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Abstract  

Neurofeedback (NF) is a research and clinical technique, characterized by live demonstration of brain 

activation to the subject. The technique has become increasingly popular as a tool for the training of 

brain self-regulation, fueled by the superiority in spatial resolution and fidelity brought along with 

real-time analysis of fMRI (functional magnetic resonance imaging) data, compared to the more 

traditional EEG (electroencephalography) approach. NF learning is a complex phenomenon and a 

controversial discussion on its feasibility and mechanisms has arisen in the literature. Critical aspects 

of the design of fMRI-NF studies include the localization of neural targets, cognitive and operant 

aspects of the training procedure, personalization of training, and the definition of training success, 

both through neural effects and (for studies with therapeutic aims) through clinical effects. In this 

paper, we argue that a developmental perspective should inform neural target selection particularly 



for pediatric populations, and different success metrics may allow in-depth analysis of NF learning. 

The relevance of the functional neuroanatomy of NF learning for brain target selection is discussed. 

Furthermore, we address controversial topics such as the role of strategy instructions, sometimes 

given to subjects in order to facilitate learning, and the timing of feedback. Discussion of these topics 

opens sight on problems that require further conceptual and empirical work, in order to improve the 

impact that fMRI-NF could have on basic and applied research in future.  
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Introduction 

The last decade has seen significant increase in the number of research groups using real-time, 

functional magnetic resonance imaging-based neurofeedback (fMRI-NF) to train participants in the 

self-regulation of brain networks and functions (Sulzer et al., 2013; Thibault, Lifshitz, & Raz, 2018). 

NF utilizes the latest developments of real-time data processing and pattern analysis to train 

participants in the self-modulation of neural networks (LaConte, Peltier et al. 2007, Johnston, Boehm 

et al. 2010, Johnston, Linden et al. 2011, LaConte 2011, Watanabe, Sasaki et al. 2017). The strength 

of this technique, compared to approaches with EEG (Arns, Batail et al. 2017) or functional near-

infrared-spectroscopy (fNIRS) (Sitaram, Ros et al. 2017), lies in its high spatial resolution, the ability 

to probe deep subcortical structures and whole-brain coverage, as well as the extraction of 

information from distributed activation patterns (Sorger, Reithler et al. 2012), and the mapping of 

functionally connected networks (Zotev, Krueger et al. 2011). This is critical, as functional brain 

networks change significantly throughout development (Cohen Kadosh, Cohen Kadosh et al. 2011) 

and the fine-tuning patterns differ for typically and atypically developing populations (Johnson, Halit 

et al. 2002, Cohen Kadosh, Linden et al. 2013). If implemented successfully, the NF approach holds 

much promise for brain-based intervention approaches that aim to influence and shape the 

emerging networks in the developing and matured brain. That is, it allows us to target not only 

cortical and subcortical task-relevant regions with good precision, but it also offers the necessary 

flexibility to accommodate the frequent changes in brain network configurations that are typical for 

emerging networks. As a result, a substantial body of “neurofeedback training” research is now 

available that highlights the potential and versatility of feedback-based approaches to teach 

participants to control and improve brain functions.   

Operant conditioning is widely acknowledged as the leading learning mechanism of brain self-

regulation with NF (Black et al., 1977; Caria, 2016), which is mediated by reinforcement of action 

that results in a desired change in brain activation. The two-process theory (Gaume et al., 2016; 

Lacroix, 1986) adds a second, parallel process, which focuses on discrimination learning of internal 

percepts, guided by the identification of correlation between internal (e.g. afferent signals, mental 

events, affective states) and external signals (i.e. neurofeedback). The integration of internal 

percepts with NF relies on the allocation of attention to the different sources of these signals, which 

is moderated by executive function (Gaume et al., 2016). The participant perceives reinforcing 

feedback and evaluates it with regards to the regulation goal. ). If accessible to perception, the 

subject improves his or her perceptual accuracy of internal signals. Depending on the valuation 

outcome, mental actions such as cognitive strategies are then changed or maintained (Paret and 

Hendler, under reviewA detailed overview of NF learning theories can be found here (Arns et al., 

2017; Gaume et al., 2016; Sherlin et al., 2011; Strehl, 2014).  



With the advent of fMRI-NF, the number of specific brain mechanisms and indications for NF training 

has broadened considerably (Sulzer, Haller et al. 2013). The functional specificity of fMRI might 

explain the versatility of fMRI-NF, showing modulation effects across a number of domains such as 

motor function (Sitaram, Veit et al. 2012, Scharnowski, Veit et al. 2015), prosody (Rota, Handjaras et 

al. 2011), working memory ((Zhang, Yao et al. 2013), visual sensitivity training ((Shibata, Watanabe 

et al. 2011, Scharnowski, Hutton et al. 2012, Sitaram, Veit et al. 2012), and emotions (Caria, Sitaram 

et al. 2010, Johnston, Linden et al. 2011, Zotev, Krueger et al. 2011, Paret, Kluetsch et al. 2014, 

Koush, Meskaldji et al. 2017) , for a review see (Linhartova, Latalova et al. 2019).  

As a result, the number of studies on fMRI-NF has increased substantially and methodological 

progress has been considerable (Thibault, Lifshitz et al. 2018). We now have seen evidence that 

fMRI-NF training is feasible in participants across a wide age range, starting with children as young as 

seven years (Cohen Kadosh, Luo et al. 2016, Alegria, Wulff et al. 2017) and in a broad range of 

patient populations (see Thibault et al. 2018 for review), including prevalent psychiatric conditions 

such as chronic pain (deCharms, Maeda et al. 2005, Guan, Ma et al. 2015)), depression (Linden, 

Habes et al. 2012, Young, Zotev et al. 2014, Yuan, Young et al. 2014), borderline personality disorder 

(Paret, Kluetsch et al. 2016), posttraumatic stress disorder (Gerin, Fichtenholtz et al. 2016, 

Nicholson, Rabellino et al. 2017) and addiction (Li, Hartwell et al. 2013, Kirsch, Gruber et al. 2016). 

Evidence has also accumulated that fMRI-NF training affects responsiveness not only in the specific 

target region, but that it also modulates the underlying task networks (e.g., (Cohen Kadosh, Luo, et 

al., 2016; Keynan et al., 2016; Ruiz et al., 2013). Further, some studies have now begun to directly 

modulate brain networks. This has been achieved via functional connectivity (fc)-NF which has been 

used in both adults (Koush et al., 2017; Koush et al., 2013; Spetter et al., 2017), and adolescents 

(Jacob, Or-Borichev, Jackont, Lubianiker, & Hendler, 2017; Zich, Luehrs, et al., unpublished data)). 

Finally, more recently, advanced methods such as multivariate pattern analysis (MVPA) and 

hierarchy indices between network's nodes (Jacob et al., 2017), have been introduced to assess 

distributed patterns of brain activation and functional correlations (Lubianiker, Goldway et al. in 

press).   

While the technical aspects of fMRI-NF have been brought along to great success, which is reflected 

in advanced software developments and more scanning centers being now set-up to conduct fMRI-

based NF experiments, the field finds itself at a crossroads which will not only determine whether 

the current research activity is sustainable in the future but will also have the impact that is hoped 

for with regards to interventions and clinical applications (Stoeckel et al., 2014). As with many newly 

emerging fields, it is important to verify that promises do not overstate the realistic possibilities. 

While the current evidence is certainly encouraging regarding the feasibility of fMRI-NF with a 

number of disease-relevant target areas and networks, it is now critical to tighten the strings and 

develop a methodological framework that can help guide future research, in particular on clinical 

applications. Furthermore, this will considerably facilitate the shift from feasibility and proof-of-

concept studies, which naturally dominate the initial phase of a research field, towards translational 

studies and clinical trials. Researchers developing NF training protocols cannot avoid to address 

fundamental questions regarding all steps of planning, conducting and analyzing; starting from the 

experimental design and leading all the way down to the evaluation of training success (Randell, 

McNamara et al. 2018). Broadly, critical questions can be sorted into four domains as they address 

(1) the neurocognitive function to be changed with the intervention; (2) the information given to 

participants by professionals beforehand and transmitted via the brain-computer interface; (3) 

personalizing the training context to the participant and (4) measuring brain self-regulation and 

training success. Addressed in this paper, these domains and the corresponding questions are 

visualized in the form of a Floor Map for graphical overview (Figure 1). The rapid development of NF 



techniques and applications, a large variety of suggested solutions for current problems, and the lack 

of gold standards are challenges that, in our view, require a debate considering several procedural 

aspects underlying the method. With this paper, we hope to contribute to the critical discussion of 

current progress in fMRI-based NF research and accordingly, to address the considerations and 

possible solutions the field is currently facing with. Though we focus on fMRI, the large part of 

critical points stressed in this paper are not limited to NF with fMRI, but pertain to any neuroimaging 

modality that can be used for this purpose, including EEG, fNIRS or magnetoencephalography (cf. 

(Thibault, Lifshitz et al. 2016, Sitaram, Ros et al. 2017). However, amongst all neuroimaging 

modalities, as fMRI-based NF is currently the most rapidly growing field (Watanabe, Sasaki et al. 

2017), it also brings up certain aspects that require particular attention and justify focused review. 

Critically, by providing an overview on the different methodological, cognitive and psychological 

factors that influence NF training success, we hope to help steer the discussion towards improving 

and standardizing procedural aspects.   

1 How to choose the training target? 

1.1 Target regions 

One of the most critical decisions facing fMRI-based NF research is without a doubt the choice of 

target and control region(s). Among others this involves the question whether fMRI-based NF should 

focus on local activation in a specific target region (typically a change in average blood oxygenation 

level dependent [BOLD] response), or rather metrics related to a network function or organization. 

Either approach has been shown to be feasible, yet a couple of theoretical aspects need to be 

considered.   

If a single target region is chosen to be modulated with NF training, it is important to consider 

whether the main goal of the training is to regulate activation in a region that is disturbed, such as 

for example modifying amygdala BOLD activity in an emotion regulation context (Zotev, Krueger et 

al. 2011, Linden, Habes et al. 2012, Paret, Kluetsch et al. 2014), reducing ventral striatum reactivity 

to alcohol cues (Kirsch, Gruber et al. 2016), or in a region that is associated with increased food 

cravings (Ihssen, Sokunbi et al. 2016). The regional approach has governed the fMRI-NF practice, led 

by the assumption that some regions might be critical for a specific symptom or disorder. Yet, the 

critical issue here is to use a region that is vastly connected and could be considered as a hub, 

assuming that its modulation will result in a large functional impact through its network (Table 1).   

It has become increasingly accepted among neuroscientists that functionally inter-connected 

networks of regions mediate brain processes (Broyd, Demanuele et al. 2009, Bullmore and Sporns 

2009, Menon 2011, Barrett and Satpute 2013) especially regulatory ones (Kober, Barrett et al. 2008, 

Raz, Winetraub et al. 2012). According to this view, communication between and within largely 

segregated neural modules is essential to the transfer and processing of information in the brain, 

and it would make sense to target parameters of this communication with NF. One possible network 

metric that can be probed with NF is functional connectivity (fc) between regions, aiming to 

differentially change the co-activation patterns between two or more regions (Watanabe, Sasaki et 

al. 2017). This approach is possibly the more physiologically valid given that the brain is naturally 

organized in networks of regions that work together to support behaviour (Fair, Dosenbach et al. 

2007, Broyd, Demanuele et al. 2009, Fair, Cohen et al. 2009, Cao, Wang et al. 2014). It is, however, 

important to recognize that network NF approaches should not neglect the behaviour of single brain 

regions within that network. Thus, for example, it can be assessed whether a specific brain region 

within the network is driving the modulatory change, as shown in a study which used fc-NF to 

change effective connectivity between the prefrontal cortex and the amygdala in an emotional 



reappraisal context (Zich, Haller, et al., unpublished data). In this study, Zich and colleagues found 

that fc-NF modulated the prefrontal cortex (PFC)-amygdala fc towards a more negative fc pattern, 

and that this modulation was driven predominantly by changes in PFC activity. The authors also 

found that this fc change, which is related to more control and less anxiety correlated with the 

change in thought control ability as assessed before and after the MRI session.   

1.2 Consider functional neuroanatomy of neurofeedback learning 

In a recent paper, Sitaram and colleagues presented three different NF brain network models that 

support the overall NF process (Sitaram, Ros et al. 2017). Focusing on key brain regions that have 

been repeatedly shown to be activated in previous NF studies, they differentiated between network 

regions associated with control of visual NF, such as the dorsolateral PFC (dlPFC), thalamus, lateral 

occipital cortex and posterior parietal cortex, NF learning regions such as the dorsal striatum, and 

finally, NF reward processing regions, such as the ventral striatum, the anterior cingulate cortex 

(ACC) and the anterior insula. Moreover, neural activations related to NF control and those related 

to the monitoring of feedback such as reward signals could be recently differentiated (Paret, 

Zahringer et al. 2018). In this study, healthy individuals viewed emotional pictures and regulated 

their amygdala response, visualized via the temperature of a thermometer presented next to the 

pictures. The task involved two conditions, requiring individuals to regulate NF either up or down. 

That is, they needed to evaluate NF with respect to the task-condition (e.g. rise in temperature is 

rewarding during up-regulation but punishing during down-regulation). In line with Sitaram et al.’s 

model, the dlPFC, lateral occipital cortex, and lateral thalamus were involved in NF control, whereas 

the ventral striatum was involved in reward processing. This finding aligns well with other empirical 

study of NF-related reward signals (Ramot, Grossman et al. 2016, Shibata, Lisi et al. 2019, Skottnik, 

Sorger et al. 2019). In contrast to Sitaram et al.’s suggestion, the insula was not involved in reward 

processing but rather in NF control (Shibata et al. 2019, Paret et al. 2018). In addition, the 

ventromedial PFC (vmPFC) was involved in feedback monitoring (Radua, Stoica et al. 2016, Paret, 

Zahringer et al. 2018, Shibata, Lisi et al. 2019), as were the medial thalamus and the rostral PFC 

(Paret et al. 2018). Notably, these regions did not differentiate between rewarding or non-rewarding 

feedback, whereas the orbitofrontal cortex was found to respond to failure feedback selectively 

(Paret et al., 2019). Instead, the vmPFC and medial thalamus exhibit a more general feedback 

response, suggesting a role in attentional control. The vmPFC may also support the learning of 

associations between emotional arousal and feedback ((Paret, Ruf et al. 2016); see also (Radua, 

Stoica et al. 2016) for vmPFC response to NF). In contrast, the rostral PFC showed a marked response 

when subjects were instructed to up-regulate feedback but not during down-regulation (Paret et al. 

2018). A positive correlation with regulation success and functional connectivity between rostral PFC 

and ventral striatum further support a role of rostral PFC in the monitoring of contextual information 

such as instructions (Paret et al. 2018). Rostral PFC resting-state connectivity predicted anxiety 

reduction with fMRI-NF (Scheinost, Stoica et al. 2014), a finding that further emphasizes the 

importance of this neural node for the ability to effectively process feedback in order to inform brain 

self-regulation. Involvement of rostral PFC may therefore reflect effortful model-based 

reinforcement learning of regulation strategies (Gaume et al. 2016).   

Brain self-regulation with NF is an active task and involves interlocked psychological processes.  In 

addition to regions involved in feedback monitoring, regions involved in active NF control show great 

overlap between studies (Emmert, Kopel et al. 2016). The network comprises regions from the 

cognitive control network including lateral PFC and posterior parietal cortex (Gaume et al., 2016), 

the anterior cingulate cortex (ACC) which is assumed to implement error monitoring of NF (Gaume 

et al., 2016), insula and lateral thalamus (Emmert, Kopel et al., 2016, Paret et al. 2018). As these 



regions are activated when subjects try to control NF, down-regulation training with these regions 

seems incompatible with the psychobiological dynamics of the system. In line with this assumption, 

Veit et al. (Veit, Singh et al. 2012) showed that down-regulation of anterior insula activation was 

associated with lower activation compared to up-regulation, but insula was activated above baseline 

in both conditions. Instead of down-regulation below baseline, alternating up- and down-regulation 

of dlPFC can increase speed of deliberate dlPFC regulation and may lead to more flexible recruitment 

of cognitive control (Van den Boom, Jansma et al. 2018). Feeding back activation from regions while 

they are themselves involved in NF may introduce problems for learning regulation, and should be 

considered in study planning (Lubianiker et al., in press). Taken together, several neural networks 

are involved in NF monitoring and control and feeding back activation from these networks may 

interfere with the actual treatment goal. 

1.3 Control aspects 

In order to show specificity of training, studies introduce control groups that, instead of feedback 

from target brain activation, receive some other kind of intervention or feedback protocol. The most 

commonly adopted choice of feedback control is to feedback signal stemming from a different brain 

region (other approaches include: no feedback; feedback based on the activity from the same 

region, but from a different point in time; feedback from the same region, but from a different 

individual; feedback based on artificially created irrelevant randomized signals, also sometimes 

called sham feedback). Here, similar concerns apply to the choice of a region from which the 

participant receives sham feedback in order to assess the sensitivity and specificity of the NF 

training. Generally, the control feedback region should be independent of the NF network that is to 

be trained. Given that most cognitive and behavioral functions depend on intertwined networks, this 

is a challenge that has yet to be addressed satisfactorily(Cohen Kadosh, Linden et al. 2013, Cohen 

Kadosh, Lisk et al. 2016, Staunton and Cohen Kadosh 2019)). Recently published taxonomies (Sorger, 

Scharnowski et al. 2019, Lubianiker, Goldway et al. in press) survey the advantages and 

disadvantages of the different ways of designing control conditions and selecting control groups. For 

example, not involving a control group or comparison to a no-training control group allow slim and 

less costly study designs, and are favorable in early phase studies (e.g. to identify endpoints for 

future clinical trials, (Sorger, Scharnowski et al. 2019)). If NF is given in order to facilitate mental 

strategy learning, a control group practicing a mental strategy without NF is necessary to reveal 

additive effects from treatment (Sorger et al. 2019). In contrast, placebo control is required to 

conclude on causality of brain self-regulation (e.g. with a randomized control group design). Like 

placebos in pharmacology research, NF placebo conditions should control for psychosocial effects 

(e.g. attention by staff, receiving high-tech treatment, and so on) without altering the process 

targeted with the intervention (e.g. emotion regulation with amygdala neurofeedback). However, 

brain self-regulation with NF is a complex phenomenon and involves several processes itself such as 

perception, valuation of feedback, implementation of control and learning (see section 1.2 above). 

Therefore, placebo would need to invoke all these “NF general” processes, without addressing the 

target process (Lubianiker et al. in press). With current state of knowledge, an informed selection for 

placebo NF considering all the above points is difficult, if not impossible. A solution still to be tested 

may be “randomized ROI NF” (suggested in Lubianiker et al. in press), where different control 

regions-of-interest are assigned to participants of the control group. Moreover, ethical 

considerations may prevent usage of some control groups, particularly in patient treatment. For 

example, there is concern that sham feedback might encourage participants to abandon an 

otherwise successful strategy, simply because the feedback does not seem to support using it. 

Schabus (Schabus 2017) suggested that yoked feedback might introduce learned helplessness, with 

adverse consequences on motivation and learning with subsequent real feedback. Moreover, a 



recent study by Goldway et al. (Goldway, Ablin et al. 2019) provided additional support for the use 

of sham feedback after they observed subjective improvement after sham feedback in patients with 

chronic pain that faded in follow-up measurements.  

Similarly, given the changes in recruitment patterns of different brain regions in the developing 

brain, it is likely that brain regions that are used at an earlier developmental stage are not 

necessarily relevant at a later stage (Johnson, Grossmann et al. 2009, Johnson, Jones et al. 2015). As 

a result of this, it would be extremely difficult to find a control brain region that would support a 

comparable function across different ages. A possible solution for this problem could be to provide 

authentic feedback during the regulation conditions and to compare the regulation success against a 

‘dry’ regulation baseline (where feedback is not given). This would allow us to assess the extent to 

which participants rely on the live feedback signal to both learn and maintain their regulation 

strategies.   

1.4 Population aspects 

The selection of region(s), as well as other parameters, is of particular importance when training 

children with or without psychopathology (Cohen Kadosh, Linden et al. 2013, Cohen Kadosh, Lisk et 

al. 2016), although it does apply also to adults. For example, it is currently unclear whether one 

should teach young individuals to regulate brain responses that would support a cognitive function 

at the specific developmental stage, or, instead teach them directly to use the brain network that 

supports this ability in healthy mature adults (Figure 2). This may seem especially important if one 

considers the developing brain as an adaptive system, where the networks of brain regions that 

support cognitive abilities change interactively as a result of on-going brain maturation and cognitive 

development (Cohen Kadosh and Johnson 2007, Johnson, Grossmann et al. 2009). Hence, the 

temporary use of an alternative brain network during development can be considered both logical 

and adaptive and it remains to be determined whether NF should target these current alternatives 

instead of future key regions. This is also relevant for other clinical populations (e.g. stroke patients), 

where brain networks may well have specialized in a way that is most adaptive for the individual. 

This has not only theoretical and practical, but also ethical, implications. More precisely, the main 

choice lies between increasing responsiveness in compensatory networks, or in attempting to shape 

brain networks towards more typical functioning. While either approach could be argued for, a 

definite decision should be best based on scientific evidence of mechanisms of plasticity and 

rehabilitation that is currently lacking. One promising solution may be to focus on brain regions that 

help with acquiring new skills, such as the inferior frontal gyrus for example, whose involvement in 

executive functions makes it a frequently reported brain region in developmental neuroimaging 

studies that observe age-dependent differences in brain activation (Johnson, Grossmann et al. 2009, 

Cohen Kadosh, Johnson et al. 2013).   

2 How to guide the trainee? 

2.1 Feedback interface 

Interfaces of different complexity have been applied, ranging from simple, thermometer-like 

displays (Cohen Kadosh, Luo et al. 2016) to more complex reality interfaces (Yamin, Gazit et al. 

2017). Integrating realistic virtual environments in NF can enhance learning and improve user’s 

experience ((Cohen, Keynan et al. 2016), for discussion see (Lubianiker, Goldway et al. in press)). Yet, 

complexity can also prove to be distractive as it introduces additional attentional task demands, 

especially in pediatric or clinical populations which may present with reduced cognitive functions 

(‘entertainment’ vs. ‘treatment’ problem, see (Arns, Heinrich et al. 2014)). The optimal feedback 

modality (e.g., visual, auditory, tactile) and the complexity of their transmission (one dimensional 



courser movement to virtual reality environment) have to be chosen based on the objective, 

population and task (Table 2).   

2.2 Instruction 

Previous NF studies have varied as to whether participants were given explicit strategy instructions 

to regulate their brain responses or whether an implicit strategy was expected, i.e., with participants 

being asked to develop their own effective strategies. Most fMRI-NF studies to date have opted for 

implicit strategies (e.g. (Paret, Kluetsch et al. 2014)), and only some patient studies suggested the 

use of mental imagery (e.g. (Zilverstand, Sorger et al. 2015)). Others have only offered simple and 

relatively unconstrained instructions, in order to allow participants across a wide age range (7-17 

years) to perform well. This was the case in a recent NF study where children and adolescents were 

asked to increase the response in a key emotion regulation region by trying ‘to think happy 

thoughts; to think about something that would make them happy’ (Cohen Kadosh et al., 2016). 

Keeping instructions simple may also be important for patient populations, when ability levels to use 

different strategies are likely to vary significantly. The same study also found that whereas the 

instruction worked in the first instance, this lasted only for a couple of runs, with some participants 

failing to up-regulate in the later runs. Understanding the motivational-contextual factors that 

modulate NF regulation is critical. Identifying individual differences in the use of different regulation 

strategies is also important, if we want to enhance the effectiveness of these procedures. In fact, a 

collection of post-training feedback from subjects across experiments may be helpful with 

identifying any trends in strategy formation/usage.   

NF can also be used to support the selection of an instrumental mental strategy from a pool of 

potentially useful strategies (Lawrence, Su et al. 2014). Patients can identify effective strategies for 

ACC control from a pool of skills they had previously learned during cognitive behavior therapy 

treatment (MacDuffie, MacInnes et al. 2018). Mental strategies during training are diverse and 

depend on the NF signal; for example, motor imagery can be used to control sensorimotor 

electrocortical rhythms (Halder, Agorastos et al. 2011, Nan, Rodrigues et al. 2012)and cognitive 

appraisals of emotional contents are instrumental for amygdala regulation (Brühl et al., 2014; Zotev 

et al., 2011). It was shown that strategy knowledge can facilitate NF learning (Bray, Shimojo et al. 

2007, Lawrence, Su et al. 2014, Zilverstand, Sorger et al. 2015, Kober, Witte et al. 2017), and strategy 

instructions may decrease the risk of non-learning with limited duration of an experiment 

(Scharnowski and Weiskopf 2015) or in face of erroneous control beliefs, as shown in EEG-NF (Witte, 

Kober et al. 2013). Furthermore, practicing anterior insula up-regulation with NF helped subjects to 

identify helpful mental strategies, while subjects repeating strategies without NF did not learn 

anterior insula regulation (Caria, Sitaram et al. 2010).   

On the downside, strategies can have undesired effects. For example, when subjects identify an 

instrumental strategy right away, there is no need to explore new strategies, which would 

potentially lead to even stronger activation. Some support for this critique of strategy suggestions 

comes from EEG-NF research, where Hardman et al. (Hardman, Gruzelier et al. 1997) observed a 

steeper learning curve in subjects without instructed strategies to control feedback from slow 

cortical potentials, compared to another group of subjects who were told to use emotional 

strategies. However, significant post-hoc tests were not reported to show whether the no-strategies 

group in the last of three blocks outperformed subjects from the instructed-strategies group. In line 

with a possible advantage not to instruct strategies, strongest learning effects were observed for 

fMRI-based NF without strategy instruction, followed by NF with strategy instruction; but group 

differences were not significant (Sepulveda, Sitaram et al. 2016). These results need a careful 

interpretation, because the authors of the latter study introduced another variable (additional 



rewards) and statistical tests of group differences may have lacked adequate power. Though these 

studies lend some support to the notion that strategy instructions may (negatively) influence NF 

regulation learning, these results may also indicate that subjects were able to overcome initial 

ignorance of strategies to regulate NF, while subjects who received strategy instructions start with a 

higher level of regulation success, which they maintain over the course of the experiment.  Evidence 

has now accumulated showing that explicit strategy knowledge is not required for acquisition of NF 

control per se (Shibata, Watanabe et al. 2011, Kober, Witte et al. 2013, Amano, Shibata et al. 2016, 

Koizumi, Amano et al. 2016, Ramot, Grossman et al. 2016, Shibata, Watanabe et al. 2016) for a 

review see Shibata et al. 2019). Nonetheless, instructed strategies may be useful when using NF for 

certain applications, e.g. emotion regulation purposes. For instance, individuals who habitually use 

specific emotion regulation strategies, such as the reappraisal of emotional material, have better 

functioning levels and higher well-being compared to others, who tend to suppress emotions (Gross 

and John 2003). Reappraisal is a cognitive strategy to change the emotional impact of an affective 

stimulus via re-interpretation of, or taking a detached perspective from the stimulus (Powers and 

LaBar 2019). Healthy individuals prefer to distance from emotional stimuli with high affective 

intensity, but rather reappraise low intensity stimuli (Sheppes, Scheibe et al. 2011, Sheppes, Scheibe 

et al. 2014). Deviations from this pattern may relate to psychopathology, such as borderline 

personality disorder (Sauer, Sheppes et al. 2016). Hence, NF with explicit strategy instructions may 

help patients to overcome deficits in the use of effective emotion regulation strategies, through 

neural reinforcement of desirable mental strategies (Herwig, Lutz et al. 2019). The question of 

whether explicit or implicit task instructions are most efficient remains to be determined, yet given 

the importance of this methodological aspect (Birbaumer, Murguialday et al. 2008), the need for a 

more systematic research and possible standardization is evident.   

3 How to personalize the training? 

Based on the questions above, it has also become clear that methodological approaches may need 

to be additionally adapted for different populations, as requirements are likely to vary not only 

across different ages or clinical populations, but also with regard to subject-specific psychological 

variables which we will discuss in the next section. There are a number of cognitive and 

psychological factors that can affect NF performance. Gaining a better understanding of these 

factors is not only important in order to improve training outcome but also to help address the 

inefficiency problem. The inefficiency problem refers to the often reported finding that not all 

participants in NF studies are able to influence their brain activity. These people are often referred 

to in the literature as non-responders, non-performers or non-regulators and represent 30-50% of 

the population (Alkoby, Abu-Rmileh et al. 2018). In the following, we discuss a number of 

methodological, cognitive and psychological factors that all contribute to NF efficiency. While by no 

means complete, these provide first starting points for further optimizing NF interventions for a 

specific sample and thereby reducing the inefficiency problem.   

3.1 Protocol aspects 

An area of NF research that requires more in-depth research is the development of both time and 

cost-effective training regimes. For example, the number and length of each training session varies 

considerably across the different studies, with some studies testing participants repeatedly over 

several days (e.g., (Spetter, Malekshahi et al. 2017)) whereas others used a single testing session 

only (e.g., Cohen Kadosh, Luo, et al., 2016)). Some individuals might achieve the maximum level of 

control already after a single session, notably not only in fMRI-NF but also in EEG-NF (Schabus 2017, 

Schabus, Griessenberger et al. 2017, MacDuffie, MacInnes et al. 2018). The former is surprising as 

EEG-NF is usually thought to require higher training dosage than fMRI-NF (Sulzer, Haller et al. 2013). 



The lack of reported data on within-session brain signal regulation is currently a major obstacle for 

comprehensive review (Thibault and Raz 2016). A more systematic investigation of optimal training 

length is urgently needed to avoid training regimes that are too short, or too long to be effective. To 

date, only one study has considered individual criteria for training length (Scharnowski, Hutton et al. 

2012). More research, across a range of populations and tasks would now be needed to provide 

reliable standards for effective and efficient NF training. Similarly, when considering training length 

and intensity, the option of combining NF training with out-of-scanner practice should be 

considered, as has been done in some studies with clinical samples (Subramanian, Hindle et al. 2011, 

Linden, Habes et al. 2012), possibly in combination with a therapeutic intervention, such as 

cognitive-behavioral therapy (CBT), which would allow for a cross-over and mutual reinforcement of 

intervention approaches. NF could augment psychotherapy as illustrated by MacDuffie et al. 

(MacDuffie, MacInnes et al. 2018), who let patients regulate ACC after completion of CBT, using 

strategies they had learned in psychotherapy. The one-session protocol was instrumental for 

patients to identify strategies that were more effective than others for neural regulation. 

Furthermore, Herwig et al. (Herwig, Lutz et al. 2019) show that NF may augment the neural effect of 

behavioral instructions.  

Finally, a number of contextual and individual factors such as at what time of the day participants 

are tested, age, the amount of sleep that the participant had, physical exercise and general fitness, 

nutrition and menstrual cycle could influence the optimal training regime. At this time, we have no 

data available to address these questions conclusively. In addition to finding an ideal NF protocol, it 

might be helpful to try and implement an adaptive NF protocol that could maximizes neural 

regulation abilities. One example of such an approach to support optimal regulation performance 

could involve the individual NF range to keep participants challenged and engaged by varying scales 

of neural activity representation via the interface. Adaptive task difficulty was previously applied in 

other types of tasks, such as the tracking stop task (Rubia, Smith et al. 2003) by using a computer 

algorithm that adjusts the paradigm difficulty level according to the participant’s performance. Using 

this approach, feedback range would not be fixed for all participants, rather it will be set according 

to the participant’s performance in previous blocks/sessions. Such “shaping” of behavior conforms 

to learning theory principles (Sherlin et al., 2011). For example, if the participant was very successful 

in previous sessions, the feedback will be presented with a higher demand range of neural activity in 

order to achieve the optimal performance.   

Another approach to maximize regulation performance is the use of adaptive NF protocols that 

contain fewer challenge levels. According to this approach, individual progress in NF training is 

determined by the participant achieving a pre-determined goal, rather than by going through a fixed 

number of sessions. This kind of protocol may include fewer stages, each carrying different level of 

challenge. The first stage of such NF protocol may include a neutral feedback interface (e.g. 

bar/neutral sound) while more advanced stages may include gradually more challenging (i.e., 

stressful or intriguing) feedback interfaces. In this setup participants are required to meet pre-

determined success criteria (e.g. three successful sessions), in order to progress from one stage to 

the next (see Table 4 for an overview). Whilst adopting an individually tailored feedback approach 

may be more optimal from a learning perspective, it significantly limits comparability between 

sessions (either within or between individuals), and in turn reduces the informative value of, 

especially, between-subject designs. 

3.2 Person aspects 

Cognitive factors such as general intelligence levels, executive functions and the ability to focus on a 

task are to be considered when adjusting task designs for different populations (Hammer, Halder et 



al. 2012, Jeunet, N'Kaoua et al. 2016).  It may be useful for example to simplify both task instructions 

and feedback display for younger participants in order to reduce the task demands and cognitive 

load (Gaume et al., 2016). A study by Alegria et al used a simple rocket to display brain activity in a 

sample of adolescents (Alegria, Wulff et al. 2017). In another recent study, Zich and colleagues 

trained a sample of adolescent girls to simultaneously increase activation in the dorsolateral 

prefrontal cortex and to decrease activation in the amygdala (Zich, Haller, et al., unpublished data), 

yet to simplify these complex changes for the participants, a simple thermometer was displayed, 

which increased with increasing negative correlation between the two regions.   

A recent systematic review of the NF literature where 281 articles were reviewed (Staunton and 

Cohen Kadosh 2019) found that attention indices such as the ability to focus, as well as length of 

attention span influenced NF learning outcomes, yet more research needs to be conducted to 

explore this further.  

The contribution of psychological factors has been less explored and the results so far are not 

conclusive. In the recent systematic review mentioned above, only two factors emerged: motivation 

and mood (Staunton & Cohen Kadosh, 2019). Understanding a participant’s motivational preference 

is important because it can help explain how participants will respond to the training paradigm. 

However, motivation is likely to vary between and within participants, but also as a function of age 

and across contexts. Specifically, it was found that while motivation to learn is important, there may 

be a need to balance individual levels of intrinsic motivation with the reward that is received. For 

example, Leeb and colleagues (Leeb, Lee et al. 2007) found that whereas highly motivated 

participants performed initially better on a simple NF training task than less motivated students, this 

performance difference was reversed when the NF training paradigm was switched to a virtual 

environment and became more immersive and hence, more interesting for subjects. This suggests 

that external factors such as learning paradigms can interact with an individual’s motivation to learn.  

With regard to mood, it has been shown that anxiety and depression can have a negative influence 

on performance (Zich, Haller, et al., unpublished data). In a recent study, Zich and colleagues found 

that low state anxiety levels in adolescent girls at the beginning of the training predicted better NF 

training outcomes (Zich, Haller et al., unpublished data). While more research is needed to replicate 

this finding, future studies could explore the use of anxiety reducing exercises prior to the NF 

training in order to maximize its effectiveness. Similarly, it may be useful to monitor anxiety levels in 

participants throughout the training and to adjust when a certain threshold is reached, rather than 

continuing with the training.   

Further, being susceptible to other people’s emotion appears to play a part in emotional regulation 

learning. For example, susceptibility to anger has been found to impair NF success in two studies 

(Zotev, Krueger et al. 2011, Marxen, Jacob et al. 2016). Moreover, under specific circumstances, the 

ability to label emotions may be important in NF-based emotion regulation learning, such as in the 

case of children and adolescents who exhibit prolonged developmental trajectories for both emotion 

recognition and regulation abilities (Thomas, De Bellis et al. 2007, Ahmed, Bittencourt-Hewitt et al. 

2015). Introspective ability to perceive one’s emotions more generally relates to the ability to 

discriminate percepts of internal signals, which is a key aspect of the two-process theory of NF 

learning. As suggested by Gaume et al. (2016), the ability of participants to perceive internal signals 

may be a good predictor for learning success and transfer of learning. However, behavioral measures 

of the ability to perceive brain states are still to be developed.  

The evidence reviewed above highlights the important role that psychological factors can play in the 

successful implementation of NF training (see also Staunton & Cohen Kadosh, 2019). In the same 

vein, neural markers were found successful to predict EEG-NF performance (Gevensleben, Holl et al. 



2009, Blankertz, Sannelli et al. 2010) and could be distilled from pretraining fMRI measures such as 

resting-state connectivity (Scheinost, Stoica et al. 2014) to predict NF response and optimize 

treatment protocols. Clearly, more research is needed to develop recommendation that would allow 

us to personalize training programs for each individual in order to achieve maximum effectiveness.   

4 How to monitor training? 

4.1 Signal calculation 

There is currently no standardized approach of calculating feedback, a problem which makes it 

difficult to compare NF signal and, in turn, NF training effectiveness across studies. To quantify signal 

change, BOLD signal drifts require corrections such as signal detrending and/or usage of a baseline 

where signal drifts only have negligible influence. For example, baseline activation can be retrieved 

from an epoch preceding the regulation block such as a ‘rest’-period of a few seconds where 

subjects are instructed to refrain from cognitive efforts (Veit, Singh et al. 2012), and activation can 

be quantified relative to the mean baseline activation. BOLD signal changes have considerable 

interpersonal and intrapersonal variance that renders quantification problematic, though. To deal 

with this problem, the BOLD signal can be sampled during a baseline period (e.g. 60 s) to receive the 

mean and standard deviation, which can then be used as reference for quantification of signal 

variability (e.g. (Keynan, Meir-Hasson et al. 2016)). This method seems optimal to receive maximally 

informative feedback in terms of variability, but a sufficiently long baseline period needs to be 

recorded in order to receive reliable statistics. Notwithstanding the problems of BOLD 

quantification, absolute quantification of BOLD signal change for feedback appears feasible (e.g. 

Paret et al., 2014, Zotev et al., 2011), at least for some applications (Figure 3).  Another question 

regards the specificity of BOLD signal changes. First, the BOLD signal is prone to changes in blood 

oxygenation that are not related to neural activations, for example produced by changes in 

respiratory patterns, which need adequate control (see Thibault et al., 2018 for a comprehensive 

review). Second, although most NF studies use some sort of artifact correction to control for noise, 

few studies tried to confirm specificity of feedback. It is usual practice to carefully select the 

anatomical location of a region of interest via functional localizer or anatomical masks. However, the 

fMRI signal of the whole brain is considerably inter-correlated and only few studies analyze 

correlations of the feedback signal with brain-wide activations post-hoc. For instance, Ramot et al. 

(2016) state that feedback-correlated brain activation was indeed not confined to the target region 

in the fusiform face area, but was instead widespread and included regions such as thalamus, 

cerebellum and posterior cingulate cortex. In a recent study, we recorded background noise from a 

rectangular control region located few millimeters from the amygdala, and subtracted the signal 

from the right amygdala’s BOLD signal. A post-hoc whole-brain regression analysis with feedback as 

predictor showed strongest correlation of the target region, while left amygdala and two regions in 

the right and left cerebellum were also correlated (Paret et al., 2018). In conclusion, though 

feedback is given from a region of interest, the feedback signal is likely not restricted to the 

anatomical boundaries drawn by the experimenter. Instead, feedback more or less carries 

information on activation from other regions throughout the brain, beyond the a priori selected 

target region. In cases of increasing co-activation, feedback becomes more representative for neural 

network activity. Conceptually, the difference between regional and connectivity feedback is blurred 

under these circumstances (Figure 4). Notwithstanding efforts to yield anatomically precise signal, it 

is even not clear whether an NF signal with high anatomic specificity (e.g. from the right amygdala 

only) is superior to a less localized signal. It is even possible that the latter is more helpful for 

regulation learning, as a less anatomically restricted signal may be more representative of functional 

networks of interconnected brain regions, and provide greater ecological validity. In future, studies 

could clarify this matter by providing whole-brain maps of feedback-correlated brain activation in 



addition to regulation success indices, and with verbal feedback from subjects about the perceived 

regulation success.   

Feedback can be presented continuously or with a delay, and both approaches have been shown to 

be feasible in allowing participants to learn and to modify their brain response. For some feedback 

modalities such as dynamic causal modeling (Koush, Meskaldji et al. 2017), continuous feedback is 

not feasible and intermittent/end-of-block feedback turned out to be sufficient for NF training. Only 

few studies compared continuous and intermittent feedback, and evaluated effects on 

neuromodulation. Results are inconsistent: two groups stated that continuous feedback was 

superior for premotor cortex regulation (Johnson, Hartwell et al. 2012) and amygdala regulation 

(Hellrung, Dietrich et al. 2018), while others tentatively suggest better auditory cortex regulation 

with continuous feedback (Emmert et al., 2017). In fact, two of the studies did not find significant 

differences between both types of feedback in primary data analyses (Emmert et al., 2017, Hellrung 

et al., 2018), and the other study did not report the required statistical group comparison (Johnson, 

Hartwell et al. 2012). Thus, no clear evidence is currently available on the superiority of continuous 

or intermittent feedback. Better knowledge of the functional neuroanatomy underlying brain self-

regulation could inform decision of continuous vs. intermittent. For example, if the target region 

shows an event-related response to feedback, it is probably better to give feedback intermittently, 

because otherwise, NF monitoring may interfere with NF control (Lubianiker et al., in press). 

4.2 Success metrics 

The ultimate question for brain self-regulation training is whether the training was successful or not. 

However, there is currently no established practice of how success is measured. A number of 

approaches have been taken so far. Some studies have looked at the number of successful trials 

(Chiew, LaConte et al. 2012, Koush, Rosa et al. 2013) an effect size of up/down regulation (Cohen et 

al., 2016) or a combined index which compared regulation vs. rest activity in the target regions 

(Cohen Kadosh, Luo, et al., 2016; Zotev et al., 2011). Further considerations are whether success is 

measured by changes in the NF training sessions only or at a follow-up testing appointment. 

Alternatively, success can be operationalized as improvements in related tasks, i.e. behavioural 

transfer effects. One could also look at subsequent functional changes in the brain, such as changes 

in local or global connectivity (Shibata, Watanabe et al. 2011, Zotev, Phillips et al. 2013, Cohen 

Kadosh, Luo et al. 2016). Similarly, training effects could be observed at the structural brain level, i.e. 

in change in white or grey matter.  

Assessing NF training success will also depend on the statistical approach. The optimal approach will 

depend on whether the training consists of a single session or multiple sessions. For a single session, 

a simple t-test or Wilcoxon t-test ("fixed threshold”) can be used to compare activation during a 

passive baseline condition (e.g. where subjects were instructed to ‘rest’) and regulation conditions 

(Figure 5A), or between NF-based regulation during exposure to visual stimuli and a “mirror run” 

(passive viewing of the same/ matched stimuli) (Ihssen, Sokunbi et al. 2016). However, whereas this 

measure is straightforward, it is also quite insensitive as it provides binary yes/no answers regarding 

the question if the NF session was successful or not (Krause, Benjamins et al. 2017). Moreover, 

global changes in brain signals during training (see above) might mask the true difference between 

'rest' and 'regulate' conditions. To overcome this issue, one can perform the same statistical test but 

with one difference: instead of comparing average brain activity during 'rest' to average brain 

activity during 'regulate', compare each regulation condition to the previous rest condition. In this 

case, instead of having a binary score for the session, one can constitute a more fine-grained type of 

measure we call “success rate” (Figure 5B).  However, this measure is not continuous, as it depends 

on the number of NF blocks in each session, thus provides fixed levels of success that preclude 



parametric testing. To overcome the lack of continuity, one could simply calculate the difference 

(delta) between the mean activity levels in the rest and regulate conditions. In addition to adding 

continuity, this measure allows for a straightforward interpretation of the results. There are several 

drawbacks however, as this measure is highly noise sensitive and affected by outliers. Furthermore, 

it overlooks differences in within-session variance of the signal. For example, while two participants 

may have equal delta they could differ in the signal variance. Thus, the same delta might not reflect 

equal performance. One possible solution is the use of a "personal effect size“ that divides the 

“delta” by the pooled standard deviation of ‘rest’ and ‘regulate’ conditions (Figure 5C). This measure 

is continuous and accounts for differences in individual variance. However, this measure is quite 

sensitive to the block duration and sampling rate – with greater sampling rate leading to a reduction 

in variance, thereby making it difficult to compare different designs and interfaces (for a summary 

see Table 4).  

In order to account for global performance throughout the NF training course, there is a need to 

create an index that would capture NF performance not only during a single session but across the 

entire training procedure. There are currently few approaches to address this issue: the first option 

is to calculate the “mean performance”, i.e. an averaged success index across sessions. This index 

assesses the participant’s performance in a global manner throughout the NF training and is 

relatively noise-insensitive. One problem with this approach is that the mean performance index 

does not take into account whether the participant’s performance improves from one session to the 

next. In order to account for any change in regulation ability, one can use the difference between 

the first and last session. However, this would only provide an index of change from the first to the 

last session, which would mask any change throughout the training day, a problem which is more 

obvious when we consider that some participants will exhibit their best performance during the 

intermediate sessions of the training, followed by a decrease due to tiredness or boredom (Cohen 

Kadosh, Luo, et al., 2016). One way to access this additional information is to calculate the “learning 

slope”, i.e. the slope of a regression of success index on session number. While this measure may 

account in the best way for learning dynamics, it suffers from two major drawbacks: first, it assumes 

that learning follows a linear trajectory, which is an assumption that is not supported in current 

learning theories. For example, skill learning theory for NF learning predicts rapid initial change in 

performance and more moderate improvement at later phases (Yin, Mulcare et al. 2009, Sitaram, 

Ros et al. 2017). Secondly, this measure is noise sensitive, meaning that one failed NF session can 

affect the overall model fit. An additional measure that has different conceptual framing is “best 

performance”. This measure refers only to the best session in the NF training course and might even 

refer to the best block. The rationale underlying this measure is that it reflects the subjects’ best 

potential of neural regulation. With that, this measure is highly sensitive to noise but prone to 

outliers (see Table 4). Altogether, it seems that selecting success indices based on theoretical 

considerations constitutes a helpful initial starting point. We now urgently require systematic 

research into the mechanisms that relate to changes in NF learning indices and neural/behavioral 

outcome measures. 

5 Conclusion 

Researchers about to design and conduct an NF experiment need to find answers on a variety of 

questions for which clear guidelines are missing. In the above, we addressed several questions 

regarding NF procedures and reviewed the current state of the literature. For the selection of brain 

targets, one should consider aspects such as developmental trajectories in brain development and 

the functional neuroanatomy of NF learning. Virtual reality interfaces have the potential to increase 

training efficiency by keeping subjects motivated yet the specific advantages over more simple 



interfaces that currently prevail require further study. Whether or not to provide overt strategies for 

NF regulation is still a controversial question and evidence for clear recommendations is lacking. 

There are virtually infinite ways to calculate NF signals. Control for nuisance and global brain signals 

is necessary for reliable NF, but the way in which the brain signal is “cleaned” from other influences 

can have unintended effects. Calculating both the absolute and relative quantification of BOLD signal 

change for fMRI-NF is feasible and suitable for training. Moreover, criteria for quantification of 

neural regulation success are lacking, as are success measures, which are necessary in order to 

evaluate training efficiency. Here we discuss different success metrics that may help to evaluate and 

compare training regimes in future. We also addressed options to personalize training regimes and 

to make training more effective, considering aspects of NF protocols as well as characteristics of 

persons undergoing training. Therefore, in order to maintain the current momentum in the field and 

the considerable progress as evident by the ever-increasing number of studies that are being 

published on NF research, a two-pronged approach will be needed. Specifically, we envision an 

active basic science approach which systematically strives to explore and optimize NF designs by 

investigating the effect of methodological, cognitive and psychological factors. Such an approach 

could also focus on establishing a comprehensive testing protocol that would enable us to compare 

NF training outcomes across populations and research centers. One crucial step towards this goal is 

adherence to reporting guidelines such as the CRED-nf (Ros, Enriquez-Geppert et al. pre-print) in 

future publications. This first approach would then inform the translational work in the field by 

providing authoritative guidelines for the design of more effective brain training for cognitive 

enhancement more generally, and the treatment of clinical populations more specifically.   
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8 Figures 

 



Figure 1. “Floor plan”, illustrating domains of neurofeedback procedures of current debate and 

discussed in this article. 

 

 

Figure 2. How to treat the maturing brain: train networks specific for a particular 

developmental stage or reinforce adult healthy brain function? Brain networks undergo 

considerable maturation throughout the first two decades of life (Fair, Cohen et al. 2009, 

Cohen Kadosh, Cohen Kadosh et al. 2011), a change which is reflected in the functional and 

structural connectivity patterns across the age range. For the design of effective NF protocols, 

this could mean that different brain regions may support a specific cognitive function at each 

age point. The question therefore arises whether one should teach young individuals to 

regulate brain responses that would support a cognitive function at the specific developmental 

stage, or, instead teach them directly to use the brain network that supports this ability in 

healthy mature adults. This may seem especially important if one considers the developing 

brain as an adaptive system, where the networks of brain regions that support cognitive 

abilities change interactively as a result of on-going brain maturation and cognitive 

development (Cohen Kadosh and Johnson 2007, Johnson, Grossmann et al. 2009). The same 

principle applies for clinical populations, which may rely on alternative brain networks to 

perform a task. Hence, the (temporary) use of an alternative brain network can be considered 

both logical and adaptive and it remains to be determined whether NF should target these 

(current) alternatives instead of typical key regions (see also discussion in Lubianker et al., in 

press). 

 



 
Figure 3. Feedback is calculated based on the subject’s BOLD signal variance or based on 

absolute signal change. A) The BOLD signal is sampled during a period (e.g. during ‘rest’, 

left area in blue). Mean and standard deviation (sd) is calculated and used to standardize 

feedback during the ‘regulate’ trial (right area in green). B) An absolute threshold is set to 

decide, whether BOLD signal change is followed by a change in the feedback thermometer. 

 

 
 



Figure 4. Different real-time signal processing pipelines yield feedback that is correlated 

with different regional activation patterns. For illustration, right amygdala activation was 

calculated with two different real-time preprocessing routines, based on prerecorded fMRI 

data of N=17 subjects who were administered an fMRI emotion regulation experiment 

(Linhartová, Gerchen & Paret, unpublished data). The resulting amygdala-signal was used as 

a predictor in a whole-brain statistical parametric mapping analysis. The maps show results 

from the group t-test (P<0.05 FWE-corrected; colour-scale: t-values). The map shows regions 

that are significantly correlated with the amygdala signal as it was received by real-time 

analyses. Hence, activation of these brain regions is represented in this signal, and would 

have been reflected in feedback from this signal (note that subjects in this study did not 

receive feedback). A) The amygdala signal was cleaned by real-time regression of movement 

parameters and “censoring” of super-threshold movements, based on realignment regressors. 

B) Activation from a rectangular control region was subtracted from the amygdala signal (see 

Paret et al. 2018 for comprehensive description of methods). 

 

 
Figure 5. illustrates different approaches to calculate success metrics. An experiment of 

alternating ‘rest‘ (blue) and ‘regulate‘ (reg; green) trials is shown. A ‘rest‘ and subsequent 

‘reg‘ trial form together a block-unit. The signal of each trial is congregated for ‘rest‘ (i.e., 

samples 1, 2, …, i; x1-i) and ‚reg‘ (i.e., samples 1, 2, …, i; y1-i) to result in a mean value (e.g. 

x(stroked)1,n is the mean of all ‚rest‘-samples in session 1, block n; y(stroked)1,n is the mean 

of all ‚reg‘-samples in session 1, block n). A) For the ‚fixed threshold‘ index, the mean of all 

samples in ‘rest‘ (x(stroked)1,n) and ‘reg‘ (y(stroked)1,n) is calculated and passed to a 

statistical test. If significant, regulation was successful. B) For the ‚success rate‘, ‘reg‘ and 

‘rest‘ conditions are compared in a block-wise manner. One receives a statistic for each block 

showing whether samples in the ‚reg‘ trial differed significantly from the preceding ‚rest‘ 

trial. The success rate of a session is reflected by the percentage of blocks with signficant 

difference. C) For calculation of ‘personal effect size‘, we take the difference (delta) between 

the ‚reg‘ and ‚rest‘ mean of each block. To account for differences in signal-variance, one 

may divide each delta by the pooled standard deviation σ of this block, and receive blockwise 

effect size estimates. The mean of these is the personal effect size of the session. 

 



 

 

 





 
 

Table 4. Selective summary of protocol aspects that may increase efficiency of NF training. 

 

 
 



 


