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Abstract

We discuss the approximation of performance measures in multi-class M=M=k queues with preemptive priorities for large
problem instances (many classes and servers) using class aggregation and server reduction. We compared our approximations
to exact and simulation results and found that our approach yields small-to-moderate approximation errors.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Multi-class priority queues arise in various applica-
tions, for example in manufacturing systems [2]. We
encountered this queueing model during our research
on inventory control of repairable spare parts [10].
Then, repair shops can be modelled as multi-server
queues, where each item type corresponds to a cus-
tomer class with its own arrival and service process. To
reduce the inventory of expensive spare parts, it might
be worthwhile to reduce the repair throughput times of
these items by giving them high priority. To be able to
examine this, we need multi-class, multi-server prior-
ity queues to model repair shops. As key performance
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indicators, we need the >rst two moments of the num-
ber of items in the system per class.
Multi-class, multi-server queues with >rst-come-

>rst-serve discipline have been studied before in
[5,11,12]. Quite some attention has been given in
the literature to single-class, multi-server queues
with preemptive priorities, see e.g. [4,7,8]. As far
as we know, [9] is the only paper dealing with the
combination of preemptive priorities and multiple
customer subclasses that are assigned either high
or low priority. They provide an exact analysis and
solution procedure for the steady-state probabilities.
Therefore, they are able to derive a wide range of
performance measures. A drawback is the computa-
tional e@ort required, so that large systems with many
servers and many subclasses cannot be evaluated nu-
merically. We need a less demanding procedure to
deal with practical problems having many classes and
servers.
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To this end, we focus on faster approximation pro-
cedures for the multi-class, M=M=k priority queue,
based on exact results from [9]. First, we show in
Section 2 that we can use class aggregation to speed
up the computation of performance measures in the
multi-class M=M=k queue with FCFS discipline. We
can use these approximations for the high-priority
classes in the multi-class M=M=k priority queue, be-
cause we focus on preemptive priorities, so that the
performance of high-priority items does not depend
on the presence of low-priority items. Next, we focus
on approximations for the low-priority classes based
on the analysis of a multi-class M=M=1 priority queue
and using some correction factors (Section 3). We
tested all our approximations in numerical experi-
ments that we include in Sections 2 and 3. We found
indications that our approximations provide reason-
able to good results and that they can be used to
analyse large models with many classes and servers.
For example, we computed the performance charac-
teristics of a 11 server, 23 class model within 90 s on
a Pentium-II 700 MHz PC.

2. Multi-class M=M=K queue

2.1. Run times for exact analysis

For the high-priority classes, we can use the algo-
rithm as given in [5] for the multi-class M=M=k queue
with FCFS discipline. They present a method to cal-
culate the steady-state probabilities exactly. To judge
the usefulness for large systems, we evaluated the run
times for various combinations of number of servers

and number of classes (the run times are fairly in-
dependent of other system parameters). In Table 1,
we show the run times in seconds on a Pentium-II
700 MHz PC (all run times in the remainder of this
paper refer to the same computer). We see that the
algorithm can handle quite some combinations of the
number of servers and number of classes within a rea-
sonable amount of time. A wide range of cases can be
analysed if either the number of servers or the num-
ber of classes is small (1, 2 or 3). The run time ex-
plodes however if both parameters become large. This
is caused by the fact that eigenvalues and eigenvec-
tors of a matrix of dimension d(N; k)∗d(N; k) have to
be computed, where d(N; k)= 2

(
N+k−1

k

)
with N the

number of classes. Hence, we need approximations for
large N and k.

2.2. Approximations

A common way to approximate k-server queues is
by considering a single-server queue where the server
works k times as fast and using some correction factor
for scaling from k servers to a single server, see e.g.
[3,14]. An alternative approach is to reduce the num-
ber of classes rather than the number of servers. That
is, we derive the performance characteristics for class
i by aggregating all other items into a single class. To
obtain the performance characteristics for all classes
i=1; : : : ; N , we repeat this procedure N times for each
item class. Then we have to analyse N two-class mod-
els rather than oneN -classmodel.We see fromTable 1
that this approach strongly reduces run times if N
is large. As some preliminary experiments indicated

Table 1
Run times to solve the multiclass M=M=k queue exactly (s)

Classes k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 15 k = 20 k = 25 k = 50

N = 2 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 0.8
N = 3 ¡0.1 ¡0.1 ¡0.1 ¡0.1 ¡0.1 0.1 0.3 0.5 0.9 11 91 573
N = 4 ¡0.1 ¡0.1 0.1 0.5 2 7 20 65 207
N = 5 ¡0.1 0.1 0.9 7 56 368
N = 6 ¡0.1 0.5 7 140 1452
N = 7 ¡0.1 2 58 1470
N = 8 0.1 7 390
N = 9 0.3 21
N = 10 0.6 78
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that server reduction may not yield as accurate results
as class reduction, we decided to focus on the latter
approach.
This still leaves us with the issue how to model an

aggregate class. A simple approach is to assume that
the aggregate class has an exponential service time
distribution with a mean equal to the weighted mean
service times of all items in the aggregate class. Then
the aggregate item A has the following arrival rate �A
and mean service time E[SA]:

�A =
∑
j �=i

�j and E[SA] =

∑
j �=i �jE[Sj]∑

j �=i �j
;

where �j and E[Sj] denote the arrival rate and the
mean service time of class j customers, respectively.
However, it is clear that the service time of the ag-

gregate item is generally not exponentially distributed.
If the service rates of all items being aggregated are
very di@erent, the aggregate service time distribution
is not even close to an exponential one. Therefore, we
will also use a hyperexponential distribution for the
service time of the aggregate item, de>ned as

fA(t) = p�1e−�1t + (1 − p)�2e−�2t : (1)

The resulting two-class queueing system is equiva-
lent to a three-class M=M=k queue (see e.g. [11]) with
respective arrival rates and mean service times

�i and E[Si];

�A1 = p
∑
j �=i

�j and E[SA1] = 1=�1;

�A2 = (1 − p)
∑
j �=i

�j and E[SA2] = 1=�2:

We choose the parameters p, �1 and �2 of the hyper-
exponential distribution (1) such that the >rst three
moments coincide with the >rst three moments of the
aggregate service time distribution. That is, we choose
(cf. [1])

�1 =
1
2

(
a1 +

√
a21 − 4a2

)
;

�2 =
1
2

(
a1 −

√
a21 − 4a2

)
;

p= 1 − �2(E[SH]�1 − 1)
�1 − �2

; (2)

where

a2 =
6E[SH] − (3E[S2H]=E[SH])

(6{E[S2H]}2=4E[SH]) − E[S3H]
and

a1 =
1

E[SH]
+
a2E[S2H]
2E[SH]

:

For exponentially distributed class service times, the
nth moment of the aggregate service time equals

E[SnA] =
n!
∑

j �=i �j(E[Sj])
n∑

j �=i �j
:

It is known that the following two conditions are nec-
essary to >nd valid parameters as speci>ed by (2) cf.
[13]:

1. the coeIcient of variation of the aggregate service
time cA (the ratio of the standard deviation and the
mean) should be at least 1; it can easily be shown
that this condition always holds for a weighted av-
erage of exponentially distributed random variables
as in this application;

2. the third moment of the aggregate service time
should satisfy E[S3A]¿

3
2 (1 + c2A)

2{E[SA]}3; it is
not guaranteed that this lower bound is always sat-
is>ed; if it is not, we choose the parameters of the
hyperexponential distribution such, that the third
moment equals the lower bound, thereby approx-
imating the aggregate service process as close as
possible.

2.3. Numerical results

In a numerical experiment, we examined the qual-
ity of two approximations for the multi-class M=M=k
queue by comparison to exact results using the method
as given in [5]. We computed the performance char-
acteristics of a speci>c class i by aggregating all other
items in a single class having either an exponential
distribution (M -approximation) or a hyperexponen-
tial distribution (H2-approximation). So, to analyse an
N -class M=M=k queue, we computed the performance
of either N two-class M=M=k queues or N three-class
M=M=k queues. We expected that the second approach
would be more accurate, but also more time con-
suming. Therefore, we considered both the relative
approximation error and the run times.
In all our experiments, we considered a six-class

M=M=k queue. As normalisation, we chose for the total
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arrival rate
∑

i �i=1.We varied the number of servers
(k = 3 or 6) and the utilisation (� = 0:60 or 0.90).
Further, we chose three scenarios for the di@erences
between classes:

1. all classes have the same arrival rate and the service
rates �i=1=E[Si] decrease geometrically such, that
the ratio of the highest to the lowest service rate
equals 10;

2. both the arrival rates and the service rates decrease
geometrically such, that the ratio of the highest to
the lowest rate equals 10;

3. the arrival rates decrease and the service rates in-
crease such, that the ratio of the highest to the low-
est rate equals 10.

So we considered quite extreme cases, including a few
where one item requires 100 times as much server
capacity as another one. We chose to include such
extreme cases, because we expected that the quality
of our approximations might deteriorate then.
As performance measures, we focused on the mean

and coeIcient of variation of the number of items
in the system per class (denoted by Ni), because that
is what we need for our application (to model repair
shops in spare part inventory models). Besides, we

chose the mean queue length per class E[Qi] as a gen-
erally relevant performance characteristic. Note that
the di@erence between E[Ni] and E[Qi] is exactly the
mean number of class i items in service. In Table 2,
we show the average and maximum relative approxi-
mation error (%) over all classes for each case.
We see that the M -approximation error is very

high, whereas the H2-approximation yields much bet-
ter results. A probable cause is that the aggregate ser-
vice time distribution is not even close to exponential
in the experiment, so that the inclusion of the third
and second moment has a strong added value. For
the run times, we found that the exact solution takes
about 0:5 s if k = 3 and about 24 min if k = 6. The
approximations were all much faster, namely 0.02
and 0:37 s worst case for the M -approximation and
the H2-approximation, respectively. Based on these
results, we recommend the H2-approximation.

Remarks. (1) A limitation is that we are not able to
calculate correlations between the number of items
in queue or in the system per class. For pairwise cor-
relations, we can resolve this by isolating classes i
and j while aggregating all other items in a single
class. Then we can apply the method by Harten and
Sleptchenko [5] to >nd the correlations between the

Table 2
Average and maximum relative approximation errors (%) for multi-class M=M=k queues

Perf. measure Error Approx. Equal arrival rates Decreasing arrival rates

Service rates decrease Service rates decrease Service rates increase

� = 0:60 � = 0:90 � = 0:60 � = 0:90 � = 0:60 � = 0:90

k = 3 k = 6 k = 3 k = 6 k = 3 k = 6 k = 3 k = 6 k = 3 k = 6 k = 3 k = 6

E[Qi] Av M 25.4 23.0 27.6 27.1 31.1 27.0 34.8 34.0 13.4 12.2 14.6 14.4
H2 0.3 0.5 0.1 0.1 0.6 1.1 0.1 0.2 0.1 0.2 0.0 0.0

Max M 31.4 28.3 34.4 33.8 38.0 32.7 43.0 41.2 17.2 15.6 18.8 18.5
H2 0.4 0.8 0.1 0.1 0.8 1.5 0.2 0.3 0.1 0.3 0.0 0.0

E[Ni] Av M 10.1 3.7 23.1 19.3 9.2 2.8 26.9 21.1 6.2 2.5 12.7 10.9
H2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0

Max M 15.6 6.9 28.3 24.1 15.0 4.8 36.0 30.5 10.5 5.2 15.8 14.7
H2 0.2 0.2 0.1 0.1 0.3 0.2 0.1 0.2 0.1 0.1 0.0 0.0

c[Ni] Av M 1.0 0.3 1.3 2.9 1.9 1.2 2.6 5.4 1.9 0.8 2.3 2.4
H2 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Max M 2.4 0.4 2.5 6.0 5.6 4.1 4.3 9.2 4.7 2.1 5.4 4.6
H2 0.1 0.1 0.1 0.1 0.3 0.0 0.1 0.2 0.0 0.0 0.0 0.0
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classes i and j using a four-class approximation (in
case of the H2-approach). We need 1

2N (N − 1) runs
of a four-class M=M=k queue to >nd all pairwise cor-
relations. Although four-class models consume more
time, we can easily analyse models up to k=10 servers
(see Table 1).
(2) We can approximate multi-classM=Hn=k queues

analogously, i.e. by class aggregation. Again, we need
to analyse four-class M=M=k queues, which is man-
ageable up to k = 10 servers. For more servers, we
should move to the M -approximation. Note that we
cannot approximate other phase-type service distribu-
tions, such as Erlang distributions, because a sequence
of exponential phases does not >t in the multi-class
M=M=k model.

3. Multi-class M=M=k queue with preemptive
priorities

3.1. Run times for exact analysis

For multi-class queues with two priority groups and
preemption, we proceed from the exact algorithm by
Sleptchenko et al. [9]. First, we examine the run time
requirements, see Table 3. We see that the exact algo-
rithm is only useful for small problems and for cases
with either k6 2 or only one high-priority (nh=1) and
one low-priority class (nl=1), otherwise the computa-
tion time explodes. In an exact approach, the computa-
tion now requires ±20 matrix inversions of dimension
k∑
i=0

[
k∑
j=i

(
nh + j − 1

j

)(
nl + k − j − 1

k − j

)]

×
(
nl + i − 1

i

)

using LR-decomposition, see [9]. Because of these run
time limitations we can build our approximations only
upon the special cases, k6 2 or (nh ; nl) = (1; 1).

3.2. Approximations

For priority queues with preemption, we have to fo-
cus on low-priority items only, because we can use
the results from the previous section for high-priority
items. Although class aggregation appeared to be use-
ful for the multi-class M=M=k queue with FCFS, it
does not make sense to use a similar approach for
priority queues because of still excessive run times.
To approximate the performance of low-priority item
i, we have to aggregate all high-priority items into a
single class and all remaining low-priority items in
another single class. That is, we get a model with
two high-priority items and three low-priority items
for the H2-approximation. It is clear from Table 3
that run times then already become unmanageable for
k ¿ 3. The M -approximation yields a model with one
high-priority item and two low-priority items, which
is only useful for a moderate number of servers, say
k6 6 (see Table 3). For more general cases, we need
an alternative approach.
Therefore, we move to server reduction as proposed

by Buzen and Bondi [3]. Let us introduce the following
notation:

EQi(PR; nh ; nl; L�; k)

=mean number of class i items in the queue

for a multi-class priority queue with k

servers; nh high-priority classes; nl low-priority

classes and service rate vector L�;

Table 3
Run times to solve the multiclass M=M=k queue with preemptive priorities exactly (s)

Classes k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 12 k = 15 k = 20
(high, low priority)

(nh ; nl) = (1; 1) ¡0.1 ¡0.1 0.1 0.2 0.6 1.5 3 7 11 20 56 187 1067
(nh ; nl) = (1; 2) ¡0.1 0.3 3 26 153 765
(nh ; nl) = (1; 3) ¡0.1 1.5 39 769
(nh ; nl) = (2; 2) 0.1 3 65 1421
(nh ; nl) = (2; 3) 0.1 15 995
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EQi(FCFS; nh ; nl; L�; k)

=mean number of class i items in the queue

for a multi-class FCFS queue with k

servers; nh high-priority classes; nl low-priority

classes and service rate vector L�:

A similar notation applies for other performance
characteristics like the mean number of type i
low-priority items in the system Ni, etc. For the mean
waiting time E[W ] in a single-class M=M=k preemp-
tive priority queue, [3] propose to replace k servers
by a single server that works k times as fast and to
use a correction factor, being the ratio of the waiting
times when the same trick would be applied to the
non-priority multi-server queue

EW (PR; 1; 1; L�; k)

≈ EW (PR; 1; 1; k L�; 1)∗
EW (FCFS; 1; 1; L�; k)
EW (FCFS; 1; 1; k L�; 1)

:

Extending this approach to the multi-class priority sys-
tem and applying it to other performance measures,
we get the approximation

EQ(PR; nh ; nl; L�; k)

≈ EQ(PR; nh ; nl; k L�; 1)∗CQ;i(nh ; nl; L�; k);

where CQ;i(nh ; nl; L�; k) denotes the correction factor
for the mean number of class i items in the queue
if we approximate a preemptive priority queue with
nh high-priority classes, nl low-priority classes and k
servers by an equivalent single server queue having a
server that works k times as fast. We consider three
options for this correction factor (A, B and C). First, a
straightforward extension of the correction factor from
[3] yields

CA
Q;i(nh ; nl; L�; k) =

EQi(FCFS; nh ; nl; L�; k)
EQi(FCFS; nh ; nl; k L�; 1)

:

To calculate the mean waiting time in a multi-class
M=M=k queue with k servers (numerator of the cor-
rection factor), we use the H2-approximation from the
previous section to avoid excessive run times.
Correction factor A does not take into account

the fact that the server capacity that is available for
low-priority classes may Muctuate strongly in time.
Therefore, we consider another correction factor that

can be evaluated quickly and that is based on priority
queues. We aggregate all high-priority items into a
single class with an exponentially distributed service
time and we do the same for all low-priority items.
We denote the resulting two-dimensional aggregate
service rate vector by �̃. For this two-class model,
we calculate the correction factor for scaling with the
number of servers k as follows:

CB
Q;i(nh ; nl; L�; k) =

EQi(Pr; 1; 1; �̃; k)
EQi(Pr; 1; 1; k�̃; 1)

:

Because we aggregate all low-priority items, cor-
rection factor B is equal for all items. Because the
low-priority classes may have completely di@erent
characteristics, we possibly need di@erent correc-
tion factors. Therefore, we combine the advantage
of correction factor A (distinguish between classes)
and correction factor B (take into account impact of
high-priority items) in correction factor C

CC
Q;i(nh ; nl; L�; k)

=CB
Q;i(nh ; nl; L�; k)

∗C
A
Q;i(nh ; nl; L�; k)

CA
Q;i(1; 1; �̃; k)

: (3)

By the ratio of the correction factor for multiple high-
and low-priority classes and the correction factor for
an aggregate high- and an aggregate low-priority item,
we adjust for class di@erences.
As an approximation for the multi-class M=M=k

queue with preemptive priorities, we propose to use
a combination of class reduction and server reduction
as described above using one of the correction factors
A, B or C. We apply these correction factors to

• E[Qi], the mean number of class i items per
class in the queue excluding the postponed items
(i.e. the low-priority items that are preempted by
high-priority items);

• E[Pi], the mean number of postponed class i items;
• Var[Ni], the variance of the number of items in the
system.

We do not apply the correction factor directly to the
mean number of class i items in the system, E[Ni].
Some preliminary experiments showed us that it is
better to approximate the three components of E[Ni]
separately, namely the mean number of items in the
queue E[Qi], being postponed E[Pi] and in service
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E[Ri] (=�iE[Si]). This approach yields a better ap-
proximation, because the correction factors of E[Qi]
and E[Pi] appear to be completely di@erent. In prin-
ciple, we can make a similar factorisation of Var[Ni]
in the variances of Qi, Pi and Ri and their mutual cor-
relations, yielding totally six components and thus six
correction factors. Because of simplicity, we decided
to apply the correction factor directly to Var[Ni].

3.3. Numerical results

First, we compared our approximations to exact re-
sults using the method from [9]. We have to restrict
ourselves to relatively small cases, because the exact
method is too time consuming otherwise (see Table
3). Therefore, we considered one model variant with
two high-priority classes, three low-priority classes
and k=3 servers, and another model variant with one
high-priority class, three low-priority classes and k=4
servers. For each variant, we varied the total utilisation
(�=0:7 or 0.9), the utilisation for high-priority items
only (�H = 0:3 or 0.6), the ratio of the overall service
rates of high- and low-priority items (#=�L=�H =0:5
or 2) and three scenarios for the di@erences between
classes (equal for high- and low-priority class):

1. All classes have the same arrival rate and the ser-
vice rates decrease geometrically such, that the ra-
tio of the highest to the lowest service rate equals 5.

2. Both the arrival rates and the service rates decrease
geometrically such, that the ratio of the highest to
the lowest rate equals 5.

3. The arrival rates decrease and the service rates
increase such, that the ratio of the highest to the
lowest rate equals 5.

As normalisation, we set the total arrival rate equal
to 1. In total, we considered 24 × 3 = 48 cases. For
each case, we calculated the mean and maximum rel-
ative approximation error over all low-priority classes
forE[Qi], E[Ni] and c[Ni] using the correction fac-
tors A, B and C. The key results are summarised in
Table 4. The run times for the exact calculations
varied between 14 and 46 min=case, whereas the ap-
proximations always took less than 1 s=case for each
correction factor.
We see that correction factor C yields the best

results. Apparently, it is worthwhile to take into

Table 4
Average and maximum relative errors (%) using the three correc-
tion factors

Correction E[Qi] E[Ni] c[Ni]
factor

Av. Max. Av. Max. Av. Max.

A 4.8 19.1 12.6 43.7 6.0 15.3
B 2.5 13.9 1.1 5.4 4.2 20.9
C 1.1 6.7 0.6 2.8 1.9 11.4

account both the variation in available server capac-
ity for low-priority items and the di@erences between
low-priority classes. We also note that the approx-
imation error is smallest for the mean number of
items in the system, probably because we know one
component (the mean number of items in service)
exactly. The approximation errors are considerably
larger for the coeIcient of variation of the number
of items in the system, although they are still within
reasonable bounds. To >nd the causes of the errors,
we analysed the errors on a factor-by-factor basis, see
Table 5.
We found that the approximation error especially

increases if the total utilisation decreases and the utili-
sation of high-priority items increases, which is similar
to the >ndings by Buzen and Bondi [3] andWhitt [14].
Also, there is an indication that the error increases with
the number of servers (compare the model variants 1
and 2).
To validate our >nding that our approximations us-

ing correction factor C as in (3) yield reasonable
results, we used discrete event simulation. We con-
structed a model in the object oriented simulation tool
eM-Plant. Unfortunately, we could run a limited num-
ber of cases only, because our simulation model re-
quired much computation time until convergence, i.e.
until the 95% con>dence interval for the mean vari-
ance of the number of low-priority items in the sys-
tem was smaller than 2% (between several hours and
several days per case; in a few cases, we cut of the
simulation because of excessive run time).
We selected a case from the literature to test our

approximations, namely the repair shop model by
Hausman and Scudder [6]. They consider engines at
a commercial airline that consist of 23 components
(item classes) that are repaired by a 10-server re-
pair shop, see Table 6 for the component data. We
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Table 5
InMuence of the experimental factors on the approximation error (%) for correction factor C

Experimental factor E[Qi] E[Ni] c[Ni]

Av. Max. Av. Max. Av. Max.

Model variant 1 (nh = 2, nl = 3, k = 3) 0.7 3.3 0.5 2.8 1.6 7.6
Model variant 2 (nh = 1, nl = 3, k = 4) 1.6 6.7 0.7 2.8 2.2 11.4

� = 0:7 1.7 6.7 0.8 2.8 2.8 11.4
� = 0:9 0.5 1.8 0.4 1.7 1.1 6.6

�H = 0:3 0.7 2.6 0.3 1.4 1.5 6.2
�H = 0:5 1.6 6.7 0.8 2.8 2.3 11.4

# = 0:5 1.4 6.7 0.6 2.8 1.4 7.0
# = 2 0.9 3.3 0.6 2.8 2.4 11.4

Arrival and service rate scenario 1 1.1 5.2 0.5 2.8 1.8 8.4
Arrival and service rate scenario 2 1.8 6.7 0.9 2.8 2.4 11.4
Arrival and service rate scenario 3 0.5 2.6 0.4 2.0 1.5 7.0

Table 6
Data from [6] that we used as test case

Component i Number �i E[Si]

C44 1 0.055560 8.46
C51 2 0.035552 8.60
C41 3 0.011112 10.60
C13 4 0.024197 14.59
C11 5 0.024197 14.10
C31 6 0.012825 17.40
C42 7 0.044448 11.15
C54 8 0.008888 15.95
C36 9 0.028850 10.63
C33 10 0.019225 15.45
C37 11 0.006413 14.60
C34 12 0.028850 13.15
C35 13 0.025638 18.16
C52 14 0.017776 14.55
C32 15 0.003200 18.00
C53 16 0.026664 18.00
C21 17 0.013882 14.98
C55 18 0.022220 21.64
C22 19 0.024990 25.05
C14 20 0.018820 29.07
C23 21 0.002778 16.08
C43 22 0.027780 24.95
C12 23 0.016137 27.70

constructed 15 runs based on these case data, where
we varied the distribution of items over the high- and
low-priority groups (nh = 5, 8, 11, 14 and 17, where

the >rst nh items from Table 5 had high priority)
and the number of servers (k = 9, 10 and 11). As
a consequence, the total utilisation varied between
� = 0:71 and 0.87 and the utilisation for high-priority
items varied between �H = 0:14 and �H = 0:55. We
calculated E[Ni], c[Ni] and E[Qi] using our approxi-
mate method with correction factor C as in (3). The
run times for the 23-class priority queues with 9–11
servers varied between 30 and 90 s. We show the
approximation errors, this time de>ned as the rela-
tive di@erence between approximated and simulated
values, in Table 7.
We found larger errors than for the smaller cases in

Table 4, as we already expected. Still the errors were
within reasonable bounds for most cases. Note that a
few high relative errors for the mean number of items
in the queue occurred for a speci>c item class. For
example, we encounter a maximum error of 25% if
(k; nh ; nl)=(11; 5; 18). However, the mean number of
items in the queue is about 0.005 for this case, which
is almost zero. Hence the maximum relative error is
large, but not very important and it may also be due to
simulation errors. Of course, it is impossible to draw
general conclusions based on a few large cases only.
Still, these results indicate that our approximations
can be useful to analyse large multi-class preemptive
priority queueing systems, i.e. with many classes and
servers.
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Table 7
Average and maximum relative errors (%) for the Hausman and Scudder case (1982)

k nh nl E[Qi] E[Ni] c[Ni]

Average Maximum Average Maximum Average Maximum
(%) (%) (%) (%) (%) (%)

11 5 18 4.2 25.0 1.0 4.7 1.9 4.1
8 15 6.3 11.4 0.8 3.6 3.2 5.4
11 12 4.9 8.9 0.6 1.2 2.2 5.9
14 9 3.7 5.4 0.7 1.8 5.9 8.9
17 6 4.2 7.5 0.6 1.4 6.5 10.0

10 5 18 3.0 6.8 0.9 3.2 0.8 1.7
8 15 4.3 8.3 1.0 2.7 0.9 2.0
11 12 0.9 3.0 0.8 3.2 1.3 3.6
14 9 2.4 4.4 0.5 1.1 1.6 4.7
17 6 3.1 3.1 0.6 1.3 1.9 6.5

9 5 18 0.4 1.0 0.3 0.6 2.5 3.7
8 15 0.5 1.8 0.3 0.9 3.5 5.5
11 12 2.6 4.2 1.1 2.2 4.7 7.4
14 9 2.3 3.1 1.0 1.4 4.8 7.0
17 6 2.3 3.2 0.8 1.3 4.3 6.1

Total 3.0 25.0 0.7 4.7 3.1 10.0

Remarks. 1. Our approach is also suitable to anal-
yse models with more than two preemptive priority
classes. When approximating the performance charac-
teristics of all items in a certain priority class m, we
ignore all lower-priority items and we aggregate all
higher-priority items in a single priority class with hy-
perexponential service times as proposed in Section 2.
Working from the highest to the lowest-priority class,
we can >nd approximations for the performance char-
acteristics of all items in all priority classes. Such an
approach has been proposed many times before, see
e.g. [8]. However, they proposed to aggregate all items
to a single item with exponential service time distribu-
tion. As we showed in Section 2, it is better to include
higher moments of the service time of the aggregate
item.
2. Extension of our approach to hyperexponen-

tial service time distributions and/or correlations
between item classes is not as straightforward as
for the FCFS multi-class queue because of run
time limitations. Further research is required in this
respect.
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