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Abstract

A carousel is an automated ring-shaped warehousing system that rotates either direction bringing items to a picker. We
obtain the limiting behavior of the shortest rotation time and the number of steps before a turn, as well as approximate mean
rotation time, for one large order with non-uniform items locations.
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1. Introduction

A carousel is an automated storage and retrieval sys-
tem which is widely used in modern warehouses as
one of major technologies for small parts’ storage. The
system consists of a circular disk with a large num-
ber of shelves and drawers along its circumference.
The disk rotates either direction bringing the items
to a picker who has a stationary position in front of
the carousel. This takes away the walking time and
thus enhances efficiency of the picker. Other important
benefits include a better control over materials and a
greater utilization of available space.

A natural model of a carousel is a circle of length 1.
An order consists of n items whose locations are mod-
eled as points on a circumference. The time needed to
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fulfill an order consists of a pick time (collecting the
items from drawers), plus the travel (rotation) time of
the carousel. For a given carousel unit with a human
picker, the pick times are essentially pre-defined and
not subject to control. The travel time however can
be optimized by adopting an efficient allocation pol-
icy and choosing a picking sequence that provides a
reasonably short route along the circle. Thus, one of
relevant research problems in carousel systems is to
characterize the travel time for all kinds of lay-outs
and various picking sequences.

The analysis of the travel time under various strate-
gies is in general a non-trivial problem. This problem
however has been resolved for independent uniformly
distributed items locations. Refs. [9,7] provide a com-
plete analysis of the commonly used nearest item
heuristic, where the next item to be collected is always
the nearest one. The shortest route has been studied
in [10]. As the optimal route allows at most one turn
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(see e.g. [1]), it can be successfully approxi-
mated by so-called m-step strategies proposed in
[14] and analyzed in detail in [8]. These strate-
gies allow at most one turn after collecting at
most m�0 items. In the recent paper [11], a no-
reversal strategy is adopted, which is in fact an
m-step strategy with m = 0, i.e., the carousel ro-
tates either only clockwise or only counterclock-
wise choosing the shortest of the two possible
routes.

The results on the order picking time in one
carousel can be further applied in performance anal-
ysis for more complex warehousing systems. For
instance, in [11] the expected travel time in one
carousel is needed in order to evaluate the through-
put for a carousel pod. An interesting analysis of
two carousels operated by one picker was presented
by Park et al. [12] and considerably extended by
Vlasiou et al. [16,15]. For such analysis, the full
knowledge of the travel time distribution is re-
quired.

The model with non-uniform items locations re-
flects a relevant situation when some of the draw-
ers are required more frequently than others. One
interesting special case of non-uniform items lo-
cations was studied by Wan and Wolff [17] who
analyzed the problem of picking clumpy orders,
i.e. the orders concentrated on a relatively small
segment of a circle. To the best of our knowl-
edge, there is no other paper regarding travel times
in carousel systems with non-uniform items loca-
tions.

In this paper, we focus on the length of the short-
est rotation time needed to collect one order when
the order size n is large and the items locations have
a non-uniform continuous distribution with a positive
density f on [0, 1]. In the next section, we formally
describe the problem and provide the background. In
Section 3, we obtain the limiting behavior of the travel
time when the order size goes to infinity. In Section
4, we use these limiting results to derive a simple ap-
proximation formula for the mean travel time and ver-
ify this formula numerically. We also show that if the
picker’s starting position before collecting each or-
der is fixed, then the optimal allocation rule depends
on the order size. Finally, Section 5 presents asymp-
totic results on the number of items collected before
a turn.

2. Problem description

We model a carousel as a circle of length 1. The
picker has a position at point zero, and he has to
collect one order of n items by moving along the cir-
cle at unit speed in either direction. The locations of
the items are independent and identically distributed
continuous random variables with probability den-
sity function f (·) which is positive and bounded
on [0, 1]. For i = 1, . . . , n, let Yi denote a location
of the ith item. Set Y0 = 0, Yn+1 = 1. Further, let
0 = Y0:n < Y1:n < · · · < Yn:n < Yn+1:n = 1 denote the
order statistics of Y0, Y1, . . . , Yn+1. Then the picker’s
starting point and the positions of the n items partition
the circle into n + 1 spacings

Di,n = Yi:n − Yi−1:n, 1� i�n + 1.

We assume that the optimal picking strategy is
adopted, that is, the picker chooses the shortest possi-
ble route. Let Tn be the minimal (optimal) travel time
of the picker. Since the optimal route admits at most
one turn, we may write Tn as

Tn = 1 − max

{
max

1� j �n
{Dj,n − Yj−1:n},

max
1� j �n

{Dn+2−j,n − (1 − Yn+2−j :n)}
}

. (1)

Indeed, for j =1, 2, . . . , n, the quantity Dj,n −Yj−1:n
is the gain in travel time (compared to one full rotation)
obtained by skipping the spacing Dj,n and going back
instead. The same applies to Dn+2−j,n−(1−Yn+2−j :n)
except here the picker makes his last move in the
opposite direction. Optimally, the picker chooses the
shortest route, i.e., largest possible gain.

It is convenient to write the travel time via spac-
ings because various helpful properties of the spac-
ings have been extensively studied in literature. The
key reference is the classical paper of Pyke [13]. If
the Yi’s have a uniform distribution, then the spacings
satisfy the following distributional identity:

(D1,n, D2,n, . . . , Dn+1,n)

d=(X1/Sn+1, X2/Sn+1, . . . , Xn+1/Sn+1), (2)

where X1, X2, . . . are independent exponentially dis-
tributed random variables with mean 1 and Sn+1 =
X1 + · · · + Xn+1. For non-uniform spacings, one can
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apply a well-known asymptotic independence and ex-
ponentiality. In Pyke [13], this result is written as fol-
lows. Let F be a continuous distribution function of Yi ,
i = 1, . . . , n, and f be the corresponding density func-
tion. For 0 < u < v < 1, suppose that s = F−1(u) and
t=F−1(v). Denote Dni =(n+1)Di,n, i=1, . . . , n+1.
Then, if i/n → u and j/n → v,

lim
n→∞ FDni,Dnj

(x, y) = (1 − e−f (s)x)(1 − e−f (t)y).

(3)

If f is positive and bounded on a finite closed interval
and zero elsewhere, then (3) can be extended to any
finite set of spacings.

In [7,8,10] we analyzed various order picking strate-
gies and, in particular, the optimal strategy, exploiting
(2). The following lemma from [8] was particularly
useful in analyzing the shortest path.

Lemma 2.1. Let X1, X2, . . . be i.i.d. exponential ran-
dom variables with mean 1. Define S0 = 0 and Sj =
X1 + · · · + Xj , j �1. Then for any m = 0, 1, . . . ,

max
1� j �m+1

{Xj − Sj−1} d=
m+1∑
j=1

(2j − 1)−1Xj . (4)

In this note, we shall combine Lemma 2.1 and (3)
to obtain a limiting behavior of Tn for non-uniform
items locations as n goes to infinity.

3. The main result

Let X1, X2, . . . , X
′
1, X

′
2, . . . be independent expo-

nential random variables with mean 1, S0 = S′
0 = 0,

Sj = X1 + · · · + Xj , and S′
j = X′

1 + · · · + X′
j , for all

j �1. For any fixed m, when n goes to infinity, result
(3) extended to a finite set of spacings implies that

(n + 1)(D1,n, . . . , Dm+1,n, Dn+1−m,n, . . . , Dn+1,n)

d→
(

1

f (0)
X1, . . . ,

1

f (0)
Xm+1,

1

f (1)
X′

m+1, . . . ,

1

f (1)
X′

1

)
, (5)

where for i=1, . . . , m+1, the expressions (1/f (0))Xi

and (1/f (1))X′
i stand for exponential random vari-

ables with parameters f (0) and f (1), respectively.
Furthermore, for all j = 1, . . . , m + 1, the quantities

(n+1)Yj−1:n and (n+1)(1−Yn+2−j :n) converge, re-
spectively, to (1/f (0))Sj−1 and (1/f (1))S′

j−1. Then
from Lemma 2.1 and (1) it is natural to foretell the
following limiting result.

Theorem 3.1. Let f be a density function of Yi , i =
1, . . . , n, and assume that f is positive and bounded
on [0, 1]. Then

(n + 1)(1 − Tn)

d−→ max

⎧⎨
⎩ 1

f (0)

∞∑
j=1

1

2j − 1
Xj ,

1

f (1)

∞∑
j=1

1

2j − 1
X′

j

⎫⎬
⎭ as n → ∞.

The idea of the proof is as follows. First, we show
that the probability of making a turn after collecting m
items decreases exponentially with m. Thus, the travel
time is determined essentially by a finite number of
spacings close to the picker’s starting position. For
these spacings, we shall apply (5) and then (4).

Proof of Theorem 3.1. Note that the picker makes
a turn after collecting the (k − 1)th item only if
[Dk,n > Yk−1:n] or [Dn+2−k,n > 1 − Yn+2−k:n]. The
probability of the former event is given by

P(Dk,n > Yk−1:n)

=
∫ 1

0
P(Dk,n > Yk−1:n|Yk:n = u)fYk:n(u) du. (6)

For the conditional probability under the integral, we
obtain

P(Dk,n > Yk−1:n|Yk:n = u)

= P(Yk−1:n �u/2|Yk:n = u)

= P(Y1, . . . , Yk−1 �u/2|Y1, . . . , Yk−1 < u)

= [F(u/2)]k−1

[F(u)]k−1 . (7)

Define g1(u) = F(u/2)/F (u), u ∈ (0, 1], and put
g1(0) = limu→0 F(u/2)/F (u) = 1/2. Note that
0 < g1(u) < 1 for all u ∈ [0, 1], since F is a con-
tinuous distribution function and the density f is
strictly positive on [0, 1]. Furthermore, g1 is defined
on a compact set, and thus there exists u∗

1 ∈ [0, 1]
such that �1 = g1(u

∗
1) = max0�u�1g1(u). Hence,
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g1(u1)��1 < 1 for all u1 ∈ [0, 1]. Thus, substituting
(7) in (6), we obtain

P(Dk,n > Yk−1:n) =
∫ 1

0
(g1(u))k−1fYk:n(u) du��k−1

1 .

(8)

Analogously, we show that there exists �2 < 1 such
that P(Dn+2−k,n > 1 − Yn+2−k:n)��k−1

2 .
Next, for some fixed m�0, we approximate the

minimal travel time by the travel time T
(m)
n under the

m-step strategy, where the picker may turn after col-
lecting at most m items, and, exactly as under the op-
timal strategy, at most one turn is allowed. We write
T

(m)
n as

T (m)
n = 1 − max

{
max

1� j �m+1
{Dj,n − Yj−1:n},

max
1� j �m+1

{Dn+2−j,n − (1 − Yn+2−j :n)}
}

.

(9)

Since the right-hand side of (9) is a continuous func-
tion of the spacings, we consequently apply (5), the
continuous mapping theorem (see e.g. [4]) and Lemma
2.1 getting

(n + 1)(1 − T (m)
n )

d→ max

{
1

f (0)
max

1� j �m+1
{Xj − Sj−1},

1

f (1)
max

1� j �m+1
{X′

j − S′
j−1}

}
,

d= max

⎧⎨
⎩ 1

f (0)

m+1∑
j=1

1

2j − 1
Xj ,

1

f (1)

m+1∑
j=1

1

2j − 1
X′

j

⎫⎬
⎭ . (10)

Now, consider the distribution functions

Pn(t) = P((n + 1)(1 − Tn)� t),

P (m)
n (t) = P((n + 1)(1 − T (m)

n )� t), t �0.

Note that Tn �T
(m)
n , and the strict inequality holds

only if it is optimal to turn after collecting more than m
items, which is possible only if either [Dk,n > Yk−1:n]
or [Dn+2−k,n > 1 − Yn+2−k:n] occurs for some

k > m + 1. Thus, for any t �0, we have

0�P (m)
n (t) − Pn(t)

= P((n + 1)(1 − T (m)
n )� t, (n + 1)(1 − Tn) > t)

�P(Tn < T (m)
n )

�P

([
n⋃

k=m+2

[Dk,n > Yk−1:n]
]

∪
[

n⋃
k=m+2

[Dn+2−k,n > 1 − Yn+2−k:n]
])

�
n∑

k=m+2

P(Dk,n > Yk−1:n)

+
n∑

k=m+2

P(Dn+2−k,n > 1 − Yn+2−k:n)

� �m+1
1

1 − �1
+ �m+1

2

1 − �2
, (11)

where the last inequality follows from (8).
Now we can prove the limiting result. Denote

J =
∞∑

j=1

1

2j − 1
Xj , J ′ =

∞∑
j=1

1

2j − 1
X′

j ,

Jm =
m+1∑
j=1

1

2j − 1
Xj , J ′

m =
m+1∑
j=1

1

2j − 1
X′

j .

Further, for t �0, define

P(t) = P

(
max

{
1

f (0)
J,

1

f (1)
J ′
}

� t

)
,

P (m)(t) = P

(
max

{
1

f (0)
Jm,

1

f (1)
J ′

m

}
� t

)
.

To show that the limit limn→∞Pn(t) exists and equals
P(t), first choose any � > 0 and fix m large enough
so that �m+1

1 /(1 − �1) + �m+1
2 /(1 − �2) < �/3. Next,

writing (10) as limn→∞P
(m)
n (t)=P (m)(t) we see that

there exists some N > m such that for any n1, n2 > N

holds |P (m)
n1 (t)−P

(m)
n2 (t)| < �/3. Then, for such n1, n2,
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using (11), we get

|Pn1(t) − Pn2(t)|� |Pn1(t) − P (m)
n1

(t)|
+ |P (m)

n1
(t) − P (m)

n2
(t)|

+ |P (m)
n2

(t) − Pn2(t)|
��m+1

1 /(1 − �1) + �m+1
2 /(1 − �2)

+ �/3 + �m+1
1 /(1 − �1)

+ �m+1
2 /(1 − �2) < �.

Hence, according to the Cauchy criterion, Pn(t) con-
verges to a limit for any t > 0. Letting n go to infinity
in (11), we obtain

P (m)(t)� lim
n→∞ Pn(t)�P (m)(t) + �m+1

1

1 − �1
+ �m+1

2

1 − �2

for an arbitrarily large m. Thus, for any t > 0,
limn→∞Pn(t) = limm→∞P (m)(t) = P(t). �

Define Q(t)= P(J � t), t �0. Then it follows from
the definition of P that

P(t) = P

(
1

f (0)
J � t,

1

f (1)
J ′ � t

)
= Q(f (0)t)Q(f (1)t), t �0. (12)

The properties of Q have been studied in detail in [10].
In particular, we show that

Q(t) = 1 −
∞∑

j=1

(−1)j−12j exp{−(2j − 1)t}

×
j∏

l=1

1

2l − 1
, t �0. (13)

This equation together with (12) provides the explicit
expression for P. We note that the exponential func-
tionals similar to J appear in various contexts and have
received a considerable attention in literature (see e.g.
[3,5]).

The convergence in distribution in Theorem 3.1 also
implies the convergence of moments. Writing P̄ =1−
P and Q̄ = 1 − Q, it is easy to see from (12) that for
all t �0,

P̄ (t) = 1 − (1 − Q̄(f (0)t))(1 − Q̄(f (1)t))

= Q̄(f (0)t) + Q̄(f (1)t) − Q̄(f (0)t)Q̄(f (1)t).

(14)

Substituting (13) in (14), we find the kth moment from
k
∫∞

0 tk−1P̄ (t) dt as follows:

lim
n→∞ E[(n + 1)(1 − Tn)]k

= E

[
1

f (0)
J

]k

+ E

[
1

f (1)
J

]k

− k

∫ ∞

0
tk−1Q̄(f (0)t)Q̄(f (1)t) dt

= k!
∑

�=0,1

1

[f (�)]k
∞∑

j=1

(−1)j−1 2j

(2j − 1)k

×
j∏

l=1

1

2l − 1
− k!

∞∑
j=1

∞∑
i=1

(−1)i+j

× 2i+j

[f (0)(2i − 1) + f (1)(2j − 1)]k

×
j∏

l=1

1

2l − 1

i∏
r=1

1

2r − 1
.

The last expression can be written in many equivalent
forms. For instance, for the expectation, we obtain the
first term directly using the definition of J:

� = lim
n→∞ E[(n + 1)(1 − Tn)]

= E

[
1

f (0)
J

]
+ E

[
1

f (1)
J

]

−
∫ ∞

0
Q̄(f (0)t)Q̄(f (1)t) dt

=
∑

�=0,1

1

f (�)

∞∑
j=1

1

2j − 1
−

∞∑
i=1

∞∑
j=1

(−1)i+j

× 2i+j

(2i − 1)f (0) + (2j − 1)f (1)

j∏
l=1

1

2l − 1

×
i∏

r=1

1

2r − 1
. (15)

4. Approximation for the mean travel time

For given f (0), f (1), the value of � in (15) can
be easily computed, and it follows from the conver-
gence of moments that (n+ 1)E[1 −Tn] ≈ � for large
enough n. Hence, we find a simple approximation for
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the average minimal travel time:

E[Tn] ≈ 1 − �

n + 1
. (16)

In this section, we compare the approximation (16)
with simulation results obtained for a carousel with
100 pick faces (shelves or drawers). The frequency fi

with which an item i=1, . . . , 100 is demanded is mod-
eled according to the truncated normal distribution

fi =
∫ i

i−1 e− (x−�)2

2�2 dx∫ 100
0 e− (x−�)2

2�2 dx

,

where we chose �= 50 and �= 30 which implies that
the maximal frequency is approximately four times
larger than the minimal frequency. The position j =
1, . . . , n contains an item i = �(j) where �(·) mod-
els the allocation rule. The picker’s starting position
is zero, and the numbers f (0) and f (1) in (15) are
defined, respectively, as 100 · f�(1) and 100 · f�(100),
where the scaling factor 100 appears since the carousel
is modeled as a circle of a unit length.

In this research we focus on the travel time needed
to collect a single order. The results apply directly to
sequential orders if so-called fixed dwell point strategy
is adopted, that is, the carousel returns to its starting
position every time after collecting an order. Below we
describe several allocation rules used in simulations.

If an order consists of one item then the following
allocation policy is clearly optimal under the fixed
dwell point strategy:

Organ-pipe (OP) allocation policy: Place the most
frequently asked item at the bin located at the starting
point of the picker. Repetitively place next most fre-
quently asked item alternating between the positions
to the left and to the right of the already placed item.

When the order size equals one, it was shown in
[2] that the OP allocation rule is also optimal when
collecting sequential orders under the more practical
floating dwell point strategy, where the endpoint of
picking an order becomes a starting point of collecting
the next order.

Although the OP allocation is perfectly reasonable
for small orders, our asymptotic results suggest that
for large order sizes, it may perform quite poorly if
the fixed dwell point strategy is applied. Indeed, it
follows from Theorem 3.1 that for large enough n,

the random variable Tn stochastically increases with
f (0) and f (1). Hence, if orders are large, then less
frequently asked items have to be stored close to the
picker’s starting point. Intuitively, if an order is small,
then one stores most frequently asked items close by,
hoping that the whole order can be collected by trav-
eling only a small part of the circle. However, if an
order is large, then, most probably, the picker has to
cover the major part of the circle anyway. Hence, in
this case, the travel time can be reduced only by skip-
ping a large spacing close to the picker’s starting point.
Such large spacing is more likely to occur if the items
that are stored close to the picker’s starting point, are
not been demanded frequently. This calls for the next
two allocation strategies that may suite for collecting
large orders under the fixed dwell point strategy.

Reversed organ-pipe (ROP) allocation policy: Place
the least frequently asked item at the bin located at
the starting point of the picker. Repetitively place next
least frequently asked item alternating between the
positions to the left and to the right of the already
placed item.

Monotone (Mo) allocation policy: Place the least
frequently asked item at the bin located at the starting
point of the picker. Repetitively place next least fre-
quently asked item to the right of the already placed
item.

We shall also consider a random allocation policy
that models, for instance, the allocation in alphabetic
order.

Random (Ra) allocation policy: Repetitively place
an item in a randomly chosen available bin.

Finally, we will compare the quality of our approxi-
mation with the well-studied case of the uniform items
locations. The results are presented in Table 1. Al-
though the approximation for non-uniform items lo-
cations is not as accurate as in the uniform case and is
clearly unsuitable for small orders, it gives a correct
indication of the magnitude of the mean travel time if
an order is large enough.

Looking at the numerical results, one may also dis-
cuss a proper choice of an allocation policy. For in-
stance, it is clear that the OP policy is only suitable
for very small orders. Already for n = 5, the mono-
tone policy performs as good as the OP policy, and
for large orders, the monotone and the ROP policy
perform the best as expected. Also note that for very
large orders, the OP policy performs even worse than
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Table 1
Approximation of the mean travel time

Allocation rule n = 3 n = 5 n = 10 n = 20 n = 30 n = 50

OP E[Tn] .4793 .6307 .8083 .9186 .9492 .9700
f (0) = f (1) = 1.3296 Approx. (16) .6331 .7554 .8665 .9301 .9527 .9712

ROP E[Tn] .5564 .6617 .7712 .8523 .8874 .9220
f (0) = f (1) = 0.3409 Approx. (16) −.4312 .0459 .4796 .7274 .8153 .8876

Mo
f (0) = 0.3409 E[Tn] .5157 .6366 .7704 .8588 .8967 .9310
f (1) = 1.3296 Approx. (16) −.0776 .2816 .6081 .7947 .8610 .9155

Ra
f (0) = 1.2356 E[Tn] .5229 .6561 .8038 .8960 .9289 .9554
f (1) = 0.9785 Approx. (16) .5496 .6998 .8362 .9142 .9419 .9647

Uniform E[Tn] .5262 .6588 .8049 .8977 .9299 .9568
f (0) = f (1) = 1 Approx. (16) .4605 .6404 .8038 .8972 .9304 .9577

the random allocation. The choice between the ROP
and the monotone policy depends on given demand
frequencies. For instance, in experiments with �=20,
the monotone allocation appears to be the best for any
order size larger than 5.

One can also see that the average travel time for
uniformly distributed items is larger than for non-
uniformly distributed items with a reasonable alloca-
tion policy. This suggests that in a carousel pod, one
should make sure that each carousel accommodates
items of diverse demand frequencies. This is in lines
with results of Hassini and Vickson [6] on optimal stor-
ing of products in carousels grouped in pods of two.
For one-item orders, their nearly-optimal solutions are
characterized by variability of demand frequencies in
each of the two carousels.

5. Number of steps before a turn

As we discussed earlier, the optimal route implies at
most one turn. In the remainder of the paper we shall
present several results on the asymptotic behavior of
the number of items collected before a turn as the
order size n goes to infinity. In [8] we proved that
in case of independent uniform items locations, the
limiting distribution is geometric with parameter 1

2 .
Below we show that this surprising result also holds for
non-uniform items locations. Moreover, the number of
items collected before a turn and the travel time turn
out to be asymptotically independent.

Denote by Kn and K
(m)
n the number of items col-

lected before a turn when collecting an order of n
items under the optimal strategy and the m-step strat-
egy, respectively. If there is no turn, these numbers are
set equal to zero. Observe that the number K

(m)
n + 1

equals one of the values j1 or j2 where either the first
or the second internal maximum in (9) is achieved.
The choice of j1 or j2 depends on whether the first or
the second internal maximum is larger. Let C denote
an event that the first maximum is larger, and let C̄

be the event complementary to C. Then K
(m)
n can be

formally written as

arg max
1� j �m+1

{Dj,n − Yj−1:n}1{C}

+ arg max
1� j �m+1

{Dn+2−j,n − (1 − Yn+2−j :n)}1{C̄}
− 1, (17)

where 1{·} is the indicator function. We can now prove
the following lemma.

Lemma 5.1. For any m�0,

(i) if n → ∞, then K
(m)
n

d→ K(m) where

P(K(m) = k) = 1

2k+1 − 2k−m
= 1

2k+1

+ 1

2m+1(2k+1 − 2k−m)
,

k = 0, . . . , m,
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(ii) (n + 1)(1 − T
(m)
n ) and K

(m)
n are asymptotically

independent as n → ∞.

Proof. In (17), multiply the expressions in argmax by
(n + 1) and let n → ∞. Then it follows from (5) that
K

(m)
n converges in distribution to K(m) given by

arg max
1� j �m+1

{
1

f (0)
[Xj − Sj−1]

}
1{C}

+ arg max
1� j �m+1

{
1

f (1)
[X′

j − S′
j−1]

}
1{C̄} − 1,

where C reduces to the event[
1

f (0)
max

1� j �m+1
{Xj − Sj−1}

� 1

f (1)
max

1� j �m+1
{X′

j − S′
j−1}

]
.

It follows from Corollary 3.2 in [8] that the random
variables

arg max
1� j �m+1

{Xj − Sj−1} (18)

and

max
1� j �m+1

{Xj − Sj−1} (19)

are independent, and hence, the distribution of K(m)

does not depend on the maxima involved in the event
C. Thus, for 0�k�m, we subsequently use the total
probability formula and the independence of (18) and
(19) to obtain

P(K(m) = k)

=P(C)P

(
arg max

1� j �m+1
{Xj−Sj−1}=k+1|C

)

+P(C̄)P

(
arg max

1� j �m+1
{X′

j−S′
j−1}=k+1|C̄

)

= P

(
arg max

1� j �m+1
{Xj − Sj−1} = k + 1

)

= 1

2k+1 − 2k−m
,

where the last equality is from Corollary 3.2 in [8].
Note that by (10), the asymptotic behavior of (n +
1)(1 − T

(m)
n ) is determined by the maxima involved

in C and C̄, whereas the asymptotic behavior of K
(m)
n

does not depend on these maxima. Thus, K
(m)
n and

(n+1)(1−T
(m)
n ) are asymptotically independent. �

We are now ready to prove the following theorem.

Theorem 5.2. (i) For any fixed k�0,

lim
n→∞ P(Kn = k) = 2−(k+1), k = 0, 1, . . . .

(ii) (n + 1)(1 − Tn) and Kn are asymptotically inde-
pendent when n goes to infinity.

Proof. (i) Observe that for 0�k�m,

P(K(m)
n = k) − P(Kn > m)

�P(Kn = k)�P(K(m)
n = k).

It follows from (11) that P (Kn > m)=P(Tn < T
(m)
n )�

�m+1
1 /(1 − �1) + �m+1

2 /(1 − �2). Further, Lemma

5.1 implies that K
(m)
n

d→ K(m) as n → ∞. Now, for
any fixed k�0, we can apply the Cauchy criterion
for P(Kn = k) exactly as it was done for Pn(t) in
the last part of the proof of Theorem 3.1, herewith
showing that limn→∞ P(Kn = k) exists and equals
limm→∞ P(K(m) = k) = 2−(k+1), where the last
equality is by Lemma 5.1(i).

The proof of (ii) is along the same lines. We first
write

0�P(K(m)
n = k, (n + 1)(1 − T (m)

n )� t)

− P(Kn = k, (n + 1)(1 − Tn)� t)

�P(Tn < T (m)
n )� �m+1

1

1 − �1
+ �m+1

2

1 − �2
.

Applying again the Cauchy criterion and using the
asymptotic independence of K

(m)
n and (n + 1)(1 −

T
(m)
n ) as n → ∞, we prove that limn→∞ P(Kn =

k, Tn < 1 − t/(n + 1)) exists and equals

lim
m→∞ lim

n→∞ P(K(m)
n = k, (n + 1)(1 − T (m)

n )� t)

= lim
m→∞ lim

n→∞ P(K(m)
n = k)

× lim
m→∞ lim

n→∞ P((n + 1)(1 − T (m)
n )� t)

= 2−(k+1)P (t).

The asymptotic independence of Kn and (n + 1)(1 −
Tn) now follows from (i) and Theorem 3.1. �
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