ELSEVIER

Available online at www.sciencedirect.com

SCIENCE (lel‘lEcT8

Operations Research Letters 34 (2006) 583-590

Operations
Research
Letters

www.elsevier.com/locate/orl

Quality of move-optimal schedules for minimizing total weighted
completion time

Tobias Brueggemann*:!, Johann L. Hurink?, Walter Kern?

Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 22 January 2005; accepted 20 August 2005
Available online 22 September 2005

Abstract

We study the minimum total weighted completion time problem on identical machines. We analyze a simple local search
heuristic, moving jobs from one machine to another. The local optima can be shown to be approximately optimal with
approximation ratio % In a special case, the approximation ratio is % —1/4/6 2~ 1.092.
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1. Introduction

We study the strongly .A4"2-hard problem of
scheduling n jobs J; (j = 1,...,n) with process-
ing times p; and weights w; on m identical parallel
machines in order to minimize total weighted com-
pletion time ) w;C; without preemption. In the
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classical scheduling notation this problem is denoted
by P || Z w; C j+

For m =1, an optimal assignment is easily obtained
by scheduling the jobs in order of non-increasing
weight to processing time ratios w;/p; (Smith-ratios,
cf. Smith [5]). The same argument shows that given
any schedule, we may assume w.l.o.g. that the jobs
on each machine are scheduled following Smith’s
rule. Given an assignment A of jobs to machines, we
denote by Z(A) the objective function value of the
corresponding schedule (obtained by scheduling the
jobs assigned to machine i according to Smith’s rule,
foralli=1,...,m).

Smith’s rule gives rise to the so-called LRF-
heuristic (“largest ratio first”) for m > 2 machines: An
LRF-assignment is obtained by first ordering the jobs
according to their Smith-ratios and then assigning
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them successively to the first available machine in a
greedy manner.

LRF-assignments have been analyzed by Eastman
et al. [3] and Kawaguchi and Kyan [4]. Relative to the
value Z(A*) of an optimal assignment A*, an LRF-
assignment A has been shown to satisfy

ZA) 1 N
zmﬂ<§W6+U~12L

and this bound is tight. Indeed, examples approaching
the upper bound can be found (with all jobs having
equal Smith-ratios, cf. [4]).

Here we study another simple heuristic: a local
search which successively modifies a current as-
signment A by moving a job to another machine.
We are interested in the quality of move-optimal
assignments, i.e., local optima of this local search
procedure.

In the general case (arbitrary Smith-ratios) the re-
lation between LRF-assignments and move-optimal
schedules is unclear. We can prove certain upper
bounds on move-optimal schedules that are identi-
cal to corresponding bounds for LRF-schedules from
Eastman et al. [3] (although the proofs are completely
different). As a consequence of these we obtain our
main result:

Theorem 1. Let A be a move-optimal assignment of
Jjobs to machines and A* an optimal assignment. Then

z4) _3 1

Z(A%) T2 2m’

where Z(A) and Z(A™*) denote the corresponding ob-
Jective values.

The worst example found so far is a small one for
m = 2 machines and has a ratio

Z(A) 6

Z(A*) 5

Hence, it is unclear (even in case m = 2) whether the
bound in Theorem 1 is tight. And it is still not known,
whether move-optimal assignments have a better ap-
proximation ratio than LRF-assignments.

In a special case the situation looks a bit different.
We prove the following:

Theorem 2. Let all jobs have the same Smith-ratio.
Then the objective value Z(A) of a move-optimal as-
signment A satisfies

Z(A) _9—-46
Z(A¥) 6

N

~ 1.092,

where Z(A*) denotes the value of an optimal assign-
ment A*. Moreover, this bound is tight.

This gives a better approximation ratio than for
general LRF-assignments. But, Chandra and Wong
[2] study a somehow related problem of minimizing
the sum of squared machine load. Their work implies,
that in case of all jobs having equal Smith-ratios
the approximation guarantee for LRF-assignments
can be improved. The jobs have to be ordered by
non-increasing processing times before assigning
them successively to the first available machine in a
greedy manner. Then an LRF-assignment A satisfies
Z(A)/Z(A*)<25/24.

Recently, some work on the quality of local optima
and the efficiency of local search methods for some re-
lated scheduling problems has been carried out. Schu-
urman and Vredeveld [6] and in his PhD thesis, Vre-
develd [7] give an overview and present approxima-
tion guarantees of local optima for problem P | | Cppax
as well as Q ||Cax and R || Cax. Moreover, Brucker
et al. [1] have shown that iterative improvement using
the move-neighborhood is a polynomial method for
problem P || Cppax With complexity 0(n?). Vredeveld
[7] improves this complexity to ¢(nm) by using a job
selection rule and generalized it for problem Q || Cax
resulting in a complexity of ((n’m).

The remainder of the paper is organized as follows.
In Section 2 we prove Theorem 1 and give the best
lower bound found so far for the approximation ratio
of a move-optimal assignment. Afterwards, in Section
3 we deal with the case of equal Smith-ratios and prove
Theorem 2. The paper ends with some open problems.

2. General case

In order to derive an upper bound for the approx-
imation ratio of a move-optimal assignment A, we
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compare the objective value Z(A) with the optimal
objective value Zj of the one machine problem with
the same set of jobs.

Let A be an arbitrary assignment of jobs to ma-
chines. We obtain an optimal schedule respecting this
assignment by scheduling the jobs assigned to the
same machine by non-increasing Smith-ratios w;/p;.
Let MiA. denote the jth job on machine i in this sched-
ule. If 1t is clear which assignment A is considered we
may write M;; to denote the job and p;; and w;; for
the corresponding processing times and weights. For
an arbitrary assignment, the objective value calculates
as

Z(A) = Z Z wij Z Pik

i=1 j=1

m n n;

:ZZPU Zwik , (1)

i=1 j=1 k=j

where n; denotes the number of jobs scheduled on ma-
chine i. Now consider an assignment A’ arising from A
by reassigning the jth job from machine i (which is job
M;;) to machine z. Observe, that the job has to be in-
serted on machine 7 at the appropriate position (defined
by the Smith-ordering). If we denote the insert position
of job M;; on machine ¢ with t(i, j, 1) =1(A, 1, j, 1),
the change in the objective value is given by

j—1

Z(A) — Z(A)—wl12p1k+plj Z Wik

k=1 k=j+1
(i, j,t)—1 ny

—Wijj Z Ptk —Dij Z Wrk.
k=1 k=t(i, j.t)

2

Since in a move-optimal assignment we can find no
job and target machine that gives an improvement in
the objective value, all differences in (2) have to be
non-positive. Thus, if we define

n; j—1
Aij=pij [ D wa | +wiy [ D i
k=j+1 k=1

for all I<i<m and 1<j<ny,

for a move-optimal assignment A the following in-
equalities hold for all 1<i,r<m,i #t,1<j<n;:

. (i, j.)—1

doowa 4w | D pa ] B

k=t(i,j.t) k=1

Aij < pij

Furthermore, the values 4;; and the objective value
Z(A) are related. If we sum up all 4;; for a fixed
machine i we get:

n;
> Aij
=1

nj

>

k=j+1

n; j—1 nj
= Z W Z Dik | + Z Dij
j=1 k=1 j=1

n; b n;
=221 wij | D pir —221 Wi Pij-
j=1 k=1 j=1

Therefore, for any assignment A and the corresponding
objective value Z(A) we have

m

2Z(A)=2) Z wij Z pik

i=1 j=1

n;

= Y3 (dij + 2w pij). “
i=1

J=1

We now consider the single machine problem
1|| > w;C; for the given set of jobs. Here Smith’s
rule gives an optimal schedule. W.1.0.g. we assume that
the jobs are numbered such that wi/p1 > - - - 2> wy/px.
Then the optimal objective value for the single ma-
chine problem calculates as

n n
=3 Zpk =2 pi| 2w
j=1 j=1 k=j
Our goal is to bound the objective value Z(A) of
a move-optimal assignment A in terms of Z7}. For
this we examine the target positions t(Z, j, t) for a
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fixed assignment A. All jobs M;; with ¢t # i and
1<k<1(i, j,t) — 1 have smaller indices and thus a
non-smaller Smith-ratio than M;;. To calculate the
starting time of a job in an optimal schedule for the
single machine problem we have to add the process-
ing times of all jobs with smaller indices. Therefore,
for a given assignment A we can expand the sums in
the objective value Zj to

m (i, j,t)—1

zZi= Zzwu Z Z p”‘+zp‘k

i=1 j=1 1=

t#z
(5
By a similar argument, we obtain:
=YYy ¥ erZwlk
i=1 j=1 tlkr(ljt)
(6)

Adding (5) and (6) we arrive at

2ZT_ ZZU}U szk

i=1 j=1

nj

m
+Z Z Pij

i=1 j=1

n;
D Wik
k=j

mn; m (i, j,t)—1
Y > wi [ D D0 pa
i=1 j=1 ft;l k=1
m  nj m ny
+ Z Z Dij Z Wik
i=1 j=1 f;! k=1(i, j.1)

m T, j,0)—1
22+ wij | Y Z Prk
i=1 j=1 i#ll
m  nj m ny
DI DIEDD
i=1 j=1 r;! k=1(i, j.1)

If we now incorporate (3) and use afterwards (4) the
following is obtained:

m ni m

2Z722Z(A) + Y DD A

1 1 =1
i=lj= t#i

n;

=2Z(A)+m—1)Y_ Y 4

i=1 j=1

=2Z(A) +2(m — ) Z(A)

m ni
—2m =1 wijpij

i=1 j=1

=2mZ(A) =2m —1) > w;p;.
j=1

Thus, a move-optimal assignment A satisfies

1 m—1 g
Z(AK—ZF + —— iDi
(DS —ZF+—— w;p (7)
Jj=1
We get a bound for the quotient of Z(A) and the
optimal objective value Z(A™) by considering a result

from Eastman et al. [3]. They give the following lower
bound for Z(A*):

1 m—1 ¢
ZAY > —Zi+ 3 wjp. ®)
j=1

Since trivially Z(A*)>3"_; w; p; holds, we con-
clude from (8) that

1 m—1
* *
Z(A*)>u Zzl +W.Zl w;p;j
j:
n
+(1l—0) ) w;p, ©)

Jj=1

for every o € [0, 1].

Comparing (7) with (9) for o =2m/(3m — 1), we
find
Z(A) 3 1 (10)
Z(A®) "2 2m’

proving Theorem 1.
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Consider an example consisting of four jobs and
two machines. The following table shows the job data.

job j 1 2 3 4
P 1 1 2 2
1 1

The assignment A in Fig. 1 is move-optimal and has
Z(A) = 6, whereas the optimum is Z(A*) = 5. So
Z(A)/Z(A*) = g which is smaller than % (obtained
from Eq. (10) with m = 2). For any even number of
machines we get the ratio g by taking multiple copies
of the instance for two machines. This leads to the
following lemma.

Lemma 3. The approximation ratio for move-optimal
assignments is at least g.

3. Instances with equal Smith-ratios

In what follows, we assume that all jobs have equal
Smith-ratios and prove an upper bound of (9 —+/6)/6
on the approximation ratio of move-optimal assign-
ments. Let A be an assignment of jobs to machines.
We denote by Ml.A the set of jobs scheduled on ma-
chine i according to assignment A. If it is clear which
assignment A is considered, we also write simply M;.
In order to express the objective value we use similar
ideas as Kawaguchi and Kyan [4]. Since w;/p; =r
for all jobs j and some constant 7, the objective func-
tion value Z(A) corresponding to the assignment A
calculates as

ZM=3 Y w Y. n

i=1 jeM; keM; k< j

3D IR

keM k<

. 2
D P it )P
i=1 JjeM; keM; JEM;

Let LiA denote the workload of machine i (we omit
the index A if there are no ambiguities), i.e.,

Li= Z Pj-

JEM;

w 0@ w O] ®
w O | ®© | =@ ®

I I I I I I I
1 2 3 4 1 2 3

Assignment A

Assignment A*

Fig. 1. Gantt-charts for worst-case example found so far.

Then the objective value Z(A) is equal to

m n
,
ZM) =3 | 2oL+
i=1 j=1

In the following, let A denote a move-optimal assign-
ment and A* an optimal assignment. We are interested
in an upper bound for the ratio

z() YLD+ pg
ZAn LY+ X P

YL = Y (LE)?
YL L+ X

Therefore, we may scale the processing times and
weights such that » = 1 and

n
> pi=m.
Jj=1

an

without changing the value of (11). Moreover, for
assignment A we reorder the machines, such that
Li>L>>--->L,, holds. Observe, that for the sum
of workloads we have

m n
i=

Li=) pj=m. (12)
1

1 j=

Let 4; := L; — L,,, denote the deviation of the work-
load of machine i to the minimal workload L,,. From
(12) we get:

Z Ai =m(1l = Ly,). (13)
i=l1
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With the help of (13) we obtain

m
Yo AiLi=
i=1 i

l m m
=L, Z A + Z 4?
i=1 i=1

A2 4 mLy (1 = Ly). (14)

WE

Ai (L, + 4;)
1

Il

i=1

We can exploit (14) to rewrite the sum of the squares
of the workloads in terms of A; and L,,:

m m
D Li=) LilLm+4)
i=1

i=1

m m
=LmY Li+» AL
i=1 i=1

m

=Y A} +mLy(2— Ly). (15)
i=1

The quadratic-arithmetic mean inequality together
with Eq. (12) yields

m
Y Lizm. (16)
i=1

While the above holds for all assignments A, we now
use the move-optimality of A to yield a lower bound
for the processing times of jobs.

Lemma 4. Let A be a move-optimal assignment. For
all jobs j € M; we have p; > A;.

Proof. Assume, for job j € M; we have p; < 4;.
Because of the equal Smith-ratios we may schedule
job j after all other jobs of machine i without changing
the objective value Z(A). This yields a completion
time C# = L;. Consider now the assignment B arising
from A by assigning job j to machine m instead of i.
By scheduling job j in this assignment after all jobs
of machine m we receive a completion time of C% =
Ly, + pj. For the corresponding objective values holds
Z(A) = Z(B)=w;(C} —CPy=w;(Li— Ln—pj)=
w;(4;— p;) > 0. This contradicts the move-optimality
of assignment A. [J

With the help of Lemma 4 we obtain the following
for machine i

Z P??Ai Z pj=4iL;.
JjeM; JjeM;

Adding this up for all machines i leads together with
(14) to

n m m
IIED D WL W2
j=1 i=1 jeM; i=1
m
=Y A7 +mLy(1 = Ly). (17)

i=1

Using (15), (16) and (17) we receive for the approxi-
mation ratio (11) the following:

Z(4) _ M2~ L)

Bk, ) 18
Z(A%) S AP+ m( + Ly — L) (19

Since we have L,, <1, the nominator and the denom-
inator are positive. In order to simplify (18) we have
to give an upper bound for Z;-"ZIA?.

We denote with a worst-case instance a scaled
instance [ for the considered scheduling problem
for which the ratio Z(A)/Z(A*) is maximal. The
next lemma shows that from a certain workload on
there have to be at least two jobs scheduled on a
machine.

Lemma 5. Let I be a worst-case instance. If for a
move-optimal assignment A there is a machine i with
L; > 1 then there are at least two jobs scheduled on
machine i.

Proof. Let i be a machine with workload L; > 1 and
job j be the only job scheduled on this machine, i.e.
pj>1. We prove the lemma by showing that this
job j is scheduled alone in any move-optimal assign-
ment B. Since A* is also move-optimal, this contra-
dicts that / is a worst-case instance. (Removing this
job from the instance would yield a higher worst-case
ratio.)

Assume to the contrary, that job j is not sched-
uled alone on machine i in a move-optimal assign-
ment B. Let jy be a job also scheduled on machine i.
We have pj, <L; — pj < L; — L;, = 4; contradicting
Lemma 4. [
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The preceding lemma also gives an upper bound
on the processing times of the jobs in a worst-case
instance.

Corollary 6. Let I be a worst-case instance. Then
pj <1 for all jobs j.

The following lemma gives an important upper
bound on the deviations 4; in a worst-case instance.

Lemma 7. Let I be a worst-case instance. Then
A; < Ly, for all machines i for a move-optimal as-
signment A.

Proof. If L1 <1,then 1=L|=---=L,, which yields
A; = 0 for all machines i.

Consider now the case, that there exists a machine
i with L; > 1. Assume 4; > L,,,, i.e. L; >2L,,. Thus,
due to Lemma 4, each job j € M; has p; > L,,. Since
we furthermore have L; > 1, we know that |M;|>2.
Thus, at least one of the jobs on M; starts later than L,,.
Moving this job to machine m reduces the objective
value, contradicting the move-optimality of A. [J

Using Lemma 7 and (13) we get
m m
S M<L Y Ai=mLy(1 = Ly).
i=1 i=1

With the help of this we bound the approximation ratio
(18) by

Z(A) . 2—Ly,
Z(A*) 7 142L, —2L2
The maximum is obtained at L,, =2 — +/6/2 yielding

Z(A) <9—J€

Z@an S 6 19)

In case of equal Smith-ratios there is the follow-
ing worst-case example for m machines. (Thanks to
Tjark Vredeveld for providing this example!) For k
with 0 <k < % there are 2km jobs with p=w =1 and
(m —km) /¢ jobs of size p =w =¢. The move-optimal
assignment A shown in Fig. 2 schedules on each of the
first km machines two of the jobs with p = 1. More-
over, on each of the last m — km machines 1/¢ of the
jobs with p = ¢ are scheduled. The assignment A has

( p:wzl‘p:wzl‘
km
. p:wzl‘p:wzl‘
/
m — km - p=w=c¢
\
| ™ ¢
0 1 2

Fig. 2. Move-optimal assignment A for equal Smith-ratios.

([l p=w=1]
2km A :
(] p=w=1]
gl
m — 2km : pP=w =€
G
| > ¢
0 k 1+k

Assignment A*

Fig. 3. Optimal assignment A* for equal Smith-ratios.

an objective value of
Z(A) = ym(5k + 1 + (1 — k)e).

In an optimal assignment A* (see Fig. 3) k/¢ jobs with
p=¢and 1 job with p=1 are scheduled on each of the
first machines. Moreover, on each of the last m —2km
machines (1 + k)/¢ jobs with p = ¢ are scheduled,
yielding an objective value of

Z(A*) = Im(k* + 4k + 1 + (1 — k)e).

Fore— 0,k — (\/6 — 1)/5 and m sufficiently large
such that km € N, the ratio Z(A)/Z(A*) approaches
the maximum:

Z(A) 9-6
— .
Z(A*) 6

So, the bound (19) is tight. This proves Theorem 2.
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4. Open problems

As mentioned already, it would be interesting to also
have tight upper bounds in the general case. In par-
ticular, it is unclear, whether the approximation ratio
indeed grows with the number m of machines (as does
the upper bound in Theorem 1).
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