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Abstract 1 

Colour is a defining feature of many objects, playing a crucial role in our ability to 2 

rapidly recognise things in the world around us and make categorical distinctions. For example, 3 

colour is a useful cue when distinguishing lemons from limes or blackberries from raspberries. 4 

That means our representation of many objects includes key colour-related information. The 5 

question addressed here is whether the neural representation activated by knowing that 6 

something is red is the same as that activated when we actually see something red, particularly 7 

in regard to timing. We addressed this question using neural timeseries 8 

(magnetoencephalography, MEG) data to contrast real colour perception and implied object 9 

colour activation. We applied multivariate pattern analysis (MVPA) to analyse the brain 10 

activation patterns evoked by colour accessed via real colour perception and implied colour 11 

activation. Applying MVPA to MEG data allows us here to focus on the temporal dynamics of 12 

these processes. Male and female human participants (N=18) viewed isoluminant red and green 13 

shapes and grey-scale, luminance-matched pictures of fruits and vegetables that are red (e.g., 14 

tomato) or green (e.g., kiwifruit) in nature. We show that the brain activation pattern evoked 15 

by real colour perception is similar to implied colour activation, but that this pattern is 16 

instantiated at a later time. These results suggest that a common colour representation can be 17 

triggered by activating object representations from memory and perceiving colours.  18 

 19 

  20 
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Introduction 21 

Throughout our lives, we learn statistical regularities about objects in our environment. 22 

We acquire knowledge about their typical perceptual features, which motor actions are required 23 

to interact with them, and in which context they usually appear. For example, we know that a 24 

tomato is round and red, we can eat it and it appears in the wider context of food. Our neural 25 

representations of objects therefore need to encompass a conceptual combination of these learnt 26 

attributes spanning from perception to action and semantic knowledge (A. Martin, Haxby, 27 

Lalonde, Wiggs, & Ungerleider, 1995). The activation of object representations is likely to 28 

involve a widespread, distributed activation of several brain regions (Patterson, Nestor, & 29 

Rogers, 2007) with some brain areas responding preferentially to object colour (e.g., Seymour, 30 

Williams, & Rich, 2015). Several neuroimaging studies have compared perceiving colour and 31 

accessing object-colour knowledge from memory, finding evidence that similar brain areas are 32 

involved in these two processes (e.g., Bannert & Bartels, 2013; A. Martin et al., 1995; 33 

Vandenbroucke, Fahrenfort, Meuwese, Scholte, & Lamme, 2014). Using 34 

magnetoencephalography (MEG), we look at the neural timecourse of ‘real’ (by which we 35 

mean ‘induced by wavelengths of light’) colour perception versus implied object-colour 36 

activation from memory.  37 

Associations between objects and typical or implied colours are acquired through 38 

experience (Bartleson, 1960; Hering, 1920) and are activated effortlessly and involuntarily 39 

(Bramão, Faísca, Petersson, & Reis, 2010; Chiou & Rich, 2014). The activation of object-40 

colour knowledge is part of the dynamic interaction between perceptual processes and 41 

activation of prior conceptual knowledge to evaluate sensory input (Collins & Olson, 2014; 42 

Engel, Fries, & Singer, 2001; Goldstone, de Leeuw, & Landy, 2015). One of the central 43 

questions is how object-colour knowledge interacts or overlaps with colour representations 44 

generated by external stimuli. There is behavioural evidence that object-colour knowledge can 45 
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influence colour perception. Hansen, Olkkonen, Walter, & Gegenfurtner (2006) found that 46 

participants overcompensated for implied colours when they were asked to change the colour 47 

of colour-diagnostic objects to be achromatic. For example, a banana would be adjusted 48 

towards the blue side of grey, showing the influence of the implied colour yellow. Similarly, 49 

Witzel (2016) showed that participants selected an image of an object as achromatic more often 50 

when its colour was modified to be the opposite of its implied colour (e.g., a bluish-grey 51 

banana). These results suggest that colour perception can be influenced by previously learnt 52 

object-colour associations (see Firestone and Scholl, (2016) for debates about the extent to 53 

which activation of colour from memory is identical to colour perception). Brain-imaging data, 54 

recorded with functional magnetic resonance imaging (fMRI), suggest that brain activation 55 

corresponding to implied object colour activation shares characteristics with real colour 56 

perception: Retrieving the knowledge that a banana is yellow activates brain areas in or around 57 

the V4 complex, which is involved in colour perception (Bannert & Bartels, 2013; Barsalou, 58 

Simmons, Barbey, & Wilson, 2003; Chao & Martin, 1999; Rich et al., 2006; Simmons et al., 59 

2007; Vandenbroucke et al., 2014). This suggests that activation of implied colour rests on a 60 

similar neural architecture as real colour perception. 61 

These results suggest that similar brain areas are active when perceiving colour and 62 

accessing implied colour, which may drive the behavioural interactions between the two (e.g., 63 

Hansen et al., 2006). Real colour activations occur very early in visual processing, whereas 64 

implied colour presumably is only activated once the object is processed at a higher level. 65 

Hence, there could be a temporal delay for activity driven by implied colour in comparison to 66 

activity driven by perceived colour. As the signal measured by fMRI is slow, it is not a suitable 67 

method to distinguish fine temporal differences between real and implied object colour 68 

processing. In the current study, we use multivariate pattern analysis (MVPA) on MEG data 69 

(Grootswagers, Wardle, & Carlson, 2017) to compare the brain activation patterns evoked by 70 
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colour perception and implied object colour activation. MEG has fine temporal resolution, and 71 

with MVPA we can detect patterns across the sensors at each time point that are reliable enough 72 

to train an algorithm to classify different categories of stimulus. Here, we use these methods to 73 

test whether a classifier trained on ‘real colour’ can successfully decode ‘implied colour’. Such 74 

cross-generalisation can only occur if there is sufficient similarity in the neural signals. This 75 

approach enables us to contrast the temporal dynamics of real and implied colour processing, 76 

shedding light on the interaction between perceptual processing and activation of object 77 

representations.  78 

 79 
 80 

Methods 81 

Participants. 20 healthy volunteers (12 female, mean age = 27.6 years, SD = 6.6 years) 82 

completed the study. All participants reported normal or corrected-to-normal vision including 83 

normal colour vision. Participants gave informed consent before the experiment and were 84 

reimbursed with $20/hour. During the MEG recording, participants were asked to complete a 85 

target-detection task to ensure they were attentive. Two participants performed more than three 86 

standard deviations below the group mean on this task, suggesting they did not pay attention 87 

to the stimuli, and were therefore excluded from analysis, leaving 18 participants in total. The 88 

study was approved by the Macquarie University Human Research Ethics Committee. 89 

Procedure. While lying in the magnetically shielded room (MSR) for MEG recordings, 90 

participants first completed a colour flicker task (Kaiser, 1991) to equate the coloured stimuli 91 

in perceptual luminance. Then they completed the main target-detection task. We used only 92 

two colours to increase the power of our analysis. If there are luminance differences between 93 

the colour categories, the classifier can use this strong signal to discriminate the categories 94 

instead of relying on colour. While previous studies have shown the greatest behavioural 95 

effects for colours along the daylight axis (yellow-blue, Hansen et al., (2006)), these are not 96 
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feasible colours for the current design: equiluminant blue and yellow stimuli no longer look 97 

clearly blue and yellow. We chose red and green as the two colours as they can be matched for 98 

luminance, and we included varying exemplars of these two hue categories to ensure any 99 

potential remaining slight differences in luminance could not be used by a classifier to 100 

distinguish the colour categories.  101 

Colour Flicker Task. In the colour flicker task, participants were presented with red and 102 

green circles (5x5 degrees visual angle) in the centre of the screen. The colours alternated at a 103 

rate of 30Hz. Participants completed 2 runs of 5 trials each. In each trial, one red-green 104 

combination was used. The red colour was kept consistent throughout each trial while 105 

participants were asked to use a button box to adjust the luminance level of green and report 106 

when they perceived the least amount of flickering. The HSV (hue, saturation, value) values 107 

for each green shade were then recorded. This procedure was repeated in the second run. The 108 

average HSV values between the two runs was then computed, yielding five shades of red and 109 

green equated for perceptual luminance. Using different shades of red and green which were 110 

each equated for perceptual luminance minimises the degree that any luminance difference 111 

between the categories could influence the results (see Table 1 [supplementary materials] 112 

summarising individual HSV values used).  113 

Target-Detection Task. In the main target-detection task (Figure 1A), participants 114 

completed eight blocks of 440 trials each. There were two different types of blocks: implied 115 

colour and real colour. Block types alternated for each participant and the overall order was 116 

counterbalanced across participants. In the implied colour blocks, participants viewed 117 

luminance-equated (SHINE toolbox Willenbockel et al. (2010)) grey-scale images of colour 118 

diagnostic objects (see Figure 1A). Equating the overall luminance ensures that differences in 119 

MEG response patterns are not caused by luminance differences between the ‘usually red’ and 120 

‘usually green’ categories. To increase variability in the stimulus set, half the stimuli depicted 121 
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a single item on the screen (e.g., one strawberry) and the other half were multiple, partially 122 

overlapping items (e.g., three strawberries). Having several different stimuli in each category 123 

helps to minimise the influence of low-level features such as edges and shapes on the results. 124 

In the real colour blocks, participants viewed five different abstract shapes. Each shape was 125 

filled in one of the red and green shades which had been equated for perceptual luminance with 126 

the colour flicker task. Each shape occurred equally often in red and green. To match the stimuli 127 

presented in the implied colour block, half of the shapes were single shapes (e.g., one square) 128 

on the screen while the other half consisted of partially overlapping shapes (e.g., three squares). 129 

All stimuli (objects and shapes) contained the same number of pixels (Figure 1A).  130 

In both block types, presentation location varied randomly by ~1 degree visual angle 131 

around the central fixation cross. Changing the spatial location of the stimulus images adds 132 

variability to the retinal image, again reducing the influence low-level visual features have on 133 

the results. Participants were asked to press a button when they saw an image of the target 134 

shape (cross) or target object (capsicum). Every block had 40 target trials. All target trials were 135 

discarded before the MEG data analysis. On average, participants detected 98.51% (SD = 136 

0.013%) of target stimuli.  137 
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 138 

 
Figure 1: (A) Target-detection task and stimuli for both implied colour (top panel) and real 
colour (bottom panel) blocks. Participants were asked to press a button as soon as they saw 
the target (capsicum or cross). If they pressed the button after a target (correct detection) the 
fixation cross would turn green briefly, if they missed the target it would turn red. (B) Cross-
validation approach used for real (top) and implied (bottom) colour decoding analyses. Every 
row shows which trials were used for the training set (clear) and which trials were used for 
the testing set (shaded). Trials with the same exemplar are never in the training and the 
testing set. In the real colour decoding analysis, we split the data in 5 different ways, always 
leaving one pair of the same shape with matched luminance out. In the implied colour 
decoding analysis, we split the data in 25 different ways, leaving all possible exemplar pairs 
out once. The classification accuracy is an average of the classifier performance for each of 
these divisions.  
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Apparatus and Pre-processing. The stimuli had a visual angle of approximately 5 x 5 139 

degrees and were projected onto a translucent screen mounted in the magnetically shielded 140 

room. The stimulus display system used was an Epsom projector (EB-G7400U) with a refresh 141 

rate of 60Hz. The projector display size had approximately 10.02 x 19.9 degrees visual angle 142 

and the resolution of the display was set to 1280 x 720 pixels. Stimuli were presented using 143 

MATLAB with Psychtoolbox extension (Kleiner et al., 2007; Pelli, 1997). The neuromagnetic 144 

recordings were obtained with a whole-head axial gradiometer MEG (KIT, Kanazawa, Japan), 145 

containing 160 axial gradiometers. The frequency of recording was 1000Hz. FieldTrip 146 

(Oostenveld, Fries, Maris, & Schoffelen, 2011) was used to pre-process the data. We used a 147 

low-pass filter of 200Hz and a high-pass filter of 0.03Hz online. Stimulus onsets were 148 

determined with a photodiode that detected light change when a stimulus came on the screen. 149 

Trials were epoched from -100 to 800ms relative to stimulus onset and downsampled to 200Hz 150 

(5ms resolution). All target trials were removed. We performed no further preprocessing steps 151 

(e.g., channel selection, artefact correction), leaving our data in the rawest possible form. This 152 

choice was motivated by recent work showing that traditional preprocessing choices can 153 

introduce artefacts in the data that have a strong effect on multivariate analyses (van Driel, 154 

Olivers, & Fahrenfort, 2019). 155 

Decoding Analysis. We conducted four separate decoding analyses using linear 156 

discriminant classifiers (LDA) implemented in CoSMoMVPA (Oosterhof, Connolly, & 157 

Haxby, 2016). First, to test whether we can decode perception of red versus green, we analysed 158 

the data from the real colour (shape) blocks. We tested whether we could decode the colour of 159 

our abstract shapes for each person. The classifier was trained on distinguishing the activity 160 

patterns evoked by red versus green shapes at each timepoint using 80% of the real colour data. 161 

We then used the classifier to predict the colour of each stimulus at every timepoint in the 162 

remaining 20% of the real colour data. To divide the data into training and testing set, we used 163 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/369926doi: bioRxiv preprint 

https://doi.org/10.1101/369926


9 
 

 
 

an independent exemplar cross-validation approach (Carlson, Tovar, Alink, & Kriegeskorte, 164 

2013), leaving out one exemplar pair with matched luminance (e.g., red and green L-shape, 165 

matched for perceptual luminance). This process was repeated over all folds so that each 166 

exemplar pair was in the training and the testing set once (5-fold cross-validation). Hence, the 167 

colours in each fold were balanced (Figure 1B).  168 

Second, to assess whether we can decode implied colour from grey-scale objects, we 169 

trained a classifier to distinguish trials of grey-scale objects that are associated with red versus 170 

green. As in the analysis described above, we used an independent cross-validation approach 171 

and trained the classifier on 80% of the implied colour data and tested its performance on the 172 

remaining 20% of implied colour data. Because the greyscale objects in the red and green 173 

condition varied in more ways than just their implied colours, we left out both possible 174 

exemplar pairs for each object in the implied colour decoding analysis to minimise the degree 175 

to which visual features such as shape would be used by the classifier. We selected trials based 176 

on label for both colour categories (e.g., all strawberry and kiwifruit trials). Note that there 177 

were two instances of each stimulus (e.g., an image of one strawberry and an image of three 178 

strawberries) and these were considered the same object for the leave-one-out procedure. We 179 

trained our classifier to distinguish between activity patterns evoked by all stimuli except the 180 

selected stimuli and tested its performance on the left-out trials. We repeated this process to 181 

have every possible combination of green and red objects used once as the testing set (25-fold 182 

cross-validation), and report the average classification performance over all these combinations 183 

(Figure 1B). Although the independent cross-validation approach reduces the risk of features 184 

other than implied colour driving the effect, we still have to be cautious with the interpretation 185 

as there may be overall low-level differences across all the red and green objects. This is 186 

unavoidable when using natural objects.  187 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/369926doi: bioRxiv preprint 

https://doi.org/10.1101/369926


10 
 

 
 

Last, we conducted a cross-decoding analysis across the two different block types, 188 

training the classifier on all real colour trials and testing on all implied colour trials. This cross-189 

decoding analysis is highly conservative as everything about the stimuli differs between real 190 

colour and object colour trials, the only potential link is the implied colour of the objects to the 191 

real colour of the abstract shapes. If there are any low-level differences in the real colour 192 

decoding other than chromaticity (e.g., overall luminance difference), this would only decrease 193 

the likelihood of finding significant cross-generalisation to the implied colour trials. In 194 

addition, any differences in between the greyscale objects cannot drive an effect in the cross-195 

decoding analysis, as the classifier is trained to distinguish the real colour shapes which are the 196 

same in the red and the green condition.  197 

It is possible that a similar pattern is elicited by the two colour types but it occurs at 198 

different times, thus, we may not see it in a direct cross-decoding analysis. We therefore also 199 

conducted a time-generalisation analysis (Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011; 200 

King & Dehaene, 2014), training the classifier at each timepoint on the real colour trials and 201 

then testing on each timepoint in implied colour trials, yielding an accuracy score for all pairs 202 

of training and testing timepoints. This technique allows us to test for similar activation patterns 203 

that do not occur at the same time.  204 

Statistical Tests Classification Analyses. To assess whether the classifier could 205 

distinguish between red and green trials significantly above chance, we used random effects 206 

Monte-Carlo cluster statistic (Maris & Oostenveld, 2007) using Threshold Free Cluster 207 

Enhancement (TFCE, Smith & Nichols, 2009) as implemented in CoSMoMVPA (Oosterhof 208 

et al., 2016). The TFCE statistic represents the support from neighbouring time points, allowing 209 

optimal detection of sharp peaks, as well as sustained weaker effects. First, a permutation test 210 

was conducted by swapping the labels of complete trials and then we re-ran the analysis on the 211 

data with the shuffled labels. This was repeated 100 times per participant to generate subject-212 
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level null-distributions. Second, Monte-Carlo sampling was used to create a group-level null-213 

distribution consisting of 10,000 shuffled label permutations for the time-resolved decoding, 214 

and 1000 for the time-generalisation analysis (to limit computation time). Third, these group-215 

level null-distributions were transformed into TFCE statistics (Smith & Nichols, 2009). To 216 

correct for multiple comparisons, we then selected the maximum TFCE value across time in 217 

each of the null distributions. Finally, to assess whether decoding was above chance, we 218 

transformed the true decoding values to TFCE statistics and compared them to the 95th 219 

percentile of the corrected null distribution. 220 

Behavioural data collection. In addition to our MEG experiment, we collected colour 221 

categorisation accuracies and reaction times on our stimuli from a new sample of 100 222 

participants on Amazon’s Mechanical Turk. Participants were presented with the red and green 223 

shapes and the grey-scale objects, each presented individually for 100ms, randomly 224 

intermingled. On the instructions screen, participants were told that they would see images that 225 

can be categorised as red or green. They were informed that some images would be shown in 226 

greyscale, but that these objects were typically associated with red or green. Their task was to 227 

categorise the images into these two categories as fast and as accurately as possible by 228 

responding with either “m” or “z” using a keyboard. This allowed us to first confirm that the 229 

objects we had selected were indeed typically associated with red or green, and second, to test 230 

whether there was a reaction time difference between real and implied colour categorisation. 231 

Response-key mappings were randomly determined for each participant. Participants each 232 

completed 6 practice trials on objects that were not used in the experiment before the actual 233 

data collection began. Each participant was presented with each of the objects once. We 234 

calculated the mean accuracy and reaction times for the real and implied colour condition.  235 

 236 

 237 
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Results 238 

For our real colour decoding analysis, we trained the classifier to distinguish red from 239 

green shapes and then tested whether it could distinguish red from green shapes in an 240 

independent set of data. The classifier was able to predict the colour above chance in a cluster 241 

stretching from 65 to 315 ms, reflecting a signal modulated by colour (Figure 2, orange).  242 

To examine whether we can decode implied object colour, the classifier was trained on 243 

a subset of the object trials and then tested on an independent set. The testing set included only 244 

exemplars (e.g., all strawberry and kiwifruit trials) that the classifier did not train on. Our data 245 

show that the classifier can distinguish between the objects belonging to the red and green 246 

category significantly above chance in a cluster stretching from 190 to 215 ms and from 270 247 

to 290 ms (Figure 2, blue). While this suggests that there is categorical difference between 248 

objects associated with red and green, the results of this particular analysis could be driven by 249 

an overall difference in object characteristics other than colour (e.g., if red objects tend to have 250 

more round edges than green objects), and we therefore do not interpret this further.   251 

Our key analysis to test whether there is a representational overlap of real and object 252 

colour processing depends on cross-decoding: training a classifier on real colour stimuli and 253 

testing on grey-scale objects that have implied colours. We trained the classifier to distinguish 254 

between the red and green shapes and tested its performance on the grey-scale objects to see 255 

whether direct cross-generalisation between real and implied object colour is possible. In this 256 

analysis, the classifier is trained on identical shapes that only vary in terms of colour. Hence, 257 

this is the most conservative way of testing whether there is a representational overlap between 258 

real and implied colours. The cross-colour decoding was not significant at any point in the 259 

timeseries (Figure 2, yellow). Accessing implied colour, however, presumably requires first 260 

accessing the general concept of the object. Therefore, real and implied colours may have a 261 

similar representation but colour information could be accessed later when activated via objects 262 
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in comparison to when colour is perceived. We therefore tested whether this is the case using 263 

a cross-decoding time-generalisation analysis. We trained a classifier to distinguish between 264 

red and green shapes at every timepoint and then tested whether it could cross-generalise to the 265 

grey-scale objects at any timepoint. The results of key cross-generalisation analyses are 266 

summarised in Figure 3, showing a cluster of significant cross-generalisation with a time-shift. 267 

 268 

 269 

 

Figure 2: Classification accuracies for real colour (orange), implied colour (blue), and 
direct cross-colour (yellow) decoding over time. Vertical, dotted lines show stimulus on- 
and offset. Dashed line indicates chance level (50%). Shading indicates error bars 
around the mean (standard deviation of decoding accuracies across participants divided 
by the square root of the number of participants). Coloured dots depict significant 
timepoints corrected for multiple comparisons. The 95% confidence intervals for peak 
decoding latencies are plotted above the classification accuracies.  
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The time-generalisation analysis revealed similar activation patterns between real and implied 270 

colours when the classifier is trained on real colour at an earlier timepoint and tested on implied 271 

colour at a later one (Figure 3A and 3B). These generalisation accuracies were statistically 272 

above chance, even with our conservative correction for multiple comparisons (Figure 3C). 273 

Inspecting the training timepoint with maximum decoding (140 ms) indicates that there is 274 

above-chance decoding at later testing timepoints with peak decoding at 200 ms after stimulus 275 

onset (Figure 3B). The results show that we can cross-decode between real and implied colours 276 

when we train the classifier on real colours at timepoints between 140 to 160 ms and test it on 277 

implied colours at a cluster from 200 to 215 ms (Figure 3C). Combining the off-diagonal shift 278 

of the significant timepoints shows a median delay of 55 ms for implied colour testing times 279 

compared to real colour training times (Figure 3D). Importantly, these results are unlikely to 280 

be driven by anything else than colour as the classifier is trained on real colour trials in which 281 

the only different stimulus characteristic was colour and tested on implied colour trials which 282 

were achromatic. As a check, we also performed the reverse analysis (i.e., training the classifier 283 

on implied colour trials and testing it on real colour trials) which showed the same results, 284 

mirrored across the diagonal. The results highlight that there are similarities between real 285 

colour and implied object colour patterns but this pattern is instantiated later for implied object 286 

colours than for real colours. Note that above-chance cross-decoding does not mean we can 287 

interpret that the processes involved in real and implied colour processing are identical. 288 

However, the results show that there are sufficient similarities for the classifier to cross-289 

generalise from brain activation patterns evoked by perceiving red and green to brain activation 290 

patterns evoked by viewing grey-scale images of objects that are associated with red and 291 

green1. 292 

                                                
1Please note that these results are stable across different analysis parameters. For example, the effect remains 
when using a different classifier, a wider sliding time windows, and when averaging across trials in the training 
data, normalising the training data, and using principal component analysis.  
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These results predict that it takes more time to access implied colour than real colour, 293 

presumably because one first has to access the concept of the object. We decided post-hoc to 294 

test this prediction behaviourally. 100 mTurk participants were presented with the red and 295 

green shapes and the grey-scale objects, each presented individually for 100ms, and were asked 296 

to indicate as quickly and accurately as possible whether the stimulus was (typically) red or 297 

green. Four participants were excluded from the analysis as their accuracy scores were more 298 

than 2 standard deviations below the group mean. For the remaining 96 participants, we 299 

Figure 3: Results of the time-generalisation analysis. In this analysis, the classifier was trained on 
the real colour trials and tested on the implied colour trials. Panel A shows the classification 
accuracy at every possible train-test-time combination. Lighter colours indicate higher 
classification accuracy. Panel B shows the timecourse of the classification accuracy when the 
classifier relies on the training data at 140ms (peak decoding at 200ms). Shading indicates error 
bar around the mean (standard deviation of decoding accuracies across participants divided by 
the square root of the number of participants). Panel C shows all training-testing-timepoint 
combinations where classification is significantly above chance (based on permutation, corrected 
for multiple comparisons). Note that the axes in C are different to show the significant timepoints. 
Panel D shows the time shift of all significant timepoints from the diagonal. The delay of colour 
representations activated via implied colour activation in comparison to real colour perception is 
~55ms . 
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excluded all the incorrect responses and compared the correct reaction times to the real and 300 

implied colour trials.  Responding correctly to a real colour shape was on average ~136ms (SD 301 

= 85ms) faster than responding correctly to an implied colour of an object (t(95) = 15.9, p<0.05, 302 

95% CI [121.08, 155.64]). Real colour responses were also more accurate (M = 91.5%, SD = 303 

0.08) than implied colour responses (M=80.4%, SD=0.13). The accuracy scores for the real 304 

and implied colour condition were significantly different (t(95)=8.07, p<0.05, 95% CI [8.3 305 

13.8]). Using mTurk introduces variance to the experimental setup, including monitor settings 306 

for colour, computer and internet speeds, all of which will increase the noise in the data; we do 307 

not, therefore, interpret the specific difference in timing. Despite the variability, there is a clear 308 

difference between the time taken for categorising colour in the two conditions. These results 309 

are consistent with real colour perception being faster and easier than recalling implied colours, 310 

in line with the prediction from our decoding results.  311 

To test the relationship between the neural data and behavioural data further, we also 312 

ran an exploratory analysis correlating the neural data of our sample with the behavioural data 313 

of the independent set of mTurk participants. We correlated the stimulus-wise behavioural 314 

categorisation data with the stimulus-wide MEG decoding accuracies for the implied colour 315 

decoding analysis and examined how this correlation unfolds over time (Figure 4). The results 316 

show that the neural data can be linked to the behavioural data from ~200ms after stimulus 317 

onset which suggests that the information we decode can be used to generate behaviour (cf. de-318 

Wit, Alexander, Ekroll, & Wagemans, 2016; Grootswagers, Cichy, & Carlson, 2018; Williams, 319 

Dang, & Kanwisher, 2007). 320 
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 321 

Discussion 322 

In this study, we compared the temporal activation patterns of colour perception and implied 323 

colour to examine the interaction between perceptual processing and access to object 324 

representations. We applied MVPA to time-series MEG data and show that both real and 325 

implied colour can be decoded, with some caveats around implied colour decoding due to 326 

potential visual stimulus differences. Our key results indicate that real and implied colour 327 

processing share a sufficient degree of similarity to allow for cross-generalisation with a 328 

temporal shift. The activity pattern distinguishing colours was instantiated ~55ms later for 329 

implied colours than for real colour, highlighting that there are similarities between colour 330 

representations accessed via ‘real’ colour and via implied colour, but that there is a temporal 331 

asynchrony between these processes.  332 

We interpret our cross-decoding results as evidence that the representation of implied 333 

colour involves some of the same mechanisms as those involved in colour perception. This is 334 

Figure 4:  Panel A shows the correlation between the stimulus-wise behavioural 
accuracies in the independent colour categorisation task and the stimulus-wise MEG 
decoding accuracies over time. Panel B shows a scatterplot for the ranked behavioural 
accuracies and the ranked decoding accuracies for each stimulus at the peak timepoint 
of Panel A (370ms).  
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in line with previous studies showing that the same brain regions are active when retrieving 335 

object representations from memory and perceiving those object features (for reviews see A. 336 

Martin, 2007; Patterson et al., 2007) For example, Vandenbroucke et al. (2014) and Bannert 337 

and Bartels (2013) showed that early visual cortex is involved when real and implied colour 338 

are processed. Using fMRI, Vandenbroucke et al. (2014) trained a classifier on data recorded 339 

while participants viewed red and green shapes, and then tested the classifier on data recorded 340 

while participants viewed line-drawings of colour-diagnostic objects filled with ambiguous 341 

colours between red and green. Behavioural results suggested participants were slightly more 342 

likely to respond ‘red’ to the ambiguous colour presented on a line drawing of a typically red 343 

object than a line drawing of a typically green object. In their fMRI data, the classifier 344 

categorised the colour consistent with what the participant perceived. That means the classifier 345 

categorised colours to be red when shown on objects that are typically red, and green for objects 346 

that are typically green, at above chance levels. They interpret these data as evidence for an 347 

influence of implied object colours on the creation of a subjective experience of colour. 348 

Consistent with this study, Bannert and Bartels (2013) trained a classifier to distinguish fMRI 349 

data from trials where four different colours were presented. They showed that the classifier 350 

can cross-generalise to grey-scale colour-diagnostic objects. Both fMRI studies highlight that 351 

there are similar activation patterns across voxels in the visual cortex for real and implied 352 

colour processing. Our results provide further evidence that object-colour knowledge and 353 

colour perception instantiate similar patterns, this time in the temporal domain.  354 

There are several possible explanations for a temporal difference between accessing 355 

colour representations via real colour and implied colour. One possibility is that the time 356 

difference reflects greater individual variability in the temporal activation profile of implied 357 

colours in comparison to real colours. Implied colours may be accessed at slightly different 358 

timepoints for different people and thus the cross-decoding accuracy that is above chance for 359 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/369926doi: bioRxiv preprint 

https://doi.org/10.1101/369926


19 
 

 
 

each participant only overlaps at a later timepoint. There are also more interesting potential 360 

explanations. First, it could be due to actual differences in neural processes. Colour 361 

representations accessed via colour perception are immediately available whereas implied 362 

colour activation presumably only happens once the object is processed to some higher level. 363 

Thus, the delay could reflect differences between bottom-up and top-down access to colour 364 

representations. It might be, for example, that processing an object with a typical colour 365 

involves the activation of information about the object’s implied colour which is fed-back to 366 

earlier visual areas to compare incoming information with stored object-knowledge. In 367 

comparison, the shapes used in the real colour trials are not associated with a typical colour 368 

and thus do not evoke such as signal. This is a plausible interpretation of the temporal delay 369 

and corresponds with earlier findings of early visual areas being involved in implied colour 370 

activation (Bannert & Bartels, 2013; Vandenbroucke et al., 2014). Second, it is possible that 371 

the binding of colour and shape information happens later in the visual processing hierarchy 372 

compared to initial processing of separate features, and that the comparison of typical and 373 

perceived colour can therefore only happen later once shape-colour binding is complete. This 374 

view is consistent with results of a recent fMRI study, which showed that object-colour and 375 

object-shape activated from memory can be distinguished in areas associated with colour (V4) 376 

and shape (lateral occipital cortex, LOC) perception, respectively, but that the conjunction of 377 

colour and shape can be decoded only later along the visual hierarchy (anterior temopral lobe, 378 

ATL; Coutanche & Thompson-Schill, 2014). Similarly, Seymour et al. (2015) showed that 379 

colour per se can be decoded in early visual areas but object surface colour (bound to form) 380 

can only be decoded in areas further along the ventral visual stream.  These findings also 381 

correspond to patient work (Patterson et al., 2007) and previous transcranial magnetic 382 

stimulation studies (Chiou, Sowman, Etchell, & Rich, 2014) which point towards the ATL as 383 

the hub for object-knowledge (for a review see Lambon Ralph, Jefferies, Patterson, & Rogers, 384 
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2017). Besides the ATL, other brain areas along the processing stream such as the medial 385 

temporal lobe  (e.g., Rey et al., 2018), and the parahippocampal cortex (e.g., C. B. Martin, 386 

Douglas, Newsome, Man, & Barense, 2018) are also involved in retrieving long-term 387 

associations. Thus, it is possible that the temporal delay reflects the time it takes to activate 388 

these long-term colour associations. Finally, it could also be that the delay reflects the greater 389 

complexity of the grey-scale objects relative to the abstract shapes, hence binding the features 390 

may take slightly longer. From the data we cannot disentangle these interpretations. Our results 391 

clearly highlight, however, that there is a similar structure to the brain response to externally 392 

perceived and internally activated colour representations, and that time seems to be the key 393 

difference. 394 

What is driving the successful decoding performance? For the real colour decoding, we 395 

used shapes that were identical across colour categories and used five different levels of 396 

stimulus luminance for each category that were perceptually matched. Therefore, the only 397 

distinguishing feature between the stimuli was colour. That means that for the real-colour 398 

decoding analysis and the cross-generalisation (i.e., training on shapes and testing on objects), 399 

we can rule out visual differences other than colour as a driving factor. Our results show that 400 

we can successfully decode real colour from ~65ms onwards. The within-implied colour 401 

decoding results show that implied colour is decodable at ~190ms after stimulus onset and then 402 

again a bit later at ~270ms. This double-peak may occur because of variance between stimuli, 403 

such that accessing colour representations might be quicker for some images with stronger 404 

colour associations (for example) than others, or between participants in the speed with which 405 

they activate these representations. Alternatively, it may relate to differences in feedforward 406 

and feedback processes. For this within-implied colour classification analysis, visual 407 

differences could potentially contribute, as natural objects cannot be perfectly matched for the 408 

different conditions (i.e., red and green), unlike in our real colour condition. Previous studies 409 
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have used line-drawings instead of photos of objects to reduce local low-level differences 410 

between stimuli (e.g., Vandenbroucke et al., 2014). Line-drawings can reduce some of these 411 

differences (e.g., local luminance differences due to texture) but also cannot completely rule 412 

out any contribution of low-level effects (e.g., shapes). In addition, there is a considerable 413 

trade-off between line-drawings in terms of similarity of the objects to real world objects which 414 

can slow down recognition and implied colour effects (Olkkonen, Hansen, & Gegenfurtner, 415 

2008; Vurro, Ling, & Hurlbert, 2013). We therefore used isoluminant, grey-scale photos of 416 

objects and dealt with differences in low-level features (e.g., edges) by using an independent 417 

exemplar cross-validation approach. We trained the classifier to distinguish typically red and 418 

green objects using all objects except one typically-red and one typically-green object (each 419 

with two exemplars, which were both left out). The classifier was then tested on the left-out 420 

pair. We thereby considerably reduced the likelihood of the implied colour classification being 421 

driven by low-level features as the classifier never trained and tested on the same objects. While 422 

limiting the influence low-level features could have on the implied object colour decoding, it 423 

is still possible that the results in this particular analysis are driven by object features other than 424 

colour. To test this, we ran the same classification analysis on the output of a deep 425 

convolutional neural network which showed that it is unlikely that low-level visual differences 426 

account for all of the within-implied classification results (see supplementary material). 427 

Crucially, however, visual differences are not a concern for the key cross-decoding analysis. 428 

Here, we used identical red and green shapes in the training set, making low-level shape or 429 

texture features a highly unlikely source of contribution to classifier performance and colour 430 

hue being the primary predictor of category for the classifier (red vs green).  431 

Our time-generalisation analysis shows that there are sufficient similarities in neural 432 

representation when perceiving real colour and activating implied colour for cross-433 

generalisation. In addition, these results speak to the important aspect of temporal differences 434 
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between colour evoked by external stimulation and internal activation.  Activating conceptual 435 

knowledge of objects from memory is thought to involve a widespread network of brain areas 436 

involved in perception and action of different object features (A. Martin, 2007; Patterson et al., 437 

2007). To access the implied colour of an object requires that the conceptual representation of 438 

that object is activated first. Using time-generalisation methods (King & Dehaene, 2014), we 439 

show here that in comparison to real colour perception, which can be decoded rapidly, 440 

accessing object-colour knowledge takes ~55ms longer. This is consistent with our behavioural 441 

data showing that real colour judgments are faster than implied colour judgments. The 442 

behavioural data do not, however, speak to the neural similarity between real and implied 443 

colour activation patterns, which are observed in the time-generalisation analyses. Our MEG 444 

results increase our existing knowledge of how real and implied colour are processed by 445 

showing that aspects of colour representations via external stimulation are also instantiated 446 

during internal activation, but with a delay. Applying MVPA to our MEG data allows us to 447 

capture the similarity of representations of real colour perception and implied colour activation, 448 

but also allow us to examine temporal differences, highlighting the value of this method for 449 

dissociating activation of memory of object features from perception of object features in the 450 

real world. 451 

Our results highlight that the activation of implied colours can occur independent of a 452 

task that focuses on colour. Participants completed a target-detection task in which attending 453 

to colour was not a useful strategy. The targets were ambiguous in colour (e.g., a capsicum can 454 

be either red or green), and this avoided biasing participants towards deliberately thinking 455 

about the implied colour of the objects. Using a task that is irrelevant to the classifier 456 

performance allowed us to explore the involuntary activation of implied colours rather than the 457 

signals associated with perhaps actively imagining colours or retrieving colour names. Not 458 

attending to the feature that is relevant for the classifier probably reduced our decoding 459 
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accuracy in general (e.g., Brouwer & Heeger, 2013; Jackson, Rich, Williams, & Woolgar, 460 

2017), but clearly supports previous studies showing that there is an involuntary activation of 461 

object-colour independent of task demands (Bannert & Bartels, 2013; Vandenbroucke et al., 462 

2014).  463 

Overall, the decoding accuracies across our analyses are low but significantly above 464 

chance with conservative statistics. As outlined above, this is probably partially due to colour 465 

being irrelevant for the task. In addition, it is important to note that we did not use extensive 466 

pre-processing, meaning we ran our analyses on effectively raw data. We use our multivariate 467 

decoding analyses for interpretation (Hebart & Baker, 2017)– if decoding is above chance, this 468 

means there is a signal that allows a categorical distinction between the conditions. Minimal 469 

pre-processing (e.g., no trial averaging, filtering, channel-selection, trial-selection) ensures that 470 

there is no potential influence of plurality of methods or specific pre-processing choices; it also 471 

means that the data overall are noisier which can result in relatively low decoding accuracies. 472 

However, it is crucial to note that low decoding accuracies does not necessarily mean that the 473 

effects are weak, as decoding accuracies are not effect sizes (cf. Hebart & Baker, 2017). Here, 474 

we show with rigorous methodological controls and strict correction for multiple comparisons 475 

that there is significant cross-generalisation from real colour to implied colour. 476 

Previous fMRI studies showed that early visual areas are involved in real colour 477 

perception and implied colour activation (Bannert & Bartels, 2013; Rich et al., 2006; 478 

Vandenbroucke et al., 2014), but other studies implicate anterior temporal regions in object 479 

colour knowledge. For example, a transcranial magnetic stimulation study showed that the 480 

behavioural effects of implied colour knowledge on object recognition are disrupted when 481 

stimulating the anterior temporal lobe (Chiou et al., 2014), complementing patient studies 482 

suggesting this area holds conceptual object information (e.g., Lambon Ralph & Patterson, 483 

2008). This highlights that activating object attributes, including implied colour, goes beyond 484 
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low-level visual areas. Our study adds time as a novel aspect to this discussion by comparing 485 

the temporal profiles of colour representations accessed via real colour perception and implied 486 

colour activation.  487 

In conclusion, our data show that there is a common representation of real and implied 488 

colour but that this representation is accessed later when triggered by activating implied colour 489 

than by perceiving real colour. This is in line with previous studies suggesting that the same 490 

brain areas are involved in object-feature activation from memory and object-feature 491 

perception. Our results highlight that applying MVPA to time-series MEG data is a valuable 492 

approach to exploring the interaction between object-feature inputs and predictions or 493 

representations based on prior knowledge. This opens multiple avenues for future studies 494 

examining the dynamic interactions between perceptual processes and activation of prior 495 

conceptual knowledge. 496 

  497 
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