On the modulus algorithm for the linear complementarity problem

Uwe Schäfer*
Institut für Angewandte Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany

1 Introduction

Given a real $n \times n$ matrix M and a real n-dimensional vector q, the linear complementarity problem, abbreviated by LCP, is to find two vectors ω, z such that

$$
\begin{equation*}
\omega=q+M z, \quad \omega \geq o, \quad z \geq o, \quad \omega^{\mathrm{T}} z=0 \tag{1}
\end{equation*}
$$

or to conclude that no such vectors ω, z exist. The inequalities appearing in (1) and in the sequel are understood componentwise and o denotes the zero vector. Many applications and solution methods for (1) can be found in [3] and [4], respectively.

In [8] (see also Section 9.2 in [4]), the so-called modulus algorithm was developed for solving the LCP: Let I denote the identity and with $x \in \mathbf{R}^{\mathbf{n}}$ we define

$$
|x|:=\left(\begin{array}{c}
\left|x_{1}\right| \\
\vdots \\
\left|x_{n}\right|
\end{array}\right) \in \mathbf{R}^{\mathbf{n}} .
$$

If $I+M$ is nonsingular, then the LCP defined by $M \in \mathbf{R}^{\mathbf{n} \times \mathbf{n}}$ and $q \in \mathbf{R}^{\mathbf{n}}$ is equivalent to the fixed point problem of determining $x \in \mathbf{R}^{\mathbf{n}}$ satisfying

$$
\begin{equation*}
x=f(x):=(I+M)^{-1}(I-M)|x|-(I+M)^{-1} q . \tag{2}
\end{equation*}
$$

More precisely (see the proof of Theorem 9.1 in [4]), if x is a solution of (2), then

$$
\omega:=|x|-x, \quad z:=|x|+x
$$

define a solution of (1). On the other hand, if ω, z solve (1), then $x:=\frac{1}{2}(z-\omega)$ is a solution of (2). The modulus algorithm is then defined as an iterative method concerning (2):

$$
\left.\begin{array}{rl}
x^{0} & \in \mathbf{R}^{\mathbf{n}} \text { arbitrary, } \tag{3}\\
x^{k+1} & :=f\left(x^{k}\right)=(I+M)^{-1}(I-M)\left|x^{k}\right|-(I+M)^{-1} q .
\end{array}\right\}
$$

For the case that M is symmetric positive definite, and for the case that M is a so-called H -matrix with positive diagonal entries, it is guaranteed that (3) is convergent to a unique solution. See Section 9.2 in [4] and Theorem 2.3 in [7], respectively.

In the following section we present another situation where (3) is convergent to a unique solution.

2 Extreme vectors of the solution set of systems of linear interval equations

We consider a family of matrices and vectors

$$
[A]:=[\underline{A}, \bar{A}]:=\left\{A \in \mathbf{R}^{\mathbf{n} \times \mathbf{n}}: \underline{\mathbf{A}} \leq \mathbf{A} \leq \overline{\mathbf{A}}\right\}, \quad[\mathbf{b}]:=[\underline{\mathbf{b}}, \overline{\mathbf{b}}]:=\left\{\mathbf{b} \in \mathbf{R}^{\mathbf{n}}: \underline{\mathbf{b}} \leq \mathbf{b} \leq \overline{\mathbf{b}}\right\} .
$$

If all $A \in[A]$ are regular, we are interested in finding an interval vector $[x]$ that includes the solution set

$$
\Sigma([A],[b]):=\left\{x \in \mathbf{R}^{\mathbf{n}}: \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{A} \in[\mathbf{A}], \mathbf{b} \in[\mathbf{b}]\right\}, \quad \text { see }[1] .
$$

The narrowest interval vector that includes $\Sigma([A],[b])$ is defined by its extreme vectors.

[^0]

Fig. 1 The shape of $\Sigma([A],[b])$ concerning Example 2.1.

Example 2.1 Let

$$
[A]=\left(\begin{array}{cc}
{[2,4]} & {[-2,1]} \\
{[-1,2]} & {[2,4]}
\end{array}\right), \quad[b]=\binom{[-2,2]}{[-2,2]} .
$$

Then $\Sigma([A],[b])$ is not an interval vector (see [2]). It can be described as depicted in Figure 1. The extreme vectors of $\Sigma([A],[b])$ are

$$
\left\{\binom{-3}{4},\binom{4}{3},\binom{3}{-4},\binom{-4}{-3}\right\} .
$$

So, the narrowest interval vector that includes $\Sigma([A],[b])$ is $\binom{[-4,4]}{[-4,4]}$.
In [5], it was shown that the extreme vectors of $\Sigma([A],[b])$ can be calculated via solutions of LCPs. The arising matrices are so-called P-matrices which guarantee the unique solvability of the LCPs. However, the matrices are neither necessarily H-matrices nor positive definite matrices (see [6]). As a consequence, it is not clear if the modulus algorithm can be applied. However, under slight additional assumptions on $[A]$ the convergence of the modulus algorithm can be guaranteed. For details we refer to [7].

References

[1] G. Alefeld and J. Herzberger, Introduction to interval computations, Academic Press, 1983.
[2] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974) 117-125.
[3] R. W. Cottle, J. S. Pang, and R. E. Stone, The linear complementarity problem, Academic Press, 1992.
[4] K. G. Murty, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1988.
[5] J. Rohn, Systems of linear interval equations, Linear Algebra Appl. 126 (1989) 39-78.
[6] U. Schäfer, A linear complementarity problem with a P-matrix, SIAM Rev. to appear.
[7] U. Schäfer, On the modulus algorithm for the linear complementarity problem, Oper. Res. Lett. 32 (2004) 350-354.
[8] W. M. G. Van Bokhoven, Piecewise-linear modelling and analysis, Proefschrift, Eindhoven, 1981.

[^0]: * e-mail: Uwe.Schaefer@math.uni-karlsruhe.de

