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A B S T R A C T

Synchronization between oscillatory signals is considered to be one of the main mechanisms through which
neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing
either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing syn-
chronization, especially when two multichannel datasets are present. Examples include cortico-muscular coher-
ence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/
magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these
cases, a method which could find two spatial projections maximizing the strength of synchronization would be
desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG
(electromyographic)/LFP (local field potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH
maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. This
allows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we
test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the
detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and
demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency
domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal
interactions.
1. Introduction

Effective estimation of synchrony between oscillatory neuronal sig-
nals is of key importance in neuroscience. Previous research on cortical
processing has shown that phase synchronization is a prerequisite for
effective communication between neuronal populations (Fries, 2005),
providing large-scale integration (Varela et al., 2001) and selection of
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perceptually and behaviorally relevant information (Engel et al., 1997).
Large-scale synchronization is not restricted to the cortical level, as
previous studies have shown that it is also an effective way for the
communication between cortex and spinal cord (Baker et al., 1997;
Schoffelen et al., 2005; Bayraktaroglu et al., 2011). In particular, cortical
oscillations at beta frequency range (15–30Hz) have been implicated in
different aspects of the motor control (Donoghue et al., 1998; Murthy and
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Fetz, 1992; Penfield, 1954). In this respect, cortico-muscular coherence
(CMC) provides a unique possibility to investigate in a non-invasive way
the coupling between sensorimotor cortices and muscle activity (Baker,
2007; Jackson et al., 2002; Schnitzler et al., 2000).

CMC measures synchronization between cortical and muscular ac-
tivities at specific frequency bands. Its magnitude is particularly strong
during isometric parts of the movement whereas it decreases during
kinematically active parts (Kilner et al., 2000a; Riddle and Baker, 2005a).
The peak of CMC generally has a maximum in the beta frequency range
(15–30Hz) over the primary sensorimotor cortices contralateral to the
limb (Salenius et al., 1997; Tsujimoto et al., 2009; Witham et al., 2010;
Steeg et al., 2014). In healthy subjects, CMC has been mainly assessed
during isometric muscle contractions in experiments in which cortical
activity was non-invasively recorded with magnetoencephalography
(MEG) (Conway et al., 1995; Salenius et al., 1997) as well as with elec-
troencephalography (EEG) (Baker and Baker, 2002; Graziadio et al.,
2010; Halliday et al., 1998; Kristeva-Feige et al., 2002; Mima and Hallett,
1999). CMC has also been assessed in experiments performed in monkeys
where intracortical local field potentials (LFP) were acquired (Baker
et al., 1997). Different studies have reported maximum values of CMC
ranging between 0.02 and 0.2 (Conway et al., 1995; Riddle and Baker,
2005b; Salenius and Hari, 2003), and certain parameters such as peak
frequency, spectral distribution and magnitude are thought to be
modulated by task, attention and age (Graziadio et al., 2010; Kristeva--
Feige et al., 2002; Riddle and Baker, 2005a).

Because of its weak strength as well as distributed cortical origin,
detection of CMC remains challenging and thus further methodological
improvements are necessary. For example, we presented a procedure to
maximize CMC called rCMC (Bayraktaroglu et al., 2011). In that paper,
CMC between a set of EEG sensors (multivariate subspace) and one
electromyographic (EMG) electrode (univariate subspace) was opti-
mized. rCMC is a parametric model based on multiple regression. The
delay between EEG and EMG and the frequency band of interest are
searched until the linear combination of band-pass filtered EEG signals
(independent variables) that maximize CMC, using the EMG electrode as
dependent variable, is found. We demonstrated that rCMC returns
significantly higher CMC values than CMC computed between Laplacian
derivations of EEG channels and the EMG electrode. This last approach is
commonly used in CMC studies (Andrykiewicz et al., 2007; Graziadio
et al., 2010; Mima and Hallett, 1999; Saglam et al., 2008). rCMC also
allows obtaining the spatial pattern (source) of electrical brain signals
associated to the maximum CMC. Yet, rCMC is not capable of taking into
account the fact that cortico-spinal interactions are multivariate in na-
ture, not only on the cortical level, but also at the level of the spinal cord,
where multiple afferent and efferent processes occur, thus leading to
intricate patterns of muscle activity. For example, CMC can be assessed
using an electrode grid placed over the muscle (high-density EMG),
(Steeg et al., 2014). This can only be achieved with a algorithm that
maximizes synchronization taking into account multivariate central
(EEG/MEG) and peripheral (EMG) signals.

In this paper we present a method to maximize coherence between a
set of EEG electrodes and another set of EMG electrodes. This technique is
called canonical Coherence (caCOH) and is a generalization of rCMC
because both subspaces are multivariate. Unlike rCMC, which relies on
optimization in the time domain, caCOH directly maximizes the absolute
value of the coherence between two multivariate spaces in the frequency
domain. This allows very fast optimization for multiple frequency bins.
Thus, it is possible to study CMC within wider frequency ranges and
different delays.

Apart from presenting the method, we demonstrate its efficacy with
extensive simulations on the basis of realistic head modelling and show
its application for empirical multi-channel EEG and EMG recordings.
Finally, we provide other examples where caCOH can be used for the
investigation of paired datasets, for instance in case of cortico-subcortical
interactions and for hyperscanning. As caCOH maximizes a magnitude
computed from signals belonging to different modalities, it is related to
2

the multi-modal signal processing field. This field has experienced a great
advancement over the last years. Some examples of new multimodal
procedures are summarized in (Calhoun et al., 2009; Bieβmann et al.,
2010, 2011; D€ahne et al., 2015), where signals are mostly treated in time
domain. In contrast, in this manuscript we introduce a new multimodal
method for the frequency domain.

2. Methods

2.1. Theoretical description of canonical coherence (caCOH)

caCOH maximizes the absolute value of coherence between two
spaces A and B of dimension NA and NB, respectively. In our case, A is the
set ofNa vectors of signals from EMG sensors and B is the set ofNB vectors
of signals from EEG sensors. The goal is to find a real valued linear
combination of vectors of A and a real valued linear combination of
vectors of B such that the absolute value of coherence between the two
virtual sensors (i.e projected data) is maximized at a specific frequency.
Please, note that the linear combination of vectors are real valued
because an instantaneous mixing of the signals of spaces A and respec-
tively B is assumed. We first write the cross-spectrum between all sensors
(i.e. sets A and B combined) as a block matrix

C ¼
0
@CAA CAB

CBA CBB

1
A (1)

As aforementioned, our aim is now to find real valued column vectors
α and β of size NA and NB, respectively, such that

Lðα; βÞ ¼
��αTCABβj2

αTCAAαβ
TCBBβ

(2)

is maximized. Note that L (square of absolute value of coherence) is a
fourth order function of the parameters that cannot be analytically
optimized. Thus, it must be maximized numerically. We here propose a
procedure that reduces this optimization to a numerical optimization
over a single parameter, the phase lag between the two spaces A and B. In
order to achieve it, we require analytic techniques used to optimize the
real part of the coherence, which will be applied below to a transformed
cross-spectrum. Let us first write the (complex) coherence in polar
coordinates

αTCABβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αTCAAαβ

TCBBβ
p ¼ expðiΦÞc (3)

where c is the absolute value of coherence (a real valued number). Thus:

c ¼ αTexpð�iΦÞCABβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αTCAAαβ

TCBBβ
p (4)

The denominator of Equation (4) is real since α and β are real valued
vectors and the cross-spectral matrices CAA and CBB are Hermitian. Note
also that, in order to obtain a real value c, and taking into account that α
and β are real-valued, one necessarily needs to take Rðexpð�iΦÞCABÞ to
reach the desired real solution. Thus, with Rð�Þ denoting real part, the
last equation is equivalent to:

LRðΦÞ1=2 ¼ c ¼ αTRðexpð � iΦÞCAB Þβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αTCAAαβ

TCBBβ
p (5)

Therefore, if we know the phase of the coherence with maximal ab-
solute value we can find the vectors α and β that maximize LðΦÞ. Since we
do not know the phase, we make a nonlinear search across all phases.
That must be done numerically, but it is only a one-dimensional maxi-
mization over a finite range of the parameter Φ. On the other hand, the
analytic maximization of Equation (5) is standard and equivalent to an
eigenvalue problem, but we will here recall the steps. Let the absolute
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value of coherence be:

LRðα; β;ΦÞ1=2 ¼ αTCR
AB;Φβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αTCAAαβ
TCBBβ

p (6)

where CR
AB;Φ denotes the real part of the cross-spectrum expð� iΦÞCAB.

Since the cross-spectral matrices are Hermitian, the respective imaginary
parts of CAA and CBB are irrelevant. Thus, we implicitly understand that
these imaginary parts are set to zero without changing notation here.
Now we make a change of coordinates and define

a ¼ C1=2
AA α

b ¼ C1=2
BB β

(7)

Then L1=2R becomes

LRða;b;ΦÞ1=2 ¼ aTDðΦÞbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTabTb

p (8)

with

DðΦÞ ¼ C�1=2
AA CR

AB;ΦC
�1=2
BB (9)

Calculating the derivative of LRða; b;ΦÞ with respect to the compo-
nents of a and b and setting that to zero leads to

DðΦÞb ¼ aTDðΦÞb
aTa

a (10)

DðΦÞTa ¼ aTDðΦÞb
bTb

b (11)

Multiplying Equation (10) with DðΦÞT and using Equation (11), and
multiplying Equation (11) with DðΦÞ and using Equation (10), leads to
the following eigenvalue problem

DðΦÞTDðΦÞb ¼ λb
DðΦÞDðΦÞTa ¼ λa

(12)

with

λðΦÞ¼ LðΦÞ ¼ ðaTDðΦÞbÞ2
aTabTb

(13)

being the square of the coherence. The vectors α and β can be recon-
structed from the eigenvector a and b using Equation (7), where λðΦÞ,
respectively LðΦÞ is the maximal eigenvalue of Equation (12). To maxi-
mize LðΦÞ we first evaluate it over 5 different values of Φ in the range
½π =5; π� and pick the maximizing Φ. Then, we iteratively make a second
order Taylor expansion around the present value of Φ, calculating first
and second derivative numerically, and maximize the corresponding
quadratic function with an adaptive step size as used in the Levenberg-
Marquardt algorithm. A total of 10 iterations is sufficient to arrive at
an essentially exact solution.

Finally, in order to find the topographies corresponding to the spatial
filters α and β, one needs multiply the filters with their respective real
part of the cross-spectral matrix, that is:

tα ¼ CR
AAα

tβ ¼ CR
BBβ

(14)

Please, note that these topographies correspond to the patterns of the
sources of maximal coherence. The time courses of caCOH components
directly show activity of neuronal sources. However, the exact spatial
location of these sources in the brain should be recovered with source
modelling using the obtained caCOH patterns as in Equation (14). caCOH
topographies are different from the usual patterns of coherence that only
offer information about the distribution of coherence on the scalp, but
not about its neural sources. Often coherence is recovered using source
3

modelling and then multiple calculations are necessary for all the
recovered sources. In contrast, caCOH directly finds topographies of only
those neuronal sources that are coupled to maximal coherence.

In order to obtain the results presented in this manuscript, we
computed cross-spectra using the Fast-Fourier Transform algorithm
(FFT). The parameters employed were: window length of 2 s, a Hanning
window and 50% overlap and a sampling frequency of 200Hz (therefore
the frequency resolution was 0.5 Hz).

2.2. Overfitting

The filters α and β in section 2.1 are computed such that caCOH is
maximized. However, the spatial filters might overfit, that is, they might
not be generalizable to new data. To overcome this problem one can
reduce the dimensionality of the real part of the cross-spectra in the
spaces A and B, at each frequency bin, and before computing spatial
filters. For that, we used the singular value decomposition (SVD) and
selected singular vectors in each of the two data spaces whose singular
values retained at least 99% of the information. If CR is the frequency
dependent real part of the cross-spectrum, the SVD is such that:

CR ¼ UΣVT (15)

Now, the real part of the cross-spectrum is reduced by choosing col-
umn wise the first p components of the matrix U 2 Rnxn. The cross-
spectrum can be projected onto a lower dimensional space by CR ¼
UTCU with CR 2 Rpxp.

2.3. Simulations

We performed simulations in order to test the ability of caCOH to
maximize CMC. In particular, we studied whether caCOH is able to
obtain spatial filters that maximize coherence between several EMG
channels and their corresponding coupled neuronal source. We estimated
CMC using two different methods: Laplacian CMC between pairs of EEG-
EMG channels and caCOH. We simulated two different EEG sources
coupled with their corresponding EMG sources, each of them at a
different frequency, while cortical sources were not coupled between
each other. We additionally included strong background noise in the
generation of both EEG and EMG signals with variable signal-to-noise
ratios (SNR). The EEG signals were simulated for 61 channels, fitted to
the outermost layer of the standard Montreal Neurological Institute
(MNI) head (Evans et al., 1994). The head model was based on a three
compartment realistic volume conductor and was used for the calculation
of EEG forward solutions (Nolte and Dassios, 2005). The EMG signals
were simulated for 10 different electrodes and the mixing matrix was
random.

The sources of coherent activity were modelled as pseudo-random
cortical dipoles. EEG oscillations were generated by band-pass filtering
independent white noise in the 12–14 Hz and 24–26Hz frequency
ranges. Coherent EMG activities were modelled as a time-shifted version
of the corresponding cortical oscillations. Therefore, the ground truth
coherence without noise at the frequencies of interest was one.

For the generation of background EEG noise, we used 500 uncorre-
lated dipoles with random orientation and distribution on the cortex. The
noise sources had 1 =f type spectra. For the generation of background
EMG noise we used 10 noise sources of random Gaussian noise randomly
mixed with the signal sources. As a result we obtained activity from 10
simulated EMG sensors.

The simulated data was 300-s long and sampled at 200Hz. In the first
test the SNR of the CMC sources was 0.1 for EEG and 0.5 for EMG. In the
second test the SNR of EEG signals was 0.01. For the EEG signals, the SNR
was calculated as the ratio between the mean variance across channels
for the projected sources and the mean variance of additive 1 =f noise
(produced by all noise dipoles) in the center frequency of the coherent
source. The computation was similar for EMG, but the noise had uniform
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spectrum.
For each recovered source, the error between the original pattern and

the pattern recovered by caCOH was calculated according to:

Err¼ 1�
��aTo ar

��
jjaojj �jjar jj (16)

where ao is the original simulated pattern and ar is a pattern recovered by
caCOH. The total error for all sources was obtained averaging over all
errors.

This procedure was repeated 100 times with randomly located
sources at each frequency.

2.3.1. Significance of coherence
The confidence limit (CL) for the coherence obtainedwith caCOHwas

computed using permutation tests (Hesterberg et al., 2005). For this
procedure we repeated all steps of caCOH, but the EMG segments were
shuffled with respect to the EEG data. For each permutation, we obtained
a specific coherence value and altogether 500 permutations were per-
formed, which corresponds to a p-value of 0.0224, see (Ojala and Gar-
riga, 2010). We chose this value because it allows finding significant
results and simultaneously maintaining a reasonably low computational
cost. Thus, significant CMC values of the original data were those
exceeding the 97.5 percentile of permuted coherence.

2.4. Dataset 1: low number of EMG channels

Data were recorded from 14 healthy volunteers without history of
neurological or psychiatric disorders. The experimental protocol was
approved by the Institutional Review Board of Charit�e, Berlin, and par-
ticipants gave their written informed consent prior to the recordings. All
subjects were right-handed according to the Edinburg Handedness In-
ventory (Oldfield, 1971) and had normal or corrected to normal vision.
These data were already described in (Bayraktaroglu et al., 2011).

2.4.1. Paradigm
A digit displacement paradigm was used, where the participants had

to manipulate a compliant object by moving a lever against a load and
then maintaining a constant force. This paradigm was selected as pre-
vious studies reported that the coherence was greater when the task
involved a compliant lever (Kilner et al., 2000b; Riddle and Baker,
2005a). Volunteers were seated in a comfortable chair with their arms
rested on the chair handles, forearms flexed at 60 ∘ and hands pronated.
Participants had to press a spring-loaded lever with the left or right
thumb at 0.5 N force. The force level was measured with a Honeywell
Load Sensor (FSG15N1A) and visually presented to the participants as a
horizontal bar proportional to the exerted force. A cross in the center of
the screen was also displayed and served as eye-fixation point. The
displacement of the spring-loaded lever was 3.5 cm. Participants had to
perform the task with each hand separately and the order was
counter-balanced between participants. Participants were instructed to
reach the desired force level as fast as possible after a single tone was
presented and hold the force constant until a double tone was presented.
One hundred trials were recorded for each hand in four blocks. Each trial
lasted 9 s in total (5 s active and 4 s rest). There were 60 s of rest between
the blocks.

2.4.2. Data acquisition
A BrainAmp MR plus from Brain Products (Germany) was used to

record EEG and EMG data. The signals were filtered between 0.015 and
250 Hz with a voltage resolution of 0.1 μV for EEG and 0.5 μV for EMG.
The sampling frequency as 1000Hz but the data was later band pass
filtered and downsampled to 200Hz. The EEG data was referenced to
physically linked earlobes. An EEG cap (EasyCapTM) with 61 Ag/AgCl
sintered ring electrodes (12mm diameter, EasyCap GmbH, Germany)
densely covering the sensorimotor cortex was employed to record EEG
4

signals. EOG signals were also acquired with two electrodes placed on the
right zygomatic and supraorbital processes in order to asses ocular arti-
facts. Also EMG signals were acquired. In particular, 6 EMG electrodes
were placed over the thenar side of each hand and signals were recorded
from the Abductor Pollicis Brevis (APB) muscle. These electrodes were
Ag/AgCl sintered sensors with 4mm diameter. The EMG reference
electrode was placed on the styloid process of the ulnar bone and a
ground electrode on the inner surface of wrist at the midline, with Ag/
AgCl sintered sensors of 12mm diameter. Please, see the video of the
paradigm provided as supplementary material, where a subject is siting
relaxed with a thumb on a spring-loaded lever. Upon a presentation of an
auditory beep, the subject presses on the lever reaching a force of about
0.5 N, this force being displayed on a screen as a horizontal bar propor-
tional to the applied force.

2.5. Dataset 2: high-density EMG recordings

Data were recorded from 16 healthy volunteers without history of
neurological or psychiatric disorders. The experimental protocol was
approved by the Ethics Committee at the Faculty of Human Movement
Sciences, Vrije Universiteit Amsterdam, and participants gave their
written informed consent prior to the recordings. Two right-handed
participants were selected for this study. The original data was pub-
lished in de Vries et al. (2016).

2.5.1. Paradigm
Participants performed a bimanual precision-grip task during simul-

taneous recording of EEG and EMG signals. The participants held a
compliant force sensor in each hand and had to produce force using a
pinch grip. The subjects’ task was to track a visual target by moving the
cursor displayed on a monitor. At the start of each trial, the target was in
the starting position. Then, it linearly moved to the final target position
(force ramp) during the first 5 s, where it remained for 10 s (constant
force). Participants moved the cursor by applying force to both sensors
(left and right hand) with the aim of keeping the cursor within the target.
The position of the cursor was a linear combination (weighting) of left
and right forces generated by the participant, see de Vries et al. (2016)
Fig. 1, for more details.

2.5.2. Data acquisition
EEG and high-density surface electromyography (HDsEMG) were

recorded from all participants. EEG was acquired using a 64-electrode
cap with electrodes placed according to the extended 10–20 system.
Brain signals were amplified using a 64-channel Refa amplifier (sampling
rate 1024 Hz; TMSi, Enschede, The Netherlands). HDsEMG was acquired
using 2 64-channel (8x8, 4-mm interelectrode distance) electrode grids
and amplified using a 128-channel Refa amplifier (sampling rate
2.048 Hz; TMSi). The electrode grids were placed over the flexor pollicis
brevis (FPB) muscle of each hand. These data were synchronized using a
trigger pulse sent to both amplifiers at the beginning of each trial.

2.6. Preprocessing

The data analysis was performed in MATLAB (2017a; The Math-
Works, Natick, MA) using the BBCI toolbox (Blankertz et al., 2016), the
Fieldtrip toolbox (Oostenveld et al., 2011), the EEGlab toolbox (Delorme
and Makeig, 2004) and custom programmed software. All data were
down-sampled to 200Hz.

2.6.1. Dataset 1
CMC was estimated during the post-stimulus interval between 2 and

5 s, which corresponded to the stable hold period of the task. This is the
interval at which the strongest coherent activity in beta band can be
expected (Baker et al., 1997; Kristeva et al., 2007; Riddle and Baker,
2005a). Before CMC calculation, artefactual trials were rejected by visual
inspection for the presence of strong abrupt force changes in the hold



Fig. 1. Results of the simulations. Left: histogram of CMC strength values for caCOH (blue) and Laplacian channels (orange). Center: histogram of pattern recovery
errors for EEG signals. Right: histogram of pattern recovery errors for EMG signals. Note that recovery errors can only be computed for caCOH and not for Laplacian
channels. Up: SNREEG is 0.1. Bottom: SNREEG is 0.01.
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period. If the force output deviated from 0.5� 0.1 N range, the epoch was
discarded, (see Bayraktaroglu et al. (2011)).

2.6.2. Dataset 2
CMC was estimated during the post-stimulus interval between 6 and

15 s, which again corresponded to the constant force task. Before CMC
calculation, artefactual EEG and EMG channels were manually rejected
based on their variance in the band range between 8 and 30Hz. Addi-
tionally, ICA was applied to EEG data to further remove artefactual
components. Redundancy of EMG data was reduced by applying Prin-
cipal Component Analysis (PCA) on the EMG band-pass filtered data
between 10 and 28Hz. The number of dimensions maintained corre-
sponded to 99% of the variance.

3. Results

3.1. Simulations

Fig. 1 shows the simulation results. They represent the CMC strength
and error of EEG and EMG pattern recovery in the simulated conditions.
The left panel of this Figure shows that the CMC strength is significantly
higher for caCOH in comparison to Laplacian channels in both SNREEG
conditions (p << 0.01 for both frequencies using Wilcoxon tests). In the
case of low SNR (i.e. SNREEG ¼ 0.01) the average CMC strength was 0.38
for caCOH and 0.05 for Laplacian derviations after 100 repetitions.
Additionally, the center and right panels of Fig. 1 depict histograms of
5

errors found in the recovery of EEG and EMG patterns of caCOH. The
recovery errors are very small, concentrated around 0.005 for EEG and
0.001 for EMG if SNREEG ¼ 0.1 and around 0.05 for EEG and 0.001 for
EMG if SNREEG ¼ 0.01$, which indicates a very good performance of the
caCOH algorithm, even under very low SNR conditions.

Fig. 2 provides an example of pattern recovery and CMC strength
obtained with caCOH. Note that the algorithm recovers both EEG sources
that are active simultaneously at different frequencies. Importantly,
caCOH correctly recovers patterns of EEG and EMG sources. Note here
that it is not possible to recover patterns of sources using Laplacian
derivations. At the bottom of Fig. 2 we also show the result of an addi-
tional experiment where EEG signals had a very low SNR of 0.01. This
plot shows that in this condition Laplacian derivations cannot recover
CMC but caCOH delivers the expected peaks at the frequency bands of
interest.
3.2. Dataset 1: grand-average caCOH

The subjects were able to keep the required force level during the
active period of the trials. The trials exceeding�0.1 N of the desired force
in the analyzed period (2–5 s), were removed from the analysis. The left
panel of Fig. 3 shows the averaged patterns of left (up) and right hand
(down) chosen at the maximum caCOH frequency bin. The mean fre-
quency and standard error of CMC for the left and right hand perfor-
mance was 20:3� 1:5 and 18:3� 1:6 Hz, respectively. In order to
correctly average patterns we computed the correlation between the



Fig. 2. Example of the pattern recovery in simulations. Up Left: original EEG and EMG patterns at two different frequencies. Up Right: recovered EEG and EMG
patterns at two different frequencies. Middle: caCOH and Laplacian CMC spectrum with SNREEG at 0.1. Bottom: caCOH and Laplacian CMC spectrum under low SNR
conditions, SNREEG at 0.01. Note that ground truth CMC is 1 at the frequencies of interest.
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pattern of one subject to all the patterns from other subjects and cor-
rected the sign if the correlation was negative in order to stratify the
polarity of the sources.

We also calculated the cortical sources corresponding to the patterns
of sources obtained with caCOH, shown in the left panel of Fig. 3. The
inverse modelling was performed with eLORETA (Pascual-Marqui et al.,
2011). The right panel of Fig. 3 shows corresponding eLORETA solutions.
The active sources were primarily localized over the contralateral pre-
and post-central gyri.
3.3. Dataset 1: within-subject specificity

Fig. 4 shows further advantages of the caCOHmethod with respect to
resolving CMC at different frequency ranges. It demonstrates optimized
patterns at each frequency bin (top of figure) and a spectrum of optimized
CMC (bottom). Here it is important to show data from a single participant
6

since the location of the peaks in CMC varies across participants. At the
bottom of Fig. 4 one can observe the optimized CMC spectrum where red
stars indicate a significant result after permutation testing. In general,
one can see that, although the patterns at different frequency ranges
correspond mostly to sources located in the sensorimotor areas of the
right and left hemisphere, there are also small variations in the spatial
features thus making each pattern unique in its relation to the underlying
neuronal source. The patterns whose scalp is circled in magenta were
selected to perform eLORETA source localization. A spatial distribution
of these sources confirms further a heterogeneity of the neuronal activity
underlying CMC at different peak frequencies as could be seen in Fig. 5.
Finally, the maximal CMC values using common average reference sig-
nals were 0.065 and 0.077 for left and right hand respectively, using
Laplacian derivations these values were 0.088 and 0.210 and for caCOH
they were 0.202 and 0.225.



Fig. 3. Patterns and sources for CMC obtained in the first dataset from the
grand-average of subjects. Red color indicates stronger sources, whereas blue
color means weaker sources. (a) Averaged caCOH patterns for left (up) and right
hand (down) at the maximal CMC frequency of each subject. (b) eLORETA
source localization of patterns shown on the left panel.
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3.4. Dataset 2: inter-subject specificity

For illustrative purposes we selected data from two participants
where EMG was recorded using high-density electrode grids (see
Methods). This allowed us to calculate and visualize not only spatial
patterns of EEG but also of EMG activity. In Fig. 6 it is possible to observe
distinct patterns at different frequencies for both the EEG and EMG sig-
nals. On the bottom one can see the optimized CMC spectrum. Red dots
indicate that the result is significant, magenta circles indicate the fre-
quency of the EEG and EMG patterns selected for visualization on the top
Fig. 4. CMC topographies and spectra for a representative subject. Top: EEG patter
Patterns marked in magenta were selected for localization. Small vertical lines at e
spectra, lying above these vertical bars, indicate significant phase synchronization b
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of each CMC spectrum.
The maximal CMC values obtained with common average reference

signals were 0.120 and 0.178 for Subject 1 (respectively left and right
hand), with Laplacian derivations those values were 0.145 and 0.206 and
for caCOH they were 0.299 and 0.321. For Subject 2 and common
average reference signals the coherence values were 0.246 and 0.085, for
Laplacian derivations the results were 0.264 and 0.120, and finally they
were 0.362 and 0.237 for caCOH.

For the subjects in Fig. 6 we also localized the EEG patterns at the
frequencies circled in magenta in that figure. The results are shown in
Fig. 7. In this case of bilateral hand performance, we observe neuronal
sources primarily over the contralateral sensorimotor cortices with
respect to the EMG from the hand used for caCMC. Yet, occasionally we
also detect bilateral patterns of neuronal activation over the sensorimotor
areas, e.g. in Subject 1, right hand.

4. Discussion

Here we presented a novel method to maximize CMC between two
multivariate spaces called caCOH. It is based on the maximization of the
absolute value of the coherence in the frequency domain. For each fre-
quency bin, two spatial filters are computed in order to maximize the
coherence between the projected components. When applied to EEG and
EMG, one obtains a maximization of CMCwith individual spatial patterns
for cortical and muscle activity.

4.1. Maximization of coherence with caCOH

caCOH finds a linear combination of all EEG and all EMG electrodes
that maximizes the absolute value of coherence between both signals.
The fact that all EEG and all EMG channels can be used distinguishes this
method from other CMC estimates based on bipolar or Laplacian
filtering. caCOH presents also advantages over rCMC (Bayraktaroglu
et al., 2011), which is based on multiple regression and that can only be
applied to a single EMG channel and specific frequency bands. In the case
ns found with caCOH of a single subject. Bottom: spectrum of caCOH strength.
ach frequency bin consisting of dots indicate permutation runs. Points on CMC
etween EEG and EMG activity.



Fig. 5. eLORETA solution for CMC patterns shown in Fig. 4. The patterns were
obtained from a representative subject. On the left column one can see the re-
sults of the localization of patterns found for the left hand, respectively on the
right column patterns of the right hand are visible. The frequencies at which the
patterns were obtained are also displayed next to the respective pictures. Red
color indicates stronger sources whereas blue color means weaker sources.

Fig. 6. Examples of individual EEG and EMG topographies obtained with caCOH. Top
bins. Bottom: spectrum of caCOH strength.
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of caCOH, the maximization is iteratively performed for all frequency
bins and delays. Thus, caCOH can be used to explore CMC
subject-dependent peaks and patterns over the complete frequency range
of interest.

Additionally, and unlike coherence estimation based on Laplacian
derivations, caCOH allows the recovery of both EEG and EMG topogra-
phies related to cortical and muscular coherent sources. Thus, it is
possible to reconstruct neuronal sources coupled with maximum coher-
ence using inverse modelling (such as the eLORETA method). These in-
verse solutions showed that caCOH topographies were best modelled by
sources in the contralateral sensorimotor areas, in agreement with pre-
vious studies (Gross et al., 2001; Salenius et al., 1997; Schoffelen et al.,
2008).

caCOH exhibits several advantages over single channel approaches to
compute CMC (Yao et al., 2007). These methods suffer from major
mixing of signals from multiple oscillatory sources, which represents a
serious drawback to study activity from specific cortical areas. Other
approaches employing spatial filters, such as bipolar (Graziadio et al.,
2010) or Laplacian derivations (Mima and Hallett, 1999) can alleviate
the superposition problem, but do not take into account EMG informa-
tion, and they could filter out neuronal oscillations that effectively
contribute to CMC. Beamformer techniques have proved useful to study
CMC (Gross et al., 2001; Schoffelen et al., 2008) but require massive
statistical testing for each voxel and the use of detailed conductivity in-
formation that is not always available.
4.2. Simulations

Results of the simulations in Fig. 1 show that caCOH is able to
accurately extract CMC values and recover EEG and EMG patterns
occurring simultaneously at two different frequencies. Moreover, caCOH
estimated significantly higher CMC in comparison to Laplacian channels.
When the SNR was very low, Laplacian channels recovered CMC values
barely over 0, whereas caCOH could recover peaks of around 0.38 in
: EEG and EMG patterns optimizing CMC of a single subject at specific frequency



Fig. 7. Localization of coherent activity representing inter-subject variability of
CMC results. Sources are obtained with eLORETA, for two subjects at the fre-
quency bins shown in Fig. 6. Their corresponding EMG patterns are on the right
of each source figure. Red color indicates stronger sources and blue color
whereas blue color means weaker sources.
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average. Thus, caCOH was still able to recover CMC peaks where Lap-
lacian derivations did not show clear CMC. This is due to the fact that
caCOH spatial filters not only reflect the configuration of sources but also
project out noise contributions distributed among 500 dipoles generating
1 =f noise. In addition, and as shown in section 3.1, the recovery error for
EEG and EMG patterns was very small even for very low SNRs.

Furthermore, as caCOH operates iteratively over all frequency bins, it
is possible to recover patterns and components for different oscillatory
components, as demonstrated in Fig. 2. Again, this figure shows that
caCOH has stronger values compared to Laplacian channels, which is
particularly important for the signals with poor SNR. In fact, in many
papers reporting CMC research one can see rather flat coherence spectra
with only some hints of the peaks. The use of caCOHwould guarantee the
best multivariate solution for the spatial filter, thus providing a higher
sensitivity for the detection of interactions between cortical and muscle
activity. Finally, in our simulations (Fig. 2) it is possible to see that the
lowest levels of CMC are higher for caCOH (between 0.10 and 0.15) than
for Laplacian derivations. This is due to the optimization, that causes
overfit at the frequency bins where CMC is not present. Thus, in order to
obtain significant CMC values, one needs to run permutation tests as
explained in Section 2.3.1.
4.3. Subject-specific results

As shown in Section 3, caCOH provides a CMC spectrum for all fre-
quency bins. The subject-specific results reveal peaks at several fre-
quencies corresponding to μ and β bands. Moreover, the peaks and
patterns of maximal CMC are subject-dependent. Furthermore, there
usually exist several frequency bins where CMC is significant according
to the permutation tests. Yet, these peaks do not occur at the same
9

frequencies in different subjects. The results for the first dataset clearly
demonstrate contralateral neuronal sources that are particularly pro-
nounced in the precentral gyrus. In our case, we performed inverse
source modelling of caCOH patterns with eLORETA. Nevertheless, these
patterns can also be used for inverse modelling with equivalent current
dipoles, minimum-norm estimates and beamformers. The time courses of
caCOH, however, directly represent source activity. And thus one can
investigate their temporal dynamics using phase and amplitude.

An example of different patterns at different frequency bins for the
same subject is shown in Figs. 4 and 5. It can be seen that patterns and
their corresponding sources depend on the frequency bin at which they
are measured. Even, CMC values of different hands are not necessarily
significant at the same frequency bins for the same subject. The dissim-
ilarity between patterns can be quantified using a technique similar to the
calculation of the recovery error (see Section 2.3). The larger the error,
the higher the difference between patterns at different frequency bins.
We computed these errors between those patterns circled in magenta in
Fig. 4, the results ranged between 0.79 and 0.49 for the left hand and
between 0.90 and 0.36 for the right hand. This in turn indicates a
contribution of distinct neuronal CMC sources for different frequency
bins. This is one of the aspects that up to now was difficult to assess,
whereas this is now possible with caCOH.

An example of different patterns from different subjects is also visible
in Fig. 6. In this case, caCOH can be used to its full advantage as we have
multichannel high-density recordings for both cortical and muscle ac-
tivity. The motor task in this paradigm required a simultaneous control
with both hands, that can be associated with the bilateral activation of
sensorimotor cortices (Fig. 7). This control is known to be associated with
the activation of both hemispheres, not only in the primary motor cortex
but also in pre-motor and supplementary motor cortices (Swinnen and
Wenderoth, 2004; Noble et al., 2014). The presented findings show that
caCOH is able to extract multiple distinct patterns of cortico-muscular
interactions between different cortical and spinal regions involved in
bimanual motor performance.

4.4. caCOH as a general tool for studying synchronization between
simultaneously recorded datasets

caCOH is not limited to studying cortico-muscular interactions. There
are also other scenarios in EEG/MEG/LFP research where this method
can be utilized. caCOH can be used for the investigation of neuronal
interactions between cortical (EEG/MEG) and subcortical activity, the
latter is typically recorded as a result of neurosurgery relating to different
neurological problems. For instance in Parkinson’s Disease, electrodes
can be implanted to the Subthalamic nucleus (STN) for the therapeutic
purposes. A number of previous studies investigated interactions be-
tween cortical MEG activity and STN activity reflected in STN LFPs
(Litvak et al., 2010). In those studies, however, cortico-STN coherence
was calculated using different combinations of each STN contact and
cortical sensor or voxel activity (e.g. after beamforming) obtained with
MEG. In our case, one can apply caCOH to find simultaneous spatial
projections for two datasets representing subcortical and cortical activity.
Another example for the use of caCOH is hyperscanning, where EEG
activity is simultaneously recorded from two (or even more) subjects
(Koike et al., 2015). The rationale is to find synchronization between
neuronal activity of two subjects. Instead of using mass-bivariate calcu-
lations of synchronization between homologous electrodes in both sub-
jects, one could use caCOH to find spatial filters for each subject to
identify neuronal activity that is maximally synchronous between
subjects.

In conclusion, we have developed a novel method for phase syn-
chrony detection based on the maximization of the absolute value of
coherence between neural signals of different origins (for example brain
and muscular signals) in the frequency domain. The method, called
caCOH, was used in this work to maximize CMC by taking the complete
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EEG and EMG spaces into account.caCOH also allowed the extraction of
EEG and EMG topographies, that could be then used for an inverse
localization of neuronal and muscular sources over the complete spec-
trum of interest. Importantly, caCOH allows subject-specific maximiza-
tion of coherence over the complete frequency spectrum. Finally, the
method can also be used for other studies relating to the investigation of
cortico-subcortical interactions and neuronal synchronization between
subjects in case of hyperscanning.
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