolute Pearson correlations
below 0.03 across all modes, RSNs, and frequency bands) and thus could
not explain the spatio-temporal features of the modes. A similar analysis
focusing on high-frequency power also confirmed that our results were
not driven by muscle artifacts.

Yet another difficulty of our ICA of resting-state FC (i.e., without task
or stimulation onset) is the subjective selection of relevant ICs, e.g., by
visual inspection of their maps. Here, networkmixturemodels allowed us
to classify them objectively as linear superpositions of fMRI RSN tem-
plates. The validity of using static fMRI as reference for MEG dynamic FC
is obviously debatable. The benefit is that fMRI provides clear-cut RSN
atlases, which have guided both the design (de Pasquale et al., 2010,
2012; 2016; Sockeel et al., 2016) and the interpretation (Brookes et al.,
2011; Liu et al., 2017) of MEG/EEG FC analyses. Resting-state fMRI
atlases are also used as functional brain parcellations in MEG studies (see,
e.g., Vidaurre et al., 2018). The standard and reproductible character of
fMRI RSNs is a crucial aspect because the ensuing interpretations are tied
up to the choice of templates. Of note, the RSN atlas of Smith et al. (2009)
miss a couple of known systems, e.g., the ventral attentional and the
language networks. This might a priori incur a lack of classification
sensitivity for these two RSNs, but this is presumably mitigated by the
fact that they have been scarcely disclosed with MEG resting-state FC. A
more fundamental drawback lies in the different nature of the signals, the
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distinct spatial and temporal resolutions, and in the usage of static RSNs.
So our mixture models should not be over-interpreted as genuine models
of dynamic integration. They merely provide a crude approximation, but
one that still allowed detection of several cross-network coupling pat-
terns. We reported a lessened sensitivity to patterns involving
sub-networks (our prototype was the mode α20, Fig. 2 right) but this issue
appeared relatively limited and only a few modes were totally mis-
classified (see Supplementary Results S2). This is because spatial corre-
lation between a full RSN and a sub-network map may be sensitive to
their partial overlap. We also noted a restricted specificity related to the
intrinsic blurriness of MEG FC rather than to the use of fMRI templates.

Technically, we constructed the mixture models using GLM weights,
which provide a multivariate measure of maps correlations. However,
their values must be interpreted cautiously. First, effect sizes are strongly
inflated if maps autocorrelation (dominated by MEG spatial leakage) is
not controlled. That is why we considered standardized weights wherein
the reduction in spatial degrees of freedom was built in (see Supple-
mentary Methods S4). Second, cross-correlations among GLM regressors
lead to various suppression effects, which are beneficial to the GLM as a
whole but may render individual weight values ambiguous (Watson
et al., 2013). Specifically, cross-over suppression entails a magnitude
boost of some weights while dampening or even reversing the sign of
others (Watson et al., 2013). In particular, the sign-reversal possibility
challenges the validity of our novel dynamical competition test. How-
ever, there is no such issue in our case because the RSN templates were
weakly correlated (absolute value of pairwise Pearson correlations:
0:04� 0:02) so our GLM design was well conditioned (see Supplemen-
tary Methods S5 and Supplementary Results S6 for full justification).
Actually, this provides another argument for using a fMRI-based RSN
atlas in our mixture models. Last, we emphasize that GLMs do not pro-
vide causal information (Weichwald et al., 2015). So mixture models
cannot inform us on whether superpositions of static RSNs underlie
modes of dynamic coupling, whether these modes generate RSNs, or
whether both have a common factor (e.g., hidden brain states or meta-
stable attractors).

Despite its limitations, some of which may hopefully be overcome in
future developments, our current approach allowed to uncover new
features of the metastable resting-state dynamics and the specialized
function of the DMN for dynamic cross-network integration. It could also
come in handy to reveal the impact of behavioral manipulations or brain
disorders on the intrinsic functional organization of the human brain.
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