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Abstract 

The brain predicts the timing of forthcoming events to optimize processes in response to 

them. Temporal predictions are driven by both our prior expectations on the likely timing of 

stimulus occurrence and the information conveyed by the passage of time. Specifically, such 

predictions can be described in terms of the hazard function, that is, the conditional 

probability that an event will occur, given it has not yet occurred. Events violating 

expectations cause surprise and often induce updating of prior expectations. While it is well-

known that the brain is able to track the temporal hazard of event occurrence, the question 

of how prior temporal expectations are updated is still unsettled. Here we combined a 

Bayesian computational approach with brain imaging to map updating of temporal 

expectations in the human brain. Moreover, since updating is usually highly correlated with 

surprise, participants performed a task that allowed partially differentiating between the 

two processes. Results showed that updating and surprise differently modulated activity in 

areas belonging to two critical networks for cognitive control, the fronto-parietal (FPN) and 

the cingulo-opercular network (CON). Overall, these data provide a first computational 

characterization of the neural correlates associated with updating and surprise related to 

temporal expectation. 

 

Keywords: Bayesian brain, fMRI, surprise, temporal prediction, updating 
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1 Introduction 

1
The ability to generate accurate predictions about the timing of forthcoming events is 

essential to temporally optimize cognitive processes ranging from perception to action 

selection. Temporal predictions can be formally described in terms of the hazard function, 

that is, the conditional probability that an event will occur given it has not yet occurred 

(Janssen and Shadlen, 2005; Nobre and van Ede, 2018). Accordingly, temporal predictions 

depend on both prior expectations about the likely timing of events and the information 

conveyed by the elapse of time. To illustrate this, consider a common breakfast scenario in 

which you put your toast in the toaster. While waiting for the toast, you have some 

expectations about “when” the toast is more likely to jump out and, critically, such 

expectations grow over time. Previous reaction time (RT) experiments employing a 

foreperiod (FP; i.e., preparatory time interval) between warning signal and target provided 

compelling evidence that the brain shows an anticipatory activity that tracks the temporal 

hazard of target occurrence (Bueti et al., 2010; Herbst et al., 2018). However, how the brain 

forms and revises prior temporal expectations still remains an unsettled issue. Here, we 

took a computational approach in an fMRI experiment to address this fundamental 

question. Specifically, the Bayesian brain framework was applied to quantitatively describe 

belief updating about FP distributions.  

According to the Bayesian brain hypothesis (Kersten et al., 2004; Knill and Pouget, 2004; 

Friston, 2005; Doya et al., 2007), the brain weighs current evidence (likelihood) on the basis 

of expectations about the environment (prior beliefs) and updates such beliefs into 

                                                      
1
 Abbreviations: aINS, anterior insula; CON, cingulo-opercular network; cPPI, correlational psychophysiological interaction; dACC, dorsal 

anterior cingulate cortex; DKL, Kullback-Leibler divergence; EPI, echo-planar image; FWE, family-wise error; FD, frame-wise displacement; 

FDR, false discovery rate; FFG, fusiform gyrus; FP, foreperiod; FPN, fronto-parietal network; GLM, general linear model; IFG, inferior 

frontal gyrus; IPS, intra-parietal sulcus; IS, Shannon information; ITI, inter-trial interval; LMM, linear mixed model; PCC, posterior cingulate 

cortex; PCun, precuneus; PM, parametric modulator; PPC, posterior parietal cortex; pre-SMA, pre-supplementary motor area; RT, reaction 

time; SD, standard deviation; TE, echo time; TR, repetition time; VOI, volume of interest. 
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posterior ones. Given an agent’s beliefs, those events fulfilling our prior expectations can be 

predicted to optimize behavior. Conversely, those events violating our expectations are 

surprising, which commonly leads to behavioral costs and to an update of the internal 

model in order to improve future predictions. It is important to note, however, that a 

surprising observation does not always give rise to an update of predictive models (Itti and 

Baldi, 2009). Indeed, although surprise and updating are likely to co-occur (i.e., they are 

correlated), they reflect distinct cognitive processes that have started to be differentiated at 

the neural level only by a few recent studies (O'Reilly et al., 2013; Schwartenbeck et al., 

2016; Kobayashi and Hsu, 2017).  

To the best of our knowledge, no previous research has investigated in the same study the 

neural mechanisms associated with both updating of temporal expectations and the effect 

of temporally unexpected, surprising, events. To this end, in the present study we modeled 

our FP task after a previous spatial paradigm by O'Reilly and colleagues (2013), who 

investigated the neural correlates of updating and surprise about spatial locations. Briefly, 

the authors employed a task manipulation that allowed having a subset of surprising events 

not eliciting updating. Although updating always occurs in the presence of surprising events, 

their task was successful in identifying distinct brain areas associated with updating and 

surprise in the spatial domain.  

In sum, the aim of the present study was to investigate the brain correlates of Bayesian 

updating about temporal expectations and to distinguish them from surprise correlates not 

involved in updating. To this end, we implemented an ideal Bayesian observer, which 

enabled us to capture participants’ beliefs in terms of probability distributions and to model 

belief updating using Bayes’ rule. The measures of surprise and updating obtained through 
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this model were then used as parametric explanatory variables of both behavioural and 

fMRI data to address our research questions.  

 

2 Materials and Methods 

2.1 Participants 

The study included an initial sample of 26 participants, who were reimbursed 25 euros for 

their time. Data from two participants were discarded because of excessive head 

movements (see details on the MRI preprocessing section). Additionally, one participant 

was excluded due to falling asleep (11% of no responses) and another one due to low 

compliance with task instructions (the participant reported a change of strategy during the 

session that led to a lot of anticipations and to an overall accuracy of 49%). Therefore, the 

final sample comprised 22 participants
2
 [10 females; mean age: 26 years (standard 

deviation, SD = 4 years), range: 20-34 years]. All of them were right-handed, as assessed 

with the Edinburgh Handedness Inventory (Oldfield, 1971) with an average score of 89.1 (SD 

= 11.7, range: 60-100), reported no history of neurological or psychiatric disorders, had 

normal color vision and normal or corrected-to-normal visual acuity (MRI-compatible 

glasses were used when appropriate). The procedures involved in this study were approved 

                                                      
2
 Based on a very recent study (Ostwald et al., 2019) presenting power functions for voxel- and 

cluster-level inference in the RFT-corrected multiple testing scenario, we can provide an estimation 

of the sensitivity to find significant cluster-level effects given our sample. Assuming an FWE-

corrected significance level of α = .05 and a minimal power of 1-β = .80, our sample size was large 

enough to detect a significant result with a medium-small effect size of d = .35 assuming a partial 

alternative hypothesis parameter of λ = .1 (or with an effect size of d = .26 assuming a partial 

alternative hypothesis parameter of λ = .3). Concerning behavioral analyses, it should be noted that 

the number of observations we had in our study (obs = 6.903) is well above that recommended for 

mixed-effects models in reaction time experiments (Brysbaert & Stevens, 2018), thus assuring that 

our study was properly powered. 
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by the Bioethical Committee of the Azienda Ospedaliera di Padova. Participants gave their 

written informed consent before the experiment, in accordance with the Declaration of 

Helsinki. 

2.2 Task and procedure  

As mentioned in the Introduction, we modeled our temporal preparation task after the 

spatial one developed by O’Reilly and colleagues (2013). The task was implemented in 

MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) using the PSYCHOPHYSICS 

TOOLBOX 3 (Brainard and Vision, 1997; Pelli, 1997; Kleiner et al., 2007). Each trial began with 

the presentation of an uninformative warning signal that consisted of a black fixation cross. 

The warning signal was displayed centrally against a gray background and remained on the 

screen for the whole FP duration for that trial. As soon as the FP elapsed, the warning signal 

was replaced by the target, which consisted of a colored circle (see below) with a diameter 

equal to the length of the cross arms, centrally presented for 1500 ms (Fig. 1A). Participants 

were required to respond to the onset of the target as quickly as possible by pressing a 

button of an MRI-compatible response box with their index finger. Half of the participants 

used their right hand and the other half their left hand. Within each task condition, the 

inter-trial interval (ITI; a blank screen) pseudo-randomly varied in order to approximate a 

Poisson distribution having a lambda of 2, which was shifted of 2 s to the right (i.e., in the 

range from 2 to 12 s).  

In 80% of the trials, the FP duration was drawn from a Gaussian distribution (normal FP) 

with a mean and a standard deviation that remained fixed during a block, but that abruptly 

changed across blocks. Blocks were not temporally separated, such that the first trial of a 

new block followed directly the last trial of the previous block. In the remaining 20% of 
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trials, the FP duration was drawn from a uniform distribution (uniform FP) in the 200-3000 

ms range. Consequently, the generative probability density function over FP duration (Fig. 

1B-C) for each block was: 

 

����� = .80	�������~���, ��� + .20	�������~��200	��, 3000	���� (1) 

 

Importantly, participants were instructed to use the color of the target in order to 

distinguish the beginning of a new block from uniform trials. More specifically, in normal 

trials each target could be filled with one of four colors (vermillion, reddish purple, bluish 

green, and blue). A given color (i.e., blue) was kept constant over a block of trials and 

changed only when a new block started. Unlike normal trials, in uniform trials the target was 

always presented in white. In such a case only, participants were to respond to the target 

but with the explicit instruction that the temporal information associated with it  (either 

earlier or later than the actual FP distribution in that block) was useless to anticipate the 

next target occurrence. In sharp contrast, a change in color signaled the beginning of a new 

block and prompted participants to use the temporal information from that trial to update 

their expectation and predict subsequent target onsets. Summarizing then, the color 

manipulation created three types of trials: “predictable” trials in which target onset in a 

given block could be easily predicted using the information from previous trials, “update” 

trials (signaled by a change in target color) in which the unpredicted FP led to strongly 

update the internal model in order to anticipate the next target onset, and “uniform” trials 

that did not require any updating of FP distribution despite their break of current temporal 

expectation. 
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The experiment was composed of 33 blocks with a total number of trials equal to 350. The 

length of a block was in the range of 7-13 trials (mean = 9.82, SD = 1.24). For each new 

block, the mean of the Gaussian distribution from which the normal FPs were extracted was 

at least 3 SDs away from the previous block in order to ensure a noticeable distribution 

change between blocks. Moreover, 16 blocks had an FP mean lower than the previous block 

and 16 blocks a mean higher than the previous one. Accordingly, half of the update trials 

had an FP duration shorter than the mean of the previous Gaussian distribution, while the 

other half had a longer FP duration. The same manipulation was applied to uniform trials 

such that they were divided into shorter and longer ones with respect to the mean of the 

current Gaussian distribution.  

Overall, the 32 Gaussian distributions (not considering the first block) were derived from an 

orthogonal combination of 7 mean values (500, 800, 1100, 1400, 1700, 2000 and 2300 ms) 

and 4 SD values (20, 40, 60 and 80 ms). In total, there were 6 fMRI runs. Participants were 

informed that each new run started using the same FP distribution as that used on the 

previous block. At the beginning of a new run, the number of trials before the new block 

was in the range of 4-6 (mean = 5.2, SD = 0.8). 

Before the fMRI session, participants practiced the task outside the MRI bore. They 

performed a shorter version of the experimental task comprising four blocks. In the first two 

blocks, participants were presented with normal FPs only in order to familiarize themselves 

with updating after a color change. In the subsequent blocks, we introduced uniform FPs 

and carefully explained the difference between them and normal ones. Participants were 

explicitly told that there was no relation between a given color and a given duration and to 

use the color just to distinguish uniform from update trials. 
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Figure 1| Paradigm and schematic depiction of the experimental approach. (A) Each trial started with the presentation of 

an uninformative warning signal (fixation cross) that remained on the screen for a given foreperiod (FP) duration (as shown 

in panel B). The participant’s task was to respond to the onset of a target (colored circle) that appeared after the FP 

elapsed. (B) Plot of FP duration over 30 trials. In most of the trials (i.e., 80%), the onset of the colored targets was 

predictable, because they occurred after an FP drawn from a Gaussian distribution (panel C) with a mean and standard 

deviation that remained fixed during each block of trials. Blocks were not temporally separated such that a change in the 

target color signaled the beginning of a different FP distribution than that used in the preceding block. On 20% of the trials, 

the FP duration was drawn from a uniform distribution in the 200-3000 ms range. The targets for these trials were 

unpredictable and were distinguished from the other trial types by their white color. Importantly, the white targets did not 

instantiate a new block but future target onsets followed the original FP distribution. (C) Plot of FP probability distributions 

within three blocks of trials from which the corresponding FP durations depicted in panel B were drawn. 
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2.3  Computational approach 

2.3.1 Ideal Bayesian observer.  

The model was an ideal Bayesian observer adapted from the one specifically designed by 

O'Reilly and colleagues (2013) for these kinds of learning tasks. As shown in Equation 1, FPs 

were drawn from a distribution that was a mixture of a Gaussian and a uniform distribution 

(i.e., generative model). The ideal Bayesian observer sequentially estimated the parameters 

of the Gaussian distribution that led to each FP duration on the basis of current and 

previous observations (i.e., inversion of the generative model). It is important to note that 

we are not assuming here that participants’ updating is optimal or exclusively based on the 

information elaborated by the model (Waskom et al., 2017). Rather, the use of an ideal 

Bayesian observer represents “just a description of optimal behavior” (Friston, 2012), which 

allows formalizing hypotheses and making quantitative predictions about cognitive 

processes (Frank, 2013; see also Griffiths et al., 2012, for a thorough discussion on the use 

of Bayesian models).  

The present model aims to iteratively infer the parameters μ and σ of the Gaussian 

distribution underlying normal FPs. After each new observation, it estimates the posterior 

probability for each possible pair of parameters μ and σ (i.e., the posterior probability over 

parameter space). The area of the employed parameter space was 300 × 15, that is, the 

combination of all the means from 10 to 3000 ms and SD from 10 to 150 ms in steps of 10 

ms.  

Updating was differently computed according to the trial type. After predictable trials, 

updating was computed using Bayes’ rule as: 
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(1) ����~���,��|���:� , ���� !"#$%�� ∝ ��������~���,��� × ����~���,��|���:�(��. (2) 

 

Thus, the posterior at trial n was proportional to the likelihood of the experienced FP 

duration (FPn) times the prior at trial n, which is equivalent to the posterior at trial n-1. 

After update trials, the change of color explicitly signaled the start of a new distribution and, 

as a consequence, previous observations were no longer useful in estimating the posterior 

probability. For this reason, the prior in update trials was blanked with a uniform 

distribution, and updating was computed following Bayes’ rule as: 

 

(1) ����~���, ��|���:� , )��#"�� ∝ ��������~���, ��� × ����~��μ, ���. (3) 

 

According to the task instructions given to participants, no updating occurred after uniform 

trials
3
, such that the posterior probability over parameter space at trial n was derived from 

the prior without modifications: 

 

(1) ����~���, ��|���:� , )+ ,-��� = ����~���, ��|���:�(��. (4) 

 

The model then translated the estimates of the parameters μ and σ into probability density 

functions over time. Specifically, the prior over time for a subsequent trial n + 1 was derived 

from the posterior over parameter space on trial n as follows:   

                                                      
3
 As already mentioned, the assumption that no updating occurred after uniform trials is “just a 

description of optimal behavior”. Accordingly, it is hard to completely exclude the possibility that 

participants might have implicitly used the information of uniform trials to update their beliefs. If 

this were the case, participants should have shown some behavioral costs on predictable trials 

following a uniform trial, because such trials are indeed highly predictable only refraining from 

updating on uniform trials. In contrast to this hypothesis, we did not find significant evidence of 

updating on uniform trials (Supplementary Fig. S1). 
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 �����.�|���:�� = ������ !"#$%��/.�� 0 ����.�����.�~����.�, ��.���
1234,5234

	

																																				× �����.�~����.�, ��.��|���:�� + ��)+ ,-���/.� ∪ )��#"��/.��	
					�����.�|��10	��, 3000	���,																																			 

(5) 

 

where p(predictablenb+1) and p(uniformnb+1 + updatenb+1) represent the probability of 

incurring, respectively, in a predictable or in a uniform/update trial at the next trial of the 

current block (nb indicates the trial number within a block, which differs from n that 

indicates trial number referred to the whole task). For simplicity, the combined probability 

to have an uniform or an update trial was set to the true proportion of those trial types at a 

given trial within a block, smoothed using a moving average in order to have a monotonic 

increase in the probability of having an update trial (e.g., the probability of having an 

update/uniform trial on nb+1=14 was higher than on nb+1=13 and so on, thus, with the 

lowest probability at tb+1=2, that is after the color change). The probability of a predictable 

trial was equal to 1-p(uniformnb+1 U updatenb+1). The output of the model is presented in 

Supplementary Figure S2A. 

2.3.2 Model-based measures of updating and surprise.  

Two measures from information theory were used to formally quantify updating of 

temporal expectations and the surprise of observing the target after a specific FP. These 

measures were computed with reference to our model as follows.  

Updating. Following Itti and Baldi (2009), we quantified the updating of the internal 

predictive model as the Kullback-Leibler divergence (DKL; Supplementary Fig. S2B) between 

prior and posterior on trial n:  
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(1) 

89:����� = 0 �����|���:�(��
;<<<

=>?�<
log �����|���:�(��

�����.�|���:��, 
(6) 

 

where �����|���:�(�� and �����.�|���:�� represent, respectively, the prior and posterior 

probability of FP durations in the range from 10 to 3000 ms in steps of 10 ms. 

Surprise. Since during the trial the prior probability of target onset changed as a function of 

the elapse of time (Janssen and Shadlen, 2005), we quantified surprise at trial n as the 

Shannon information (IS; Supplementary Fig. S2C) associated with the value of the hazard 

function at target onset: 

 

(1) CD����� = − log ℎ�����. (7) 

 

The value of the hazard function at target onset at trial n, h(FPn), was computed as: 

 

(1) ℎ����� = ,�����
1 − ������, 

(8) 

 

where ,����� is the prior probability of target occurrence after the FP duration at trial n, 

�����|���:�(��, ������ is the cumulative probability  ���� ≤ ����, and 1 − ������, 

represents the probability that the target had not yet occurred after the FP at trial n. 

The correlation between DKL and IS was r = 0.34 (R
2
 = .12), the correlation between DKL and h 

was r = -0.26 (R
2
 = .07), and the correlation between IS and h was r = -0.79 (R

2
 = .63). 
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2.4 Behavioral data analysis.  

Data from error trials (i.e., anticipated or missing responses) and post-error trials were 

excluded from analysis (mean excluded trials: 6%; SD: 5%). Reaction times (RTs) were log-

transformed to mitigate the influence of non-normally distributed and skewed data. 

Following the procedure proposed by Baayen and Milin (2010), log-transformed RTs were 

analyzed by conducting Linear Mixed Models (LMM) using the lme4 library (Bates et al., 

2015) in R (R Core Team, 2015, R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/). We 

investigated the behavioral correlates of surprise and updating by using IS and DKL as 

regressors of interest. A full LMM was specified as follows: IS and DKL (and their interaction) 

as well as TRIAL, which represents the rank-order of a trial, and log-RT at the preceding trial 

(PRECEDING RT), were entered as fixed-effects predictors. The random structure included 

correlated by-participant (ID) random intercepts and slopes for TRIAL, PRECEDING RT, IS and 

DKL. All these continuous predictors were standardized using Z-score in order to facilitate 

model convergence. The variables TRIAL and PRECEDING RT were included to control for the 

temporal dependencies that generally need to be addressed when modeling RTs (Baayen 

and Milin, 2010). Specifically, TRIAL was included to capture possible effects of learning and 

fatigue, while PRECEDING RT was used to take into account the RT autocorrelation between 

subsequent trials. Using the function step from the lmerTest library (Kuznetsova et al., 

2017), a stepwise variable selection was used to perform backwards elimination of non-

significant random and fixed effects of the full LMM.  
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2.5 Neuroimaging analysis 

2.5.1 MRI data acquisition.  

Structural and functional images were acquired using a 3T Ingenia Philips whole body 

scanner (Philips Medical Systems, Best, The Netherlands) equipped with a 32-channel head-

coil, at the Neuroradiology Unit of the University Hospital of Padova, Italy. Functional data 

were obtained using a whole head T2-weighted echo-planar image (EPI) sequences 

(repetition time, TR: 2000 ms; echo time, TE: 30 ms; 39 axial slices with ascending 

acquisition; voxel size: 3 × 3 × 3 mm; flip angle, FA: 76°; acquisition matrix: 84 × 84). 

Excluding the four dummy scans for stabilization of the T1-saturation effect, the functional 

acquisitions consisted of 8 minutes of resting state activity, whose analysis is not presented 

here, followed by a total of 39.4 minutes of task-related activity. To correct fMRI images for 

spatial distortion, two spin echo EPI images with reversed phase encoding directions were 

acquired at the beginning of each of the six runs. These images were geometrically matched 

(same field of view and voxel size) with the functional images (Glasser et al., 2013). After the 

functional session, high resolution T1- and T2- weighted anatomical images were acquired 

(T1w: TR/TE: 8.10/3.72 ms; 180 sagittal slices; voxel size: 1 × 1 × 1 mm; FA: 8°; acquisition 

matrix: 256 × 256; T2w: TR/TE: 2500/249 ms; 180 sagittal slices; voxel size: 0.97 × 0.97 × 1 

mm; FA: 90°; acquisition matrix: 256 × 256). In order to avoid head movement during 

scanning, small foam cushions and sponge pads were placed around the participant’s head. 

Participants also wore earplugs to reduce acoustic noise. 

2.5.2 MRI preprocessing.  

First, spatial distortion of functional data was corrected using the susceptibility-induced off-

resonance field estimated from the two oppositely phase-encoded spin echo EPI images as 
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implemented in the FSL (FMRIB Software Library, version 5.0.7; Smith et al., 2004; Jenkinson 

et al., 2012) toolbox “topup” (Andersson et al., 2003; Smith et al., 2004). This step improves 

the following coregistration step between fMRI and structural image (Glasser et al., 2013). 

Functional data were then slice-timing corrected using the middle slice as the reference 

frame, rigidly realigned to the first volume and spatially smoothed using a Gaussian kernel 

with a full-width at half-maximum (FWHM) of 5 mm using SPM12 (Statistical Parametric 

Mapping software; Wellcome Department of Cognitive Neurology, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm). Participant’s head movements were quantified by means 

of framewise displacement (FD) index, which represents the sum of the absolute values of 

the derivatives of the translational and rotational realignment parameters. Before 

calculating FD, the estimated rotations were converted to displacements on the surface of a 

sphere of radius equal to 50 mm (Power et al., 2012). Participants with a mean FD above 

two SDs from the mean of all the participants (group mean = 0.05 mm, standard deviation = 

0.02 mm) were excluded. The deformation field that mapped the individual functional data 

to standard Montreal Neurological Institute (MNI) template was derived combining several 

steps, all implemented in FSL. First, T1-weighted anatomical image was bias-field corrected 

and a non-linear transformation to MNI template was estimated (T1>MNI). To coregister 

the functional data to the T1-weighted anatomical image, a T2-weighted anatomical image 

was used as an intermediate target. Indeed, it has the same acquisition modality of fMRI 

data, but the same high-resolution with clear region boundary contours of T1-weighted 

anatomical image. Both T2- and T1- weighted structural images were skull-stripped and 

then a 6-parameter transformation from the former to the latter was computed (T2>T1). At 

the end, a 12-parameter affine transformation from the first volume of the functional data 

to the T2-weighted skull-stripped anatomical image was estimated (fMRI>T2) and combined 
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with the T2>T1 and T1>MNI transformations. The resulting transformation was then used to 

map the results obtained at the individual level in the functional space to the MNI template. 

2.5.3 Whole-brain fMRI analysis.  

Statistical analyses were carried out using SPM12. For each participant, first-level analysis 

was performed into the subject space (i.e., not normalized) using two general linear models 

(GLMs). For each GLM, the task was modeled with three regressors that corresponded to 

the main effect of the FP duration, the main effect of target onset, and either DKL (GLM 1) or 

IS (GLM 2) as parametric modulator (PM) of target onset. Specifically, the main effect of the 

FP was modeled as a boxcar starting from the onset of the warning signal and with duration 

equal to the FP length; the main effect of target onset was modeled as a delta function at 

the target onset and it was modulated by the model-based PM, DKL or IS. All these regressors 

were convolved with the hemodynamic response function. As in the behavioral analysis, the 

PM was standardized using Z-score and orthogonalized with regard to target onset. 

Estimates of head movements were also included as six additional regressors of no interest. 

Volumes with FD exceeding a threshold of 0.5 were modeled out adding a single time point 

regressor for each volume of high movement (Siegel et al., 2013). Slow signal drifts were 

removed using a 128 s high-pass filter. For each participant and each GLM, a t-contrast was 

computed for each PM versus zero (i.e., baseline). At the group level, individual participants’ 

contrast maps (i.e., the weighted sum of related beta, where weights are the values in the 

corresponding t-contrast) were normalized to MNI template as described in the previous 

section. Then, for each GLM, group-level maps were generated with random-effect models 

using normalized participants’ contrast maps. Group statistics were assessed for cluster-

wise significance using a cluster-defining threshold of p < .001 and a cluster significance 
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threshold of p < .05 corrected for family-wise error (FWE). A third GLM (GLM 3) with the 

value of the hazard function at the target onset (i.e., h(FPn)) as PM was run in order to 

compare our results with previous findings on temporal hazard in the human brain (e.g., 

Bueti et al., 2010). Again, first-level contrast maps derived from the t-contrast of the PM 

against zero were normalized to MNI and employed in the subsequent group-level random-

effect analysis. Finally, we ran an analysis with a first-level GLM including both DKL and IS as 

PMs (GLM 4). Since the task manipulation employed in our study allowed us to have 

surprising trials with no updating, IS was orthogonalized with respect to DKL (Supplementary 

Fig. S3B) in order to obtain unique variance associated with surprise. By contrast, updating is 

driven by the surprise of the events. Forcing DKL to be orthogonal to IS would then lead to a 

spurious anticorrelation between them. This can be appreciated in Supplementary Figure 

S3A, which shows that after orthogonalization, update trials had the lowest DKL values. 

Therefore, running a model with DKL orthogonal to IS would not actually test the neural 

correlates of updating, but the opposite hypothesis, that is, which regions show enhanced 

BOLD signal with low levels of updating.  

GLM 4 was run in the MNI space to facilitate the extraction of the volumes of interest (VOIs) 

used in the functional connectivity analysis described in the next section. First-level contrast 

maps derived from the t-contrast of each PM against zero were used to generate group-

level maps with random-effect models. 

2.5.4 Functional connectivity analysis.  

Task-related functional connectivity analysis was included after inspection of the whole-

brain results with the aim of further investigating the pattern of results (see section 3.2). 

This analysis was computed using the correlational psychophysiological interaction (cPPI) 
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toolbox (Fornito et al., 2012). In classical PPI analyses (Friston et al., 1997), the activity time 

course from a specific seed region is extracted and multiplied by a task regressor of interest 

to isolate task-specific modulations in the functional coupling between the seed region and 

other brain regions. This is a regression-based approach, in the sense that for each pair of 

time series the seed region activity is used as a predictor of the activity in the other regions. 

This implies that PPI is a form of effective connectivity (Friston et al., 1997), which makes it a 

suitable tool to test clear hypotheses about which region modulates activity in other regions 

(Fornito et al., 2012). Since we had no specific predictions, we hence employed the cPPI 

approach, which provides a measure of functional connectivity that does not require 

directional assumptions. Briefly, for any given pair of brain regions their time course is 

multiplied by the task-regressor to obtain two PPI terms. Then, the cPPI uses partial 

correlation between the two PPI terms in order to isolate covariations in task-related 

modulations of functional connectivity as distinct from intrinsic task-unrelated connectivity 

noise, and coactivation effects induced by the task. Accordingly, starting from a set of 

regions the cPPI analysis returns a functional connectivity matrix of pair-wise correlations 

due to task-specific modulations of neural activity. We estimated two cPPI correlation 

matrices, one for each of the two model-based regressors, DKL and IS. For each participant, 

coordinates of the volumes of interest (VOIs) were defined by generating 6-mm-radius 

spheres. These were centered on the nearest local maximum of the group maximum peaks 

observed for DKL and IS in the GLM 4. When the obtained two peaks for DKL and IS were very 

close (< 6 mm), a VOI centered at the midpoint between the two peaks was created instead 

of having two largely overlapping VOIs. The time course from each VOI in each participant 

was extracted using the spm_regions function in SPM and corrected for the same 

movement parameters as in the whole-brain analysis prior to deconvolution. Coordinates of 
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each VOI are presented in Supplementary Table S1. For each matrix, the correlation 

between pairs of VOIs was estimated after partialling out coactivation induced by the main 

effect of all the task regressors, as well as the main effect of neural activity in the remaining 

VOIs. Two-tailed one-sample t-tests were computed to test the significance of DKL- and IS- 

related partial correlations (p-values were adjusted for multiple-testing by controlling the 

false discovery rate, FDR, at the .05 level). 

 

3 Results 

3.1 Behavioral results.  

Log-transformed RTs were analyzed by means of a linear mixed model (LMM) in which IS 

and DKL were used as explanatory variables along with the rank-order of a trial (TRIAL), and 

log-RT at the preceding trial (PRECEDING RT) to control for trial-by-trial dependencies (Baayen 

and Milin, 2010). Backward elimination of non-significant effects resulted in a model 

specified as the following lme4-notation formula:  

 

(1) log(RT) ~ TRIAL + PRECEDING RT + IS * DKL + (TRIAL + PRECEDING RT + IS | ID). (9) 

 

Visual inspection of the residuals showed that the model was a bit stressed. As suggested by 

Baayen and Milin (2010), trials with absolute standardized residuals higher than 2.5 SD were 

considered outliers and removed (2.4% of the trials). After outlier trials removal, the model 

was refitted achieving reasonable closeness to normality. The R
2
 of the final model was .39. 

Table 1 shows the statistical results of the type III ANOVA. A significant interaction was 



21 

 

found between IS and DKL. Figure 2 shows that RTs increased with increasing surprise (IS) and 

this effect was slightly augmented with high DKL in a multiplicative way.  

 

Table 1 | Analysis of variance with type-III sums of squares.  

 Fixed Effects  Sum Sq  Num. df  Den. df  F  p  β  

 TRIAL  0.39  1  21.0  10.0  .005  0.07  

 PRECEDING RT  0.66  1  21.0  17.0  < .001  0.10  

 IS  3.70  1  22.1  94.8  < .001  0.25  

 DKL  0.33  1  6819.8  8.6  .003  -0.05  

 IS :DKL  0.99  1  6823.5  25.5  <. 001  0.09  

Notes: F-statistics and associated p-values were calculated using Kenward-Roger’s approximation of degrees of freedom 

(Halekoh and Højsgaard, 2014). Additionally, standardized regression coefficients (β) are shown. 
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Figure 2 | Interaction plot for log-transformed RTs. The plot shows the effect of surprise (IS) for update trials (black line) 

and no-update (i.e., uniform and predictable; grey line) trials. Fitted log-RT values were extracted from the final model 

using the fitted.merMod function in the lme4 library. Then, separately for each trial type (i.e., update and no-update), they 

were averaged by IS values across participants (black dots and grey triangles represent average IS values for update and no-

update trials, respectively). 

3.2 Neuroimaging results.  

We investigated the neural correlates associated with updating and surprise across the 

whole brain by means of GLMs in which our information theoretical measures were used as 

parametric modulators of target onset events. Table 2 reports the results of GLM 1 and GLM 

2, while Supplementary Table S2 reports results for GLM 3 (see section 2.5.3).  

Updating significantly modulated activity in a set of lateral frontal and parietal regions, as 

well as in medial parietal regions and in a cluster around the left fusiform gyrus (FFG) and 

the left cerebellum (Fig. 3A). Lateral frontal and parietal regions included bilateral inferior 
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frontal gyri (IFGs) and posterior parietal cortices (PPCs) around the intra-parietal sulci (IPSs). 

Medial parietal activations included the posterior cingulate cortex (PCC) and the precuneus 

(PCun).  

Surprise significantly modulated activity in the right IFG, bilateral PPCs around the IPSs, 

dorsal anterior cingulate cortex (dACC) including the pre-supplementary motor area (pre-

SMA), bilateral anterior insula (aINS), and left FFG (Fig. 3B). Surprise adjusted for updating 

(GLM 4) modulated activity in the same regions with the exception of the right IFG, which 

was not significantly activated (see Supplementary material, Fig. S4 for a map of R
2
 averaged 

across participants and Table S2, for the mean and the median R
2 

of our VOIs).  

 

Table 2 | Significant cluster activations in SPM analyses. 

 Anatomical region  MNI  Peak Z  Cluster level  

   x y z    p Size  

GLM1. Regions modulated by updating (DKL) 

L. Fusiform Gyrus  -42 -60 -12  4.52  .001 240  

   -38 -56 -6  4.20     

   -36 -62 -34  4.09     

 L. Posterior Parietal Cortex  -34 -64 44  4.37  < .001 801  

   -48 -44 48  4.08     

   -44 -64 44  3.99     

 R. Inf. Frontal Gyrus  50 20 28  4.33  < .001 315  

   44 28 20  4.06     

   36 26 20  4.03     

 R. Posterior Parietal Cortex  34 -62 34  4.29  < .001 371  

   34 -66 46  4.14     

   26 -62 36  4.08     

 L. Inf. Frontal Gyrus  -40 4 30  4.08  .016 142  

 Precuneus  -8 -68 46  3.93  .012 152  

   4 -68 46  3.73     

   12 -68 44  3.58     

 Post. Cingulate Cortex  -2 -34 26  3.74  .043 112  

GLM 2. Regions modulated by surprise (IS) 

 L. Ant. Insula  -36 22 4  5.36  < .001 515  
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   -38 14 6  4.59     

   -32 26 -2  4.13     

 L. Posterior Parietal Cortex  -34 -60 46  5.26  < .001 932  

   -40 -42 46  4.42     

   -36 -42 38  4.08     

 R. Ant. Insula  34 24 2  4.90  .003 206  

 Dorsal Ant. Cingulate Cortex  -4 10 48  4.61  < .001 342  

   -8 -4 64  3.65     

   10 16 40  3.26     

 R. Posterior Parietal Cortex  34 -68 46  4.50  <. 001 356  

   30 -62 38  4.03     

   30 -48 44  3.75     

 L. Fusiform Gyrus  -38 -60 -12  4.49  .008 170  

 R. Inf. Frontal Gyrus  40 26 20  4.22  .003 201  

Note: L and R. indicate left and right. 
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Figure 3 | Whole-brain fMRI analysis results. (A) GLM 1: Regions significantly modulated by updating (DKL). (B) GLM2: 

Regions significantly modulated by surprise (Is). (C) Overlapping of activation between DKL and IS. Abbreviations: IFG: 
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inferior frontal gyrus; PPC: posterior parietal cortex; PCun: precuneus; PCC: posterior cingulate cortex; FFG: fusiform gyrus; 

AI: anterior insula; dACC: dorsal anterior cingulate cortex; pre-SMA: pre-supplementary motor area. 

With the exception of the FFG, all the clusters modulated by updating and surprise 

represent nodes of the two cognitive-control networks described in Dosenbach et al. (2008), 

namely, the fronto-parietal (FPN) and cingulo-opercular (CON) networks (FPN: bilateral PPC, 

PCun, PCC, and bilateral IFG; CON: bilateral AI and dACC/pre-SMA). Consequently, we 

employed a correlation psychophysiological interaction (cPPI) approach to explore how 

functional connectivity between these nodes was modulated by updating and surprise. The 

cPPI results are shown in Figure 4. Concerning updating, we observed a DKL-related increase 

in functional connectivity in the FPN, mainly between posterior nodes (i.e., bilateral PPC, 

PCun, and PCC). Conversely, DKL-related changes in functional connectivity within the CON 

(i.e., between INS and dACC/pre-SMA) as well as between-networks connectivity were very 

weak. Regarding the cPPI results on surprise, we observed a more distributed IS-related 

increase in within- and between-networks functional connectivity. The results from the 

paired-sample t-tests (computed to compare cPPI correlations between DKL and IS) showed a 

slightly higher IS-related functional connectivity, compared to DKL, between the dACC/pre-

SMA and nodes belonging to both CON (i.e., right INS) and FPN (i.e., left PPC nodes and 

PCun). In sum, we observed higher within-CON and between-network connectivity induced 

by IS compared to DKL. 

To compare our results with previous literature on temporal preparation, we also 

performed a whole-brain analysis in which target onset events were parametrically 

modulated by the value of the hazard function at target onset (GLM 3). The results showed 

that the temporal hazard correlated with activity in bilateral lingual cortex, cuneus, and 

bilateral superior temporal gyrus (Supplementary Fig. S5). These findings corroborate 
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previous studies showing the involvement of sensory visual areas in shadowing temporal 

hazard (Vallesi et al., 2009; Bueti et al., 2010).  

 

 

Figure 4 | cPPI analysis results.  (A and B) The plots show task-related functional connectivity for updating (A) and surprise 

(B), respectively. The line width is (non-linearly) proportional to the t-value obtained from a two-tailed one-sample t-test 

against 0 (Bonferroni correction for 90 multiple comparisons). Non-significant correlations (p-value > .05) are not visible. 

Dashed and solid lines indicate significant correlations with p-values > .001 and < .001, respectively. Red nodes indicate 

regions that in the whole-brain univariate analyses were significantly modulated by DKL in panel A and by IS in panel B (cfr. 

Fig. 3), while nodes non-significantly modulated are depicted in orange. (C) The plot shows the results of the paired-sample 

t-test contrasting IS against DKL. Non-significant contrasts are not visible. The line width is (non-linearly) proportional to the 

obtained t-value. 

 

4 Discussion 

The present study tackled a fundamental aspect of temporal preparation often raised in the 

literature but never directly investigated so far, that is, the creation and revision of prior 

temporal expectations by the brain. To fill this gap, we combined a Bayesian computational 

approach with fMRI to investigate the neural correlates of temporal belief updating. 

Importantly, since (Bayes-optimal) belief updating takes place after events violating our 

prior expectations, we experimentally decoupled surprise from updating in order to tease 
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apart the neural processes involved in updating of temporal expectations from those facing 

surprising, poor temporally predicted, target onsets.  

Consistently with O’Reilly and colleagues (2013), the behavioral results showed a strong 

effect of surprise on participants’ RTs. Since RTs are a reliable index of information encoding 

and cognitive effort (Teichner and Krebs, 1974), this finding is in line with information-

theoretic accounts of cognition, which assume that unexpected events are effortful to 

encode (see Zénon et al., 2019, for a recent overview). Furthermore, the significant effect of 

surprise on RTs indicates that those events that were surprising according to the ideal 

Bayesian observer were surprising to participants as well, confirming the ability of our 

model in providing an estimate of participants’ expectations. We also found a behavioral 

cost due to updating that was larger as surprise increased. This finding extends current 

evidence in revealing that revising prior expectations might have a further cost on 

information processing that adds up to the cost due to stimulus encoding (i.e., surprise-

related cost). Moreover, the fact that updating-related costs add up to surprise-related ones 

in a multiplicative way indicates that, compared to stimulus encoding, updating becomes 

harder the higher the violation of prior expectations is. Overall, the distinction between 

updating and surprise suggests that there could be an additional information cost in 

cognitive processing (Zénon et al., 2019) due to updating.  

The fMRI results confirmed that our design differentiated between updating and surprise. 

Indeed, albeit there were some commonalities between the two, updating and surprise 

modulated distinct brain regions belonging to two well-known functional networks for 

cognitive control: the fronto-parietal network (FPN; Dosenbach et al., 2008) and the cingulo-

opercular network (CON; Dosenbach et al., 2008; Menon, 2015). 
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Updating (DKL) of temporal expectations was correlated mainly with FPN regions such as the 

posterior parietal cortex (PPC), precuneus (PCun), posterior cingulate cortex (PCC) and 

inferior frontal gyri (IFG). According to recent models of cognitive control (Dosenbach et al., 

2008; Cocchi et al., 2013; Crittenden et al., 2016), the FPN is involved in the trial-by-trial 

adjustment of task-relevant information in order to implement top-down control. This 

property of the FPN is thus highly compatible with the idea of a Bayesian brain that updates 

its predictive models after each new observation is encountered.  

A confirmation of the link between FPN and belief updating is also provided by several fMRI 

studies that have modeled belief updating about context information in domains other than 

time (Gläscher et al., 2010; Schwartenbeck et al., 2016; Kobayashi and Hsu, 2017; Waskom 

et al., 2017). As an example, Waskom et al. (2017) reported that the bilateral inferior frontal 

sulcus, bilateral intra-parietal sulcus (IPS), PCun and PCC responded to prediction error - 

derived from an ideal Bayesian observer – about the trial-relevant dimension, either color or 

motion direction, in a context-dependent perceptual discrimination task.  Although 

prediction error is a measure more similar to IS than DKL, the fact that Waskom and 

colleagues’ task did not distinguish between updating and surprise makes it unlikely that 

their findings reflected surprise alone, a claim further supported by the high anatomical 

concordance between their prediction error and our DKL results. This point underscores the 

importance of decoupling updating and surprise in research aiming at understanding how 

the brain encodes context information. As a matter of fact, our FPN findings fit well with 

those reported in studies that have actually decomposed updating and surprise 

(Schwartenbeck et al., 2016; Kobayashi and Hsu, 2017). For instance, in Kobayashi and Hsu 

(2017) belief updating about the content of the urn in an Ellsberg three-color urn task 

modulated activity in bilateral middle frontal gyrus, IPS, and PCun. Summarizing then, it 
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seems plausible to hypothesize that the FPN regions we found to be modulated by updating 

of temporal expectations may play a domain-general role in belief updating. Specifically, the 

congruence between our temporal and other previous non-temporal studies points to the 

conclusion that updating is encoded by the FPN irrespective of the kind of information to be 

updated. However, there is also evidence that argues against this possibility (O'Reilly et al., 

2013; Vossel et al., 2015). Indeed, O’Reilly et al. (2013) found that updating was mainly 

located to the ACC (an area also reported in Schwartenbeck et al., 2016). At first glance, the 

discrepancy between O’Reilly and colleagues’ study and ours could seem quite 

counterintuitive, considering that our temporal paradigm was modeled after their spatial 

task. By contrast, we believe that such a difference suggests that belief updating in space 

and time could rely on different brain areas (Coull and Nobre, 1998). Future studies that 

manipulate updating of the two dimensions in the same task will provide direct evidence on 

this intriguing question. 

Turning back to the FPN, it is interesting to consider a further fractionation of FPN nodes 

into laterally and medially located ones (see Cocchi et al., 2013, for an overview). Namely, 

the PCun and PCC are also involved in the “task-negative” default mode network (Fransson 

and Marrelec, 2008) or, as suggested recently, they can be viewed as a separate hub 

integrating information across different functional networks (Fornito et al., 2012; Leech et 

al., 2012). The distinction between lateral and medial FPN regions also emerged for our 

updating and surprise modulators in that the lateral nodes were modulated by both 

updating and surprise, whereas the medial nodes were activated by updating only. On the 

one hand, the finding that lateral regions were modulated to a considerable extent by 

surprise is broadly consistent with their proposed role in the phasic adjustment of top-down 

control in response to identified salient stimuli (Seeley et al., 2007; Dosenbach et al., 2008). 
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Furthermore, this result converges with that obtained in a recent magnetoencephalographic 

study that performed source reconstruction of the power modulation associated with 

surprise about event timing (Meindertsma et al., 2018). On the other hand, the distinctive 

modulation of medial regions by updating is consistent with converging evidence from non-

human primates showing the involvement of these regions in environmental change 

detection (Hayden et al., 2008; Pearson et al., 2009; Hayden et al., 2010), thus corroborating 

the idea of a putative role of such areas in encoding the statistical properties of changing 

environments (Pearson et al., 2011). 

The importance of trying to disentangle updating and surprise is further supported by the 

fact that surprise only, but not updating, modulated areas belonging to the CON. This 

finding strengthens the specificity of our updating results and also gives some hints about 

the neural correlates of surprise. Following the “dual-network” model (Dosenbach et al., 

2008), the CON is in charge of maintaining relevant task-goals across trials, whereas 

according to other models, the AI along with the ACC forms a “salience network”, which is 

involved in the transient identification of relevant stimuli in order to guide behavior (Seeley 

et al., 2007). Specifically, Menon and Uddin (2010) proposed that the AI, which receives 

multimodal sensory inputs, detects salient stimuli and induces a response in the ACC, which 

in turn sends transient control signals to lateral FPN and medial parietal regions (Sridharan 

et al., 2008). This might explain the higher surprise-related connectivity - compared to 

updating - that we found between AI and dACC/pre-SMA, and between the dACC and 

parietal nodes of the FPN. However, these conclusions should be taken with caution, since 

our connectivity analysis was performed post-hoc to better interpret the whole-brain 

findings and because it did not show enhanced connectivity between CON and prefrontal 

FPN nodes. If any, we speculate that our surprise-related findings are more in line with 



32 

 

salience network models than with the sustained role of the CON surmised in the dual-

network model.  

A final result of our study concerns the areas responding to temporal hazard at target onset. 

We found that regions located to the auditory and visual cortices were sensitive to the 

hazard function, a pattern in line with previous studies (Bueti et al., 2010; Vallesi et al., 

2009). Interestingly, the finding of auditory activation by visual temporal expectations lends 

support to the existence of cross-modal associations in temporal preparation as the 

opposite pattern, that is, modulation of visual areas by auditory temporal expectations has 

been already shown elsewhere (Bueti and Macaluso, 2010).  

To conclude, the present fMRI data showed that updating of internal models and surprise 

about the timing of relevant events rely on the functioning of two key cognitive control 

networks. In this regard, our study has the additional value of shedding new light into the 

differential role of the FPN and CON in higher-order cognition. More importantly, to our 

knowledge, it provides the first characterization of the brain processes involved in temporal 

belief updating. Considering that temporal expectations are a fundamental feature of 

cognitive brain functions, the present study made an important step toward a deeper 

understanding of the encoding processes involved in temporal belief updating.  
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